aboutsummaryrefslogtreecommitdiff
path: root/en_US.ISO8859-1/books/arch-handbook/boot/chapter.sgml
blob: 08776a032eb0bd7f23aacb61c760ed943c6d00f4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
<!--
The FreeBSD Documentation Project

Copyright (c) 2002 Sergey Lyubka <devnull@uptsoft.com>
All rights reserved
$FreeBSD$
-->

<chapter id="boot">
  <chapterinfo>
    <authorgroup>
      <author>
	<firstname>Sergey</firstname>
	<surname>Lyubka</surname>
	<contrib>Contributed by </contrib>
      </author> <!-- devnull@uptsoft.com  12 Jun 2002 -->
    </authorgroup>
  </chapterinfo>
  <title>Bootstrapping and Kernel Initialization</title>

  <sect1 id="boot-synopsis">
    <title>Synopsis</title>

    <indexterm><primary>BIOS</primary></indexterm>
    <indexterm><primary>firmware</primary></indexterm>
    <indexterm><primary>POST</primary></indexterm>
    <indexterm><primary>IA-32</primary></indexterm>
    <indexterm><primary>booting</primary></indexterm>
    <indexterm><primary>system initialization</primary></indexterm>
    <para>This chapter is an overview of the boot and system
      initialization process, starting from the BIOS (firmware) POST,
      to the first user process creation.  Since the initial steps of
      system startup are very architecture dependent, the IA-32
      architecture is used as an example.</para>
  </sect1>

  <sect1 id="boot-overview">
    <title>Overview</title>

    <para>A computer running FreeBSD can boot by several methods,
      although the most common method, booting from a harddisk where
      the OS is installed, will be discussed here.  The boot process
      is divided into several steps:</para>

    <itemizedlist>
      <listitem><para>BIOS POST</para></listitem>
      <listitem><para><literal>boot0</literal> stage</para></listitem>
      <listitem><para><literal>boot2</literal> stage</para></listitem>
      <listitem><para>loader stage</para></listitem>
      <listitem><para>kernel initialization</para></listitem>
    </itemizedlist>

    <indexterm><primary>BIOS POST</primary></indexterm>
    <indexterm><primary>boot0</primary></indexterm>
    <indexterm><primary>boot2</primary></indexterm>
    <indexterm><primary>loader</primary></indexterm>
    <para>The <literal>boot0</literal> and <literal>boot2</literal>
      stages are also referred to as <emphasis>bootstrap stages 1 and
      2</emphasis> in &man.boot.8; as the first steps in FreeBSD's
      3-stage bootstrapping procedure.  Various information is printed
      on the screen at each stage, so you may visually recognize them
      using the table that follows.  Please note that the actual data
      may differ from machine to machine:</para>

    <informaltable frame="none" pgwide="0">
      <tgroup cols="2">
	<tbody>
	  <row>
	    <entry><para>Output (may vary)</para></entry>
	    <entry><para>BIOS (firmware) messages</para></entry>
	  </row>

	  <row>
	    <entry><para><screen>F1    FreeBSD
F2    BSD
F5    Disk 2</screen></para></entry>
	    <entry><para><literal>boot0</literal></para></entry>
	  </row>

	  <row>
	    <entry><para><screen>&gt;&gt;FreeBSD/i386 BOOT
Default: 1:ad(1,a)/boot/loader
boot:</screen></para></entry>
	    <entry><para><literal>boot2</literal><footnote><para>This
		prompt will appear if the user presses a key just
		after selecting an OS to boot at the
		<literal>boot0</literal>
		stage.</para></footnote></para></entry>
	  </row>

	  <row>
	    <entry><para><screen>BTX loader 1.0 BTX version is 1.01
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS 639kB/64512kB available memory
FreeBSD/i386 bootstrap loader, Revision 0.8
Console internal video/keyboard
(jkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000)
/kernel text=0x1234 data=0x2345 syms=[0x4+0x3456]
Hit [Enter] to boot immediately, or any other key for command prompt
Booting [kernel] in 9 seconds..._</screen></para></entry>
	    <entry><para>loader</para></entry>
	  </row>

	  <row>
	    <entry><para><screen>Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
        The Regents of the University of California. All rights reserved.
FreeBSD 4.6-RC #0: Sat May  4 22:49:02 GMT 2002
    devnull@kukas:/usr/obj/usr/src/sys/DEVNULL
Timecounter "i8254"  frequency 1193182 Hz</screen></para></entry>
	    <entry><para>kernel</para></entry>
	  </row>
	</tbody>
      </tgroup>
    </informaltable>
  </sect1>

  <sect1 id="boot-bios">
    <title>BIOS POST</title>

    <para>When the PC powers on, the processor's registers are set
      to some predefined values.  One of the registers is the
      <emphasis>instruction pointer</emphasis> register, and its value
      after a power on is well defined: it is a 32-bit value of
      0xfffffff0.  The instruction pointer register points to code to
      be executed by the processor.  One of the registers is the
      <literal>cr0</literal> 32-bit control register, and its value
      just after the reboot is 0.  One of the cr0's bits, the bit PE
      (Protection Enabled) indicates whether the processor is running
      in protected or real mode.  Since at boot time this bit is
      cleared, the processor boots in real mode.  Real mode means,
      among other things, that linear and physical addresses are
      identical.</para>

