1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
|
<?xml version="1.0" encoding="iso-8859-1"?>
<!--
The FreeBSD Documentation Project
$FreeBSD$
-->
<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0"
xml:id="advanced-networking">
<title>Advanced Networking</title>
<sect1 xml:id="advanced-networking-synopsis">
<title>Synopsis</title>
<para>This chapter covers a number of advanced networking
topics.</para>
<para>After reading this chapter, you will know:</para>
<itemizedlist>
<listitem>
<para>The basics of gateways and routes.</para>
</listitem>
<listitem>
<para>How to set up USB tethering.</para>
</listitem>
<listitem>
<para>How to set up &ieee; 802.11 and &bluetooth;
devices.</para>
</listitem>
<listitem>
<para>How to make &os; act as a bridge.</para>
</listitem>
<listitem>
<para>How to set up network <acronym>PXE</acronym>
booting.</para>
</listitem>
<listitem>
<para>How to set up <acronym>IPv6</acronym> on a &os;
machine.</para>
</listitem>
<listitem>
<para>How to enable and utilize the features of the Common
Address Redundancy Protocol (<acronym>CARP</acronym>) in
&os;.</para>
</listitem>
<listitem>
<para>How to configure multiple <acronym>VLANs</acronym> on
&os;.</para>
</listitem>
<listitem>
<para>Configure bluetooth headset.</para>
</listitem>
</itemizedlist>
<para>Before reading this chapter, you should:</para>
<itemizedlist>
<listitem>
<para>Understand the basics of the
<filename>/etc/rc</filename> scripts.</para>
</listitem>
<listitem>
<para>Be familiar with basic network terminology.</para>
</listitem>
<listitem>
<para>Know how to configure and install a new &os; kernel
(<xref linkend="kernelconfig"/>).</para>
</listitem>
<listitem>
<para>Know how to install additional third-party software
(<xref linkend="ports"/>).</para>
</listitem>
</itemizedlist>
</sect1>
<sect1 xml:id="network-routing">
<info>
<title>Gateways and Routes</title>
<authorgroup>
<author>
<personname>
<firstname>Coranth</firstname>
<surname>Gryphon</surname>
</personname>
<contrib>Contributed by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary>routing</primary>
</indexterm>
<indexterm>
<primary>gateway</primary>
</indexterm>
<indexterm>
<primary>subnet</primary>
</indexterm>
<para><firstterm>Routing</firstterm> is the mechanism that allows
a system to find the network path to another system. A
<firstterm>route</firstterm> is a defined pair of addresses
which represent the <quote>destination</quote> and a
<quote>gateway</quote>. The route indicates that when trying
to get to the specified destination, send the packets through
the specified gateway. There are three types of destinations:
individual hosts, subnets, and <quote>default</quote>. The
<quote>default route</quote> is used if no other routes apply.
There are also three types of gateways: individual hosts,
interfaces, also called links, and Ethernet hardware
(<acronym>MAC</acronym>) addresses. Known routes are stored in
a routing table.</para>
<para>This section provides an overview of routing basics. It
then demonstrates how to configure a &os; system as a router and
offers some troubleshooting tips.</para>
<sect2 xml:id="network-routing-default">
<title>Routing Basics</title>
<para>To view the routing table of a &os; system, use
&man.netstat.1;:</para>
<screen>&prompt.user; <userinput>netstat -r</userinput>
Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGS 37 418 em0
localhost localhost UH 0 181 lo0
test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77
10.20.30.255 link#1 UHLW 1 2421
example.com link#1 UC 0 0
host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0
host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>
host2.example.com link#1 UC 0 0
224 link#1 UC 0 0</screen>
<para>The entries in this example are as follows:</para>
<variablelist>
<varlistentry>
<term>default</term>
<listitem>
<para>The first route in this table specifies the
<literal>default</literal> route. When the local system
needs to make a connection to a remote host, it checks
the routing table to determine if a known path exists.
If the remote host matches an entry in the table, the
system checks to see if it can connect using the
interface specified in that entry.</para>
<para>If the destination does not match an entry, or if
all known paths fail, the system uses the entry for the
default route. For hosts on a local area network, the
<literal>Gateway</literal> field in the default route is
set to the system which has a direct connection to the
Internet. When reading this entry, verify that the
<literal>Flags</literal> column indicates that the
gateway is usable (<literal>UG</literal>).</para>
<para>The default route for a machine which itself is
functioning as the gateway to the outside world will be
the gateway machine at the Internet Service Provider
(<acronym>ISP</acronym>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>localhost</term>
<listitem>
<para>The second route is the <literal>localhost</literal>
route. The interface specified in the
<literal>Netif</literal> column for
<literal>localhost</literal> is
<filename>lo0</filename>, also known as the loopback
device. This indicates that all traffic for this
destination should be internal, rather than sending it
out over the network.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MAC address</term>
<listitem>
<para>The addresses beginning with <systemitem
class="etheraddress">0:e0:</systemitem> are
<acronym>MAC</acronym> addresses. &os; will
automatically identify any hosts,
<systemitem>test0</systemitem> in the example, on the
local Ethernet and add a route for that host over the
Ethernet interface, <filename>re0</filename>. This type
of route has a timeout, seen in the
<literal>Expire</literal> column, which is used if the
host does not respond in a specific amount of time.
When this happens, the route to this host will be
automatically deleted. These hosts are identified using
the Routing Information Protocol
(<acronym>RIP</acronym>), which calculates routes to
local hosts based upon a shortest path
determination.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>subnet</term>
<listitem>
<para>&os; will automatically add subnet routes for the
local subnet. In this example, <systemitem
class="ipaddress">10.20.30.255</systemitem> is the
broadcast address for the subnet <systemitem
class="ipaddress">10.20.30</systemitem> and
<systemitem
class="fqdomainname">example.com</systemitem> is the
domain name associated with that subnet. The
designation <literal>link#1</literal> refers to the
first Ethernet card in the machine.</para>
<para>Local network hosts and local subnets have their
routes automatically configured by a daemon called
&man.routed.8;. If it is not running, only routes which
are statically defined by the administrator will
exist.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>host</term>
<listitem>
<para>The <literal>host1</literal> line refers to the host
by its Ethernet address. Since it is the sending host,
&os; knows to use the loopback interface
(<filename>lo0</filename>) rather than the Ethernet
interface.</para>
<para>The two <literal>host2</literal> lines represent
aliases which were created using &man.ifconfig.8;. The
<literal>=></literal> symbol after the
<filename>lo0</filename> interface says that an alias
has been set in addition to the loopback address. Such
routes only show up on the host that supports the alias
and all other hosts on the local network will have a
<literal>link#1</literal> line for such routes.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>224</term>
<listitem>
<para>The final line (destination subnet <systemitem
class="ipaddress">224</systemitem>) deals with
multicasting.</para>
</listitem>
</varlistentry>
</variablelist>
<para>Various attributes of each route can be seen in the
<literal>Flags</literal> column. <xref linkend="routeflags"/>
summarizes some of these flags and their meanings:</para>
<table xml:id="routeflags" frame="none" pgwide="1">
<title>Commonly Seen Routing Table Flags</title>
<tgroup cols="2">
<thead>
<row>
<entry>Command</entry>
<entry>Purpose</entry>
</row>
</thead>
<tbody>
<row>
<entry>U</entry>
<entry>The route is active (up).</entry>
</row>
<row>
<entry>H</entry>
<entry>The route destination is a single host.</entry>
</row>
<row>
<entry>G</entry>
<entry>Send anything for this destination on to this
gateway, which will figure out from there where to
send it.</entry>
</row>
<row>
<entry>S</entry>
<entry>This route was statically configured.</entry>
</row>
<row>
<entry>C</entry>
<entry>Clones a new route based upon this route for
machines to connect to. This type of route is
normally used for local networks.</entry>
</row>
<row>
<entry>W</entry>
<entry>The route was auto-configured based upon a local
area network (clone) route.</entry>
</row>
<row>
<entry>L</entry>
<entry>Route involves references to Ethernet (link)
hardware.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>On a &os; system, the default route can defined in
<filename>/etc/rc.conf</filename> by specifying the
<acronym>IP</acronym> address of the default gateway:</para>
<programlisting>defaultrouter="10.20.30.1"</programlisting>
<para>It is also possible to manually add the route using
<command>route</command>:</para>
<screen>&prompt.root; <userinput>route add default 10.20.30.1</userinput></screen>
<para>Note that manually added routes will not survive a reboot.
For more information on manual manipulation of network
routing tables, refer to &man.route.8;.</para>
</sect2>
<sect2 xml:id="network-static-routes">
<info>
<title>Configuring a Router with Static Routes</title>
<authorgroup>
<author>
<personname>
<firstname>Al</firstname>
<surname>Hoang</surname>
</personname>
<contrib>Contributed by </contrib>
</author>
</authorgroup>
</info>
<!-- Feb 2004 -->
<indexterm>
<primary>dual homed hosts</primary>
</indexterm>
<para>A &os; system can be configured as the default gateway, or
router, for a network if it is a dual-homed system. A
dual-homed system is a host which resides on at least two
different networks. Typically, each network is connected to a
separate network interface, though <acronym>IP</acronym>
aliasing can be used to bind multiple addresses, each on a
different subnet, to one physical interface.</para>
<indexterm>
<primary>router</primary>
</indexterm>
<para>In order for the system to forward packets between
interfaces, &os; must be configured as a router. Internet
standards and good engineering practice prevent the &os;
Project from enabling this feature by default, but it can be
configured to start at boot by adding this line to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>gateway_enable="YES" # Set to YES if this host will be a gateway</programlisting>
<para>To enable routing now, set the &man.sysctl.8; variable
<varname>net.inet.ip.forwarding</varname> to
<literal>1</literal>. To stop routing, reset this variable to
<literal>0</literal>.</para>
<indexterm>
<primary>BGP</primary>
</indexterm>
<indexterm>
<primary>RIP</primary>
</indexterm>
<indexterm>
<primary>OSPF</primary>
</indexterm>
<para>The routing table of a router needs additional routes so
it knows how to reach other networks. Routes can be either
added manually using static routes or routes can be
automatically learned using a routing protocol. Static routes
are appropriate for small networks and this section describes
how to add a static routing entry for a small network.</para>
<note>
<para>For large networks, static routes quickly become
unscalable. &os; comes with the standard
<acronym>BSD</acronym> routing daemon &man.routed.8;, which
provides the routing protocols <acronym>RIP</acronym>,
versions 1 and 2, and <acronym>IRDP</acronym>. Support for
the <acronym>BGP</acronym> and <acronym>OSPF</acronym>
routing protocols can be installed using the
<package>net/zebra</package> package or port.</para>
</note>
<para>Consider the following network:</para>
<mediaobject>
<imageobject>
<imagedata fileref="advanced-networking/static-routes"/>
</imageobject>
<textobject>
<literallayout class="monospaced">
INTERNET
| (10.0.0.1/24) Default Router to Internet
|
|Interface xl0
|10.0.0.10/24
+------+
| | RouterA
| | (FreeBSD gateway)
+------+
| Interface xl1
| 192.168.1.1/24
|
+--------------------------------+
Internal Net 1 | 192.168.1.2/24
|
+------+
| | RouterB
| |
+------+
| 192.168.2.1/24
|
Internal Net 2</literallayout>
</textobject>
</mediaobject>
<para>In this scenario, <systemitem>RouterA</systemitem> is a
&os; machine that is acting as a router to the rest of the
Internet. It has a default route set to <systemitem
class="ipaddress">10.0.0.1</systemitem> which allows it to
connect with the outside world.
<systemitem>RouterB</systemitem> is already configured to use
<systemitem class="ipaddress">192.168.1.1</systemitem> as its
default gateway.</para>
<para>Before adding any static routes, the routing table on
<systemitem>RouterA</systemitem> looks like this:</para>
<screen>&prompt.user; <userinput>netstat -nr</userinput>
Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.1 UGS 0 49378 xl0
127.0.0.1 127.0.0.1 UH 0 6 lo0
10.0.0.0/24 link#1 UC 0 0 xl0
192.168.1.0/24 link#2 UC 0 0 xl1</screen>
<para>With the current routing table,
<systemitem>RouterA</systemitem> does not have a route to the
<systemitem class="ipaddress">192.168.2.0/24</systemitem>
network. The following command adds the <literal>Internal Net
2</literal> network to <systemitem>RouterA</systemitem>'s
routing table using <systemitem
class="ipaddress">192.168.1.2</systemitem> as the next
hop:</para>
<screen>&prompt.root; <userinput>route add -net 192.168.2.0/24 192.168.1.2</userinput></screen>
<para>Now, <systemitem>RouterA</systemitem> can reach any host
on the <systemitem
class="ipaddress">192.168.2.0/24</systemitem> network.
However, the routing information will not persist if the &os;
system reboots. If a static route needs to be persistent, add
it to <filename>/etc/rc.conf</filename>:</para>
<programlisting># Add Internal Net 2 as a persistent static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"</programlisting>
<para>The <literal>static_routes</literal> configuration
variable is a list of strings separated by a space, where each
string references a route name. The variable
<literal>route_<replaceable>internalnet2</replaceable></literal>
contains the static route for that route name.</para>
<para>Using more than one string in
<literal>static_routes</literal> creates multiple static
routes. The following shows an example of adding static
routes for the <systemitem
class="ipaddress">192.168.0.0/24</systemitem> and
<systemitem class="ipaddress">192.168.1.0/24</systemitem>
networks:</para>
<programlisting>static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"</programlisting>
</sect2>
<sect2 xml:id="network-routing-troubleshooting">
<title>Troubleshooting</title>
<para>When an address space is assigned to a network, the
service provider configures their routing tables so that all
traffic for the network will be sent to the link for the site.
But how do external sites know to send their packets to the
network's <acronym>ISP</acronym>?</para>
<para>There is a system that keeps track of all assigned
address spaces and defines their point of connection to the
Internet backbone, or the main trunk lines that carry Internet
traffic across the country and around the world. Each
backbone machine has a copy of a master set of tables, which
direct traffic for a particular network to a specific
backbone carrier, and from there down the chain of service
providers until it reaches a particular network.</para>
<para>It is the task of the service provider to advertise to
the backbone sites that they are the point of connection, and
thus the path inward, for a site. This is known as route
propagation.</para>
<indexterm>
<primary>&man.traceroute.8;</primary>
</indexterm>
<para>Sometimes, there is a problem with route propagation and
some sites are unable to connect. Perhaps the most useful
command for trying to figure out where routing is breaking
down is <command>traceroute</command>. It is useful when
<command>ping</command> fails.</para>
<para>When using <command>traceroute</command>, include the
address of the remote host to connect to. The output will
show the gateway hosts along the path of the attempt,
eventually either reaching the target host, or terminating
because of a lack of connection. For more information, refer
to &man.traceroute.8;.</para>
</sect2>
<sect2 xml:id="network-routing-multicast">
<title>Multicast Considerations</title>
<indexterm>
<primary>multicast routing</primary>
</indexterm>
<indexterm>
<primary>kernel options</primary>
<secondary>MROUTING</secondary>
</indexterm>
<para>&os; natively supports both multicast applications and
multicast routing. Multicast applications do not require any
special configuration in order to run on &os;. Support for
multicast routing requires that the following option be
compiled into a custom kernel:</para>
<programlisting>options MROUTING</programlisting>
<para>The multicast routing daemon,
<application>mrouted</application> can be installed using the
<package>net/mrouted</package> package or port. This daemon
implements the <acronym>DVMRP</acronym> multicast routing
protocol and is configured by editing
<filename>/usr/local/etc/mrouted.conf</filename> in order to
set up the tunnels and <acronym>DVMRP</acronym>. The
installation of <application>mrouted</application> also
installs <application>map-mbone</application> and
<application>mrinfo</application>, as well as their associated
man pages. Refer to these for configuration examples.</para>
<note>
<para><acronym>DVMRP</acronym> has largely been replaced by
the <acronym>PIM</acronym> protocol in many multicast
installations. Refer to &man.pim.4; for more
information.</para>
</note>
</sect2>
</sect1>
<sect1 xml:id="network-wireless">
<info>
<title>Wireless Networking</title>
<authorgroup>
<author>
<personname>
<othername>Loader</othername>
</personname>
</author>
<author>
<personname>
<firstname>Marc</firstname>
<surname>Fonvieille</surname>
</personname>
</author>
<author>
<personname>
<firstname>Murray</firstname>
<surname>Stokely</surname>
</personname>
</author>
</authorgroup>
</info>
<indexterm>
<primary>wireless networking</primary>
</indexterm>
<indexterm>
<primary>802.11</primary>
<see>wireless networking</see>
</indexterm>
<sect2>
<title>Wireless Networking Basics</title>
<para>Most wireless networks are based on the &ieee; 802.11
standards. A basic wireless network consists of multiple
stations communicating with radios that broadcast in either
the 2.4GHz or 5GHz band, though this varies according to the
locale and is also changing to enable communication in the
2.3GHz and 4.9GHz ranges.</para>
<para>802.11 networks are organized in two ways. In
<emphasis>infrastructure mode</emphasis>, one station acts as
a
master with all the other stations associating to it, the
network is known as a <acronym>BSS</acronym>, and the master
station is termed an access point (<acronym>AP</acronym>).
In a <acronym>BSS</acronym>, all communication passes through
the <acronym>AP</acronym>; even when one station wants to
communicate with another wireless station, messages must go
through the <acronym>AP</acronym>. In the second form of
network, there is no master and stations communicate directly.
This form of network is termed an <acronym>IBSS</acronym>
and is commonly known as an <emphasis>ad-hoc
network</emphasis>.</para>
<para>802.11 networks were first deployed in the 2.4GHz band
using protocols defined by the &ieee; 802.11 and 802.11b
standard. These specifications include the operating
frequencies and the <acronym>MAC</acronym> layer
characteristics, including framing and transmission rates,
as communication can occur at various rates. Later, the
802.11a standard defined operation in the 5GHz band, including
different signaling mechanisms and higher transmission rates.
Still later, the 802.11g standard defined the use of 802.11a
signaling and transmission mechanisms in the 2.4GHz band in
such a way as to be backwards compatible with 802.11b
networks.</para>
<para>Separate from the underlying transmission techniques,
802.11 networks have a variety of security mechanisms. The
original 802.11 specifications defined a simple security
protocol called <acronym>WEP</acronym>. This protocol uses a
fixed pre-shared key and the RC4 cryptographic cipher to
encode data transmitted on a network. Stations must all
agree on the fixed key in order to communicate. This scheme
was shown to be easily broken and is now rarely used except
to discourage transient users from joining networks. Current
security practice is given by the &ieee; 802.11i specification
that defines new cryptographic ciphers and an additional
protocol to authenticate stations to an access point and
exchange keys for data communication. Cryptographic keys
are periodically refreshed and there are mechanisms for
detecting and countering intrusion attempts. Another
security protocol specification commonly used in wireless
networks is termed <acronym>WPA</acronym>, which was a
precursor to 802.11i. <acronym>WPA</acronym> specifies a
subset of the requirements found in 802.11i and is designed
for implementation on legacy hardware. Specifically,
<acronym>WPA</acronym> requires only the
<acronym>TKIP</acronym> cipher that is derived from the
original <acronym>WEP</acronym> cipher. 802.11i permits use
of <acronym>TKIP</acronym> but also requires support for a
stronger cipher, AES-CCM, for encrypting data. The
<acronym>AES</acronym> cipher was not required in
<acronym>WPA</acronym> because it was deemed too
computationally costly to be implemented on legacy
hardware.</para>
<para>The other standard to be aware of is 802.11e. It defines
protocols for deploying multimedia applications, such as
streaming video and voice over IP (<acronym>VoIP</acronym>),
in an 802.11 network. Like 802.11i, 802.11e also has a
precursor specification termed <acronym>WME</acronym> (later
renamed <acronym>WMM</acronym>) that has been defined by an
industry group as a subset of 802.11e that can be deployed now
to enable multimedia applications while waiting for the final
ratification of 802.11e. The most important thing to know
about 802.11e and
<acronym>WME</acronym>/<acronym>WMM</acronym> is that it
enables prioritized traffic over a wireless network through
Quality of Service (<acronym>QoS</acronym>) protocols and
enhanced media access protocols. Proper implementation of
these protocols enables high speed bursting of data and
prioritized traffic flow.</para>
<para>&os; supports networks that operate using 802.11a,
802.11b, and 802.11g. The <acronym>WPA</acronym> and 802.11i
security protocols are likewise supported (in conjunction with
any of 11a, 11b, and 11g) and <acronym>QoS</acronym> and
traffic prioritization required by the
<acronym>WME</acronym>/<acronym>WMM</acronym> protocols are
supported for a limited set of wireless devices.</para>
</sect2>
<sect2 xml:id="network-wireless-quick-start">
<title>Quick Start</title>
<para>Connecting a computer to an existing wireless network is
a very common situation. This procedure shows the steps
required.</para>
<procedure>
<step>
<para>Obtain the <acronym>SSID</acronym> (Service Set
Identifier) and <acronym>PSK</acronym> (Pre-Shared Key)
for the wireless network from the network
administrator.</para>
</step>
<step>
<para>Identify the wireless adapter. The &os;
<filename>GENERIC</filename> kernel includes drivers for
many common wireless adapters. If the wireless adapter is
one of those models, it will be shown in the output from
&man.ifconfig.8;:</para>
<screen>&prompt.user; <userinput>ifconfig | grep -B3 -i wireless</userinput></screen>
<para>On &os; 11 or higher, use this command
instead:</para>
<screen>&prompt.user; <userinput>sysctl net.wlan.devices</userinput></screen>
<para>If a wireless adapter is not listed, an additional
kernel module might be required, or it might be a model
not supported by &os;.</para>
<!-- WB: refer to section that shows how to identify a
wireless adapter and load the kernel modules for it. -->
<para>This example shows the Atheros <literal>ath0</literal>
wireless adapter.</para>
</step>
<step>
<para>Add an entry for this network to
<filename>/etc/wpa_supplicant.conf</filename>. If the
file does not exist, create it. Replace
<replaceable>myssid</replaceable> and
<replaceable>mypsk</replaceable> with the
<acronym>SSID</acronym> and <acronym>PSK</acronym>
provided by the network administrator.</para>
<programlisting>network={
ssid="<replaceable>myssid</replaceable>"
psk="<replaceable>mypsk</replaceable>"
}</programlisting>
</step>
<step>
<para>Add entries to <filename>/etc/rc.conf</filename> to
configure the network on startup:</para>
<programlisting>wlans_<replaceable>ath0</replaceable>="wlan0"
ifconfig_wlan0="WPA SYNCDHCP"</programlisting>
</step>
<step>
<para>Restart the computer, or restart the network service
to connect to the network:</para>
<screen>&prompt.root; <userinput>service netif restart</userinput></screen>
</step>
</procedure>
</sect2>
<sect2 xml:id="network-wireless-basic">
<title>Basic Setup</title>
<sect3>
<title>Kernel Configuration</title>
<para>To use wireless networking, a wireless networking card
is needed and the kernel needs to be configured with the
appropriate wireless networking support. The kernel is
separated into multiple modules so that only the required
support needs to be configured.</para>
<para>The most
commonly used wireless devices are those that use parts made
by Atheros. These devices are supported by &man.ath.4;
and require the following line to be added to
<filename>/boot/loader.conf</filename>:</para>
<programlisting>if_ath_load="YES"</programlisting>
<para>The Atheros driver is split up into three separate
pieces: the driver (&man.ath.4;), the hardware support
layer that handles chip-specific functions
(&man.ath.hal.4;), and an algorithm for selecting the
rate for transmitting frames. When this support is loaded
as kernel modules, any dependencies are automatically
handled. To load support for a different type of wireless
device, specify the module for that device. This example
is for devices based on the Intersil Prism parts
(&man.wi.4;) driver:</para>
<programlisting>if_wi_load="YES"</programlisting>
<note>
<para>The examples in this section use an &man.ath.4;
device and the device name in the examples must be
changed according to the configuration. A list of
available wireless drivers and supported adapters can be
found in the &os; Hardware Notes, available on
the <link
xlink:href="https://www.FreeBSD.org/releases/index.html">Release
Information</link> page of the &os; website. If a
native &os; driver for the wireless device does not
exist, it may be possible to use the &windows; driver
with the help of the <link
linkend="config-network-ndis">NDIS</link> driver
wrapper.</para>
</note>
<para>In addition, the modules that implement cryptographic
support for the security protocols to use must be loaded.
