//===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MC_MCASSEMBLER_H
#define LLVM_MC_MCASSEMBLER_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include <algorithm>
#include <vector> // FIXME: Shouldn't be needed.
namespace llvm {
class raw_ostream;
class MCAsmLayout;
class MCAssembler;
class MCContext;
class MCCodeEmitter;
class MCExpr;
class MCFragment;
class MCObjectWriter;
class MCSection;
class MCSubtargetInfo;
class MCValue;
class MCAsmBackend;
class MCFragment : public ilist_node<MCFragment> {
friend class MCAsmLayout;
MCFragment(const MCFragment &) = delete;
void operator=(const MCFragment &) = delete;
public:
enum FragmentType : uint8_t {
FT_Align,
FT_Data,
FT_CompactEncodedInst,
FT_Fill,
FT_Relaxable,
FT_Org,
FT_Dwarf,
FT_DwarfFrame,
FT_LEB,
FT_SafeSEH
};
private:
FragmentType Kind;
protected:
bool HasInstructions;
private:
/// \brief Should this fragment be aligned to the end of a bundle?
bool AlignToBundleEnd;
uint8_t BundlePadding;
/// LayoutOrder - The layout order of this fragment.
unsigned LayoutOrder;
/// The data for the section this fragment is in.
MCSection *Parent;
/// Atom - The atom this fragment is in, as represented by it's defining
/// symbol.
const MCSymbol *Atom;
/// \name Assembler Backend Data
/// @{
//
// FIXME: This could all be kept private to the assembler implementation.
/// Offset - The offset of this fragment in its section. This is ~0 until
/// initialized.
uint64_t Offset;
/// @}
protected:
MCFragment(FragmentType Kind, bool HasInstructions,
uint8_t BundlePadding, MCSection *Parent = nullptr);
~MCFragment();
private:
// This is a friend so that the sentinal can be created.
friend struct ilist_sentinel_traits<MCFragment>;
MCFragment();
public:
/// Destroys the current fragment.
///
/// This must be used instead of delete as MCFragment is non-virtual.
/// This method will dispatch to the appropriate subclass.
void destroy();
FragmentType getKind() const { return Kind; }
MCSection *getParent() const { return Parent; }
void setParent(MCSection *Value) { Parent = Value; }
const MCSymbol *getAtom() const { return Atom; }
void setAtom(const MCSymbol *Value) { Atom = Value; }
unsigned getLayoutOrder() const { return LayoutOrder; }
void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
/// \brief Does this fragment have instructions emitted into it? By default
/// this is false, but specific fragment types may set it to true.
bool hasInstructions() const { return HasInstructions; }
/// \brief Should this fragment be placed at the end of an aligned bundle?
bool alignToBundleEnd() const { return AlignToBundleEnd; }
void setAlignToBundleEnd(bool V) { AlignToBundleEnd = V; }
/// \brief Get the padding size that must be inserted before this fragment.
/// Used for bundling. By default, no padding is inserted.
/// Note that padding size is restricted to 8 bits. This is an optimization
/// to reduce the amount of space used for each fragment. In practice, larger
/// padding should never be required.
uint8_t getBundlePadding() const { return BundlePadding; }
/// \brief Set the padding size for this fragment. By default it's a no-op,
/// and only some fragments have a meaningful implementation.
void setBundlePadding(uint8_t N) { BundlePadding = N; }
void dump();
};
/// Interface implemented by fragments that contain encoded instructions and/or
/// data.
///
class MCEncodedFragment : public MCFragment {
protected:
MCEncodedFragment(MCFragment::FragmentType FType, bool HasInstructions,
MCSection *Sec)
: MCFragment(FType, HasInstructions, 0, Sec) {}
public:
static bool classof(const MCFragment *F) {
MCFragment::FragmentType Kind = F->getKind();
switch (Kind) {
default:
return false;
case MCFragment::FT_Relaxable:
case MCFragment::FT_CompactEncodedInst:
case MCFragment::FT_Data:
return true;
}
}
};
/// Interface implemented by fragments that contain encoded instructions and/or
/// data.