    <para>The value of 0xfffffff0 is slightly less then 4Gb, so unless
      the machine has 4Gb physical memory, it cannot point to a valid
      memory address.  The computer's hardware translates this address
      so that it points to a BIOS memory block.</para>

    <para>BIOS stands for <emphasis>Basic Input Output
	System</emphasis>, and it is a chip on the motherboard that
      has a relatively small amount of read-only memory (ROM).  This
      memory contains various low-level routines that are specific to
      the hardware supplied with the motherboard.  So, the processor
      will first jump to the address 0xfffffff0, which really resides
      in the BIOS's memory.  Usually this address contains a jump
      instruction to the BIOS's POST routines.</para>

    <para>POST stands for <emphasis>Power On Self Test</emphasis>.
      This is a set of routines including the memory check, system bus
      check and other low-level stuff so that the CPU can initialize
      the computer properly.  The important step on this stage is
      determining the boot device.  All modern BIOS's allow the boot
      device to be set manually, so you can boot from a floppy,
      CD-ROM, harddisk etc.</para>

    <para>The very last thing in the POST is the <literal>INT
	0x19</literal> instruction.  That instruction reads 512 bytes
      from the first sector of boot device into the memory at address
      0x7c00.  The term <emphasis>first sector</emphasis> originates
      from harddrive architecture, where the magnetic plate is divided
      to a number of cylindrical tracks.  Tracks are numbered, and
      every track is divided by a number (usually 64) sectors.  Track
      number 0 is the outermost on the magnetic plate, and sector 1,
      the first sector (tracks, or, cylinders, are numbered starting
      from 0, but sectors - starting from 1), has a special meaning.
      It is also called Master Boot Record, or MBR.  The remaining
      sectors on the first track are never used <footnote><para>Some
	  utilities such as &man.disklabel.8; may store the
	  information in this area, mostly in the second
	  sector.</para></footnote>.</para>
  </sect1>

  <sect1 id="boot-boot0">
    <title><literal>boot0</literal> Stage</title>

    <indexterm><primary>MBR</primary></indexterm>
    <para>Take a look at the file <filename>/boot/boot0</filename>.
      This is a small 512-byte file, and it is exactly what FreeBSD's
      installation procedure wrote to your harddisk's MBR if you chose
      the <quote>bootmanager</quote> option at installation
      time.</para>

    <para>As mentioned previously, the <literal>INT 0x19</literal>
      instruction loads an MBR, i.e. the <filename>boot0</filename>
      content, into the memory at address 0x7c00.  Taking a look at
      the file <filename>sys/boot/i386/boot0/boot0.S</filename> can
      give a guess at what is happening there - this is the boot
      manager, which is an awesome piece of code written by Robert
      Nordier.</para>

    <para>The MBR, or, <filename>boot0</filename>, has a special
      structure starting from offset 0x1be, called the
      <emphasis>partition table</emphasis>.  It has 4 records of 16
      bytes each, called <emphasis>partition records</emphasis>, which
      represent how the harddisk(s) are partitioned, or, in FreeBSD's
      terminology, sliced.  One byte of those 16 says whether a
      partition (slice) is bootable or not.  Exactly one record must
      have that flag set, otherwise <filename>boot0</filename>'s code
      will refuse to proceed.</para>

    <para>A partition record has the following fields:</para>

    <itemizedlist>
      <listitem>
	<para>the 1-byte filesystem type</para>
      </listitem>

      <listitem>
	<para>the 1-byte bootable flag</para>
      </listitem>

      <listitem>
	<para>the 6 byte descriptor in CHS format</para>
      </listitem>

      <listitem>
	<para>the 8 byte descriptor in LBA format</para>
      </listitem>
    </itemizedlist>

    <para>A partition record descriptor has the information about
      where exactly the partition resides on the drive.  Both
      descriptors, LBA and CHS, describe the same information, but in
      different ways: LBA (Logical Block Addressing) has the starting
      sector for the partition and the partition's length, while CHS
      (Cylinder Head Sector) has coordinates for the first and last
      sectors of the partition.</para>

    <para>The boot manager scans the partition table and prints the
      menu on the screen so the user can select what disk and what
      slice to boot.  By pressing an appropriate key,
      <filename>boot0</filename> performs the following
      actions:</para>

    <itemizedlist>
      <listitem>
	<para>modifies the bootable flag for the selected partition to
	  make it bootable, and clears the previous</para>
      </listitem>

      <listitem>
	<para>saves itself to disk to remember what partition (slice)
	  has been selected so to use it as the default on the next
	  boot</para>
      </listitem>

      <listitem>
	<para>loads the first sector of the selected partition (slice)
	  into memory and jumps there</para>
      </listitem>
    </itemizedlist>

    <para>What kind of data should reside on the very first sector of
      a bootable partition (slice), in our case, a FreeBSD slice?  As
      you may have already guessed, it is
      <filename>boot2</filename>.</para>
  </sect1>

  <sect1 id="boot-boot2">
    <title><literal>boot2</literal> Stage</title>

    <para>You might wonder, why <literal>boot2</literal> comes after
      <literal>boot0</literal>, and not boot1.  Actually, there is a
      512-byte file called <filename>boot1</filename> in the directory
      <filename>/boot</filename> as well.  It is used for booting from
      a floppy.  When booting from a floppy,
      <filename>boot1</filename> plays the same role as
      <filename>boot0</filename> for a harddisk: it locates
      <filename>boot2</filename> and runs it.</para>