These are intended to be dynamically loaded on demand by
the &man.wlan.4; module, but for now they must be manually
configured. The following modules are available:
&man.wlan.wep.4;, &man.wlan.ccmp.4;, and &man.wlan.tkip.4;.
The &man.wlan.ccmp.4; and &man.wlan.tkip.4; drivers are
only needed when using the <acronym>WPA</acronym> or
802.11i security protocols. If the network does not use
encryption, &man.wlan.wep.4; support is not needed. To
load these modules at boot time, add the following lines to
<filename>/boot/loader.conf</filename>:</para>
<programlisting>wlan_wep_load="YES"
wlan_ccmp_load="YES"
wlan_tkip_load="YES"</programlisting>
<para>Once this information has been added to
<filename>/boot/loader.conf</filename>, reboot the &os;
box. Alternately, load the modules by hand using
&man.kldload.8;.</para>
<note>
<para>For users who do not want to use modules, it is
possible to compile these drivers into the kernel by
adding the following lines to a custom kernel
configuration file:</para>
<programlisting>device wlan # 802.11 support
device wlan_wep # 802.11 WEP support
device wlan_ccmp # 802.11 CCMP support
device wlan_tkip # 802.11 TKIP support
device wlan_amrr # AMRR transmit rate control algorithm
device ath # Atheros pci/cardbus NIC's
device ath_hal # pci/cardbus chip support
options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors
device ath_rate_sample # SampleRate tx rate control for ath</programlisting>
<para>With this information in the kernel configuration
file, recompile the kernel and reboot the &os;
machine.</para>
</note>
<para>Information about the wireless device should appear
in the boot messages, like this:</para>
<screen>ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1
ath0: [ITHREAD]
ath0: AR2413 mac 7.9 RF2413 phy 4.5</screen>
</sect3>
<sect3>
<title>Setting the Correct Region</title>
<para>Since the regulatory situation is different
in various parts of the world, it is necessary to
correctly set the domains that apply to your location to
have the correct information about what channels can be
used.</para>
<para>The available region definitions can be found in
<filename>/etc/regdomain.xml</filename>. To set the data at
runtime, use <command>ifconfig</command>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> regdomain <replaceable>ETSI</replaceable> country <replaceable>AT</replaceable></userinput></screen>
<para>To persist the settings, add it to
<filename>/etc/rc.conf</filename>:</para>
<screen>&prompt.root; <userinput>sysrc create_args_wlan0="country <replaceable>AT</replaceable> regdomain <replaceable>ETSI</replaceable>"</userinput></screen>
</sect3>
</sect2>
<sect2>
<title>Infrastructure Mode</title>
<para>Infrastructure (<acronym>BSS</acronym>) mode is the
mode that is typically used. In this mode, a number of
wireless access points are connected to a wired network.
Each wireless network has its own name, called the
<acronym>SSID</acronym>. Wireless clients connect to the
wireless access points.</para>
<sect3>
<title>&os; Clients</title>
<sect4>
<title>How to Find Access Points</title>
<para>To scan for available networks, use &man.ifconfig.8;.
This request may take a few moments to complete as it
requires the system to switch to each available wireless
frequency and probe for available access points. Only
the superuser can initiate a scan:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
dlinkap 00:13:46:49:41:76 11 54M -90:96 100 EPS WPA WME
freebsdap 00:11:95:c3:0d:ac 1 54M -83:96 100 EPS WPA</screen>
<note>
<para>The interface must be <option>up</option> before
it can scan. Subsequent scan requests do not require
the interface to be marked as up again.</para>
</note>
<para>The output of a scan request lists each
<acronym>BSS</acronym>/<acronym>IBSS</acronym> network
found. Besides listing the name of the network, the
<literal>SSID</literal>, the output also shows the
<literal>BSSID</literal>, which is the
<acronym>MAC</acronym> address of the access point. The
<literal>CAPS</literal> field identifies the type of
each network and the capabilities of the stations
operating there:</para>
<table frame="none" pgwide="0">
<title>Station Capability Codes</title>
<tgroup cols="2">
<thead>
<row>
<entry>Capability Code</entry>
<entry>Meaning</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>E</literal></entry>
<entry>Extended Service Set
(<acronym>ESS</acronym>). Indicates that
the station is part of an infrastructure network
rather than an <acronym>IBSS</acronym>/ad-hoc
network.</entry>
</row>
<row>
<entry><literal>I</literal></entry>
<entry><acronym>IBSS</acronym>/ad-hoc network.
Indicates that the station is part of an ad-hoc
network rather than an <acronym>ESS</acronym>
network.</entry>
</row>
<row>
<entry><literal>P</literal></entry>
<entry>Privacy. Encryption is required for all
data frames exchanged within the
<acronym>BSS</acronym> using cryptographic means
such as <acronym>WEP</acronym>,
<acronym>TKIP</acronym> or
<acronym>AES</acronym>-<acronym>CCMP</acronym>.</entry>
</row>
<row>
<entry><literal>S</literal></entry>
<entry>Short Preamble. Indicates that the network
is using short preambles, defined in 802.11b High
Rate/DSSS PHY, and utilizes a 56 bit sync field
rather than the 128 bit field used in long
preamble mode.</entry>
</row>
<row>
<entry><literal>s</literal></entry>
<entry>Short slot time. Indicates that the 802.11g
network is using a short slot time because there
are no legacy (802.11b) stations present.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>One can also display the current list of known
networks with:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> list scan</userinput></screen>
<para>This information may be updated automatically by the
adapter or manually with a <option>scan</option> request.
Old data is automatically removed from the cache, so over
time this list may shrink unless more scans are
done.</para>
</sect4>
<sect4>
<title>Basic Settings</title>
<para>This section provides a simple example of how to make
the wireless network adapter work in &os; without
encryption. Once familiar with these concepts, it is
strongly recommend to use <link
linkend="network-wireless-wpa">WPA</link> to set up
the wireless network.</para>
<para>There are three basic steps to configure a wireless
network: select an access point, authenticate the
station, and configure an <acronym>IP</acronym> address.
The following sections discuss each step.</para>
<sect5>
<title>Selecting an Access Point</title>
<para>Most of the time, it is sufficient to let the system
choose an access point using the builtin heuristics.
This is the default behavior when an interface is
marked as up or it is listed in
<filename>/etc/rc.conf</filename>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"</programlisting>
<para>If there are multiple access points, a specific
one can be selected by its
<acronym>SSID</acronym>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="ssid <replaceable>your_ssid_here</replaceable> DHCP"</programlisting>
<para>In an environment where there are multiple access
points with the same <acronym>SSID</acronym>, which
is often done to simplify roaming, it may be necessary
to associate to one specific device. In this case, the
<acronym>BSSID</acronym> of the access point can be
specified, with or without the
<acronym>SSID</acronym>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="ssid <replaceable>your_ssid_here</replaceable> bssid <replaceable>xx:xx:xx:xx:xx:xx</replaceable> DHCP"</programlisting>
<para>There are other ways to constrain the choice of an
access point, such as limiting the set of frequencies
the system will scan on. This may be useful for a
multi-band wireless card as scanning all the possible
channels can be time-consuming. To limit operation to a
specific band, use the <option>mode</option>
parameter:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="mode <replaceable>11g</replaceable> ssid <replaceable>your_ssid_here</replaceable> DHCP"</programlisting>
<para>This example will force the card to operate in
802.11g, which is defined only for 2.4GHz frequencies
so any 5GHz channels will not be considered. This can
also be achieved with the
<option>channel</option> parameter, which locks
operation to one specific frequency, and the
<option>chanlist</option> parameter, to specify a list
of channels for scanning. More information about these
parameters can be found in &man.ifconfig.8;.</para>
</sect5>
<sect5>
<title>Authentication</title>
<para>Once an access point is selected, the station
needs to authenticate before it can pass data.
Authentication can happen in several ways. The most
common scheme, open authentication, allows any station
to join the network and communicate. This is the
authentication to use for test purposes the first time
a wireless network is setup. Other schemes require
cryptographic handshakes to be completed before data
traffic can flow, either using pre-shared keys or
secrets, or more complex schemes that involve backend
services such as <acronym>RADIUS</acronym>. Open
authentication is the default setting. The next most
common setup is <acronym>WPA-PSK</acronym>, also
known as <acronym>WPA</acronym> Personal, which is
described in <xref
linkend="network-wireless-wpa-wpa-psk"/>.</para>
<note>
<para>If using an &apple; &airport; Extreme base
station for an access point, shared-key authentication
together with a <acronym>WEP</acronym> key needs to
be configured. This can be configured in
<filename>/etc/rc.conf</filename> or by using
&man.wpa.supplicant.8;. For a single &airport; base
station, access can be configured with:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="authmode shared wepmode on weptxkey <replaceable>1</replaceable> wepkey <replaceable>01234567</replaceable> DHCP"</programlisting>
<para>In general, shared key authentication should be
avoided because it uses the <acronym>WEP</acronym> key
material in a highly-constrained manner, making it
even easier to crack the key. If
<acronym>WEP</acronym> must be used for compatibility
with legacy devices, it is better to use
<acronym>WEP</acronym> with <literal>open</literal>
authentication. More information regarding
<acronym>WEP</acronym> can be found in <xref
linkend="network-wireless-wep"/>.</para>
</note>
</sect5>
<sect5>
<title>Getting an <acronym>IP</acronym> Address with
<acronym>DHCP</acronym></title>
<para>Once an access point is selected and the
authentication parameters are set, an
<acronym>IP</acronym> address must be obtained in
order to communicate. Most of the time, the
<acronym>IP</acronym> address is obtained via
<acronym>DHCP</acronym>. To achieve that, edit
<filename>/etc/rc.conf</filename> and add
<literal>DHCP</literal> to the configuration for the
device:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="DHCP"</programlisting>
<para>The
wireless interface is now ready to bring up:</para>
<screen>&prompt.root; <userinput>service netif start</userinput></screen>
<para>Once the interface is running, use &man.ifconfig.8;
to see the status of the interface
<filename>ath0</filename>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255
media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
status: associated
ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76
country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
roam:rate 5 protmode CTS wme burst</screen>
<para>The <literal>status: associated</literal> line means
that it is connected to the wireless network. The
<literal>bssid 00:13:46:49:41:76</literal> is the
<acronym>MAC</acronym> address of the access point and
<literal>authmode OPEN</literal> indicates that the
communication is not encrypted.</para>
</sect5>
<sect5>
<title>Static <acronym>IP</acronym> Address</title>
<para>If an <acronym>IP</acronym> address cannot be
obtained from a <acronym>DHCP</acronym> server, set a
fixed <acronym>IP</acronym> address. Replace the
<literal>DHCP</literal> keyword shown above with the
address information. Be sure to retain any other
parameters for selecting the access point:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="inet <replaceable>192.168.1.100</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>your_ssid_here</replaceable>"</programlisting>
</sect5>
</sect4>
<sect4 xml:id="network-wireless-wpa">
<title><acronym>WPA</acronym></title>
<para>Wi-Fi Protected Access (<acronym>WPA</acronym>) is a
security protocol used together with 802.11 networks to
address the lack of proper authentication and the weakness
of <acronym>WEP</acronym>. WPA leverages the 802.1X
authentication protocol and uses one of several ciphers
instead of <acronym>WEP</acronym> for data integrity.
The only cipher required by <acronym>WPA</acronym> is the
Temporary Key Integrity Protocol
(<acronym>TKIP</acronym>). <acronym>TKIP</acronym> is a
cipher that extends the basic RC4 cipher used by
<acronym>WEP</acronym> by adding integrity checking,
tamper detection, and measures for responding to detected
intrusions. <acronym>TKIP</acronym> is designed to work
on legacy hardware with only software modification. It
represents a compromise that improves security but is
still not entirely immune to attack.
<acronym>WPA</acronym> also specifies the
<acronym>AES-CCMP</acronym> cipher as an alternative to
<acronym>TKIP</acronym>, and that is preferred when
possible. For this specification, the term
<acronym>WPA2</acronym> or <acronym>RSN</acronym> is
commonly used.</para>
<para><acronym>WPA</acronym> defines authentication and
encryption protocols. Authentication is most commonly
done using one of two techniques: by 802.1X and a backend
authentication service such as <acronym>RADIUS</acronym>,
or by a minimal handshake between the station and the
access point using a pre-shared secret. The former is
commonly termed <acronym>WPA</acronym> Enterprise and the
latter is known as <acronym>WPA</acronym> Personal. Since
most people will not set up a <acronym>RADIUS</acronym>
backend server for their wireless network,
<acronym>WPA-PSK</acronym> is by far the most commonly
encountered configuration for
<acronym>WPA</acronym>.</para>
<para>The control of the wireless connection and the key
negotiation or authentication with a server is done using
&man.wpa.supplicant.8;. This program requires a
configuration file,
<filename>/etc/wpa_supplicant.conf</filename>, to run.
More information regarding this file can be found in
&man.wpa.supplicant.conf.5;.</para>
<sect5 xml:id="network-wireless-wpa-wpa-psk">
<title><acronym>WPA-PSK</acronym></title>
<para><acronym>WPA-PSK</acronym>, also known as
<acronym>WPA</acronym> Personal, is based on a
pre-shared key (<acronym>PSK</acronym>) which is
generated from a given password and used as the master
key in the wireless network. This means every wireless
user will share the same key.
<acronym>WPA-PSK</acronym> is intended for small
networks where the use of an authentication server is
not possible or desired.</para>
<warning>
<para>Always use strong passwords that are sufficiently
long and made from a rich alphabet so that they will
not be easily guessed or attacked.</para>
</warning>
<para>The first step is the configuration of
<filename>/etc/wpa_supplicant.conf</filename> with
the <acronym>SSID</acronym> and the pre-shared key of
the network:</para>
<programlisting>network={
ssid="freebsdap"
psk="freebsdmall"
}</programlisting>
<para>Then, in <filename>/etc/rc.conf</filename>,
indicate that the wireless device configuration will be
done with <acronym>WPA</acronym> and the
<acronym>IP</acronym> address will be obtained with
<acronym>DHCP</acronym>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>
<para>Then, bring up the interface:</para>
<screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5
DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6
DHCPOFFER from 192.168.0.1
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
<para>Or, try to configure the interface manually using
the information in
<filename>/etc/wpa_supplicant.conf</filename>:</para>
<screen>&prompt.root; <userinput>wpa_supplicant -i <replaceable>wlan0</replaceable> -c /etc/wpa_supplicant.conf</userinput>
Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz)
Associated with 00:11:95:c3:0d:ac
WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP]
CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=]</screen>
<para>The next operation is to launch &man.dhclient.8;
to get the <acronym>IP</acronym> address from the
<acronym>DHCP</acronym> server:</para>
<screen>&prompt.root; <userinput>dhclient <replaceable>wlan0</replaceable></userinput>
DHCPREQUEST on wlan0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.1
bound to 192.168.0.254 -- renewal in 300 seconds.
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
<note>
<para>If <filename>/etc/rc.conf</filename> has an
<literal>ifconfig_wlan0="DHCP"</literal> entry,
&man.dhclient.8; will be launched automatically after
&man.wpa.supplicant.8; associates with the access
point.</para>
</note>
<para>If <acronym>DHCP</acronym> is not possible or
desired, set a static <acronym>IP</acronym> address
after &man.wpa.supplicant.8; has authenticated the
station:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.100</replaceable> netmask <replaceable>255.255.255.0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
<para>When <acronym>DHCP</acronym> is not used, the
default gateway and the nameserver also have to be
manually set:</para>
<screen>&prompt.root; <userinput>route add default <replaceable>your_default_router</replaceable></userinput>
&prompt.root; <userinput>echo "nameserver <replaceable>your_DNS_server</replaceable>" >> /etc/resolv.conf</userinput></screen>
</sect5>
<sect5 xml:id="network-wireless-wpa-eap-tls">
<title><acronym>WPA</acronym> with
<acronym>EAP-TLS</acronym></title>
<para>The second way to use <acronym>WPA</acronym> is with
an 802.1X backend authentication server. In this case,
<acronym>WPA</acronym> is called
<acronym>WPA</acronym> Enterprise to differentiate it
from the less secure <acronym>WPA</acronym> Personal.
Authentication in <acronym>WPA</acronym> Enterprise is
based on the Extensible Authentication Protocol
(<acronym>EAP</acronym>).</para>
<para><acronym>EAP</acronym> does not come with an
encryption method. Instead, <acronym>EAP</acronym> is
embedded inside an encrypted tunnel. There are many
<acronym>EAP</acronym> authentication methods, but
<acronym>EAP-TLS</acronym>, <acronym>EAP-TTLS</acronym>,
and <acronym>EAP-PEAP</acronym> are the most
common.</para>
<para>EAP with Transport Layer Security
(<acronym>EAP-TLS</acronym>) is a well-supported
wireless authentication protocol since it was the
first <acronym>EAP</acronym> method to be certified
by the <link
xlink:href="http://www.wi-fi.org/">Wi-Fi
Alliance</link>. <acronym>EAP-TLS</acronym> requires
three certificates to run: the certificate of the
Certificate Authority (<acronym>CA</acronym>) installed
on all machines, the server certificate for the
authentication server, and one client certificate for
each wireless client. In this <acronym>EAP</acronym>
method, both the authentication server and wireless
client authenticate each other by presenting their
respective certificates, and then verify that these
certificates were signed by the organization's
<acronym>CA</acronym>.</para>
<para>As previously, the configuration is done via
<filename>/etc/wpa_supplicant.conf</filename>:</para>
<programlisting>network={
ssid="freebsdap" <co xml:id="co-tls-ssid"/>
proto=RSN <co xml:id="co-tls-proto"/>
key_mgmt=WPA-EAP <co xml:id="co-tls-kmgmt"/>
eap=TLS <co xml:id="co-tls-eap"/>
identity="loader" <co xml:id="co-tls-id"/>
ca_cert="/etc/certs/cacert.pem" <co xml:id="co-tls-cacert"/>
client_cert="/etc/certs/clientcert.pem" <co xml:id="co-tls-clientcert"/>
private_key="/etc/certs/clientkey.pem" <co xml:id="co-tls-pkey"/>
private_key_passwd="freebsdmallclient" <co xml:id="co-tls-pwd"/>
}</programlisting>
<calloutlist>
<callout arearefs="co-tls-ssid">
<para>This field indicates the network name
(<acronym>SSID</acronym>).</para>
</callout>
<callout arearefs="co-tls-proto">
<para>This example uses the <acronym>RSN</acronym>
&ieee; 802.11i protocol, also known as
<acronym>WPA2</acronym>.</para>
</callout>
<callout arearefs="co-tls-kmgmt">
<para>The <literal>key_mgmt</literal> line refers to
the key management protocol to use. In this
example, it is <acronym>WPA</acronym> using
<acronym>EAP</acronym> authentication.</para>
</callout>
<callout arearefs="co-tls-eap">
<para>This field indicates the <acronym>EAP</acronym>
method for the connection.</para>
</callout>
<callout arearefs="co-tls-id">
<para>The <literal>identity</literal> field contains
the identity string for
<acronym>EAP</acronym>.</para>
</callout>
<callout arearefs="co-tls-cacert">
<para>The <literal>ca_cert</literal> field indicates
the pathname of the <acronym>CA</acronym>
certificate file. This file is needed to verify
the server certificate.</para>
</callout>
<callout arearefs="co-tls-clientcert">
<para>The <literal>client_cert</literal> line gives
the pathname to the client certificate file. This
certificate is unique to each wireless client of the
network.</para>
</callout>
<callout arearefs="co-tls-pkey">
<para>The <literal>private_key</literal> field is the
pathname to the client certificate private key
file.</para>
</callout>
<callout arearefs="co-tls-pwd">
<para>The <literal>private_key_passwd</literal> field
contains the passphrase for the private key.</para>
</callout>
</calloutlist>
<para>Then, add the following lines to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>
<para>The next step is to bring up the interface:</para>
<screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
<para>It is also possible to bring up the interface
manually using &man.wpa.supplicant.8; and
&man.ifconfig.8;.</para>
</sect5>
<sect5 xml:id="network-wireless-wpa-eap-ttls">
<title><acronym>WPA</acronym> with
<acronym>EAP-TTLS</acronym></title>
<para>With <acronym>EAP-TLS</acronym>, both the
authentication server and the client need a certificate.