///
template<unsigned ContentsSize>
class MCEncodedFragmentWithContents : public MCEncodedFragment {
SmallVector<char, ContentsSize> Contents;
protected:
MCEncodedFragmentWithContents(MCFragment::FragmentType FType,
bool HasInstructions,
MCSection *Sec)
: MCEncodedFragment(FType, HasInstructions, Sec) {}
public:
SmallVectorImpl<char> &getContents() { return Contents; }
const SmallVectorImpl<char> &getContents() const { return Contents; }
};
/// Interface implemented by fragments that contain encoded instructions and/or
/// data and also have fixups registered.
///
template<unsigned ContentsSize, unsigned FixupsSize>
class MCEncodedFragmentWithFixups :
public MCEncodedFragmentWithContents<ContentsSize> {
/// Fixups - The list of fixups in this fragment.
SmallVector<MCFixup, FixupsSize> Fixups;
protected:
MCEncodedFragmentWithFixups(MCFragment::FragmentType FType,
bool HasInstructions,
MCSection *Sec)
: MCEncodedFragmentWithContents<ContentsSize>(FType, HasInstructions,
Sec) {}
public:
typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
fixup_iterator fixup_begin() { return Fixups.begin(); }
const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
fixup_iterator fixup_end() { return Fixups.end(); }
const_fixup_iterator fixup_end() const { return Fixups.end(); }
static bool classof(const MCFragment *F) {
MCFragment::FragmentType Kind = F->getKind();
return Kind == MCFragment::FT_Relaxable || Kind == MCFragment::FT_Data;
}
};
/// Fragment for data and encoded instructions.
///
class MCDataFragment : public MCEncodedFragmentWithFixups<32, 4> {
public:
MCDataFragment(MCSection *Sec = nullptr)
: MCEncodedFragmentWithFixups<32, 4>(FT_Data, false, Sec) {}
void setHasInstructions(bool V) { HasInstructions = V; }
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Data;
}
};
/// This is a compact (memory-size-wise) fragment for holding an encoded
/// instruction (non-relaxable) that has no fixups registered. When applicable,
/// it can be used instead of MCDataFragment and lead to lower memory
/// consumption.
///
class MCCompactEncodedInstFragment : public MCEncodedFragmentWithContents<4> {
public:
MCCompactEncodedInstFragment(MCSection *Sec = nullptr)
: MCEncodedFragmentWithContents(FT_CompactEncodedInst, true, Sec) {
}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_CompactEncodedInst;
}
};
/// A relaxable fragment holds on to its MCInst, since it may need to be
/// relaxed during the assembler layout and relaxation stage.
///
class MCRelaxableFragment : public MCEncodedFragmentWithFixups<8, 1> {
/// Inst - The instruction this is a fragment for.
MCInst Inst;
/// STI - The MCSubtargetInfo in effect when the instruction was encoded.
/// Keep a copy instead of a reference to make sure that updates to STI
/// in the assembler are not seen here.
const MCSubtargetInfo STI;
public:
MCRelaxableFragment(const MCInst &Inst, const MCSubtargetInfo &STI,
MCSection *Sec = nullptr)
: MCEncodedFragmentWithFixups(FT_Relaxable, true, Sec),
Inst(Inst), STI(STI) {}
const MCInst &getInst() const { return Inst; }
void setInst(const MCInst &Value) { Inst = Value; }
const MCSubtargetInfo &getSubtargetInfo() { return STI; }
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Relaxable;
}
};
class MCAlignFragment : public MCFragment {
/// Alignment - The alignment to ensure, in bytes.
unsigned Alignment;
/// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
/// of using the provided value. The exact interpretation of this flag is
/// target dependent.
bool EmitNops : 1;
/// Value - Value to use for filling padding bytes.
int64_t Value;
/// ValueSize - The size of the integer (in bytes) of \p Value.