    <para>You may have realized that a file
      <filename>/boot/mbr</filename> exists as well.  It is a
      simplified version of <filename>boot0</filename>.  The code in
      <filename>mbr</filename> does not provide a menu for the user,
      it just blindly boots the partition marked active.</para>

    <para>The code implementing <filename>boot2</filename> resides in
      <filename>sys/boot/i386/boot2/</filename>, and the executable
      itself is in <filename>/boot</filename>.  The files
      <filename>boot0</filename> and <filename>boot2</filename> that
      are in <filename>/boot</filename> are not used by the bootstrap,
      but by utilities such as <application>boot0cfg</application>.
      The actual position for <filename>boot0</filename> is in the
      MBR.  For <filename>boot2</filename> it is the beginning of a
      bootable FreeBSD slice.  These locations are not under the
      filesystem's control, so they are invisible to commands like
      <application>ls</application>.</para>

    <para>The main task for <literal>boot2</literal> is to load the
      file <filename>/boot/loader</filename>, which is the third stage
      in the bootstrapping procedure.  The code in
      <literal>boot2</literal> cannot use any services like
      <function>open()</function> and <function>read()</function>,
      since the kernel is not yet loaded.  It must scan the harddisk,
      knowing about the filesystem structure, find the file
      <filename>/boot/loader</filename>, read it into memory using a
      BIOS service, and then pass the execution to the loader's entry
      point.</para>

    <para>Besides that, <literal>boot2</literal> prompts for user
      input so the loader can be booted from different disk, unit,
      slice and partition.</para>

    <para>The <literal>boot2</literal> binary is created in special
      way:</para>

    <programlisting><filename>sys/boot/i386/boot2/Makefile:</filename>
boot2: boot2.ldr boot2.bin ${BTX}/btx/btx
	btxld -v -E ${ORG2} -f bin -b ${BTX}/btx/btx -l boot2.ldr \
		-o boot2.ld -P 1 boot2.bin</programlisting>

    <indexterm><primary>BTX</primary></indexterm>
    <para>This Makefile snippet shows that &man.btxld.8; is used to
      link the binary.  BTX, which stands for BooT eXtender, is a
      piece of code that provides a protected mode environment for the
      program, called the client, that it is linked with.  So
      <literal>boot2</literal> is a BTX client, i.e. it uses the
      service provided by BTX.</para>

    <indexterm><primary>linker</primary></indexterm>
    <para>The <application>btxld</application> utility is the linker.
      It links two binaries together.  The difference between
      &man.btxld.8; and &man.ld.1; is that
      <application>ld</application> usually links object files into a
      shared object or executable, while
      <application>btxld</application> links an object file with the
      BTX, producing the binary file suitable to be put on the
      beginning of the partition for the system boot.</para>

    <para><literal>boot0</literal> passes the execution to BTX's entry
      point.  BTX then switches the processor to protected mode, and
      prepares a simple environment before calling the client.  This
      includes:</para>

    <indexterm><primary>virtual v86 mode</primary></indexterm>
    <itemizedlist>
      <listitem>
	<para>virtual v86 mode.  That means, the BTX is a v86 monitor.
	  Real mode instructions like pushf, popf, cli, sti, if called
	  by the client, will work.</para>
      </listitem>

      <listitem>
	<para>Interrupt Descriptor Table (IDT) is set up so all
	  hardware interrupts are routed to the default BIOS's
	  handlers, and interrupt 0x30 is set up to be the syscall
	  gate.</para>
      </listitem>

      <listitem>
	<para>Two system calls: <function>exec</function> and
	  <function>exit</function>, are defined:</para>

	<programlisting><filename>sys/boot/i386/btx/lib/btxsys.s:</filename>
		.set INT_SYS,0x30		# Interrupt number
#
# System call: exit
#
__exit:		xorl %eax,%eax			# BTX system
		int $INT_SYS			#  call 0x0
#
# System call: exec
#
__exec:		movl $0x1,%eax			# BTX system
		int $INT_SYS			#  call 0x1</programlisting>
      </listitem>
    </itemizedlist>

    <para>BTX creates a Global Descriptor Table (GDT):</para>

    <programlisting><filename>sys/boot/i386/btx/btx/btx.s:</filename>
gdt:		.word 0x0,0x0,0x0,0x0		# Null entry
		.word 0xffff,0x0,0x9a00,0xcf	# SEL_SCODE
		.word 0xffff,0x0,0x9200,0xcf	# SEL_SDATA
		.word 0xffff,0x0,0x9a00,0x0	# SEL_RCODE
		.word 0xffff,0x0,0x9200,0x0	# SEL_RDATA
		.word 0xffff,MEM_USR,0xfa00,0xcf# SEL_UCODE
		.word 0xffff,MEM_USR,0xf200,0xcf# SEL_UDATA
		.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS</programlisting>

    <para>The client's code and data start from address MEM_USR
      (0xa000), and a selector (SEL_UCODE) points to the client's code
      segment.  The SEL_UCODE descriptor has Descriptor Privilege
      Level (DPL) 3, which is the lowest privilege level.  But the
      <literal>INT 0x30</literal> instruction handler resides in a
      segment pointed to by the SEL_SCODE (supervisor code) selector,
      as shown from the code that creates an IDT:</para>