With <acronym>EAP-TTLS</acronym>, a client certificate
is optional. This method is similar to a web server
which creates a secure <acronym>SSL</acronym> tunnel
even if visitors do not have client-side certificates.
<acronym>EAP-TTLS</acronym> uses an encrypted
<acronym>TLS</acronym> tunnel for safe transport of
the authentication data.</para>
<para>The required configuration can be added to
<filename>/etc/wpa_supplicant.conf</filename>:</para>
<programlisting>network={
ssid="freebsdap"
proto=RSN
key_mgmt=WPA-EAP
eap=TTLS <co xml:id="co-ttls-eap"/>
identity="test" <co xml:id="co-ttls-id"/>
password="test" <co xml:id="co-ttls-passwd"/>
ca_cert="/etc/certs/cacert.pem" <co xml:id="co-ttls-cacert"/>
phase2="auth=MD5" <co xml:id="co-ttls-pha2"/>
}</programlisting>
<calloutlist>
<callout arearefs="co-ttls-eap">
<para>This field specifies the <acronym>EAP</acronym>
method for the connection.</para>
</callout>
<callout arearefs="co-ttls-id">
<para>The <literal>identity</literal> field contains
the identity string for <acronym>EAP</acronym>
authentication inside the encrypted
<acronym>TLS</acronym> tunnel.</para>
</callout>
<callout arearefs="co-ttls-passwd">
<para>The <literal>password</literal> field contains
the passphrase for the <acronym>EAP</acronym>
authentication.</para>
</callout>
<callout arearefs="co-ttls-cacert">
<para>The <literal>ca_cert</literal> field indicates
the pathname of the <acronym>CA</acronym>
certificate file. This file is needed to verify
the server certificate.</para>
</callout>
<callout arearefs="co-ttls-pha2">
<para>This field specifies the authentication
method used in the encrypted <acronym>TLS</acronym>
tunnel. In this example,
<acronym>EAP</acronym> with MD5-Challenge is used.
The <quote>inner authentication</quote> phase is
often called <quote>phase2</quote>.</para>
</callout>
</calloutlist>
<para>Next, add the following lines to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>
<para>The next step is to bring up the interface:</para>
<screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
</sect5>
<sect5 xml:id="network-wireless-wpa-eap-peap">
<title><acronym>WPA</acronym> with
<acronym>EAP-PEAP</acronym></title>
<note>
<para><acronym>PEAPv0/EAP-MSCHAPv2</acronym> is the most
common <acronym>PEAP</acronym> method. In this
chapter, the term <acronym>PEAP</acronym> is used to
refer to that method.</para>
</note>
<para>Protected EAP (<acronym>PEAP</acronym>) is designed
as an alternative to <acronym>EAP-TTLS</acronym> and
is the most used <acronym>EAP</acronym> standard after
<acronym>EAP-TLS</acronym>. In a network with mixed
operating systems, <acronym>PEAP</acronym> should be
the most supported standard after
<acronym>EAP-TLS</acronym>.</para>
<para><acronym>PEAP</acronym> is similar to
<acronym>EAP-TTLS</acronym> as it uses a server-side
certificate to authenticate clients by creating an
encrypted <acronym>TLS</acronym> tunnel between the
client and the authentication server, which protects
the ensuing exchange of authentication information.
<acronym>PEAP</acronym> authentication differs from
<acronym>EAP-TTLS</acronym> as it broadcasts the
username in the clear and only the password is sent
in the encrypted <acronym>TLS</acronym> tunnel.
<acronym>EAP-TTLS</acronym> will use the
<acronym>TLS</acronym> tunnel for both the username
and password.</para>
<para>Add the following lines to
<filename>/etc/wpa_supplicant.conf</filename> to
configure the <acronym>EAP-PEAP</acronym> related
settings:</para>
<programlisting>network={
ssid="freebsdap"
proto=RSN
key_mgmt=WPA-EAP
eap=PEAP <co xml:id="co-peap-eap"/>
identity="test" <co xml:id="co-peap-id"/>
password="test" <co xml:id="co-peap-passwd"/>
ca_cert="/etc/certs/cacert.pem" <co xml:id="co-peap-cacert"/>
phase1="peaplabel=0" <co xml:id="co-peap-pha1"/>
phase2="auth=MSCHAPV2" <co xml:id="co-peap-pha2"/>
}</programlisting>
<calloutlist>
<callout arearefs="co-peap-eap">
<para>This field specifies the <acronym>EAP</acronym>
method for the connection.</para>
</callout>
<callout arearefs="co-peap-id">
<para>The <literal>identity</literal> field contains
the identity string for <acronym>EAP</acronym>
authentication inside the encrypted
<acronym>TLS</acronym> tunnel.</para>
</callout>
<callout arearefs="co-peap-passwd">
<para>The <literal>password</literal> field contains
the passphrase for the <acronym>EAP</acronym>
authentication.</para>
</callout>
<callout arearefs="co-peap-cacert">
<para>The <literal>ca_cert</literal> field indicates
the pathname of the <acronym>CA</acronym>
certificate file. This file is needed to verify
the server certificate.</para>
</callout>
<callout arearefs="co-peap-pha1">
<para>This field contains the parameters for the
first phase of authentication, the
<acronym>TLS</acronym> tunnel. According to the
authentication server used, specify a specific
label for authentication. Most of the time, the
label will be <quote>client <acronym>EAP</acronym>
encryption</quote> which is set by using
<literal>peaplabel=0</literal>. More information
can be found in &man.wpa.supplicant.conf.5;.</para>
</callout>
<callout arearefs="co-peap-pha2">
<para>This field specifies the authentication
protocol used in the encrypted
<acronym>TLS</acronym> tunnel. In the
case of <acronym>PEAP</acronym>, it is
<literal>auth=MSCHAPV2</literal>.</para>
</callout>
</calloutlist>
<para>Add the following to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>wlans_ath0="wlan0"
ifconfig_wlan0="WPA DHCP"</programlisting>
<para>Then, bring up the interface:</para>
<screen>&prompt.root; <userinput>service netif start</userinput>
Starting wpa_supplicant.
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15
DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21
DHCPACK from 192.168.0.20
bound to 192.168.0.254 -- renewal in 300 seconds.
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF
AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan
bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS
wme burst roaming MANUAL</screen>
</sect5>
</sect4>
<sect4 xml:id="network-wireless-wep">
<title><acronym>WEP</acronym></title>
<para>Wired Equivalent Privacy (<acronym>WEP</acronym>) is
part of the original 802.11 standard. There is no
authentication mechanism, only a weak form of access
control which is easily cracked.</para>
<para><acronym>WEP</acronym> can be set up using
&man.ifconfig.8;:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.1.100</replaceable> netmask <replaceable>255.255.255.0</replaceable> \
ssid <replaceable>my_net</replaceable> wepmode on weptxkey <replaceable>3</replaceable> wepkey <replaceable>3:0x3456789012</replaceable></userinput></screen>
<itemizedlist>
<listitem>
<para>The <literal>weptxkey</literal> specifies which
<acronym>WEP</acronym> key will be used in the
transmission. This example uses the third key.
This must match the setting on the access point.
When unsure which key is used by the access point,
try <literal>1</literal> (the first key) for this
value.</para>
</listitem>
<listitem>
<para>The <literal>wepkey</literal> selects one of the
<acronym>WEP</acronym> keys. It should be in the
format <replaceable>index:key</replaceable>. Key
<literal>1</literal> is used by default; the index
only needs to be set when using a key other than the
first key.</para>
<note>
<para>Replace the <literal>0x3456789012</literal>
with the key configured for use on the access
point.</para>
</note>
</listitem>
</itemizedlist>
<para>Refer to &man.ifconfig.8; for further
information.</para>
<para>The &man.wpa.supplicant.8; facility can be used to
configure a wireless interface with
<acronym>WEP</acronym>. The example above can be set up
by adding the following lines to
<filename>/etc/wpa_supplicant.conf</filename>:</para>
<programlisting>network={
ssid="my_net"
key_mgmt=NONE
wep_key3=3456789012
wep_tx_keyidx=3
}</programlisting>
<para>Then:</para>
<screen>&prompt.root; <userinput>wpa_supplicant -i <replaceable>wlan0</replaceable> -c /etc/wpa_supplicant.conf</userinput>
Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz)
Associated with 00:13:46:49:41:76</screen>
</sect4>
</sect3>
</sect2>
<sect2>
<title>Ad-hoc Mode</title>
<para><acronym>IBSS</acronym> mode, also called ad-hoc mode, is
designed for point to point connections. For example, to
establish an ad-hoc network between the machines
<systemitem>A</systemitem> and <systemitem>B</systemitem>,
choose two <acronym>IP</acronym> addresses and a
<acronym>SSID</acronym>.</para>
<para>On <systemitem>A</systemitem>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode adhoc</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:c3:0d:ac
inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
status: running
ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
protmode CTS wme burst</screen>
<para>The <literal>adhoc</literal> parameter indicates that the
interface is running in <acronym>IBSS</acronym> mode.</para>
<para><systemitem>B</systemitem> should now be able to detect
<systemitem>A</systemitem>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode adhoc</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
freebsdap 02:11:95:c3:0d:ac 2 54M -64:-96 100 IS WME</screen>
<para>The <literal>I</literal> in the output confirms that
<systemitem>A</systemitem> is in ad-hoc mode. Now, configure
<systemitem>B</systemitem> with a different
<acronym>IP</acronym> address:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.2</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc>
status: running
ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
protmode CTS wme burst</screen>
<para>Both <systemitem>A</systemitem> and
<systemitem>B</systemitem> are now ready to exchange
information.</para>
</sect2>
<sect2 xml:id="network-wireless-ap">
<title>&os; Host Access Points</title>
<para>&os; can act as an Access Point (<acronym>AP</acronym>)
which eliminates the need to buy a hardware
<acronym>AP</acronym> or run an ad-hoc network. This can
be particularly useful when a &os; machine is acting as a
gateway to another network such as the Internet.</para>
<sect3 xml:id="network-wireless-ap-basic">
<title>Basic Settings</title>
<para>Before configuring a &os; machine as an
<acronym>AP</acronym>, the kernel must be configured with
the appropriate networking support for the wireless card
as well as the security protocols being used. For more
details, see <xref
linkend="network-wireless-basic"/>.</para>
<note>
<para>The <acronym>NDIS</acronym> driver wrapper for
&windows; drivers does not currently support
<acronym>AP</acronym> operation. Only native &os;
wireless drivers support <acronym>AP</acronym>
mode.</para>
</note>
<para>Once wireless networking support is loaded, check if
the wireless device supports the host-based access point
mode, also known as hostap mode:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> list caps</userinput>
drivercaps=6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG>
cryptocaps=1f<WEP,TKIP,AES,AES_CCM,TKIPMIC></screen>
<para>This output displays the card's capabilities. The
<literal>HOSTAP</literal> word confirms that this wireless
card can act as an <acronym>AP</acronym>. Various supported
ciphers are also listed: <acronym>WEP</acronym>,
<acronym>TKIP</acronym>, and <acronym>AES</acronym>. This
information indicates which security protocols can be used
on the <acronym>AP</acronym>.</para>
<para>The wireless device can only be put into hostap mode
during the creation of the network pseudo-device, so a
previously created device must be destroyed first:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> destroy</userinput></screen>
<para>then regenerated with the correct option before setting
the other parameters:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode hostap</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable> mode 11g channel 1</userinput></screen>
<para>Use &man.ifconfig.8; again to see the status of the
<filename>wlan0</filename> interface:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:c3:0d:ac
inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
status: running
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60
protmode CTS wme burst dtimperiod 1 -dfs</screen>
<para>The <literal>hostap</literal> parameter indicates the
interface is running in the host-based access point
mode.</para>
<para>The interface configuration can be done automatically at
boot time by adding the following lines to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>wlans_ath0="wlan0"
create_args_wlan0="wlanmode hostap"
ifconfig_wlan0="inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable> mode 11g channel <replaceable>1</replaceable>"</programlisting>
</sect3>
<sect3>
<title>Host-based Access Point Without Authentication or
Encryption</title>
<para>Although it is not recommended to run an
<acronym>AP</acronym> without any authentication or
encryption, this is a simple way to check if the
<acronym>AP</acronym> is working. This configuration is
also important for debugging client issues.</para>
<para>Once the <acronym>AP</acronym> is configured, initiate
a scan from another wireless machine to find the
<acronym>AP</acronym>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID/MESH ID BSSID CHAN RATE S:N INT CAPS
freebsdap 00:11:95:c3:0d:ac 1 54M -66:-96 100 ES WME</screen>
<para>The client machine found the <acronym>AP</acronym> and
can be associated with it:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.2</replaceable> netmask <replaceable>255.255.255.0</replaceable> ssid <replaceable>freebsdap</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:d5:43:62
inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g
status: associated
ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7
scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7
roam:rate 5 protmode CTS wme burst</screen>
</sect3>
<sect3 xml:id="network-wireless-ap-wpa">
<title><acronym>WPA2</acronym> Host-based Access Point</title>
<para>This section focuses on setting up a &os;
access point using the <acronym>WPA2</acronym>
security protocol. More details regarding
<acronym>WPA</acronym> and the configuration of
<acronym>WPA</acronym>-based wireless clients can be found
in <xref linkend="network-wireless-wpa"/>.</para>
<para>The &man.hostapd.8; daemon is used to deal with client
authentication and key management on the
<acronym>WPA2</acronym>-enabled
<acronym>AP</acronym>.</para>
<para>The following configuration operations are performed
on the &os; machine acting as the <acronym>AP</acronym>.
Once the <acronym>AP</acronym> is correctly working,
&man.hostapd.8; can be automatically started at boot
with this line in
<filename>/etc/rc.conf</filename>:</para>
<programlisting>hostapd_enable="YES"</programlisting>
<para>Before trying to configure &man.hostapd.8;, first
configure the basic settings introduced in <xref
linkend="network-wireless-ap-basic"/>.</para>
<sect4>
<title><acronym>WPA2-PSK</acronym></title>
<para><acronym>WPA2-PSK</acronym> is intended for small
networks where the use of a backend authentication server
is not possible or desired.</para>
<para>The configuration is done in
<filename>/etc/hostapd.conf</filename>:</para>
<programlisting>interface=wlan0 <co xml:id="co-ap-wpapsk-iface"/>
debug=1 <co xml:id="co-ap-wpapsk-dbug"/>
ctrl_interface=/var/run/hostapd <co xml:id="co-ap-wpapsk-ciface"/>
ctrl_interface_group=wheel <co xml:id="co-ap-wpapsk-cifacegrp"/>
ssid=freebsdap <co xml:id="co-ap-wpapsk-ssid"/>
wpa=2 <co xml:id="co-ap-wpapsk-wpa"/>
wpa_passphrase=freebsdmall <co xml:id="co-ap-wpapsk-pass"/>
wpa_key_mgmt=WPA-PSK <co xml:id="co-ap-wpapsk-kmgmt"/>
wpa_pairwise=CCMP <co xml:id="co-ap-wpapsk-pwise"/></programlisting>
<calloutlist>
<callout arearefs="co-ap-wpapsk-iface">
<para>Wireless interface used
for the access point.</para>
</callout>
<callout arearefs="co-ap-wpapsk-dbug">
<para>Level of verbosity used during the
execution of &man.hostapd.8;. A value of
<literal>1</literal> represents the minimal
level.</para>
</callout>
<callout arearefs="co-ap-wpapsk-ciface">
<para>Pathname of the directory used by &man.hostapd.8;
to store domain socket files for communication
with external programs such as &man.hostapd.cli.8;.
The default value is used in this example.</para>
</callout>
<callout arearefs="co-ap-wpapsk-cifacegrp">
<para>The group allowed to access the control
interface files.</para>
</callout>
<callout arearefs="co-ap-wpapsk-ssid">
<para>The wireless network name, or
<acronym>SSID</acronym>, that will appear in wireless
scans.</para>
</callout>
<callout arearefs="co-ap-wpapsk-wpa">
<para>Enable
<acronym>WPA</acronym> and specify which
<acronym>WPA</acronym> authentication protocol will
be required. A value of <literal>2</literal>
configures the <acronym>AP</acronym> for
<acronym>WPA2</acronym> and is recommended.
Set to <literal>1</literal> only if the obsolete
<acronym>WPA</acronym> is required.</para>
</callout>
<callout arearefs="co-ap-wpapsk-pass">
<para>ASCII passphrase for
<acronym>WPA</acronym> authentication.</para>
<warning>
<para>Always use strong passwords that are at least
8 characters long and made from a rich alphabet so
that they will not be easily guessed or
attacked.</para>
</warning>
</callout>
<callout arearefs="co-ap-wpapsk-kmgmt">
<para>The
key management protocol to use. This example
sets <acronym>WPA-PSK</acronym>.</para>
</callout>
<callout arearefs="co-ap-wpapsk-pwise">
<para>Encryption algorithms accepted by
the access point. In this example, only
the
<acronym>CCMP</acronym> (<acronym>AES</acronym>)
cipher is accepted. <acronym>CCMP</acronym>
is an alternative to <acronym>TKIP</acronym>
and is strongly preferred when possible.
<acronym>TKIP</acronym> should be allowed only when
there are stations incapable of using
<acronym>CCMP</acronym>.</para>
</callout>
</calloutlist>
<para>The next step is to start &man.hostapd.8;:</para>
<screen>&prompt.root; <userinput>service hostapd forcestart</userinput></screen>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 04:f0:21:16:8e:10
inet6 fe80::6f0:21ff:fe16:8e10%wlan0 prefixlen 64 scopeid 0x9
nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
media: IEEE 802.11 Wireless Ethernet autoselect mode 11na <hostap>
status: running
ssid No5ignal channel 36 (5180 MHz 11a ht/40+) bssid 04:f0:21:16:8e:10
country US ecm authmode WPA2/802.11i privacy MIXED deftxkey 2
AES-CCM 2:128-bit AES-CCM 3:128-bit txpower 17 mcastrate 6 mgmtrate 6
scanvalid 60 ampdulimit 64k ampdudensity 8 shortgi wme burst
dtimperiod 1 -dfs
groups: wlan</screen>
<para>Once the <acronym>AP</acronym> is running, the
clients can associate with it. See <xref
linkend="network-wireless-wpa"/> for more details. It
is possible to see the stations associated with the
<acronym>AP</acronym> using <command>ifconfig
<replaceable>wlan0</replaceable> list
sta</command>.</para>
</sect4>
</sect3>
<sect3>
<title><acronym>WEP</acronym> Host-based Access Point</title>
<para>It is not recommended to use <acronym>WEP</acronym> for
setting up an <acronym>AP</acronym> since there is no
authentication mechanism and the encryption is easily
cracked. Some legacy wireless cards only support
<acronym>WEP</acronym> and these cards will only support
an <acronym>AP</acronym> without authentication or
encryption.</para>
<para>The wireless device can now be put into hostap mode and
configured with the correct <acronym>SSID</acronym> and
<acronym>IP</acronym> address:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> wlanmode hostap</userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> inet <replaceable>192.168.0.1</replaceable> netmask <replaceable>255.255.255.0</replaceable> \
ssid <replaceable>freebsdap</replaceable> wepmode on weptxkey <replaceable>3</replaceable> wepkey <replaceable>3:0x3456789012</replaceable> mode 11g</userinput></screen>
<itemizedlist>
<listitem>
<para>The <literal>weptxkey</literal> indicates which
<acronym>WEP</acronym> key will be used in the
transmission. This example uses the third key as key
numbering starts with <literal>1</literal>. This
parameter must be specified in order to encrypt the
data.</para>
</listitem>
<listitem>
<para>The <literal>wepkey</literal> sets the selected
<acronym>WEP</acronym> key. It should be in the format
<replaceable>index:key</replaceable>. If the index is
not given, key <literal>1</literal> is set. The index
needs to be set when using keys other than the first
key.</para>
</listitem>
</itemizedlist>
<para>Use &man.ifconfig.8; to see the status of the
<filename>wlan0</filename> interface:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 00:11:95:c3:0d:ac
inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255
media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap>
status: running
ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac
country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit
txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs</screen>
<para>From another wireless machine, it is now possible to
initiate a scan to find the <acronym>AP</acronym>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable></userinput>
&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> up scan</userinput>
SSID BSSID CHAN RATE S:N INT CAPS
freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 EPS</screen>
<para>In this example, the client machine found the
<acronym>AP</acronym> and can associate with it using the
correct parameters. See <xref
linkend="network-wireless-wep"/> for more details.</para>
</sect3>
</sect2>
<sect2>
<title>Using Both Wired and Wireless Connections</title>
<para>A wired connection provides better performance and
reliability, while a wireless connection provides flexibility
and mobility. Laptop users typically want to roam seamlessly
between the two types of connections.</para>
<para>On &os;, it is possible to combine two or even more
network interfaces together in a <quote>failover</quote>
fashion. This type of configuration uses the most preferred
and available connection from a group of network interfaces,
and the operating system switches automatically when the link
state changes.</para>
<para>Link aggregation and failover is covered in <xref
linkend="network-aggregation"/> and an example for using
both wired and wireless connections is provided at <xref
linkend="networking-lagg-wired-and-wireless"/>.</para>
</sect2>
<sect2>
<title>Troubleshooting</title>
<para>This section describes
a number of steps to help troubleshoot common wireless
networking problems.</para>
<itemizedlist>
<listitem>
<para>If the access point is not listed when scanning,
check that the configuration has not limited the wireless
device to a limited set of channels.</para>
</listitem>
<listitem>
<para>If the device cannot associate with an access point,
verify that the configuration matches the settings on the
access point. This includes the authentication scheme and
any security protocols. Simplify the configuration as
much as possible. If using a security protocol such as
<acronym>WPA</acronym> or <acronym>WEP</acronym>,
configure the access point for open authentication and
no security to see if traffic will pass.</para>
<para>Debugging support is provided by
&man.wpa.supplicant.8;. Try running this utility manually
with <option>-dd</option> and look at the
system logs.</para>
</listitem>
<listitem>
<para>Once the system can associate with the access point,
diagnose the network configuration using tools like
&man.ping.8;.</para>
</listitem>
<listitem>
<para>There are many lower-level debugging tools.