unsigned ValueSize;
/// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
/// cannot be satisfied in this width then this fragment is ignored.
unsigned MaxBytesToEmit;
public:
MCAlignFragment(unsigned Alignment, int64_t Value, unsigned ValueSize,
unsigned MaxBytesToEmit, MCSection *Sec = nullptr)
: MCFragment(FT_Align, false, 0, Sec), Alignment(Alignment),
EmitNops(false), Value(Value),
ValueSize(ValueSize), MaxBytesToEmit(MaxBytesToEmit) {}
/// \name Accessors
/// @{
unsigned getAlignment() const { return Alignment; }
int64_t getValue() const { return Value; }
unsigned getValueSize() const { return ValueSize; }
unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
bool hasEmitNops() const { return EmitNops; }
void setEmitNops(bool Value) { EmitNops = Value; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Align;
}
};
class MCFillFragment : public MCFragment {
/// Value - Value to use for filling bytes.
int64_t Value;
/// ValueSize - The size (in bytes) of \p Value to use when filling, or 0 if
/// this is a virtual fill fragment.
unsigned ValueSize;
/// Size - The number of bytes to insert.
uint64_t Size;
public:
MCFillFragment(int64_t Value, unsigned ValueSize, uint64_t Size,
MCSection *Sec = nullptr)
: MCFragment(FT_Fill, false, 0, Sec), Value(Value), ValueSize(ValueSize),
Size(Size) {
assert((!ValueSize || (Size % ValueSize) == 0) &&
"Fill size must be a multiple of the value size!");
}
/// \name Accessors
/// @{
int64_t getValue() const { return Value; }
unsigned getValueSize() const { return ValueSize; }
uint64_t getSize() const { return Size; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Fill;
}
};
class MCOrgFragment : public MCFragment {
/// Offset - The offset this fragment should start at.
const MCExpr *Offset;
/// Value - Value to use for filling bytes.
int8_t Value;
public:
MCOrgFragment(const MCExpr &Offset, int8_t Value, MCSection *Sec = nullptr)
: MCFragment(FT_Org, false, 0, Sec), Offset(&Offset), Value(Value) {}
/// \name Accessors
/// @{
const MCExpr &getOffset() const { return *Offset; }
uint8_t getValue() const { return Value; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Org;
}
};
class MCLEBFragment : public MCFragment {
/// Value - The value this fragment should contain.
const MCExpr *Value;
/// IsSigned - True if this is a sleb128, false if uleb128.
bool IsSigned;
SmallString<8> Contents;
public:
MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSection *Sec = nullptr)
: MCFragment(FT_LEB, false, 0, Sec), Value(&Value_), IsSigned(IsSigned_) {
Contents.push_back(0);
}
/// \name Accessors
/// @{
const MCExpr &getValue() const { return *Value; }
bool isSigned() const { return IsSigned; }
SmallString<8> &getContents() { return Contents; }
const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_LEB;
}
};
class MCDwarfLineAddrFragment : public MCFragment {
/// LineDelta - the value of the difference between the two line numbers
/// between two .loc dwarf directives.
int64_t LineDelta;
/// AddrDelta - The expression for the difference of the two symbols that
/// make up the address delta between two .loc dwarf directives.
const MCExpr *AddrDelta;
SmallString<8> Contents;
public:
MCDwarfLineAddrFragment(int64_t LineDelta, const MCExpr &AddrDelta,
MCSection *Sec = nullptr)
: MCFragment(FT_Dwarf, false, 0, Sec), LineDelta(LineDelta),
AddrDelta(&AddrDelta) {
Contents.push_back(0);
}
/// \name Accessors
/// @{
int64_t getLineDelta() const { return LineDelta; }
const MCExpr &getAddrDelta() const { return *AddrDelta; }
SmallString<8> &getContents() { return Contents; }
const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_Dwarf;
}
};
class MCDwarfCallFrameFragment : public MCFragment {
/// AddrDelta - The expression for the difference of the two symbols that
/// make up the address delta between two .cfi_* dwarf directives.