    <programlisting>		mov $SEL_SCODE,%dh		# Segment selector
init.2:		shr %bx				# Handle this int?
		jnc init.3			# No
		mov %ax,(%di)			# Set handler offset
		mov %dh,0x2(%di)		#  and selector
		mov %dl,0x5(%di)		# Set P:DPL:type
		add $0x4,%ax			# Next handler</programlisting>

    <para>So, when the client calls <function>__exec()</function>, the
      code will be executed with the highest privileges.  This allows
      the kernel to change the protected mode data structures, such as
      page tables, GDT, IDT, etc later, if needed.</para>

    <para><literal>boot2</literal> defines an important structure,
      <literal>struct bootinfo</literal>.  This structure is
      initialized by <literal>boot2</literal> and passed to the
      loader, and then further to the kernel.  Some nodes of this
      structures are set by <literal>boot2</literal>, the rest by the
      loader.  This structure, among other information, contains the
      kernel filename, BIOS harddisk geometry, BIOS drive number for
      boot device, physical memory available, <literal>envp</literal>
      pointer etc.  The definition for it is:</para>

    <programlisting><filename>/usr/include/machine/bootinfo.h:</filename>
struct bootinfo {
	u_int32_t	bi_version;
	u_int32_t	bi_kernelname;		/* represents a char * */
	u_int32_t	bi_nfs_diskless;	/* struct nfs_diskless * */
				/* End of fields that are always present. */
#define	bi_endcommon	bi_n_bios_used
	u_int32_t	bi_n_bios_used;
	u_int32_t	bi_bios_geom[N_BIOS_GEOM];
	u_int32_t	bi_size;
	u_int8_t	bi_memsizes_valid;
	u_int8_t	bi_bios_dev;		/* bootdev BIOS unit number */
	u_int8_t	bi_pad[2];
	u_int32_t	bi_basemem;
	u_int32_t	bi_extmem;
	u_int32_t	bi_symtab;		/* struct symtab * */
	u_int32_t	bi_esymtab;		/* struct symtab * */
				/* Items below only from advanced bootloader */
	u_int32_t	bi_kernend;		/* end of kernel space */
	u_int32_t	bi_envp;		/* environment */
	u_int32_t	bi_modulep;		/* preloaded modules */
};</programlisting>

    <para><literal>boot2</literal> enters into an infinite loop
      waiting for user input, then calls <function>load()</function>.
      If the user does not press anything, the loop breaks by a
      timeout, so <function>load()</function> will load the default
      file (<filename>/boot/loader</filename>).  Functions
      <function>ino_t lookup(char *filename)</function> and
      <function>int xfsread(ino_t inode, void *buf, size_t
      nbyte)</function> are used to read the content of a file into
      memory.  <filename>/boot/loader</filename> is an ELF binary, but
      where the ELF header is prepended with a.out's <literal>struct
      exec</literal> structure. <function>load()</function> scans the
      loader's ELF header, loading the content of
      <filename>/boot/loader</filename> into memory, and passing the
      execution to the loader's entry:</para>

    <programlisting><filename>sys/boot/i386/boot2/boot2.c:</filename>
    __exec((caddr_t)addr, RB_BOOTINFO | (opts &amp; RBX_MASK),
	   MAKEBOOTDEV(dev_maj[dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
	   0, 0, 0, VTOP(&amp;bootinfo));</programlisting>
  </sect1>

  <sect1 id="boot-loader">
    <title><application>loader</application> Stage</title>

    <para><application>loader</application> is a BTX client as well.
      I will not describe it here in detail, there is a comprehensive
      manpage written by Mike Smith, &man.loader.8;.  The underlying
      mechanisms and BTX were discussed above.</para>

    <para>The main task for the loader is to boot the kernel.  When
      the kernel is loaded into memory, it is being called by the
      loader:</para>

    <programlisting><filename>sys/boot/common/boot.c:</filename>
    /* Call the exec handler from the loader matching the kernel */
    module_formats[km-&gt;m_loader]-&gt;l_exec(km);</programlisting>
  </sect1>

  <sect1 id="boot-kernel">
    <title>Kernel Initialization</title>

    <para>Let us take a look at the command that links the kernel.
      This will help identify the exact location where the loader
      passes execution to the kernel.  This location is the kernel's
      actual entry point.</para>

    <programlisting><filename>sys/conf/Makefile.i386:</filename>
ld -elf -Bdynamic -T /usr/src/sys/conf/ldscript.i386  -export-dynamic \
-dynamic-linker /red/herring -o kernel -X locore.o \
&lt;lots of kernel .o files&gt;</programlisting>

    <indexterm><primary>ELF</primary></indexterm>
    <para>A few interesting things can be seen here.  First, the
      kernel is an ELF dynamically linked binary, but the dynamic
      linker for kernel is <filename>/red/herring</filename>, which is
      definitely a bogus file.  Second, taking a look at the file
      <filename>sys/conf/ldscript.i386</filename> gives an idea about
      what <application>ld</application> options are used when
      compiling a kernel.  Reading through the first few lines, the
      string</para>

    <programlisting><filename>sys/conf/ldscript.i386:</filename>
ENTRY(btext)</programlisting>

    <para>says that a kernel's entry point is the symbol `btext'.
      This symbol is defined in <filename>locore.s</filename>:</para>