Debugging messages can be enabled in the 802.11 protocol
support layer using &man.wlandebug.8;.
For example, to enable console messages related to
scanning for access points and the 802.11 protocol
handshakes required to arrange communication:</para>
<screen>&prompt.root; <userinput>wlandebug -i <replaceable>wlan0</replaceable> +scan+auth+debug+assoc</userinput>
net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan></screen>
<para>Many useful statistics are maintained by the 802.11
layer and <command>wlanstats</command>, found in <filename
>/usr/src/tools/tools/net80211</filename>,
will dump this information. These statistics should
display all errors identified by the 802.11 layer.
However, some errors are identified in the device drivers
that lie below the 802.11 layer so they may not show up.
To diagnose device-specific problems, refer to the
drivers' documentation.</para>
</listitem>
</itemizedlist>
<para>If the above information does not help to clarify the
problem, submit a problem report and include output from the
above tools.</para>
</sect2>
</sect1>
<sect1 xml:id="network-usb-tethering">
<info>
<title>USB Tethering</title>
</info>
<indexterm>
<primary>tether</primary>
</indexterm>
<para>Many cellphones provide the option to share their data
connection over USB (often called "tethering"). This feature
uses one of <acronym>RNDIS</acronym>, <acronym>CDC</acronym>,
or a custom &apple; &iphone;/&ipad;
protocol.</para>
<itemizedlist>
<listitem>
<para>&android; devices generally use the &man.urndis.4;
driver.</para>
</listitem>
<listitem>
<para>&apple; devices use the &man.ipheth.4; driver.</para>
</listitem>
<listitem>
<para>Older devices will often use the &man.cdce.4;
driver.</para>
</listitem>
</itemizedlist>
<para>Before attaching a device, load the appropriate driver
into the kernel:</para>
<screen>&prompt.root; <userinput>kldload if_urndis</userinput>
&prompt.root; <userinput>kldload if_cdce</userinput>
&prompt.root; <userinput>kldload if_ipheth</userinput></screen>
<para>Once the device is attached
<literal>ue</literal><replaceable>0</replaceable> will be
available for use like a normal network device. Be sure that
the <quote>USB tethering</quote> option is enabled on the
device.</para>
<para>To make this change permanent and load the driver as a
module at boot time, place the appropriate line of the following
in <filename>/boot/loader.conf</filename>:</para>
<screen><userinput>if_urndis_load="YES"
if_cdce_load="YES"
if_ipheth_load="YES"</userinput></screen>
</sect1>
<sect1 xml:id="network-bluetooth">
<info>
<title>Bluetooth</title>
<authorgroup>
<author>
<personname>
<firstname>Pav</firstname>
<surname>Lucistnik</surname>
</personname>
<contrib>Written by </contrib>
<email>pav@FreeBSD.org</email>
</author>
</authorgroup>
</info>
<indexterm>
<primary>Bluetooth</primary>
</indexterm>
<para>Bluetooth is a wireless technology for creating personal
networks operating in the 2.4 GHz unlicensed band, with a
range of 10 meters. Networks are usually formed ad-hoc from
portable devices such as cellular phones, handhelds, and
laptops. Unlike Wi-Fi wireless technology, Bluetooth offers
higher level service profiles, such as
<acronym>FTP</acronym>-like file servers, file pushing, voice
transport, serial line emulation, and more.</para>
<para>This section describes the use of a <acronym>USB</acronym>
Bluetooth dongle on a &os; system. It then describes the
various Bluetooth protocols and utilities.</para>
<sect2>
<title>Loading Bluetooth Support</title>
<para>The Bluetooth stack in &os; is implemented using the
&man.netgraph.4; framework. A broad variety of Bluetooth
<acronym>USB</acronym> dongles is supported by &man.ng.ubt.4;.
Broadcom BCM2033 based Bluetooth devices are supported by the
&man.ubtbcmfw.4; and &man.ng.ubt.4; drivers. The 3Com
Bluetooth PC Card 3CRWB60-A is supported by the
&man.ng.bt3c.4; driver. Serial and UART based Bluetooth
devices are supported by &man.sio.4;, &man.ng.h4.4;, and
&man.hcseriald.8;.</para>
<para>Before attaching a device, determine which of the above
drivers it uses, then load the driver. For example, if the
device uses the &man.ng.ubt.4; driver:</para>
<screen>&prompt.root; <userinput>kldload ng_ubt</userinput></screen>
<para>If the Bluetooth device will be attached to the system
during system startup, the system can be configured to load
the module at boot time by adding the driver to
<filename>/boot/loader.conf</filename>:</para>
<programlisting>ng_ubt_load="YES"</programlisting>
<para>Once the driver is loaded, plug in the
<acronym>USB</acronym> dongle. If the driver load was
successful, output similar to the following should appear on
the console and in
<filename>/var/log/messages</filename>:</para>
<screen>ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2
ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2
ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3,
wMaxPacketSize=49, nframes=6, buffer size=294</screen>
<para>To start and stop the Bluetooth stack, use its startup
script. It is a good idea to stop the stack before unplugging
the device. Starting the bluetooth stack might require
&man.hcsecd.8; to be started. When starting the stack, the
output should be similar to the following:</para>
<screen>&prompt.root; <userinput>service bluetooth start ubt0</userinput>
BD_ADDR: 00:02:72:00:d4:1a
Features: 0xff 0xff 0xf 00 00 00 00 00
<3-Slot> <5-Slot> <Encryption> <Slot offset>
<Timing accuracy> <Switch> <Hold mode> <Sniff mode>
<Park mode> <RSSI> <Channel quality> <SCO link>
<HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD>
<Paging scheme> <Power control> <Transparent SCO data>
Max. ACL packet size: 192 bytes
Number of ACL packets: 8
Max. SCO packet size: 64 bytes
Number of SCO packets: 8</screen>
</sect2>
<sect2>
<title>Finding Other Bluetooth Devices</title>
<indexterm>
<primary>HCI</primary>
</indexterm>
<para>The Host Controller Interface (<acronym>HCI</acronym>)
provides a uniform method for accessing Bluetooth baseband
capabilities. In &os;, a netgraph <acronym>HCI</acronym> node
is created for each Bluetooth device. For more details, refer
to &man.ng.hci.4;.</para>
<para>One of the most common tasks is discovery of Bluetooth
devices within <acronym>RF</acronym> proximity. This
operation is called <emphasis>inquiry</emphasis>. Inquiry and
other <acronym>HCI</acronym> related operations are done using
&man.hccontrol.8;. The example below shows how to find out
which Bluetooth devices are in range. The list of devices
should be displayed in a few seconds. Note that a remote
device will only answer the inquiry if it is set to
<emphasis>discoverable</emphasis> mode.</para>
<screen>&prompt.user; <userinput>hccontrol -n ubt0hci inquiry</userinput>
Inquiry result, num_responses=1
Inquiry result #0
BD_ADDR: 00:80:37:29:19:a4
Page Scan Rep. Mode: 0x1
Page Scan Period Mode: 00
Page Scan Mode: 00
Class: 52:02:04
Clock offset: 0x78ef
Inquiry complete. Status: No error [00]</screen>
<para>The <literal>BD_ADDR</literal> is the unique address of a
Bluetooth device, similar to the <acronym>MAC</acronym>
address of a network card. This address is needed for further
communication with a device and it is possible to assign a
human readable name to a <literal>BD_ADDR</literal>.
Information regarding the known Bluetooth hosts is contained
in <filename>/etc/bluetooth/hosts</filename>. The following
example shows how to obtain the human readable name that was
assigned to the remote device:</para>
<screen>&prompt.user; <userinput>hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4</userinput>
BD_ADDR: 00:80:37:29:19:a4
Name: Pav's T39</screen>
<para>If an inquiry is performed on a remote Bluetooth device,
it will find the computer as
<quote>your.host.name (ubt0)</quote>. The name assigned to
the local device can be changed at any time.</para>
<para>Remote devices can be assigned aliases in
<filename>/etc/bluetooth/hosts</filename>. More information
about <filename>/etc/bluetooth/hosts</filename> file might be
found in &man.bluetooth.hosts.5;.</para>
<para>The Bluetooth system provides a point-to-point connection
between two Bluetooth units, or a point-to-multipoint
connection which is shared among several Bluetooth devices.
The following example shows how to create a connection to a
remote device:</para>
<screen>&prompt.user; <userinput>hccontrol -n ubt0hci create_connection <replaceable>BT_ADDR</replaceable></userinput></screen>
<para><literal>create_connection</literal> accepts
<literal>BT_ADDR</literal> as well as host aliases in
<filename>/etc/bluetooth/hosts</filename>.</para>
<para>The following example shows how to obtain the list of
active baseband connections for the local device:</para>
<screen>&prompt.user; <userinput>hccontrol -n ubt0hci read_connection_list</userinput>
Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State
00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN</screen>
<para>A <emphasis>connection handle</emphasis> is useful when
termination of the baseband connection is required, though
it is normally not required to do this by hand. The stack
will automatically terminate inactive baseband
connections.</para>
<screen>&prompt.root; <userinput>hccontrol -n ubt0hci disconnect 41</userinput>
Connection handle: 41
Reason: Connection terminated by local host [0x16]</screen>
<para>Type <command>hccontrol help</command> for a complete
listing of available <acronym>HCI</acronym> commands. Most
of the <acronym>HCI</acronym> commands do not require
superuser privileges.</para>
</sect2>
<sect2>
<title>Device Pairing</title>
<para>By default, Bluetooth communication is not authenticated,
and any device can talk to any other device. A Bluetooth
device, such as a cellular phone, may choose to require
authentication to provide a particular service. Bluetooth
authentication is normally done with a
<emphasis><acronym>PIN</acronym> code</emphasis>, an ASCII
string up to 16 characters in length. The user is required
to enter the same <acronym>PIN</acronym> code on both devices.
Once the user has entered the <acronym>PIN</acronym> code,
both devices will generate a <emphasis>link key</emphasis>.
After that, the link key can be stored either in the devices
or in a persistent storage. Next time, both devices will
use the previously generated link key. This procedure is
called <emphasis>pairing</emphasis>. Note that if the link
key is lost by either device, the pairing must be
repeated.</para>
<para>The &man.hcsecd.8; daemon is responsible for handling
Bluetooth authentication requests. The default configuration
file is <filename>/etc/bluetooth/hcsecd.conf</filename>. An
example section for a cellular phone with the
<acronym>PIN</acronym> code set to <literal>1234</literal> is
shown below:</para>
<programlisting>device {
bdaddr 00:80:37:29:19:a4;
name "Pav's T39";
key nokey;
pin "1234";
}</programlisting>
<para>The only limitation on <acronym>PIN</acronym> codes is
length. Some devices, such as Bluetooth headsets, may have
a fixed <acronym>PIN</acronym> code built in. The
<option>-d</option> switch forces &man.hcsecd.8; to stay in
the foreground, so it is easy to see what is happening. Set
the remote device to receive pairing and initiate the
Bluetooth connection to the remote device. The remote device
should indicate that pairing was accepted and request the
<acronym>PIN</acronym> code. Enter the same
<acronym>PIN</acronym> code listed in
<filename>hcsecd.conf</filename>. Now the computer and the
remote device are paired. Alternatively, pairing can be
initiated on the remote device.</para>
<para>The following line can be added to
<filename>/etc/rc.conf</filename> to configure &man.hcsecd.8;
to start automatically on system start:</para>
<programlisting>hcsecd_enable="YES"</programlisting>
<para>The following is a sample of the &man.hcsecd.8; daemon
output:</para>
<programlisting>hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist
hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists
hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4</programlisting>
</sect2>
<sect2>
<title>Network Access with
<acronym>PPP</acronym> Profiles</title>
<para>A Dial-Up Networking (<acronym>DUN</acronym>) profile can
be used to configure a cellular phone as a wireless modem for
connecting to a dial-up Internet access server. It can also
be used to configure a computer to receive data calls from a
cellular phone.</para>
<para>Network access with a <acronym>PPP</acronym> profile can
be used to provide <acronym>LAN</acronym> access for a single
Bluetooth device or multiple Bluetooth devices. It can also
provide <acronym>PC</acronym> to <acronym>PC</acronym>
connection using <acronym>PPP</acronym> networking over serial
cable emulation.</para>
<para>In &os;, these profiles are implemented with &man.ppp.8;
and the &man.rfcomm.pppd.8; wrapper which converts a
Bluetooth connection into something
<acronym>PPP</acronym> can use. Before a profile can be used,
a new <acronym>PPP</acronym> label must be created in
<filename>/etc/ppp/ppp.conf</filename>. Consult
&man.rfcomm.pppd.8; for examples.</para>
<para>In this example, &man.rfcomm.pppd.8; is used to open a
connection to a remote device with a
<literal>BD_ADDR</literal> of
<literal>00:80:37:29:19:a4</literal> on a
<acronym>DUN</acronym> <acronym>RFCOMM</acronym>
channel:</para>
<screen>&prompt.root; <userinput>rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup</userinput></screen>
<para>The actual channel number will be obtained from the remote
device using the <acronym>SDP</acronym> protocol. It is
possible to specify the <acronym>RFCOMM</acronym> channel by
hand, and in this case &man.rfcomm.pppd.8; will not perform
the <acronym>SDP</acronym> query. Use &man.sdpcontrol.8; to
find out the <acronym>RFCOMM</acronym> channel on the remote
device.</para>
<para>In order to provide network access with the
<acronym>PPP</acronym> <acronym>LAN</acronym> service,
&man.sdpd.8; must be running and a new entry for
<acronym>LAN</acronym> clients must be created in
<filename>/etc/ppp/ppp.conf</filename>. Consult
&man.rfcomm.pppd.8; for examples. Finally, start the
<acronym>RFCOMM</acronym> <acronym>PPP</acronym> server on a
valid <acronym>RFCOMM</acronym> channel number. The
<acronym>RFCOMM</acronym> <acronym>PPP</acronym> server will
automatically register the Bluetooth <acronym>LAN</acronym>
service with the local <acronym>SDP</acronym> daemon. The
example below shows how to start the <acronym>RFCOMM</acronym>
<acronym>PPP</acronym> server.</para>
<screen>&prompt.root; <userinput>rfcomm_pppd -s -C 7 -l rfcomm-server</userinput></screen>
</sect2>
<sect2>
<title>Bluetooth Protocols</title>
<para>This section provides an overview of the various Bluetooth
protocols, their function, and associated utilities.</para>
<sect3>
<title>Logical Link Control and Adaptation Protocol
(<acronym>L2CAP</acronym>)</title>
<indexterm>
<primary>L2CAP</primary>
</indexterm>
<para>The Logical Link Control and Adaptation Protocol
(<acronym>L2CAP</acronym>) provides connection-oriented and
connectionless data services to upper layer protocols.
<acronym>L2CAP</acronym> permits higher level protocols and
applications to transmit and receive
<acronym>L2CAP</acronym> data packets up to 64 kilobytes in
length.</para>
<para><acronym>L2CAP</acronym> is based around the concept of
<emphasis>channels</emphasis>. A channel is a logical
connection on top of a baseband connection, where each
channel is bound to a single protocol in a many-to-one
fashion. Multiple channels can be bound to the same
protocol, but a channel cannot be bound to multiple
protocols. Each <acronym>L2CAP</acronym> packet received on
a channel is directed to the appropriate higher level
protocol. Multiple channels can share the same baseband
connection.</para>
<para>In &os;, a netgraph <acronym>L2CAP</acronym> node is
created for each Bluetooth device. This node is normally
connected to the downstream Bluetooth <acronym>HCI</acronym>
node and upstream Bluetooth socket nodes. The default name
for the <acronym>L2CAP</acronym> node is
<quote>devicel2cap</quote>. For more details refer to
&man.ng.l2cap.4;.</para>
<para>A useful command is &man.l2ping.8;, which can be used to
ping other devices. Some Bluetooth implementations might
not return all of the data sent to them, so <literal>0
bytes</literal> in the following example is normal.</para>
<screen>&prompt.root; <userinput>l2ping -a 00:80:37:29:19:a4</userinput>
0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0</screen>
<para>The &man.l2control.8; utility is used to perform various
operations on <acronym>L2CAP</acronym> nodes. This example
shows how to obtain the list of logical connections
(channels) and the list of baseband connections for the
local device:</para>
<screen>&prompt.user; <userinput>l2control -a 00:02:72:00:d4:1a read_channel_list</userinput>
L2CAP channels:
Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State
00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN
&prompt.user; <userinput>l2control -a 00:02:72:00:d4:1a read_connection_list</userinput>
L2CAP connections:
Remote BD_ADDR Handle Flags Pending State
00:07:e0:00:0b:ca 41 O 0 OPEN</screen>
<para>Another diagnostic tool is &man.btsockstat.1;. It is
similar to &man.netstat.1;, but for Bluetooth
network-related data structures. The example below shows
the same logical connection as &man.l2control.8;
above.</para>
<screen>&prompt.user; <userinput>btsockstat</userinput>
Active L2CAP sockets
PCB Recv-Q Send-Q Local address/PSM Foreign address CID State
c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN
Active RFCOMM sessions
L2PCB PCB Flag MTU Out-Q DLCs State
c2afe900 c2b53380 1 127 0 Yes OPEN
Active RFCOMM sockets
PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State
c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN</screen>
</sect3>
<sect3>
<title>Radio Frequency Communication
(<acronym>RFCOMM</acronym>)</title>
<para>The <acronym>RFCOMM</acronym> protocol provides
emulation of serial ports over the <acronym>L2CAP</acronym>
protocol. <acronym>RFCOMM</acronym> is a simple transport
protocol, with additional provisions for emulating the 9
circuits of RS-232 (EIATIA-232-E) serial ports. It
supports up to 60 simultaneous connections
(<acronym>RFCOMM</acronym> channels) between two Bluetooth
devices.</para>
<para>For the purposes of <acronym>RFCOMM</acronym>, a
complete communication path involves two applications
running on the communication endpoints with a communication
segment between them. <acronym>RFCOMM</acronym> is intended
to cover applications that make use of the serial ports of
the devices in which they reside. The communication segment
is a direct connect Bluetooth link from one device to
another.</para>
<para><acronym>RFCOMM</acronym> is only concerned with the
connection between the devices in the direct connect case,
or between the device and a modem in the network case.
<acronym>RFCOMM</acronym> can support other configurations,
such as modules that communicate via Bluetooth wireless
technology on one side and provide a wired interface on the
other side.</para>
<para>In &os;, <acronym>RFCOMM</acronym> is implemented at the
Bluetooth sockets layer.</para>
</sect3>
<sect3>
<title>Service Discovery Protocol
(<acronym>SDP</acronym>)</title>
<indexterm>
<primary>SDP</primary>
</indexterm>
<para>The Service Discovery Protocol (<acronym>SDP</acronym>)
provides the means for client applications to discover the
existence of services provided by server applications as
well as the attributes of those services. The attributes of
a service include the type or class of service offered and
the mechanism or protocol information needed to utilize the
service.</para>
<para><acronym>SDP</acronym> involves communication between a
<acronym>SDP</acronym> server and a <acronym>SDP</acronym>
client. The server maintains a list of service records that
describe the characteristics of services associated with the
server. Each service record contains information about a
single service. A client may retrieve information from a
service record maintained by the <acronym>SDP</acronym>
server by issuing a <acronym>SDP</acronym> request. If the
client, or an application associated with the client,
decides to use a service, it must open a separate connection
to the service provider in order to utilize the service.
<acronym>SDP</acronym> provides a mechanism for discovering
services and their attributes, but it does not provide a
mechanism for utilizing those services.</para>
<para>Normally, a <acronym>SDP</acronym> client searches for
services based on some desired characteristics of the
services. However, there are times when it is desirable to
discover which types of services are described by an
<acronym>SDP</acronym> server's service records without any
prior information about the services. This process of
looking for any offered services is called
<emphasis>browsing</emphasis>.</para>
<para>The Bluetooth <acronym>SDP</acronym> server,
&man.sdpd.8;, and command line client, &man.sdpcontrol.8;,
are included in the standard &os; installation. The
following example shows how to perform a
<acronym>SDP</acronym> browse query.</para>
<screen>&prompt.user; <userinput>sdpcontrol -a 00:01:03:fc:6e:ec browse</userinput>
Record Handle: 00000000
Service Class ID List:
Service Discovery Server (0x1000)
Protocol Descriptor List:
L2CAP (0x0100)
Protocol specific parameter #1: u/int/uuid16 1
Protocol specific parameter #2: u/int/uuid16 1
Record Handle: 0x00000001
Service Class ID List:
Browse Group Descriptor (0x1001)
Record Handle: 0x00000002
Service Class ID List:
LAN Access Using PPP (0x1102)
Protocol Descriptor List:
L2CAP (0x0100)
RFCOMM (0x0003)
Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:
LAN Access Using PPP (0x1102) ver. 1.0</screen>
<para>Note that each service has a list of attributes, such
as the <acronym>RFCOMM</acronym> channel. Depending on the
service, the user might need to make note of some of the
attributes. Some Bluetooth implementations do not support
service browsing and may return an empty list. In this
case, it is possible to search for the specific service.