    <programlisting><filename>sys/i386/i386/locore.s:</filename>
	.text
/**********************************************************************
 *
 * This is where the bootblocks start us, set the ball rolling...
 *
 */
NON_GPROF_ENTRY(btext)</programlisting>

    <para>First, the register EFLAGS is set to a predefined value of
      0x00000002.  Then all the segment registers are
      initialized:</para>

    <programlisting><filename>sys/i386/i386/locore.s:</filename>
/* Don't trust what the BIOS gives for eflags. */
	pushl	$PSL_KERNEL
	popfl

/*
 * Don't trust what the BIOS gives for %fs and %gs.  Trust the bootstrap
 * to set %cs, %ds, %es and %ss.
 */
	mov	%ds, %ax
	mov	%ax, %fs
	mov	%ax, %gs</programlisting>

    <para>btext calls the routines
      <function>recover_bootinfo()</function>,
      <function>identify_cpu()</function>,
      <function>create_pagetables()</function>, which are also defined
      in <filename>locore.s</filename>.  Here is a description of what
      they do:</para>

    <informaltable frame="none" pgwide="1">
      <tgroup cols="2" align="left">
	<tbody>
	  <row>
	    <entry><function>recover_bootinfo</function></entry>
	    <entry>This routine parses the parameters to the kernel
	      passed from the bootstrap.  The kernel may have been
	      booted in 3 ways: by the loader, described above, by the
	      old disk boot blocks, or by the old diskless boot
	      procedure.  This function determines the booting method,
	      and stores the <literal>struct bootinfo</literal>
	      structure into the kernel memory.</entry>
	  </row>

	  <row>
	    <entry><function>identify_cpu</function></entry>
	    <entry>This functions tries to find out what CPU it is
	      running on, storing the value found in a variable
	      <varname>_cpu</varname>.</entry>
	  </row>

	  <row>
	    <entry><function>create_pagetables</function></entry>
	    <entry>This function allocates and fills out a Page Table
	      Directory at the top of the kernel memory area.</entry>
	  </row>
	</tbody>
      </tgroup>
    </informaltable>

    <para>The next steps are enabling VME, if the CPU supports
      it:</para>

    <programlisting>	testl	$CPUID_VME, R(_cpu_feature)
	jz	1f
	movl	%cr4, %eax
	orl	$CR4_VME, %eax
	movl	%eax, %cr4</programlisting>

    <para>Then, enabling paging:</para>

    <programlisting>/* Now enable paging */
	movl	R(_IdlePTD), %eax
	movl	%eax,%cr3			/* load ptd addr into mmu */
	movl	%cr0,%eax			/* get control word */
	orl	$CR0_PE|CR0_PG,%eax		/* enable paging */
	movl	%eax,%cr0			/* and let's page NOW! */</programlisting>

    <para>The next three lines of code are because the paging was set,
      so the jump is needed to continue the execution in virtualized
      address space:</para>

    <programlisting>	pushl	$begin				/* jump to high virtualized address */
	ret

/* now running relocated at KERNBASE where the system is linked to run */
begin:</programlisting>

    <para>The function <function>init386()</function> is called with
      a pointer to the first free physical page, after that
      <function>mi_startup()</function>.  <function>init386</function>
      is an architecture dependent initialization function, and
      <function>mi_startup()</function> is an architecture independent
      one (the 'mi_' prefix stands for Machine Independent).  The
      kernel never returns from <function>mi_startup()</function>, and
      by calling it, the kernel finishes booting:</para>

    <programlisting><filename>sys/i386/i386/locore.s:</filename>
	movl	physfree, %esi
	pushl	%esi				/* value of first for init386(first) */
	call	_init386			/* wire 386 chip for unix operation */
	call	_mi_startup			/* autoconfiguration, mountroot etc */
	hlt		/* never returns to here */</programlisting>

    <sect2>
      <title><function>init386()</function></title>

      <para><function>init386()</function> is defined in
	<filename>sys/i386/i386/machdep.c</filename> and performs
	low-level initialization specific to the i386 chip.  The
	switch to protected mode was performed by the loader.  The
	loader has created the very first task, in which the kernel
	continues to operate.  Before looking at the code, consider
	the tasks the processor must complete to initialize protected
	mode execution:</para>

      <itemizedlist>
	<listitem>
	  <para>Initialize the kernel tunable parameters, passed from
	    the bootstrapping program.</para>
	</listitem>

	<listitem>
	  <para>Prepare the GDT.</para>
	</listitem>

	<listitem>
	  <para>Prepare the IDT.</para>
	</listitem>

	<listitem>
	  <para>Initialize the system console.</para>
	</listitem>

	<listitem>
	  <para>Initialize the DDB, if it is compiled into
	    kernel.</para>
	</listitem>

	<listitem>
	  <para>Initialize the TSS.</para>
	</listitem>

	<listitem>
	  <para>Prepare the LDT.</para>
	</listitem>

	<listitem>
	  <para>Set up proc0's pcb.</para>
	</listitem>
      </itemizedlist>

      <indexterm><primary>parameters</primary></indexterm>
      <para><function>init386()</function> initializes the tunable
	parameters passed from bootstrap by setting the environment
	pointer (envp) and calling <function>init_param1()</function>.
	The envp pointer has been passed from loader in the
	<literal>bootinfo</literal> structure:</para>