The example below shows how to search for the
<acronym>OBEX</acronym> Object Push
(<acronym>OPUSH</acronym>) service:</para>
<screen>&prompt.user; <userinput>sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH</userinput></screen>
<para>Offering services on &os; to Bluetooth clients is done
with the &man.sdpd.8; server. The following line can be
added to <filename>/etc/rc.conf</filename>:</para>
<programlisting>sdpd_enable="YES"</programlisting>
<para>Then the &man.sdpd.8; daemon can be started with:</para>
<screen>&prompt.root; <userinput>service sdpd start</userinput></screen>
<para>The local server application that wants to provide a
Bluetooth service to remote clients will register the
service with the local <acronym>SDP</acronym> daemon. An
example of such an application is &man.rfcomm.pppd.8;. Once
started, it will register the Bluetooth LAN service with the
local <acronym>SDP</acronym> daemon.</para>
<para>The list of services registered with the local
<acronym>SDP</acronym> server can be obtained by issuing a
<acronym>SDP</acronym> browse query via the local control
channel:</para>
<screen>&prompt.root; <userinput>sdpcontrol -l browse</userinput></screen>
</sect3>
<sect3>
<title><acronym>OBEX</acronym> Object Push
(<acronym>OPUSH</acronym>)</title>
<indexterm>
<primary>OBEX</primary>
</indexterm>
<para>Object Exchange (<acronym>OBEX</acronym>) is a widely
used protocol for simple file transfers between mobile
devices. Its main use is in infrared communication, where
it is used for generic file transfers between notebooks or
<acronym>PDA</acronym>s, and for sending business cards or
calendar entries between cellular phones and other devices
with Personal Information Manager (<acronym>PIM</acronym>)
applications.</para>
<para>The <acronym>OBEX</acronym> server and client are
implemented by <application>obexapp</application>, which can
be installed using the <package>comms/obexapp</package>
package or port.</para>
<para>The <acronym>OBEX</acronym> client is used to push
and/or pull objects from the <acronym>OBEX</acronym> server.
An example object is a business card or an appointment.
The <acronym>OBEX</acronym> client can obtain the
<acronym>RFCOMM</acronym> channel number from the remote
device via <acronym>SDP</acronym>. This can be done by
specifying the service name instead of the
<acronym>RFCOMM</acronym> channel number. Supported service
names are: <literal>IrMC</literal>, <literal>FTRN</literal>,
and <literal>OPUSH</literal>. It is also possible to
specify the <acronym>RFCOMM</acronym> channel as a number.
Below is an example of an <acronym>OBEX</acronym> session
where the device information object is pulled from the
cellular phone, and a new object, the business card, is
pushed into the phone's directory.</para>
<screen>&prompt.user; <userinput>obexapp -a 00:80:37:29:19:a4 -C IrMC</userinput>
obex> get telecom/devinfo.txt devinfo-t39.txt
Success, response: OK, Success (0x20)
obex> put new.vcf
Success, response: OK, Success (0x20)
obex> di
Success, response: OK, Success (0x20)</screen>
<para>In order to provide the <acronym>OPUSH</acronym>
service, &man.sdpd.8; must be running and a root folder,
where all incoming objects will be stored, must be created.
The default path to the root folder is
<filename>/var/spool/obex</filename>. Finally, start the
<acronym>OBEX</acronym> server on a valid
<acronym>RFCOMM</acronym> channel number. The
<acronym>OBEX</acronym> server will automatically register
the <acronym>OPUSH</acronym> service with the local
<acronym>SDP</acronym> daemon. The example below shows how
to start the <acronym>OBEX</acronym> server.</para>
<screen>&prompt.root; <userinput>obexapp -s -C 10</userinput></screen>
</sect3>
<sect3>
<title>Serial Port Profile (<acronym>SPP</acronym>)</title>
<para>The Serial Port Profile (<acronym>SPP</acronym>) allows
Bluetooth devices to perform serial cable emulation. This
profile allows legacy applications to use Bluetooth as a
cable replacement, through a virtual serial port
abstraction.</para>
<para>In &os;, &man.rfcomm.sppd.1; implements
<acronym>SPP</acronym> and a pseudo tty is used as a virtual
serial port abstraction. The example below shows how to
connect to a remote device's serial port service. A
<acronym>RFCOMM</acronym> channel does not have to be
specified as &man.rfcomm.sppd.1; can obtain it from the
remote device via <acronym>SDP</acronym>. To override this,
specify a <acronym>RFCOMM</acronym> channel on the command
line.</para>
<screen>&prompt.root; <userinput>rfcomm_sppd -a 00:07:E0:00:0B:CA -t</userinput>
rfcomm_sppd[94692]: Starting on /dev/pts/6...
/dev/pts/6</screen>
<para>Once connected, the pseudo tty can be used as serial
port:</para>
<screen>&prompt.root; <userinput>cu -l /dev/pts/6</userinput></screen>
<para>The pseudo tty is printed on stdout and can be read by
wrapper scripts:</para>
<programlisting>PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t`
cu -l $PTS</programlisting>
</sect3>
</sect2>
<sect2>
<title>Troubleshooting</title>
<para>By default, when &os; is accepting a new connection, it
tries to perform a role switch and become master. Some older
Bluetooth devices which do not support role switching will not
be able to connect. Since role switching is performed when a
new connection is being established, it is not possible to ask
the remote device if it supports role switching. However,
there is a <acronym>HCI</acronym> option to disable role
switching on the local side:</para>
<screen>&prompt.root; <userinput>hccontrol -n ubt0hci write_node_role_switch 0</userinput></screen>
<para>To display Bluetooth packets, use the third-party package
<application>hcidump</application>, which can be installed
using the <package>comms/hcidump</package> package or port.
This utility is similar to &man.tcpdump.1; and can be used to
display the contents of Bluetooth packets on the terminal and
to dump the Bluetooth packets to a file.</para>
</sect2>
</sect1>
<sect1 xml:id="network-bridging">
<info>
<title>Bridging</title>
<authorgroup>
<author>
<personname>
<firstname>Andrew</firstname>
<surname>Thompson</surname>
</personname>
<contrib>Written by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary><acronym>IP</acronym> subnet</primary>
</indexterm>
<indexterm>
<primary>bridge</primary>
</indexterm>
<para>It is sometimes useful to divide a network, such as an
Ethernet segment, into network segments without having to
create <acronym>IP</acronym> subnets and use a router to connect
the segments together. A device that connects two networks
together in this fashion is called a
<quote>bridge</quote>.</para>
<para>A bridge works by learning the <acronym>MAC</acronym>
addresses of the devices on each of its network interfaces. It
forwards traffic between networks only when the source and
destination <acronym>MAC</acronym> addresses are on different
networks. In many respects, a bridge is like an Ethernet switch
with very few ports. A &os; system with multiple network
interfaces can be configured to act as a bridge.</para>
<para>Bridging can be useful in the following situations:</para>
<variablelist>
<varlistentry>
<term>Connecting Networks</term>
<listitem>
<para>The basic operation of a bridge is to join two or more
network segments. There are many reasons to use a
host-based bridge instead of networking equipment, such as
cabling constraints or firewalling. A bridge can also
connect a wireless interface running in hostap mode to a
wired network and act as an access point.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Filtering/Traffic Shaping Firewall</term>
<listitem>
<para>A bridge can be used when firewall functionality is
needed without routing or Network Address Translation
(<acronym>NAT</acronym>).</para>
<para>An example is a small company that is connected via
<acronym>DSL</acronym> or <acronym>ISDN</acronym> to an
<acronym>ISP</acronym>. There are thirteen public
<acronym>IP</acronym> addresses from the
<acronym>ISP</acronym> and ten computers on the network.
In this situation, using a router-based firewall is
difficult because of subnetting issues. A bridge-based
firewall can be configured without any
<acronym>IP</acronym> addressing issues.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Network Tap</term>
<listitem>
<para>A bridge can join two network segments in order to
inspect all Ethernet frames that pass between them using
&man.bpf.4; and &man.tcpdump.1; on the bridge interface or
by sending a copy of all frames out an additional
interface known as a span port.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Layer 2 <acronym>VPN</acronym></term>
<listitem>
<para>Two Ethernet networks can be joined across an
<acronym>IP</acronym> link by bridging the networks to an
EtherIP tunnel or a &man.tap.4; based solution such as
<application>OpenVPN</application>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Layer 2 Redundancy</term>
<listitem>
<para>A network can be connected together with multiple
links and use the Spanning Tree Protocol
(<acronym>STP</acronym>) to block redundant paths.</para>
</listitem>
</varlistentry>
</variablelist>
<para>This section describes how to configure a &os; system as a
bridge using &man.if.bridge.4;. A netgraph bridging driver is
also available, and is described in &man.ng.bridge.4;.</para>
<note>
<para>Packet filtering can be used with any firewall package
that hooks into the &man.pfil.9; framework. The bridge can be
used as a traffic shaper with &man.altq.4; or
&man.dummynet.4;.</para>
</note>
<sect2>
<title>Enabling the Bridge</title>
<para>In &os;, &man.if.bridge.4; is a kernel module which is
automatically loaded by &man.ifconfig.8; when creating a
bridge interface. It is also possible to compile bridge
support into a custom kernel by adding
<literal>device if_bridge</literal> to the custom kernel
configuration file.</para>
<para>The bridge is created using interface cloning. To create
the bridge interface:</para>
<screen>&prompt.root; <userinput>ifconfig bridge create</userinput>
bridge0
&prompt.root; <userinput>ifconfig bridge0</userinput>
bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 96:3d:4b:f1:79:7a
id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0</screen>
<para>When a bridge interface is created, it is automatically
assigned a randomly generated Ethernet address. The
<literal>maxaddr</literal> and <literal>timeout</literal>
parameters control how many <acronym>MAC</acronym> addresses
the bridge will keep in its forwarding table and how many
seconds before each entry is removed after it is last seen.
The other parameters control how <acronym>STP</acronym>
operates.</para>
<para>Next, specify which network interfaces to add as members
of the bridge. For the bridge to forward packets, all member
interfaces and the bridge need to be up:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 addm fxp0 addm fxp1 up</userinput>
&prompt.root; <userinput>ifconfig fxp0 up</userinput>
&prompt.root; <userinput>ifconfig fxp1 up</userinput></screen>
<para>The bridge can now forward Ethernet frames between
<filename>fxp0</filename> and <filename>fxp1</filename>. Add
the following lines to <filename>/etc/rc.conf</filename> so
the bridge is created at startup:</para>
<programlisting>cloned_interfaces="bridge0"
ifconfig_bridge0="addm fxp0 addm fxp1 up"
ifconfig_fxp0="up"
ifconfig_fxp1="up"</programlisting>
<para>If the bridge host needs an <acronym>IP</acronym>
address, set it on the bridge interface, not on the member
interfaces. The address can be set statically or via
<acronym>DHCP</acronym>. This example sets a static
<acronym>IP</acronym> address:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 inet 192.168.0.1/24</userinput></screen>
<para>It is also possible to assign an <acronym>IPv6</acronym>
address to a bridge interface. To make the changes permanent,
add the addressing information to
<filename>/etc/rc.conf</filename>.</para>
<note>
<para>When packet filtering is enabled, bridged packets will
pass through the filter inbound on the originating interface
on the bridge interface, and outbound on the appropriate
interfaces. Either stage can be disabled. When direction
of the packet flow is important, it is best to firewall on
the member interfaces rather than the bridge itself.</para>
<para>The bridge has several configurable settings for passing
non-<acronym>IP</acronym> and <acronym>IP</acronym> packets,
and layer2 firewalling with &man.ipfw.8;. See
&man.if.bridge.4; for more information.</para>
</note>
</sect2>
<sect2>
<title>Enabling Spanning Tree</title>
<para>For an Ethernet network to function properly, only one
active path can exist between two devices. The
<acronym>STP</acronym> protocol detects loops and puts
redundant links into a blocked state. Should one of the
active links fail, <acronym>STP</acronym> calculates a
different tree and enables one of the blocked paths to restore
connectivity to all points in the network.</para>
<para>The Rapid Spanning Tree Protocol (<acronym>RSTP</acronym>
or 802.1w) provides backwards compatibility with legacy
<acronym>STP</acronym>. <acronym>RSTP</acronym> provides
faster convergence and exchanges information with neighboring
switches to quickly transition to forwarding mode without
creating loops. &os; supports <acronym>RSTP</acronym> and
<acronym>STP</acronym> as operating modes, with
<acronym>RSTP</acronym> being the default mode.</para>
<para><acronym>STP</acronym> can be enabled on member interfaces
using &man.ifconfig.8;. For a bridge with
<filename>fxp0</filename> and <filename>fxp1</filename> as the
current interfaces, enable <acronym>STP</acronym> with:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 stp fxp0 stp fxp1</userinput>
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether d6:cf:d5:a0:94:6d
id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0
member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
port 3 priority 128 path cost 200000 proto rstp
role designated state forwarding
member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
port 4 priority 128 path cost 200000 proto rstp
role designated state forwarding</screen>
<para>This bridge has a spanning tree ID of
<literal>00:01:02:4b:d4:50</literal> and a priority of
<literal>32768</literal>. As the <literal>root id</literal>
is the same, it indicates that this is the root bridge for the
tree.</para>
<para>Another bridge on the network also has
<acronym>STP</acronym> enabled:</para>
<screen>bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 96:3d:4b:f1:79:7a
id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15
maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4
member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
port 4 priority 128 path cost 200000 proto rstp
role root state forwarding
member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
port 5 priority 128 path cost 200000 proto rstp
role designated state forwarding</screen>
<para>The line <literal>root id 00:01:02:4b:d4:50 priority 32768
ifcost 400000 port 4</literal> shows that the root bridge is
<literal>00:01:02:4b:d4:50</literal> and has a path cost of
<literal>400000</literal> from this bridge. The path to the
root bridge is via <literal>port 4</literal> which is
<filename>fxp0</filename>.</para>
</sect2>
<sect2>
<title>Bridge Interface Parameters</title>
<para>Several <command>ifconfig</command> parameters are unique
to bridge interfaces. This section summarizes some common
uses for these parameters. The complete list of available
parameters is described in &man.ifconfig.8;.</para>
<variablelist>
<varlistentry>
<term>private</term>
<listitem>
<para>A private interface does not forward any traffic to
any other port that is also designated as a private
interface. The traffic is blocked unconditionally so no
Ethernet frames will be forwarded, including
<acronym>ARP</acronym> packets. If traffic needs to be
selectively blocked, a firewall should be used
instead.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>span</term>
<listitem>
<para>A span port transmits a copy of every Ethernet frame
received by the bridge. The number of span ports
configured on a bridge is unlimited, but if an
interface is designated as a span port, it cannot also
be used as a regular bridge port. This is most useful
for snooping a bridged network passively on another host
connected to one of the span ports of the bridge. For
example, to send a copy of all frames out the interface
named <filename>fxp4</filename>:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 span fxp4</userinput></screen>
</listitem>
</varlistentry>
<varlistentry>
<term>sticky</term>
<listitem>
<para>If a bridge member interface is marked as sticky,
dynamically learned address entries are treated as
static entries in the forwarding cache. Sticky entries
are never aged out of the cache or replaced, even if the
address is seen on a different interface. This gives
the benefit of static address entries without the need
to pre-populate the forwarding table. Clients learned
on a particular segment of the bridge cannot roam to
another segment.</para>
<para>An example of using sticky addresses is to combine
the bridge with <acronym>VLAN</acronym>s in order to
isolate customer networks without wasting
<acronym>IP</acronym> address space. Consider that
<systemitem class="fqdomainname">CustomerA</systemitem>
is on <literal>vlan100</literal>, <systemitem
class="fqdomainname">CustomerB</systemitem> is on
<literal>vlan101</literal>, and the bridge has the
address <systemitem
class="ipaddress">192.168.0.1</systemitem>:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101</userinput>
&prompt.root; <userinput>ifconfig bridge0 inet 192.168.0.1/24</userinput></screen>
<para>In this example, both clients see <systemitem
class="ipaddress">192.168.0.1</systemitem> as their
default gateway. Since the bridge cache is sticky, one
host cannot spoof the <acronym>MAC</acronym> address of
the other customer in order to intercept their
traffic.</para>
<para>Any communication between the
<acronym>VLAN</acronym>s can be blocked using a firewall
or, as seen in this example, private interfaces:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 private vlan100 private vlan101</userinput></screen>
<para>The customers are completely isolated from each
other and the full <systemitem
class="netmask">/24</systemitem> address range can be
allocated without subnetting.</para>
<para>The number of unique source <acronym>MAC</acronym>
addresses behind an interface can be limited. Once the
limit is reached, packets with unknown source addresses
are dropped until an existing host cache entry expires
or is removed.</para>
<para>The following example sets the maximum number of
Ethernet devices for <systemitem
class="fqdomainname">CustomerA</systemitem> on
<literal>vlan100</literal> to 10:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 ifmaxaddr vlan100 10</userinput></screen>
</listitem>
</varlistentry>
</variablelist>
<para>Bridge interfaces also support monitor mode, where the
packets are discarded after &man.bpf.4; processing and are not
processed or forwarded further. This can be used to
multiplex the input of two or more interfaces into a single
&man.bpf.4; stream. This is useful for reconstructing the
traffic for network taps that transmit the RX/TX signals out
through two separate interfaces. For example, to read the
input from four network interfaces as one stream:</para>
<screen>&prompt.root; <userinput>ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up</userinput>
&prompt.root; <userinput>tcpdump -i bridge0</userinput></screen>
</sect2>
<sect2>
<title><acronym>SNMP</acronym> Monitoring</title>
<para>The bridge interface and <acronym>STP</acronym>
parameters can be monitored via &man.bsnmpd.1; which is
included in the &os; base system. The exported bridge
<acronym>MIB</acronym>s conform to <acronym>IETF</acronym>
standards so any <acronym>SNMP</acronym> client or monitoring
package can be used to retrieve the data.</para>
<para>To enable monitoring on the bridge, uncomment this line in
<filename>/etc/snmpd.config</filename> by removing the
beginning <literal>#</literal> symbol:</para>
<programlisting>begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so"</programlisting>
<para>Other configuration settings, such as community names and
access lists, may need to be modified in this file. See
&man.bsnmpd.1; and &man.snmp.bridge.3; for more information.
Once these edits are saved, add this line to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>bsnmpd_enable="YES"</programlisting>
<para>Then, start &man.bsnmpd.1;:</para>
<screen>&prompt.root; <userinput>service bsnmpd start</userinput></screen>
<para>The following examples use the
<application>Net-SNMP</application> software
(<package>net-mgmt/net-snmp</package>) to query a bridge
from a client system. The
<package>net-mgmt/bsnmptools</package> port can also be used.
From the <acronym>SNMP</acronym> client which is running
<application>Net-SNMP</application>, add the following lines
to <filename>$HOME/.snmp/snmp.conf</filename> in order to
import the bridge <acronym>MIB</acronym> definitions:</para>
<programlisting>mibdirs +/usr/share/snmp/mibs
mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB</programlisting>
<para>To monitor a single bridge using the IETF BRIDGE-MIB
(RFC4188):</para>
<screen>&prompt.user; <userinput>snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge</userinput>
BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44
BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports
BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds
BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2
BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50
...
BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5)
BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1)
BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000
BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0
BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80
BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1
RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2)</screen>
<para>The <literal>dot1dStpTopChanges.0</literal> value is two,
indicating that the <acronym>STP</acronym> bridge topology has
changed twice. A topology change means that one or more links
in the network have changed or failed and a new tree has been
calculated. The
<literal>dot1dStpTimeSinceTopologyChange.0</literal> value
will show when this happened.</para>
<para>To monitor multiple bridge interfaces, the private
BEGEMOT-BRIDGE-MIB can be used:</para>
<screen>&prompt.user; <userinput>snmpwalk -v 2c -c public bridge1.example.com</userinput>
enterprises.fokus.begemot.begemotBridge
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1
...
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9</screen>
<para>To change the bridge interface being monitored via the
<literal>mib-2.dot1dBridge</literal> subtree:</para>
<screen>&prompt.user; <userinput>snmpset -v 2c -c private bridge1.example.com</userinput>
BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2</screen>
</sect2>
</sect1>
<sect1 xml:id="network-aggregation">
<info>
<title>Link Aggregation and Failover</title>
<authorgroup>
<author>
<personname>
<firstname>Andrew</firstname>
<surname>Thompson</surname>
</personname>
<contrib>Written by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary>lagg</primary>
</indexterm>
<indexterm>
<primary>failover</primary>
</indexterm>
<indexterm>
<primary><acronym>FEC</acronym></primary>
</indexterm>
<indexterm>
<primary><acronym>LACP</acronym></primary>
</indexterm>
<indexterm>
<primary>loadbalance</primary>
</indexterm>
<indexterm>
<primary>roundrobin</primary>
</indexterm>
<para>&os; provides the &man.lagg.4; interface which can be used
to aggregate multiple network interfaces into one virtual
interface in order to provide failover and link aggregation.
Failover allows traffic to continue to flow as long as at least
one aggregated network interface has an established link. Link
aggregation works best on switches which support
<acronym>LACP</acronym>, as this protocol distributes traffic
bi-directionally while responding to the failure of individual
links.</para>
<para>The aggregation protocols supported by the lagg interface
determine which ports are used for outgoing traffic and whether
or not a specific port accepts incoming traffic. The following
protocols are supported by &man.lagg.4;:</para>
<variablelist>
<varlistentry>
<term>failover</term>
<listitem>
<para>This mode sends and receives traffic only through
the master port. If the master port becomes
unavailable, the next active port is used. The first
interface added to the virtual interface is the master
port and all subsequently added interfaces are used as
failover devices. If failover to a non-master port
occurs, the original port becomes master once it
becomes available again.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>fec / loadbalance</term>
<listitem>
<para>&cisco; Fast ðerchannel; (<acronym>FEC</acronym>)
is found on older &cisco; switches. It provides a
static setup and does not negotiate aggregation with the
peer or exchange frames to monitor the link. If the
switch supports <acronym>LACP</acronym>, that should be
used instead.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><acronym>lacp</acronym></term>
<listitem>
<para>The &ieee; 802.3ad Link Aggregation Control Protocol
(<acronym>LACP</acronym>) negotiates a set of
aggregable links with the peer into one or more Link
Aggregated Groups (<acronym>LAG</acronym>s). Each
<acronym>LAG</acronym> is composed of ports of the same
speed, set to full-duplex operation, and traffic is
balanced across the ports in the
<acronym>LAG</acronym> with the greatest total speed.