      <programlisting><filename>sys/i386/i386/machdep.c:</filename>
		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;

	/* Init basic tunables, hz etc */
	init_param1();</programlisting>

      <para><function>init_param1()</function> is defined in
	<filename>sys/kern/subr_param.c</filename>.  That file has a
	number of sysctls, and two functions,
	<function>init_param1()</function> and
	<function>init_param2()</function>, that are called from
	<function>init386()</function>:</para>

      <programlisting><filename>sys/kern/subr_param.c:</filename>
	hz = HZ;
	TUNABLE_INT_FETCH("kern.hz", &amp;hz);</programlisting>

      <para>TUNABLE_&lt;typename&gt;_FETCH is used to fetch the value
	from the environment:</para>

      <programlisting><filename>/usr/src/sys/sys/kernel.h:</filename>
#define	TUNABLE_INT_FETCH(path, var)	getenv_int((path), (var))
</programlisting>

      <para>Sysctl <literal>kern.hz</literal> is the system clock
	tick.  Additionally, these sysctls are set by
	<function>init_param1()</function>: <literal>kern.maxswzone,
	kern.maxbcache, kern.maxtsiz, kern.dfldsiz, kern.maxdsiz,
	  kern.dflssiz, kern.maxssiz, kern.sgrowsiz</literal>.</para>

      <indexterm><primary>Global Descriptors Table
	  (GDT)</primary></indexterm>
      <para>Then <function>init386()</function> prepares the Global
	Descriptors Table (GDT).  Every task on an x86 is running in
	its own virtual address space, and this space is addressed by
	a segment:offset pair.  Say, for instance, the current
	instruction to be executed by the processor lies at CS:EIP,
	then the linear virtual address for that instruction would be
	<quote>the virtual address of code segment CS</quote> + EIP.
	For convenience, segments begin at virtual address 0 and end
	at a 4Gb boundary.  Therefore, the instruction's linear
	virtual address for this example would just be the value of
	EIP. Segment registers such as CS, DS etc are the selectors,
	i.e. indexes, into GDT (to be more precise, an index is not a
	selector itself, but the INDEX field of a selector). FreeBSD's
	GDT holds descriptors for 15 selectors per CPU:</para>

      <programlisting><filename>sys/i386/i386/machdep.c:</filename>
union descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */

<filename>sys/i386/include/segments.h:</filename>
/*
 * Entries in the Global Descriptor Table (GDT)
 */
#define	GNULL_SEL	0	/* Null Descriptor */
#define	GCODE_SEL	1	/* Kernel Code Descriptor */
#define	GDATA_SEL	2	/* Kernel Data Descriptor */
#define	GPRIV_SEL	3	/* SMP Per-Processor Private Data */
#define	GPROC0_SEL	4	/* Task state process slot zero and up */
#define	GLDT_SEL	5	/* LDT - eventually one per process */
#define	GUSERLDT_SEL	6	/* User LDT */
#define	GTGATE_SEL	7	/* Process task switch gate */
#define	GBIOSLOWMEM_SEL	8	/* BIOS low memory access (must be entry 8) */
#define	GPANIC_SEL	9	/* Task state to consider panic from */
#define GBIOSCODE32_SEL	10	/* BIOS interface (32bit Code) */
#define GBIOSCODE16_SEL	11	/* BIOS interface (16bit Code) */
#define GBIOSDATA_SEL	12	/* BIOS interface (Data) */
#define GBIOSUTIL_SEL	13	/* BIOS interface (Utility) */
#define GBIOSARGS_SEL	14	/* BIOS interface (Arguments) */</programlisting>

      <para>Note that those #defines are not selectors themselves, but
	just a field INDEX of a selector, so they are exactly the
	indices of the GDT.  for example, an actual selector for the
	kernel code (GCODE_SEL) has the value 0x08.</para>

      <indexterm><primary>Interrupt Descriptor Table
	  (IDT)</primary></indexterm>
      <para>The next step is to initialize the Interrupt Descriptor
	Table (IDT).  This table is referenced by the processor when a
	software or hardware interrupt occurs.  For example, to make a
	system call, user application issues the <literal>INT
	0x80</literal> instruction.  This is a software interrupt, so
	the processor's hardware looks up a record with index 0x80 in
	the IDT.  This record points to the routine that handles this
	interrupt, in this particular case, this will be the kernel's
	syscall gate.  The IDT may have a maximum of 256 (0x100)
	records.  The kernel allocates NIDT records for the IDT, where
	NIDT is the maximum (256):</para>

      <programlisting><filename>sys/i386/i386/machdep.c:</filename>
static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &amp;idt0[0];	/* interrupt descriptor table */
</programlisting>

      <para>For each interrupt, an appropriate handler is set.  The
	syscall gate for <literal>INT 0x80</literal> is set as
	well:</para>

      <programlisting><filename>sys/i386/i386/machdep.c:</filename>
 	setidt(0x80, &amp;IDTVEC(int0x80_syscall),
			SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));</programlisting>

      <para>So when a userland application issues the <literal>INT
	  0x80</literal> instruction, control will transfer to the
	function <function>_Xint0x80_syscall</function>, which is in
	the kernel code segment and will be executed with supervisor
	privileges.</para>

      <para>Console and DDB are then initialized:</para>
      <indexterm><primary>DDB</primary></indexterm>