Typically, there is only one <acronym>LAG</acronym>
which contains all the ports. In the event of changes
in physical connectivity,
<acronym>LACP</acronym> will quickly converge to a new
configuration.</para>
<para><acronym>LACP</acronym> balances outgoing traffic
across the active ports based on hashed protocol header
information and accepts incoming traffic from any active
port. The hash includes the Ethernet source and
destination address and, if available, the
<acronym>VLAN</acronym> tag, and the
<acronym>IPv4</acronym> or <acronym>IPv6</acronym>
source and destination address.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>roundrobin</term>
<listitem>
<para>This mode distributes outgoing traffic using a
round-robin scheduler through all active ports and
accepts incoming traffic from any active port. Since
this mode violates Ethernet frame ordering, it should be
used with caution.</para>
</listitem>
</varlistentry>
</variablelist>
<sect2>
<title>Configuration Examples</title>
<para>This section demonstrates how to configure a &cisco;
switch and a &os; system for <acronym>LACP</acronym> load
balancing. It then shows how to configure two Ethernet
interfaces in failover mode as well as how to configure
failover mode between an Ethernet and a wireless
interface.</para>
<example xml:id="networking-lacp-aggregation-cisco">
<title><acronym>LACP</acronym> Aggregation with a &cisco;
Switch</title>
<para>This example connects two &man.fxp.4; Ethernet
interfaces on a &os; machine to the first two Ethernet ports
on a &cisco; switch as a single load balanced and fault
tolerant link. More interfaces can be added to increase
throughput and fault tolerance. Replace the names of the
&cisco; ports, Ethernet devices, channel group number, and
<acronym>IP</acronym> address shown in the example to match
the local configuration.</para>
<para>Frame ordering is mandatory on Ethernet links and any
traffic between two stations always flows over the same
physical link, limiting the maximum speed to that of one
interface. The transmit algorithm attempts to use as much
information as it can to distinguish different traffic flows
and balance the flows across the available
interfaces.</para>
<para>On the &cisco; switch, add the
<replaceable>FastEthernet0/1</replaceable> and
<replaceable>FastEthernet0/2</replaceable> interfaces to
channel group <replaceable>1</replaceable>:</para>
<screen><userinput>interface <replaceable>FastEthernet0/1</replaceable>
channel-group <replaceable>1</replaceable> mode active
channel-protocol lacp</userinput>
!
<userinput>interface <replaceable>FastEthernet0/2</replaceable>
channel-group <replaceable>1</replaceable> mode active
channel-protocol lacp</userinput></screen>
<para>On the &os; system, create the &man.lagg.4; interface
using the physical interfaces
<replaceable>fxp0</replaceable> and
<replaceable>fxp1</replaceable> and bring the interfaces up
with an <acronym>IP</acronym> address of
<replaceable>10.0.0.3/24</replaceable>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>fxp0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <replaceable>fxp1</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create </userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto lacp laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.3/24</replaceable></userinput></screen>
<para>Next, verify the status of the virtual interface:</para>
<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput>
lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options=8<VLAN_MTU>
ether 00:05:5d:71:8d:b8
inet 10.0.0.3 netmask 0xffffff00 broadcast 10.0.0.255
media: Ethernet autoselect
status: active
laggproto lacp
laggport: fxp1 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING>
laggport: fxp0 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING></screen>
<para>Ports
marked as <literal>ACTIVE</literal> are part of the
<acronym>LAG</acronym> that has been negotiated with the
remote switch. Traffic will be transmitted and received
through these active ports. Add <option>-v</option> to the
above command to view the <acronym>LAG</acronym>
identifiers.</para>
<para>To see the port status on the &cisco; switch:</para>
<screen>switch# <userinput>show lacp neighbor</userinput>
Flags: S - Device is requesting Slow LACPDUs
F - Device is requesting Fast LACPDUs
A - Device is in Active mode P - Device is in Passive mode
Channel group 1 neighbors
Partner's information:
LACP port Oper Port Port
Port Flags Priority Dev ID Age Key Number State
Fa0/1 SA 32768 0005.5d71.8db8 29s 0x146 0x3 0x3D
Fa0/2 SA 32768 0005.5d71.8db8 29s 0x146 0x4 0x3D</screen>
<para>For more detail, type <userinput>show lacp neighbor
detail</userinput>.</para>
<para>To retain this configuration across reboots, add the
following entries to
<filename>/etc/rc.conf</filename> on the &os; system:</para>
<programlisting>ifconfig_<replaceable>fxp0</replaceable>="up"
ifconfig_<replaceable>fxp1</replaceable>="up"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="laggproto lacp laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.3/24</replaceable>"</programlisting>
</example>
<example xml:id="networking-lagg-failover">
<title>Failover Mode</title>
<para>Failover mode can be used to switch over to a secondary
interface if the link is lost on the master interface. To
configure failover, make sure that the underlying physical
interfaces are up, then create the &man.lagg.4; interface.
In this example, <replaceable>fxp0</replaceable> is the
master interface, <replaceable>fxp1</replaceable> is the
secondary interface, and the virtual interface is assigned
an <acronym>IP</acronym> address of
<replaceable>10.0.0.15/24</replaceable>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>fxp0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <replaceable>fxp1</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto failover laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.15/24</replaceable></userinput></screen>
<para>The virtual interface should look something like
this:</para>
<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput>
lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options=8<VLAN_MTU>
ether 00:05:5d:71:8d:b8
inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255
media: Ethernet autoselect
status: active
laggproto failover
laggport: fxp1 flags=0<>
laggport: fxp0 flags=5<MASTER,ACTIVE></screen>
<para>Traffic will be transmitted and received on
<replaceable>fxp0</replaceable>. If the link is lost on
<replaceable>fxp0</replaceable>,
<replaceable>fxp1</replaceable> will become the active link.
If the link is restored on the master interface, it will
once again become the active link.</para>
<para>To retain this configuration across reboots, add the
following entries to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>ifconfig_<replaceable>fxp0</replaceable>="up"
ifconfig_<replaceable>fxp1</replaceable>="up"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="laggproto failover laggport <replaceable>fxp0</replaceable> laggport <replaceable>fxp1</replaceable> <replaceable>10.0.0.15/24</replaceable>"</programlisting>
</example>
<example xml:id="networking-lagg-wired-and-wireless">
<title>Failover Mode Between Ethernet and Wireless
Interfaces</title>
<para>For laptop users, it is usually desirable to configure
the wireless device as a secondary which is only used when
the Ethernet connection is not available. With
&man.lagg.4;, it is possible to configure a failover which
prefers the Ethernet connection for both performance and
security reasons, while maintaining the ability to transfer
data over the wireless connection.</para>
<para>This is achieved by overriding the Ethernet interface's
<acronym>MAC</acronym> address with that of the wireless
interface.</para>
<note>
<para>In theory, either the Ethernet or wireless MAC address
can be changed to match the other. However, some popular
wireless interfaces lack support for overriding the MAC
address. We therefore recommend overriding the Ethernet
MAC address for this purpose.</para>
</note>
<note>
<para>If the driver for the wireless interface is not loaded
in the <literal>GENERIC</literal> or custom kernel,
and the computer is running &os; &rel121.current;,
load the corresponding <filename>.ko</filename> in
<filename>/boot/loader.conf</filename> by adding
<userinput><replaceable>driver</replaceable>_load="YES"</userinput>
to that file and rebooting. Another, better way is to
load the driver in <filename>/etc/rc.conf</filename> by
adding it to <varname>kld_list</varname> (see
&man.rc.conf.5; for details) in that file and rebooting.
This is needed because otherwise the driver is not loaded
yet at the time the &man.lagg.4; interface is set
up.</para>
</note>
<para>In this example, the Ethernet interface,
<replaceable>re0</replaceable>, is the master and the
wireless interface, <replaceable>wlan0</replaceable>, is
the failover. The <replaceable>wlan0</replaceable>
interface was created from the
<replaceable>ath0</replaceable> physical wireless interface,
and the Ethernet interface will be configured with the
<acronym>MAC</acronym> address of the wireless interface.
First, determine the <acronym>MAC</acronym> address of the
wireless interface:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable></userinput>
wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether b8:ee:65:5b:32:59
groups: wlan
ssid Bbox-A3BD2403 channel 6 (2437 MHz 11g ht/20) bssid 00:37:b7:56:4b:60
regdomain ETSI country FR indoor ecm authmode WPA2/802.11i privacy ON
deftxkey UNDEF AES-CCM 2:128-bit txpower 30 bmiss 7 scanvalid 60
protmode CTS ampdulimit 64k ampdudensity 8 shortgi -stbctx stbcrx
-ldpc wme burst roaming MANUAL
media: IEEE 802.11 Wireless Ethernet MCS mode 11ng
status: associated
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL></screen>
<para>Replace <replaceable>wlan0</replaceable> to match the
system's wireless interface name. The
<literal>ether</literal> line will contain the
<acronym>MAC</acronym> address of the specified interface.
Now, change the <acronym>MAC</acronym> address of the
Ethernet interface:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>re0</replaceable> ether <replaceable>b8:ee:65:5b:32:59</replaceable></userinput></screen>
<para>Bring the wireless interface up (replacing
<replaceable>FR</replaceable> with your own 2-letter country
code), but do not set an <acronym>IP</acronym>
address:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>wlan0</replaceable> create wlandev <replaceable>ath0</replaceable> country <replaceable>FR</replaceable> ssid <replaceable>my_router</replaceable> up</userinput></screen>
<para>Make sure the <replaceable>re0</replaceable> interface
is up, then create the &man.lagg.4; interface with
<replaceable>re0</replaceable> as master with failover to
<replaceable>wlan0</replaceable>:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>re0</replaceable> up</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> create</userinput>
&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal> up laggproto failover laggport <replaceable>re0</replaceable> laggport <replaceable>wlan0</replaceable></userinput></screen>
<para>The virtual interface should look something like
this:</para>
<screen>&prompt.root; <userinput>ifconfig <literal>lagg<replaceable>0</replaceable></literal></userinput>
lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options=8<VLAN_MTU>
ether b8:ee:65:5b:32:59
laggproto failover lagghash l2,l3,l4
laggport: re0 flags=5<MASTER,ACTIVE>
laggport: wlan0 flags=0<>
groups: lagg
media: Ethernet autoselect
status: active</screen>
<para>Then, start the <acronym>DHCP</acronym> client to
obtain an <acronym>IP</acronym> address:</para>
<screen>&prompt.root; <userinput>dhclient <literal>lagg<replaceable>0</replaceable></literal></userinput></screen>
<para>To retain this configuration across reboots, add the
following entries to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>ifconfig_<replaceable>re0</replaceable>="ether <replaceable>b8:ee:65:5b:32:59</replaceable>"
wlans_<replaceable>ath0</replaceable>="wlan0"
ifconfig_wlan0="WPA"
create_args_wlan0="country <replaceable>FR</replaceable>"
cloned_interfaces="<literal>lagg<replaceable>0</replaceable></literal>"
ifconfig_<literal>lagg<replaceable>0</replaceable></literal>="up laggproto failover laggport <replaceable>re0</replaceable> laggport wlan0 DHCP"</programlisting>
</example>
</sect2>
</sect1>
<sect1 xml:id="network-diskless">
<info>
<title>Diskless Operation with <acronym>PXE</acronym></title>
<authorgroup>
<author>
<personname>
<firstname>Jean-François</firstname>
<surname>Dockès</surname>
</personname>
<contrib>Updated by </contrib>
</author>
</authorgroup>
<authorgroup>
<author>
<personname>
<firstname>Alex</firstname>
<surname>Dupre</surname>
</personname>
<contrib>Reorganized and enhanced by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary>diskless workstation</primary>
</indexterm>
<indexterm>
<primary>diskless operation</primary>
</indexterm>
<para>The &intel; Preboot eXecution Environment
(<acronym>PXE</acronym>) allows an operating system to boot over
the network. For example, a &os; system can boot over the
network and operate without a local disk, using file systems
mounted from an <acronym>NFS</acronym> server.
<acronym>PXE</acronym> support is usually available in the
<acronym>BIOS</acronym>. To use <acronym>PXE</acronym> when the
machine starts, select the <literal>Boot from network</literal>
option in the <acronym>BIOS</acronym> setup or type a function
key during system initialization.</para>
<para>In order to provide the files needed for an operating system
to boot over the network, a <acronym>PXE</acronym> setup also
requires properly configured <acronym>DHCP</acronym>,
<acronym>TFTP</acronym>, and <acronym>NFS</acronym> servers,
where:</para>
<itemizedlist>
<listitem>
<para>Initial parameters, such as an <acronym>IP</acronym>
address, executable boot filename and location, server name,
and root path are obtained from the
<acronym>DHCP</acronym> server.</para>
</listitem>
<listitem>
<para>The operating system loader file is booted using
<acronym>TFTP</acronym>.</para>
</listitem>
<listitem>
<para>The file systems are loaded using
<acronym>NFS</acronym>.</para>
</listitem>
</itemizedlist>
<para>When a computer <acronym>PXE</acronym> boots, it receives
information over <acronym>DHCP</acronym> about where to obtain
the initial boot loader file. After the host computer receives
this information, it downloads the boot loader via
<acronym>TFTP</acronym> and then executes the boot loader. In
&os;, the boot loader file is
<filename>/boot/pxeboot</filename>. After
<filename>/boot/pxeboot</filename> executes, the &os; kernel is
loaded and the rest of the &os; bootup sequence proceeds, as
described in <xref linkend="boot"/>.</para>
<para>This section describes how to configure these services on a
&os; system so that other systems can <acronym>PXE</acronym>
boot into &os;. Refer to &man.diskless.8; for more
information.</para>
<caution>
<para>As described, the system providing these services is
insecure. It should live in a protected area of a network and
be untrusted by other hosts.</para>
</caution>
<sect2 xml:id="network-pxe-nfs">
<info>
<title>Setting Up the <acronym>PXE</acronym>
Environment</title>
<authorgroup>
<author>
<personname>
<firstname>Craig</firstname>
<surname>Rodrigues</surname>
</personname>
<affiliation>
<address>rodrigc@FreeBSD.org</address>
</affiliation>
<contrib>Written by </contrib>
</author>
</authorgroup>
</info>
<para>The steps shown in this section configure the built-in
<acronym>NFS</acronym> and <acronym>TFTP</acronym> servers.
The next section demonstrates how to install and configure the
<acronym>DHCP</acronym> server. In this example, the
directory which will contain the files used by
<acronym>PXE</acronym> users is
<filename>/b/tftpboot/FreeBSD/install</filename>. It is
important that this directory exists and that the same
directory name is set in both
<filename>/etc/inetd.conf</filename> and
<filename>/usr/local/etc/dhcpd.conf</filename>.</para>
<note>
<para>The command examples below assume use of the &man.sh.1; shell.
&man.csh.1; and &man.tcsh.1; users will need to start a
&man.sh.1; shell or adapt the commands to &man.csh.1; syntax.</para>
</note>
<procedure>
<step>
<para>Create the root directory which will contain a &os;
installation to be <acronym>NFS</acronym> mounted:</para>
<screen>&prompt.root; <userinput>export NFSROOTDIR=/b/tftpboot/FreeBSD/install</userinput>
&prompt.root; <userinput>mkdir -p ${NFSROOTDIR}</userinput></screen>
</step>
<step>
<para>Enable the <acronym>NFS</acronym> server by adding
this line to <filename>/etc/rc.conf</filename>:</para>
<programlisting>nfs_server_enable="YES"</programlisting>
</step>
<step>
<para>Export the diskless root directory via
<acronym>NFS</acronym> by adding the following to
<filename>/etc/exports</filename>:</para>
<programlisting>/b -ro -alldirs -maproot=root</programlisting>
</step>
<step>
<para>Start the <acronym>NFS</acronym> server:</para>
<screen>&prompt.root; <userinput>service nfsd start</userinput></screen>
</step>
<step>
<para>Enable &man.inetd.8; by adding the following line to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>inetd_enable="YES"</programlisting>
</step>
<step>
<para>Uncomment the following line in
<filename>/etc/inetd.conf</filename> by making sure it
does not start with a <literal>#</literal> symbol:</para>
<programlisting>tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot</programlisting>
<note>
<para>Some <acronym>PXE</acronym> versions require the
<acronym>TCP</acronym> version of
<acronym>TFTP</acronym>. In this case, uncomment the
second <literal>tftp</literal> line which contains
<literal>stream tcp</literal>.</para>
</note>
</step>
<step>
<para>Start &man.inetd.8;:</para>
<screen>&prompt.root; <userinput>service inetd start</userinput></screen>
</step>
<step>
<para>Install the base system into
<filename>${NFSROOTDIR}</filename>, either by
decompressing the official archives or by rebuilding
the &os; kernel and userland (refer to
<xref linkend="makeworld"/> for more detailed
instructions, but do not forget to add
<option>DESTDIR=<replaceable>${NFSROOTDIR}</replaceable></option>
when running the
<command>make installkernel</command> and
<command>make installworld</command> commands.</para>
</step>
<step>
<para>Test that the <acronym>TFTP</acronym> server works and
can download the boot loader which will be obtained via
<acronym>PXE</acronym>:</para>
<screen>&prompt.root; <userinput>tftp localhost</userinput>
tftp> <userinput>get FreeBSD/install/boot/pxeboot</userinput>
Received 264951 bytes in 0.1 seconds</screen>
</step>
<step>
<para>Edit <filename>${NFSROOTDIR}/etc/fstab</filename> and
create an entry to mount the root file system over
<acronym>NFS</acronym>:</para>
<programlisting># Device Mountpoint FSType Options Dump Pass
<replaceable>myhost.example.com</replaceable>:/b/tftpboot/FreeBSD/install / nfs ro 0 0</programlisting>
<para>Replace <replaceable>myhost.example.com</replaceable>
with the hostname or <acronym>IP</acronym> address of the
<acronym>NFS</acronym> server. In this example, the root
file system is mounted read-only in order to prevent
<acronym>NFS</acronym> clients from potentially deleting
the contents of the root file system.</para>
</step>
<step>
<para>Set the root password in the <acronym>PXE</acronym>
environment for client machines which are
<acronym>PXE</acronym> booting :</para>
<screen>&prompt.root; <userinput>chroot ${NFSROOTDIR}</userinput>
&prompt.root; <userinput>passwd</userinput></screen>
</step>
<step>
<para>If needed, enable &man.ssh.1; root logins for client
machines which are <acronym>PXE</acronym> booting by
editing
<filename>${NFSROOTDIR}/etc/ssh/sshd_config</filename> and
enabling <literal>PermitRootLogin</literal>. This option
is documented in &man.sshd.config.5;.</para>
</step>
<step>
<para>Perform any other needed customizations of the
<acronym>PXE</acronym> environment in
<filename>${NFSROOTDIR}</filename>. These customizations
could include things like installing packages or editing
the password file with &man.vipw.8;.</para>
</step>
</procedure>
<para>When booting from an <acronym>NFS</acronym> root volume,
<filename>/etc/rc</filename> detects the
<acronym>NFS</acronym> boot and runs
<filename>/etc/rc.initdiskless</filename>. In this case,
<filename>/etc</filename> and <filename>/var</filename> need
to be memory backed file systems so that these directories are
writable but the <acronym>NFS</acronym> root directory is
read-only:</para>
<screen>&prompt.root; <userinput>chroot ${NFSROOTDIR}</userinput>
&prompt.root; <userinput>mkdir -p conf/base</userinput>
&prompt.root; <userinput>tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc</userinput>
&prompt.root; <userinput>tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var</userinput></screen>
<para>When the system boots, memory file systems for
<filename>/etc</filename> and <filename>/var</filename> will
be created and mounted and the contents of the
<filename>cpio.gz</filename> files will be copied into
them. By default, these file systems have a maximum capacity
of 5 megabytes. If your archives do not fit, which is
usually the case for <filename>/var</filename> when binary
packages have been installed, request a larger size by putting
the number of 512 byte sectors needed (e.g., 5 megabytes
is 10240 sectors) in
<filename>${NFSROOTDIR}/conf/base/etc/md_size</filename> and
<filename>${NFSROOTDIR}/conf/base/var/md_size</filename>
files for <filename>/etc</filename> and
<filename>/var</filename> file systems respectively.</para>
</sect2>
<sect2 xml:id="network-pxe-setting-up-dhcp">
<title>Configuring the <acronym>DHCP</acronym> Server</title>
<indexterm>
<primary>DHCP</primary>
<secondary>diskless operation</secondary>
</indexterm>
<para>The <acronym>DHCP</acronym> server does not need to be the
same machine as the <acronym>TFTP</acronym> and
<acronym>NFS</acronym> server, but it needs to be accessible
in the network.</para>
<para><acronym>DHCP</acronym> is not part of the &os; base
system but can be installed using the
<package>net/isc-dhcp43-server</package> port or
package.</para>
<para>Once installed, edit the configuration file,
<filename>/usr/local/etc/dhcpd.conf</filename>. Configure
the <literal>next-server</literal>,
<literal>filename</literal>, and
<literal>root-path</literal> settings as seen in this
example:</para>
<programlisting>subnet 192.168.0.0 netmask 255.255.255.0 {
range 192.168.0.2 192.168.0.3 ;
option subnet-mask 255.255.255.0 ;
option routers 192.168.0.1 ;
option broadcast-address 192.168.0.255 ;
option domain-name-servers 192.168.35.35, 192.168.35.36 ;
option domain-name "example.com";
# IP address of TFTP server
next-server <replaceable>192.168.0.1</replaceable> ;
# path of boot loader obtained via tftp
filename "<replaceable>FreeBSD/install/boot/pxeboot</replaceable>" ;
# pxeboot boot loader will try to NFS mount this directory for root FS
option root-path "<replaceable>192.168.0.1:/b/tftpboot/FreeBSD/install/</replaceable>" ;
}</programlisting>
<!--
This option still needed?
host corbieres {
<para>This option tells <application>dhcpd</application>
to send the value in the <literal>host</literal>
declarations as the hostname for the diskless host.