      <programlisting><filename>sys/i386/i386/machdep.c:</filename>
	cninit();
/* skipped */
#ifdef DDB
	kdb_init();
	if (boothowto &amp; RB_KDB)
		Debugger("Boot flags requested debugger");
#endif</programlisting>

      <para>The Task State Segment is another x86 protected mode
	structure, the TSS is used by the hardware to store task
	information when a task switch occurs.</para>

      <para>The Local Descriptors Table is used to reference userland
	code and data.  Several selectors are defined to point to the
	LDT, they are the system call gates and the user code and data
	selectors:</para>

      <programlisting><filename>/usr/include/machine/segments.h:</filename>
#define	LSYS5CALLS_SEL	0	/* forced by intel BCS */
#define	LSYS5SIGR_SEL	1
#define	L43BSDCALLS_SEL	2	/* notyet */
#define	LUCODE_SEL	3
#define	LSOL26CALLS_SEL	4	/* Solaris &gt;= 2.6 system call gate */
#define	LUDATA_SEL	5
/* separate stack, es,fs,gs sels ? */
/* #define	LPOSIXCALLS_SEL	5*/	/* notyet */
#define LBSDICALLS_SEL	16	/* BSDI system call gate */
#define NLDT		(LBSDICALLS_SEL + 1)
</programlisting>

      <para>Next, proc0's Process Control Block (<literal>struct
	  pcb</literal>) structure is initialized.  proc0 is a
	<literal>struct proc</literal> structure that describes a
	kernel process.  It is always present while the kernel is
	running, therefore it is declared as global:</para>

      <programlisting><filename>sys/kern/kern_init.c:</filename>
    struct	proc proc0;</programlisting>

      <para>The structure <literal>struct pcb</literal> is a part of a
	proc structure.  It is defined in
	<filename>/usr/include/machine/pcb.h</filename> and has a
	process's information specific to the i386 architecture, such
	as registers values.</para>
    </sect2>

    <sect2>
      <title><function>mi_startup()</function></title>

      <para>This function performs a bubble sort of all the system
	initialization objects and then calls the entry of each object
	one by one:</para>

      <programlisting><filename>sys/kern/init_main.c:</filename>
	for (sipp = sysinit; *sipp; sipp++) {

		/* ... skipped ... */

		/* Call function */
		(*((*sipp)-&gt;func))((*sipp)-&gt;udata);
		/* ... skipped ... */
	}</programlisting>

      <para>Although the sysinit framework is described in the
	<ulink
	  url="&url.doc.langbase;/books/developers-handbook">Developers'
	  Handbook</ulink>, I will discuss the internals of it.</para>

      <indexterm><primary>sysinit objects</primary></indexterm>
      <para>Every system initialization object (sysinit object) is
	created by calling a SYSINIT() macro.  Let us take as example
	an <literal>announce</literal> sysinit object.  This object
	prints the copyright message:</para>

      <programlisting><filename>sys/kern/init_main.c:</filename>
static void
print_caddr_t(void *data __unused)
{
	printf("%s", (char *)data);
}
SYSINIT(announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright)</programlisting>

      <para>The subsystem ID for this object is SI_SUB_COPYRIGHT
	(0x0800001), which comes right after the SI_SUB_CONSOLE
	(0x0800000).  So, the copyright message will be printed out
	first, just after the console initialization.</para>

      <para>Let us take a look at what exactly the macro
	<literal>SYSINIT()</literal> does.  It expands to a
	<literal>C_SYSINIT()</literal> macro.  The
	<literal>C_SYSINIT()</literal> macro then expands to a static
	<literal>struct sysinit</literal> structure declaration with
	another <literal>DATA_SET</literal> macro call:</para>

      <programlisting><filename>/usr/include/sys/kernel.h:</filename>
      #define C_SYSINIT(uniquifier, subsystem, order, func, ident) \
      static struct sysinit uniquifier ## _sys_init = { \ subsystem, \
      order, \ func, \ ident \ }; \ DATA_SET(sysinit_set,uniquifier ##
      _sys_init);

#define	SYSINIT(uniquifier, subsystem, order, func, ident)	\
	C_SYSINIT(uniquifier, subsystem, order,			\
	(sysinit_cfunc_t)(sysinit_nfunc_t)func, (void *)ident)</programlisting>

      <para>The <literal>DATA_SET()</literal> macro expands to a
	<literal>MAKE_SET()</literal>, and that macro is the point
	where all the sysinit magic is hidden:</para>

      <programlisting><filename>/usr/include/linker_set.h:</filename>
#define MAKE_SET(set, sym)						\
	static void const * const __set_##set##_sym_##sym = &amp;sym;	\
	__asm(".section .set." #set ",\"aw\"");				\
	__asm(".long " #sym);						\
	__asm(".previous")
#endif
#define TEXT_SET(set, sym) MAKE_SET(set, sym)
#define DATA_SET(set, sym) MAKE_SET(set, sym)</programlisting>

      <para>In our case, the following declaration will occur:</para>

      <programlisting>static struct sysinit announce_sys_init = {
	SI_SUB_COPYRIGHT,
	SI_ORDER_FIRST,
	(sysinit_cfunc_t)(sysinit_nfunc_t)  print_caddr_t,
	(void *) copyright
};

static void const *const __set_sysinit_set_sym_announce_sys_init =
    &amp;announce_sys_init;
__asm(".section .set.sysinit_set" ",\"aw\"");
__asm(".long " "announce_sys_init");
__asm(".previous");</programlisting>