An alternate way would be to add an <literal>option
host-name <replaceable>corbieres</replaceable></literal>
inside the <literal>host</literal> declarations.</para>
-->
<para>The <literal>next-server</literal> directive is used to
specify the <acronym>IP</acronym> address of the
<acronym>TFTP</acronym> server.</para>
<para>The <literal>filename</literal> directive defines the path
to <filename>/boot/pxeboot</filename>. A relative filename is
used, meaning that <filename>/b/tftpboot</filename> is not
included in the path.</para>
<para>The <literal>root-path</literal> option defines the path
to the <acronym>NFS</acronym> root file system.</para>
<para>Once the edits are saved, enable <acronym>DHCP</acronym>
at boot time by adding the following line to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>dhcpd_enable="YES"</programlisting>
<para>Then start the <acronym>DHCP</acronym> service:</para>
<screen>&prompt.root; <userinput>service isc-dhcpd start</userinput></screen>
</sect2>
<!--
Are these sections still needed?
<sect2>
<title>Preparing the Root File System</title>
<indexterm>
<primary>diskless operation</primary>
<secondary>kernel configuration</secondary>
</indexterm>
<para>When using <acronym>PXE</acronym>, building a custom
kernel with the following options is not strictly necessary.
These options cause more <acronym>DHCP</acronym> requests
to be issued during kernel startup, with a small risk of
inconsistency between the new values and those retrieved
by &man.pxeboot.8; in some special cases. The advantage
is that the host name will be set. Otherwise, set the
host name in a client-specific
<filename>/etc/rc.conf</filename>.</para>
<programlisting>options BOOTP # Use BOOTP to obtain IP address/hostname
options BOOTP_NFSROOT # NFS mount root file system using BOOTP info</programlisting>
<para>The custom kernel can also include
<literal>BOOTP_NFSV3</literal>,
<literal>BOOT_COMPAT</literal> and
<literal>BOOTP_WIRED_TO</literal>. Refer to
<filename>NOTES</filename> for descriptions of these
options.</para>
<para>These option names are historical and slightly
misleading as they actually enable indifferent use of
<acronym>DHCP</acronym> and <acronym>BOOTP</acronym>
inside the kernel.</para>
<para>Build the custom kernel, using the instructions in
<xref linkend="kernelconfig"/>, and copy it to the place
specified in
<filename>/usr/local/etc/dhcpd.conf</filename>.</para>
<indexterm>
<primary>root file system</primary>
<secondary>diskless operation</secondary>
</indexterm>
<para>Create a root file system for the diskless
workstations in the location listed as
<literal>root-path</literal> in
<filename>/usr/local/etc/dhcpd.conf</filename>.</para>
<para>Using <command>make world</command> to populate root is
quick and will install a complete virgin system, not just
the root file system, into <envar>DESTDIR</envar>. Execute
the following script:</para>
<programlisting>#!/bin/sh
export DESTDIR=/data/misc/diskless
mkdir -p ${DESTDIR}
cd /usr/src; make buildworld && make buildkernel
make installworld && make installkernel
cd /usr/src/etc; make distribution</programlisting>
<para>Once done, customize
<filename>/etc/rc.conf</filename> and
<filename>/etc/fstab</filename> placed into
<envar>DESTDIR</envar> according to the system's
requirements.</para>
</sect2>
<sect2>
<title>Configuring Swap</title>
<para>If needed, a swap file located on the server can be
accessed via <acronym>NFS</acronym>.</para>
<para>The kernel does not support enabling
<acronym>NFS</acronym> swap at boot time. Swap must be
enabled by the startup scripts, by mounting a writable
file system and creating and enabling a swap file. To
create a swap file:</para>
<screen>&prompt.root; <userinput>dd if=/dev/zero of=<replaceable>/path/to/swapfile</replaceable> bs=1k count=1 oseek=<replaceable>100000</replaceable></userinput></screen>
<para>To enable the swap file, add the following line to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>swapfile=<replaceable>/path/to/swapfile</replaceable></programlisting>
</sect2>
<sect2>
<title>Miscellaneous Issues</title>
<indexterm>
<primary>diskless operation</primary>
<secondary>/usr read-only</secondary>
</indexterm>
<para>If the diskless workstation is configured to run
<application>&xorg;</application> and is running with a
read-only <filename>/usr</filename>, adjust the
<application>XDM</application> configuration file as it puts
the error log on <filename>/usr</filename> by
default.</para>
<para>When the server for the root file system is not
running &os;, create the root file system on a &os;
machine, then copy it to its destination, using
&man.tar.1; or &man.cpio.1;.</para>
<para>In this situation, there are sometimes problems with
the special files in <filename>/dev</filename>, due to
differing major/minor integer sizes. A solution to this
problem is to export a directory from the non-&os; server,
mount this directory onto a &os; machine, and use
&man.devfs.5; to allocate device nodes transparently for
the user.</para>
</sect2>
-->
<sect2>
<title>Debugging <acronym>PXE</acronym> Problems</title>
<para>Once all of the services are configured and started,
<acronym>PXE</acronym> clients should be able to
automatically load &os; over the network. If a particular
client is unable to connect, when that client machine boots
up, enter the <acronym>BIOS</acronym> configuration menu and
confirm that it is set to boot from the network.</para>
<para>This section describes some troubleshooting tips for
isolating the source of the configuration problem should no
clients be able to <acronym>PXE</acronym> boot.</para>
<procedure>
<step>
<para>Use the <package>net/wireshark</package> package or
port to debug the network traffic involved during the
<acronym>PXE</acronym> booting process, which is
illustrated in the diagram below.</para>
<figure>
<title><acronym>PXE</acronym> Booting Process with
<acronym>NFS</acronym> Root Mount</title>
<mediaobject>
<imageobjectco>
<areaspec units="calspair">
<area
xml:id="co-pxenfs1" coords="2873,8133 3313,7266"/>
<area
xml:id="co-pxenfs2" coords="3519,6333 3885,5500"/>
<area
xml:id="co-pxenfs3" coords="4780,5866 5102,5200"/>
<area
xml:id="co-pxenfs4" coords="4794,4333 5102,3600"/>
<area
xml:id="co-pxenfs5" coords="3108,2666 3519,1800"/>
</areaspec>
<imageobject>
<imagedata fileref="advanced-networking/pxe-nfs"/>
</imageobject>
<calloutlist>
<callout arearefs="co-pxenfs1">
<para>Client broadcasts a
<literal>DHCPDISCOVER</literal> message.</para>
</callout>
<callout arearefs="co-pxenfs2">
<para>The <acronym>DHCP</acronym> server responds
with the <acronym>IP</acronym> address,
<literal>next-server</literal>,
<literal>filename</literal>, and
<literal>root-path</literal> values.</para>
</callout>
<callout arearefs="co-pxenfs3">
<para>The client sends a <acronym>TFTP</acronym>
request to <literal>next-server</literal>,
asking to retrieve
<literal>filename</literal>.</para>
</callout>
<callout arearefs="co-pxenfs4">
<para>The <acronym>TFTP</acronym> server responds
and sends <literal>filename</literal> to
client.</para>
</callout>
<callout arearefs="co-pxenfs5">
<para>The client executes
<literal>filename</literal>, which is
&man.pxeboot.8;, which then loads the kernel.
When the kernel executes, the root file system
specified by <literal>root-path</literal> is
mounted over <acronym>NFS</acronym>.</para>
</callout>
</calloutlist>
</imageobjectco>
</mediaobject>
</figure>
</step>
<step>
<para>On the
<acronym>TFTP</acronym> server, read
<filename>/var/log/xferlog</filename> to ensure that
<filename>pxeboot</filename> is being retrieved from
the correct location. To test this example
configuration:</para>
<screen>&prompt.root; <userinput>tftp 192.168.0.1</userinput>
tftp> <userinput>get FreeBSD/install/boot/pxeboot</userinput>
Received 264951 bytes in 0.1 seconds</screen>
<para>The <literal>BUGS</literal> sections in &man.tftpd.8;
and &man.tftp.1; document some limitations with
<acronym>TFTP</acronym>.</para>
</step>
<step>
<para>Make sure that the root file system can be mounted
via <acronym>NFS</acronym>. To test this example
configuration:</para>
<screen>&prompt.root; <userinput>mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt</userinput></screen>
</step>
</procedure>
</sect2>
</sect1>
<sect1 xml:id="network-ipv6">
<info>
<title><acronym>IPv6</acronym></title>
<authorgroup>
<author>
<personname>
<firstname>Aaron</firstname>
<surname>Kaplan</surname>
</personname>
<contrib>Originally Written by </contrib>
</author>
</authorgroup>
<authorgroup>
<author>
<personname>
<firstname>Tom</firstname>
<surname>Rhodes</surname>
</personname>
<contrib>Restructured and Added by </contrib>
</author>
</authorgroup>
<authorgroup>
<author>
<personname>
<firstname>Brad</firstname>
<surname>Davis</surname>
</personname>
<contrib>Extended by </contrib>
</author>
</authorgroup>
</info>
<para><acronym>IPv6</acronym> is the new version of the well known
<acronym>IP</acronym> protocol, also known as
<acronym>IPv4</acronym>. <acronym>IPv6</acronym> provides
several advantages over <acronym>IPv4</acronym> as well as many
new features:</para>
<itemizedlist>
<listitem>
<para>Its 128-bit address space allows for
340,282,366,920,938,463,463,374,607,431,768,211,456
addresses. This addresses the <acronym>IPv4</acronym>
address shortage and eventual <acronym>IPv4</acronym>
address exhaustion.</para>
</listitem>
<listitem>
<para>Routers only store network aggregation addresses in
their routing tables, thus reducing the average space of a
routing table to 8192 entries. This addresses the
scalability issues associated with <acronym>IPv4</acronym>,
which required every allocated block of
<acronym>IPv4</acronym> addresses to be exchanged between
Internet routers, causing their routing tables to become too
large to allow efficient routing.</para>
</listitem>
</itemizedlist>
<itemizedlist>
<listitem>
<para>Address autoconfiguration (<link
xlink:href="http://www.ietf.org/rfc/rfc2462.txt">RFC2462</link>).</para>
</listitem>
<listitem>
<para>Mandatory multicast addresses.</para>
</listitem>
<listitem>
<para>Built-in <acronym>IPsec</acronym> (<acronym>IP</acronym>
security).</para>
</listitem>
<listitem>
<para>Simplified header structure.</para>
</listitem>
<listitem>
<para>Support for mobile <acronym>IP</acronym>.</para>
</listitem>
<listitem>
<para><acronym>IPv6</acronym>-to-<acronym>IPv4</acronym>
transition mechanisms.</para>
</listitem>
</itemizedlist>
<para>&os; includes the <link
xlink:href="http://www.kame.net/">http://www.kame.net/</link>
<acronym>IPv6</acronym> reference implementation and comes
with everything needed to use <acronym>IPv6</acronym>. This
section focuses on getting <acronym>IPv6</acronym> configured
and running.</para>
<sect2>
<title>Background on <acronym>IPv6</acronym> Addresses</title>
<para>There are three different types of <acronym>IPv6</acronym>
addresses:</para>
<variablelist>
<varlistentry>
<term>Unicast</term>
<listitem>
<para>A packet sent to a unicast address arrives at the
interface belonging to the address.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Anycast</term>
<listitem>
<para>These addresses are syntactically indistinguishable
from unicast addresses but they address a group of
interfaces. The packet destined for an anycast address
will arrive at the nearest router interface. Anycast
addresses are only used by routers.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Multicast</term>
<listitem>
<para>These addresses identify a group of interfaces. A
packet destined for a multicast address will arrive at
all interfaces belonging to the multicast group. The
<acronym>IPv4</acronym> broadcast address, usually
<systemitem
class="ipaddress">xxx.xxx.xxx.255</systemitem>, is
expressed by multicast addresses in
<acronym>IPv6</acronym>.</para>
</listitem>
</varlistentry>
</variablelist>
<para>When reading an <acronym>IPv6</acronym> address, the
canonical form is represented as
<systemitem>x:x:x:x:x:x:x:x</systemitem>, where each
<literal>x</literal> represents a 16 bit hex value. An
example is
<systemitem>FEBC:A574:382B:23C1:AA49:4592:4EFE:9982</systemitem>.</para>
<para>Often, an address will have long substrings of all zeros.
A <literal>::</literal> (double colon) can be used to replace
one substring per address. Also, up to three leading
<literal>0</literal>s per hex value can be omitted. For
example, <systemitem>fe80::1</systemitem> corresponds to the
canonical form
<systemitem>fe80:0000:0000:0000:0000:0000:0000:0001</systemitem>.</para>
<para>A third form is to write the last 32 bits using the well
known <acronym>IPv4</acronym> notation. For example,
<systemitem>2002::10.0.0.1</systemitem> corresponds to the
hexadecimal canonical representation
<systemitem>2002:0000:0000:0000:0000:0000:0a00:0001</systemitem>,
which in turn is equivalent to
<systemitem>2002::a00:1</systemitem>.</para>
<para>To view a &os; system's <acronym>IPv6 </acronym> address,
use &man.ifconfig.8;:</para>
<screen>&prompt.root; <userinput>ifconfig</userinput></screen>
<programlisting>rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500
inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255
inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1
ether 00:00:21:03:08:e1
media: Ethernet autoselect (100baseTX )
status: active</programlisting>
<para>In this example, the <filename>rl0</filename> interface is
using <systemitem>fe80::200:21ff:fe03:8e1%rl0</systemitem>, an
auto-configured link-local address which was automatically
generated from the <acronym>MAC</acronym> address.</para>
<para>Some <acronym>IPv6</acronym> addresses are reserved. A
summary of these reserved addresses is seen in <xref
linkend="reservedip6"/>:</para>
<table xml:id="reservedip6" frame="none">
<title>Reserved <acronym>IPv6</acronym> Addresses</title>
<tgroup cols="4">
<thead>
<row>
<entry><acronym>IPv6</acronym> address</entry>
<entry>Prefixlength (Bits)</entry>
<entry>Description</entry>
<entry>Notes</entry>
</row>
</thead>
<tbody>
<row>
<entry><systemitem>::</systemitem></entry>
<entry>128 bits</entry>
<entry>unspecified</entry>
<entry>Equivalent to <systemitem
class="ipaddress">0.0.0.0</systemitem> in
<acronym>IPv4</acronym>.</entry>
</row>
<row>
<entry><systemitem>::1</systemitem></entry>
<entry>128 bits</entry>
<entry>loopback address</entry>
<entry>Equivalent to <systemitem
class="ipaddress">127.0.0.1</systemitem> in
<acronym>IPv4</acronym>.</entry>
</row>
<row>
<entry><systemitem>::00:xx:xx:xx:xx</systemitem></entry>
<entry>96 bits</entry>
<entry>embedded <acronym>IPv4</acronym></entry>
<entry>The lower 32 bits are the compatible
<acronym>IPv4</acronym> address.</entry>
</row>
<row>
<entry><systemitem>::ff:xx:xx:xx:xx</systemitem></entry>
<entry>96 bits</entry>
<entry><acronym>IPv4</acronym> mapped
<acronym>IPv6</acronym> address</entry>
<entry>The lower 32 bits are the <acronym>IPv4</acronym>
address for hosts which do not support
<acronym>IPv6</acronym>.</entry>
</row>
<row>
<entry><systemitem>fe80::/10</systemitem></entry>
<entry>10 bits</entry>
<entry>link-local</entry>
<entry>Equivalent to 169.254.0.0/16 in
<acronym>IPv4</acronym>.</entry>
</row>
<row>
<entry><systemitem>fc00::/7</systemitem></entry>
<entry>7 bits</entry>
<entry>unique-local</entry>
<entry>Unique local addresses are intended for local
communication and are only routable within a set of
cooperating sites.</entry>
</row>
<row>
<entry><systemitem>ff00::</systemitem></entry>
<entry>8 bits</entry>
<entry>multicast</entry>
<entry> </entry>
</row>
<row>
<entry><systemitem>2000::-3fff:: </systemitem></entry>
<entry>3 bits</entry>
<entry>global unicast</entry>
<entry>All global unicast addresses are assigned from
this pool. The first 3 bits are
<literal>001</literal>.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>For further information on the structure of
<acronym>IPv6</acronym> addresses, refer to <link
xlink:href="http://www.ietf.org/rfc/rfc3513.txt">RFC3513</link>.</para>
</sect2>
<sect2>
<title>Configuring <acronym>IPv6</acronym></title>
<para>To configure a &os; system as an <acronym>IPv6</acronym>
client, add these two lines to
<filename>rc.conf</filename>:</para>
<programlisting>ifconfig_<replaceable>rl0</replaceable>_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"</programlisting>
<para>The first line enables the specified interface to receive
router advertisement messages. The second line enables the
router solicitation daemon, &man.rtsol.8;.</para>
<para>If the interface needs a statically assigned
<acronym>IPv6</acronym> address, add an entry to specify the
static address and associated prefix length:</para>
<programlisting>ifconfig_<replaceable>rl0</replaceable>_ipv6="inet6 <replaceable>2001:db8:4672:6565:2026:5043:2d42:5344</replaceable> prefixlen <replaceable>64</replaceable>"</programlisting>
<para>To assign a default router, specify its address:</para>
<programlisting>ipv6_defaultrouter="<replaceable>2001:db8:4672:6565::1</replaceable>"</programlisting>
</sect2>
<sect2>
<title>Connecting to a Provider</title>
<para>In order to connect to other <acronym>IPv6</acronym>
networks, one must have a provider or a tunnel that supports
<acronym>IPv6</acronym>:</para>
<itemizedlist>
<listitem>
<para>Contact an Internet Service Provider to see if they
offer <acronym>IPv6</acronym>.</para>
</listitem>
<listitem>
<para><link
xlink:href="http://www.tunnelbroker.net">Hurricane
Electric</link> offers tunnels with end-points all
around the globe.</para>
</listitem>
</itemizedlist>
<note>
<para>Install the <package>net/freenet6</package> package or
port for a dial-up connection.</para>
</note>
<para>This section demonstrates how to take the directions from
a tunnel provider and convert them into
<filename>/etc/rc.conf</filename> settings that will persist
through reboots.</para>
<para>The first <filename>/etc/rc.conf</filename> entry creates
the generic tunneling interface
<filename><replaceable>gif0</replaceable></filename>:</para>
<programlisting>cloned_interfaces="gif<replaceable>0</replaceable>"</programlisting>
<para>Next, configure that interface with the
<acronym>IPv4</acronym> addresses of the local and remote
endpoints. Replace <replaceable>MY_IPv4_ADDR</replaceable>
and <replaceable>REMOTE_IPv4_ADDR</replaceable> with the
actual <acronym>IPv4</acronym> addresses:</para>
<programlisting>create_args_gif0="tunnel <replaceable>MY_IPv4_ADDR REMOTE_IPv4_ADDR</replaceable>"</programlisting>
<para>To apply the <acronym>IPv6</acronym> address that has been
assigned for use as the <acronym>IPv6</acronym> tunnel
endpoint, add this line, replacing
<replaceable>MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR</replaceable>
with the assigned address:</para>
<programlisting>ifconfig_gif0_ipv6="inet6 <replaceable>MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR</replaceable>"</programlisting>
<para>Then, set the default route for the other side of the
<acronym>IPv6</acronym> tunnel. Replace
<replaceable>MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR</replaceable>
with the default gateway address assigned by the
provider:</para>
<programlisting>ipv6_defaultrouter="<replaceable>MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR</replaceable>"</programlisting>
<para>If the &os; system will route <acronym>IPv6</acronym>
packets between the rest of the network and the world, enable
the gateway using this line:</para>
<programlisting>ipv6_gateway_enable="YES"</programlisting>
</sect2>
<sect2>
<title>Router Advertisement and Host Auto Configuration</title>
<para>This section demonstrates how to setup &man.rtadvd.8; to
advertise the <acronym>IPv6</acronym> default route.</para>
<para>To enable &man.rtadvd.8;, add the following to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>rtadvd_enable="YES"</programlisting>
<para>It is important to specify the interface on which to
do <acronym>IPv6</acronym> router advertisement. For example,
to tell &man.rtadvd.8; to use
<filename>rl0</filename>:</para>
<programlisting>rtadvd_interfaces="rl0"</programlisting>
<para>Next, create the configuration file,
<filename>/etc/rtadvd.conf</filename> as seen in this
example:</para>
<programlisting>rl0:\
:addrs#1:addr="2001:db8:1f11:246::":prefixlen#64:tc=ether:</programlisting>
<para>Replace <filename>rl0</filename> with the interface
to be used and <systemitem>2001:db8:1f11:246::</systemitem>
with the prefix of the allocation.</para>
<para>For a dedicated <systemitem
class="netmask">/64</systemitem> subnet, nothing else needs
to be changed. Otherwise, change the
<literal>prefixlen#</literal> to the correct value.</para>
</sect2>
<sect2>
<title><acronym>IPv6</acronym> and <acronym>IPv6</acronym>
Address Mapping</title>
<para>When <acronym>IPv6</acronym> is enabled on a server, there
may be a need to enable <acronym>IPv4</acronym> mapped
<acronym>IPv6</acronym> address communication. This
compatibility option allows for <acronym>IPv4</acronym>
addresses to be represented as <acronym>IPv6</acronym>
addresses. Permitting <acronym>IPv6</acronym> applications
to communicate with <acronym>IPv4</acronym> and vice versa
may be a security issue.</para>
<para>This option may not be required in most cases and is
available only for compatibility. This option will allow
<acronym>IPv6</acronym>-only applications to work with
<acronym>IPv4</acronym> in a dual stack environment. This
is most useful for third party applications which may not
support an <acronym>IPv6</acronym>-only environment. To
enable this feature,
add the following to <filename>/etc/rc.conf</filename>:</para>
<programlisting>ipv6_ipv4mapping="YES"</programlisting>
<para>Reviewing the information in <acronym>RFC</acronym> 3493,
section 3.6 and 3.7 as well as <acronym>RFC</acronym> 4038
section 4.2 may be useful to some administrators.</para>
</sect2>
</sect1>
<!--
<sect1 xml:id="network-atm">
<info><title>Asynchronous Transfer Mode (<acronym>ATM</acronym>)</title>
<authorgroup>
<author>
<personname>
<firstname>Harti</firstname>
<surname>Brandt</surname>
</personname>
<contrib>Contributed by </contrib>
</author>
</authorgroup>
</info>
<sect2>
<title>Configuring Classical <acronym>IP</acronym> over
<acronym>ATM</acronym></title>
<para>Classical <acronym>IP</acronym> over
<acronym>ATM</acronym> (<acronym>CLIP</acronym>) is the
simplest method to use Asynchronous Transfer Mode
(<acronym>ATM</acronym>) with <acronym>IP</acronym>. It can
be used with Switched Virtual Circuits
(<acronym>SVC</acronym>s) and with Permanent Virtual Circuits
(<acronym>PVC</acronym>s). This section describes how to
set up a network based on <acronym>PVC</acronym>s.</para>
<sect3>
<title>Fully Meshed Configurations</title>
<para>The first method to set up a <acronym>CLIP</acronym>
with <acronym>PVC</acronym>s is to connect each machine
to each other machine in the network via a dedicated
<acronym>PVC</acronym>. While this is simple to
configure, it becomes impractical for a large number of
machines. The following example supposes four machines in
the network, each connected to the <acronym role="Asynchronous Transfer Mode">ATM</acronym> network
with an <acronym role="Asynchronous Transfer Mode">ATM</acronym> adapter
card. The first step is the planning of the
<acronym>IP</acronym> addresses and the <acronym role="Asynchronous Transfer Mode">ATM</acronym>
connections between the machines. This example uses the
following:</para>
<informaltable frame="none" pgwide="1">
<tgroup cols="2">
<colspec colwidth="1*"/>
<colspec colwidth="1*"/>
<thead>
<row>
<entry>Host</entry>
<entry><acronym>IP</acronym> Address</entry>
</row>
</thead>
<tbody>
<row>
<entry><systemitem>hostA</systemitem></entry>
<entry><systemitem class="ipaddress">192.168.173.1</systemitem></entry>
</row>
<row>
<entry><systemitem>hostB</systemitem></entry>
<entry><systemitem class="ipaddress">192.168.173.2</systemitem></entry>
</row>
<row>
<entry><systemitem>hostC</systemitem></entry>
<entry><systemitem class="ipaddress">192.168.173.3</systemitem></entry>
</row>
<row>
<entry><systemitem>hostD</systemitem></entry>
<entry><systemitem class="ipaddress">192.168.173.4</systemitem></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>To build a fully meshed net, one <acronym>ATM</acronym>
connection is needed between each pair of machines:</para>
<informaltable frame="none" pgwide="1">
<tgroup cols="2">
<colspec colwidth="1*"/>
<colspec colwidth="1*"/>
<thead>
<row>
<entry>Machines</entry>
<entry>VPI.VCI couple</entry>
</row>
</thead>
<tbody>
<row>
<entry><systemitem>hostA</systemitem> -
<systemitem>hostB</systemitem></entry>
<entry>0.100</entry>
</row>
<row>
<entry><systemitem>hostA</systemitem> -
<systemitem>hostC</systemitem></entry>
<entry>0.101</entry>
</row>
<row>
<entry><systemitem>hostA</systemitem> -
<systemitem>hostD</systemitem></entry>
<entry>0.102</entry>
</row>
<row>
<entry><systemitem>hostB</systemitem> -
<systemitem>hostC</systemitem></entry>
<entry>0.103</entry>
</row>
<row>
<entry><systemitem>hostB</systemitem> -
<systemitem>hostD</systemitem></entry>
<entry>0.104</entry>
</row>
<row>
<entry><systemitem>hostC</systemitem> -
<systemitem>hostD</systemitem></entry>
<entry>0.105</entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>The Virtual Path Identifier <acronym>VPI</acronym> and
Virtual Channel Identifier <acronym>VCI</acronym> values
at each end of the connection may differ, but for
simplicity, this example assumes they are the same. Next,
configure the <acronym>ATM</acronym> interfaces on each
host:</para>
<screen>hostA&prompt.root; <userinput>ifconfig hatm0 192.168.173.1 up</userinput>
hostB&prompt.root; <userinput>ifconfig hatm0 192.168.173.2 up</userinput>
hostC&prompt.root; <userinput>ifconfig hatm0 192.168.173.3 up</userinput>
hostD&prompt.root; <userinput>ifconfig hatm0 192.168.173.4 up</userinput></screen>
<para>This example assumes that the <acronym>ATM</acronym>
interface is <filename>hatm0</filename> on all hosts.
Next, the <acronym>PVC</acronym>s need to be configured on
<systemitem>hostA</systemitem>. This should already be
configured on the <acronym>ATM</acronym> switch; consult the
manual for the switch on how to do this.</para>
<screen>hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 100 llc/snap ubr</userinput>
hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 101 llc/snap ubr</userinput>
hostA&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 102 llc/snap ubr</userinput>
hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 100 llc/snap ubr</userinput>
hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 103 llc/snap ubr</userinput>
hostB&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 104 llc/snap ubr</userinput>
hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 101 llc/snap ubr</userinput>
hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 103 llc/snap ubr</userinput>
hostC&prompt.root; <userinput>atmconfig natm add 192.168.173.4 hatm0 0 105 llc/snap ubr</userinput>
hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.1 hatm0 0 102 llc/snap ubr</userinput>
hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.2 hatm0 0 104 llc/snap ubr</userinput>
hostD&prompt.root; <userinput>atmconfig natm add 192.168.173.3 hatm0 0 105 llc/snap ubr</userinput></screen>
<para>Other traffic contracts besides <literal>ubr</literal>
can be used if the <acronym>ATM</acronym> adapter supports
it. In this case, the name of the traffic contract is
followed by the parameters of the traffic. Help for the
&man.atmconfig.8; tool can be obtained with:</para>
<screen>&prompt.root; <userinput>atmconfig help natm add</userinput></screen>
<para>Refer to &man.atmconfig.8; for more information.</para>
<para>The same configuration can also be done via
<filename>/etc/rc.conf</filename>. These lines configure
<systemitem>hostA</systemitem>:</para>
<programlisting>network_interfaces="lo0 hatm0"
ifconfig_hatm0="inet 192.168.173.1 up"
natm_static_routes="hostB hostC hostD"
route_hostB="192.168.173.2 hatm0 0 100 llc/snap ubr"
route_hostC="192.168.173.3 hatm0 0 101 llc/snap ubr"
route_hostD="192.168.173.4 hatm0 0 102 llc/snap ubr"</programlisting>
<para>The current state of all <acronym>CLIP</acronym> routes
can be obtained with:</para>
<screen>hostA&prompt.root; <userinput>atmconfig natm show</userinput></screen>
</sect3>
</sect2>
</sect1>
-->
<sect1 xml:id="carp">
<info>
<title>Common Address Redundancy Protocol
(<acronym>CARP</acronym>)</title>
<authorgroup>
<author>
<personname>
<firstname>Tom</firstname>
<surname>Rhodes</surname>
</personname>
<contrib>Contributed by </contrib>
</author>
</authorgroup>
<authorgroup>
<author>
<personname>
<firstname>Allan</firstname>
<surname>Jude</surname>
</personname>
<contrib>Updated by </contrib>
</author>
</authorgroup>
</info>
<indexterm>
<primary><acronym>CARP</acronym></primary>
</indexterm>
<indexterm>
<primary>Common Address Redundancy Protocol</primary>
</indexterm>
<para>The Common Address Redundancy Protocol
(<acronym>CARP</acronym>) allows multiple hosts to share the
same <acronym>IP</acronym> address and Virtual Host ID
(<acronym>VHID</acronym>) in order to provide <firstterm>high
availability</firstterm> for one or more services. This means
that one or more hosts can fail, and the other hosts will
transparently take over so that users do not see a service
failure.</para>
<para>In addition to the shared <acronym>IP</acronym> address,
each host has its own <acronym>IP</acronym> address for
management and configuration. All of the machines that share an
<acronym>IP</acronym> address have the same
<acronym>VHID</acronym>. The <acronym>VHID</acronym> for each
virtual <acronym>IP</acronym> address must be unique across the
broadcast domain of the network interface.</para>
<para>High availability using <acronym>CARP</acronym> is built
into &os;, though the steps to configure it vary slightly
depending upon the &os; version. This section provides the same
example configuration for versions before and equal to or after
&os; 10.</para>
<para>This example configures failover support with three hosts,
all with unique <acronym>IP</acronym> addresses, but providing
the same web content. It has two different masters named
<systemitem>hosta.example.org</systemitem> and
<systemitem>hostb.example.org</systemitem>, with a shared backup
named <systemitem>hostc.example.org</systemitem>.</para>
<para>These machines are load balanced with a Round Robin
<acronym>DNS</acronym> configuration. The master and backup
machines are configured identically except for their hostnames
and management <acronym>IP</acronym> addresses. These servers
must have the same configuration and run the same services.
When the failover occurs, requests to the service on the shared
<acronym>IP</acronym> address can only be answered correctly if
the backup server has access to the same content. The backup
machine has two additional <acronym>CARP</acronym> interfaces,
one for each of the master content server's
<acronym>IP</acronym> addresses. When a failure occurs, the
backup server will pick up the failed master machine's
<acronym>IP</acronym> address.</para>
<sect2 xml:id="carp-10x">
<title>Using <acronym>CARP</acronym> on &os; 10 and
Later</title>
<para>Enable boot-time support for <acronym>CARP</acronym> by
adding an entry for the <filename>carp.ko</filename> kernel
module in <filename>/boot/loader.conf</filename>:</para>
<programlisting>carp_load="YES"</programlisting>
<para>To load the module now without rebooting:</para>
<screen>&prompt.root; <userinput>kldload carp</userinput></screen>
<para>For users who prefer to use a custom kernel, include the
following line in the custom kernel configuration file and
compile the kernel as described in <xref
linkend="kernelconfig"/>:</para>
<programlisting>device carp</programlisting>
<para>The hostname, management <acronym>IP</acronym> address and
subnet mask, shared <acronym>IP</acronym> address, and
<acronym>VHID</acronym> are all set by adding entries to
<filename>/etc/rc.conf</filename>. This example is for
<systemitem>hosta.example.org</systemitem>:</para>
<programlisting>hostname="<replaceable>hosta.example.org</replaceable>"
ifconfig_<replaceable>em0</replaceable>="inet <replaceable>192.168.1.3</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
ifconfig_<replaceable>em0</replaceable>_alias0="inet vhid <replaceable>1</replaceable> pass <replaceable>testpass</replaceable> alias <replaceable>192.168.1.50</replaceable>/32"</programlisting>
<para>The next set of entries are for
<systemitem>hostb.example.org</systemitem>. Since it
represents a second master, it uses a different shared
<acronym>IP</acronym> address and <acronym>VHID</acronym>.
However, the passwords specified with <option>pass</option>
must be identical as <acronym>CARP</acronym> will only listen
to and accept advertisements from machines with the correct
password.</para>
<programlisting>hostname="<replaceable>hostb.example.org</replaceable>"
ifconfig_<replaceable>em0</replaceable>="inet <replaceable>192.168.1.4</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
ifconfig_<replaceable>em0</replaceable>_alias0="inet vhid <replaceable>2</replaceable> pass <replaceable>testpass</replaceable> alias <replaceable>192.168.1.51</replaceable>/32"</programlisting>
<para>The third machine,
<systemitem>hostc.example.org</systemitem>, is configured to
handle failover from either master. This machine is
configured with two <acronym>CARP</acronym>
<acronym>VHID</acronym>s, one to handle the virtual
<acronym>IP</acronym> address for each of the master hosts.
The <acronym>CARP</acronym> advertising skew,
<option>advskew</option>, is set to ensure that the backup
host advertises later than the master, since
<option>advskew</option> controls the order of precedence when
there are multiple backup servers.</para>
<programlisting>hostname="hostc.example.org"
ifconfig_<replaceable>em0</replaceable>="inet <replaceable>192.168.1.5</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
ifconfig_<replaceable>em0</replaceable>_alias0="inet vhid <replaceable>1</replaceable> advskew <replaceable>100</replaceable> pass <replaceable>testpass</replaceable> alias <replaceable>192.168.1.50</replaceable>/32"
ifconfig_<replaceable>em0</replaceable>_alias1="inet vhid <replaceable>2</replaceable> advskew <replaceable>100</replaceable> pass <replaceable>testpass</replaceable> alias <replaceable>192.168.1.51</replaceable>/32"</programlisting>
<para>Having two <acronym>CARP</acronym>
<acronym>VHID</acronym>s configured means that
<systemitem>hostc.example.org</systemitem> will notice if
either of the master servers becomes unavailable. If a master
fails to advertise before the backup server, the backup server
will pick up the shared <acronym>IP</acronym> address until
the master becomes available again.</para>
<note>
<para>If the original master server becomes available again,
<systemitem>hostc.example.org</systemitem> will not release
the virtual <acronym>IP</acronym> address back to it
automatically. For this to happen, preemption has to be
enabled. The feature is disabled by default,
it is controlled via the &man.sysctl.8; variable
<varname>net.inet.carp.preempt</varname>. The administrator
can force the backup server to return the
<acronym>IP</acronym> address to the master:</para>
<screen>&prompt.root; <userinput>ifconfig em0 vhid 1 state backup</userinput></screen>
</note>
<para>Once the configuration is complete, either restart
networking or reboot each system. High availability is now
enabled.</para>
<para><acronym>CARP</acronym> functionality can be controlled
via several &man.sysctl.8; variables documented in the
&man.carp.4; manual pages. Other actions can be triggered
from <acronym>CARP</acronym> events by using
&man.devd.8;.</para>
</sect2>
<sect2 xml:id="carp-9x">
<title>Using <acronym>CARP</acronym> on &os; 9 and
Earlier</title>
<para>The configuration for these versions of &os; is similar to
the one described in the previous section, except that a
<acronym>CARP</acronym> device must first be created and
referred to in the configuration.</para>
<para>Enable boot-time support for <acronym>CARP</acronym> by
loading the <filename>if_carp.ko</filename> kernel module in
<filename>/boot/loader.conf</filename>:</para>
<programlisting>if_carp_load="YES"</programlisting>
<para>To load the module now without rebooting:</para>
<screen>&prompt.root; <userinput>kldload carp</userinput></screen>
<para>For users who prefer to use a custom kernel, include the
following line in the custom kernel configuration file and
compile the kernel as described in <xref
linkend="kernelconfig"/>:</para>
<programlisting>device carp</programlisting>
<para>Next, on each host, create a <acronym>CARP</acronym>
device:</para>
<screen>&prompt.root; <userinput>ifconfig carp0 create</userinput></screen>
<para>Set the hostname, management <acronym>IP</acronym>
address, the shared <acronym>IP</acronym> address, and
<acronym>VHID</acronym> by adding the required lines to
<filename>/etc/rc.conf</filename>. Since a virtual
<acronym>CARP</acronym> device is used instead of an alias,
the actual subnet mask of <literal>/24</literal> is used
instead of <literal>/32</literal>. Here are the entries for
<systemitem>hosta.example.org</systemitem>:</para>
<programlisting>hostname="<replaceable>hosta.example.org</replaceable>"
ifconfig_<replaceable>fxp0</replaceable>="inet <replaceable>192.168.1.3</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
cloned_interfaces="carp0"
ifconfig_carp0="vhid <replaceable>1</replaceable> pass <replaceable>testpass</replaceable> <replaceable>192.168.1.50/24</replaceable>"</programlisting>
<para>On <systemitem>hostb.example.org</systemitem>:</para>
<programlisting>hostname="<replaceable>hostb.example.org</replaceable>"
ifconfig_<replaceable>fxp0</replaceable>="inet <replaceable>192.168.1.4</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
cloned_interfaces="carp0"
ifconfig_carp0="vhid <replaceable>2</replaceable> pass <replaceable>testpass</replaceable> <replaceable>192.168.1.51/24</replaceable>"</programlisting>
<para>The third machine,
<systemitem>hostc.example.org</systemitem>, is configured to
handle failover from either of the master hosts:</para>
<programlisting>hostname="<replaceable>hostc.example.org</replaceable>"
ifconfig_<replaceable>fxp0</replaceable>="inet <replaceable>192.168.1.5</replaceable> netmask <replaceable>255.255.255.0</replaceable>"
cloned_interfaces="carp0 carp1"
ifconfig_carp0="vhid <replaceable>1</replaceable> advskew <replaceable>100</replaceable> pass <replaceable>testpass</replaceable> <replaceable>192.168.1.50/24</replaceable>"
ifconfig_carp1="vhid <replaceable>2</replaceable> advskew <replaceable>100</replaceable> pass <replaceable>testpass</replaceable> <replaceable>192.168.1.51/24</replaceable>"</programlisting>
<note>
<para>Preemption is disabled in the
<filename>GENERIC</filename> &os; kernel. If
preemption has been enabled with a custom kernel,
<systemitem>hostc.example.org</systemitem> may not release
the <acronym>IP</acronym> address back to the original
content server. The administrator can force the backup
server to return the <acronym>IP</acronym> address to the
master with the command:</para>
<screen>&prompt.root; <userinput>ifconfig carp0 down && ifconfig carp0 up</userinput></screen>
<para>This should be done on the <filename>carp</filename>
interface which corresponds to the correct host.</para>
</note>
<para>Once the configuration is complete, either restart
networking or reboot each system. High availability is now
enabled.</para>
</sect2>
</sect1>
<sect1 xml:id="network-vlan">
<info>
<title>VLANs</title>
</info>
<indexterm>
<primary><acronym>VLANs</acronym></primary>
</indexterm>
<indexterm>
<primary>Virtual LANs</primary>
</indexterm>
<para><acronym>VLANs</acronym> are a way of virtually dividing up
a network into many different subnetworks, also referred
to as segmenting. Each segment will have its
own broadcast domain and be isolated from other
<acronym>VLANs</acronym>.</para>
<para>On &os;, <acronym>VLANs</acronym> must be supported by the
network card driver. To see which drivers support vlans, refer
to the &man.vlan.4; manual page.</para>
<para>When configuring a <acronym>VLAN</acronym>, a couple pieces
of information must be known. First, which network interface?
Second, what is the <acronym>VLAN</acronym> tag?</para>
<para>To configure <acronym>VLANs</acronym> at run time, with a
<acronym>NIC</acronym> of <literal>em0</literal> and a
<acronym>VLAN</acronym> tag of <systemitem>5</systemitem> the
command would look like this:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>em0.5</replaceable> create vlan <replaceable>5</replaceable> vlandev <replaceable>em0</replaceable> inet 192.168.20.20/24</userinput></screen>
<note>
<para>See how the interface name includes the
<acronym>NIC</acronym> driver name and the
<acronym>VLAN</acronym> tag, separated by a period? This is a
best practice to make maintaining the <acronym>VLAN</acronym>
configuration easy when many <acronym>VLANs</acronym> are
present on a machine.</para>
</note>
<para>To configure <acronym>VLANs</acronym> at boot time,
<filename>/etc/rc.conf</filename> must be updated. To duplicate
the configuration above, the following will need to be
added:</para>
<programlisting>vlans_<replaceable>em0</replaceable>="<replaceable>5</replaceable>"
ifconfig_<replaceable>em0</replaceable>_<replaceable>5</replaceable>="inet 192.168.20.20/24"</programlisting>
<para>Additional <acronym>VLANs</acronym> may be added, by simply
adding the tag to the
<literal>vlans_<replaceable>em0</replaceable></literal>
field and adding an additional line configuring the network on
that <acronym>VLAN</acronym> tag's interface.</para>
<para>It is useful to assign a symbolic name to an interface so
that when the associated hardware is changed, only a few
configuration variables need to be updated. For example,
security cameras need to be run over VLAN 1 on
<literal>em0</literal>. Later, if the <literal>em0</literal>
card is replaced with a card that uses the &man.ixgb.4; driver,
all references to <literal>em0.1</literal> will not have to
change to <literal>ixgb0.1</literal>.</para>
<para>To configure <acronym>VLAN</acronym>
<systemitem>5</systemitem>, on the
<acronym>NIC</acronym> <literal>em0</literal>, assign the
interface name <literal>cameras</literal>, and assign the
interface an IP address of <systemitem
class="ipaddress"><replaceable>192.168.20.20</replaceable></systemitem>
with a <systemitem class="netmask">24</systemitem>-bit prefix,
use this command:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>em0.5</replaceable> create vlan <replaceable>5</replaceable> vlandev <replaceable>em0</replaceable> name <replaceable>cameras</replaceable> inet <replaceable>192.168.20.20/24</replaceable></userinput></screen>
<para>For an interface named <literal>video</literal>, use the
following:</para>
<screen>&prompt.root; <userinput>ifconfig <replaceable>video.5</replaceable> create vlan <replaceable>5</replaceable> vlandev <replaceable>video</replaceable> name <replaceable>cameras inet 192.168.20.20/24</replaceable></userinput></screen>
<para>To apply the changes at boot time, add the following lines to
<filename>/etc/rc.conf</filename>:</para>
<programlisting>vlans_<replaceable>video</replaceable>="<replaceable>cameras</replaceable>"
create_args_<replaceable>cameras</replaceable>="vlan <replaceable>5</replaceable>"
ifconfig_<replaceable>cameras</replaceable>="inet <replaceable>192.168.20.20/24</replaceable>"</programlisting>
</sect1>
</chapter>
|