      <para>The first <literal>__asm</literal> instruction will create
	an ELF section within the kernel's executable.  This will
	happen at kernel link time.  The section will have the name
	<literal>.set.sysinit_set</literal>.  The content of this
	section is one 32-bit value, the address of announce_sys_init
	structure, and that is what the second
	<literal>__asm</literal> is.  The third
	<literal>__asm</literal> instruction marks the end of a
	section. If a directive with the same section name occurred
	before, the content, i.e. the 32-bit value, will be appended
	to the existing section, so forming an array of 32-bit
	pointers.</para>

      <para>Running <application>objdump</application> on a kernel
	binary, you may notice the presence of such small
	sections:</para>

      <screen>&prompt.user; <userinput>objdump -h /kernel</userinput>
  7 .set.cons_set 00000014  c03164c0  c03164c0  002154c0  2**2
                  CONTENTS, ALLOC, LOAD, DATA
  8 .set.kbddriver_set 00000010  c03164d4  c03164d4  002154d4  2**2
                  CONTENTS, ALLOC, LOAD, DATA
  9 .set.scrndr_set 00000024  c03164e4  c03164e4  002154e4  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 10 .set.scterm_set 0000000c  c0316508  c0316508  00215508  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 11 .set.sysctl_set 0000097c  c0316514  c0316514  00215514  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 12 .set.sysinit_set 00000664  c0316e90  c0316e90  00215e90  2**2
                  CONTENTS, ALLOC, LOAD, DATA</screen>

      <para>This screen dump shows that the size of .set.sysinit_set
	section is 0x664 bytes, so <literal>0x664/sizeof(void
	*)</literal> sysinit objects are compiled into the kernel.
	The other sections such as <literal>.set.sysctl_set</literal>
	represent other linker sets.</para>

      <para>By defining a variable of type <literal>struct
	  linker_set</literal> the content of
	<literal>.set.sysinit_set</literal> section will be
	<quote>collected</quote> into that variable:</para>

      <programlisting><filename>sys/kern/init_main.c:</filename>
      extern struct linker_set sysinit_set; /* XXX */</programlisting>

      <para>The <literal>struct linker_set</literal> is defined as
	follows:</para>

      <programlisting><filename>/usr/include/linker_set.h:</filename>
  struct linker_set {
	int	ls_length;
	void	*ls_items[1];		/* really ls_length of them, trailing NULL */
};</programlisting>

      <para>The first node will be equal to the number of a sysinit
	objects, and the second node will be a NULL-terminated array
	of pointers to them.</para>

      <para>Returning to the <function>mi_startup()</function>
	discussion, it is must be clear now, how the sysinit objects
	are being organized.  The <function>mi_startup()</function>
	function sorts them and calls each.  The very last object is
	the system scheduler:</para>

      <programlisting><filename>/usr/include/sys/kernel.h:</filename>
enum sysinit_sub_id {
	SI_SUB_DUMMY		= 0x0000000,	/* not executed; for linker*/
	SI_SUB_DONE		= 0x0000001,	/* processed*/
	SI_SUB_CONSOLE		= 0x0800000,	/* console*/
	SI_SUB_COPYRIGHT	= 0x0800001,	/* first use of console*/
...
	SI_SUB_RUN_SCHEDULER	= 0xfffffff	/* scheduler: no return*/
};</programlisting>

      <para>The system scheduler sysinit object is defined in the file
	<filename>sys/vm/vm_glue.c</filename>, and the entry point for
	that object is <function>scheduler()</function>.  That
	function is actually an infinite loop, and it represents a
	process with PID 0, the swapper process.  The proc0 structure,
	mentioned before, is used to describe it.</para>

      <para>The first user process, called <emphasis>init</emphasis>,
	is created by the sysinit object
	<literal>init</literal>:</para>

      <programlisting><filename>sys/kern/init_main.c:</filename>
static void
create_init(const void *udata __unused)
{
	int error;
	int s;

	s = splhigh();
	error = fork1(&amp;proc0, RFFDG | RFPROC, &amp;initproc);
	if (error)
		panic("cannot fork init: %d\n", error);
	initproc-&gt;p_flag |= P_INMEM | P_SYSTEM;
	cpu_set_fork_handler(initproc, start_init, NULL);
	remrunqueue(initproc);
	splx(s);
}
SYSINIT(init,SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL)</programlisting>

      <para>The <function>create_init()</function> allocates a new
	process by calling <function>fork1()</function>, but does not
	mark it runnable.  When this new process is scheduled for
	execution by the scheduler, the
	<function>start_init()</function> will be called.  That
	function is defined in <filename>init_main.c</filename>.  It
	tries to load and exec the <filename>init</filename> binary,
	probing <filename>/sbin/init</filename> first, then
	<filename>/sbin/oinit</filename>,
	<filename>/sbin/init.bak</filename>, and finally
	<filename>/stand/sysinstall</filename>:</para>

      <programlisting><filename>sys/kern/init_main.c:</filename>
static char init_path[MAXPATHLEN] =
#ifdef	INIT_PATH
    __XSTRING(INIT_PATH);
#else
    "/sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall";
#endif</programlisting>
    </sect2>
  </sect1>
</chapter>