const MCExpr *AddrDelta;
SmallString<8> Contents;
public:
MCDwarfCallFrameFragment(const MCExpr &AddrDelta, MCSection *Sec = nullptr)
: MCFragment(FT_DwarfFrame, false, 0, Sec), AddrDelta(&AddrDelta) {
Contents.push_back(0);
}
/// \name Accessors
/// @{
const MCExpr &getAddrDelta() const { return *AddrDelta; }
SmallString<8> &getContents() { return Contents; }
const SmallString<8> &getContents() const { return Contents; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_DwarfFrame;
}
};
class MCSafeSEHFragment : public MCFragment {
const MCSymbol *Sym;
public:
MCSafeSEHFragment(const MCSymbol *Sym, MCSection *Sec = nullptr)
: MCFragment(FT_SafeSEH, false, 0, Sec), Sym(Sym) {}
/// \name Accessors
/// @{
const MCSymbol *getSymbol() { return Sym; }
const MCSymbol *getSymbol() const { return Sym; }
/// @}
static bool classof(const MCFragment *F) {
return F->getKind() == MCFragment::FT_SafeSEH;
}
};
// FIXME: This really doesn't belong here. See comments below.
struct IndirectSymbolData {
MCSymbol *Symbol;
MCSection *Section;
};
// FIXME: Ditto this. Purely so the Streamer and the ObjectWriter can talk
// to one another.
struct DataRegionData {
// This enum should be kept in sync w/ the mach-o definition in
// llvm/Object/MachOFormat.h.
enum KindTy { Data = 1, JumpTable8, JumpTable16, JumpTable32 } Kind;
MCSymbol *Start;
MCSymbol *End;
};
class MCAssembler {
friend class MCAsmLayout;
public:
typedef std::vector<MCSection *> SectionListType;
typedef std::vector<const MCSymbol *> SymbolDataListType;
typedef pointee_iterator<SectionListType::const_iterator> const_iterator;
typedef pointee_iterator<SectionListType::iterator> iterator;
typedef pointee_iterator<SymbolDataListType::const_iterator>
const_symbol_iterator;
typedef pointee_iterator<SymbolDataListType::iterator> symbol_iterator;
typedef iterator_range<symbol_iterator> symbol_range;
typedef iterator_range<const_symbol_iterator> const_symbol_range;
typedef std::vector<IndirectSymbolData>::const_iterator
const_indirect_symbol_iterator;
typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
typedef std::vector<DataRegionData>::const_iterator
const_data_region_iterator;
typedef std::vector<DataRegionData>::iterator data_region_iterator;
/// MachO specific deployment target version info.
// A Major version of 0 indicates that no version information was supplied
// and so the corresponding load command should not be emitted.
typedef struct {
MCVersionMinType Kind;
unsigned Major;
unsigned Minor;
unsigned Update;
} VersionMinInfoType;
private:
MCAssembler(const MCAssembler &) = delete;
void operator=(const MCAssembler &) = delete;
MCContext &Context;
MCAsmBackend &Backend;
MCCodeEmitter &Emitter;
MCObjectWriter &Writer;
raw_ostream &OS;
SectionListType Sections;
SymbolDataListType Symbols;
std::vector<IndirectSymbolData> IndirectSymbols;
std::vector<DataRegionData> DataRegions;
/// The list of linker options to propagate into the object file.
std::vector<std::vector<std::string>> LinkerOptions;
/// List of declared file names
std::vector<std::string> FileNames;
/// The set of function symbols for which a .thumb_func directive has
/// been seen.
//
// FIXME: We really would like this in target specific code rather than
// here. Maybe when the relocation stuff moves to target specific,
// this can go with it? The streamer would need some target specific
// refactoring too.
mutable SmallPtrSet<const MCSymbol *, 64> ThumbFuncs;
/// \brief The bundle alignment size currently set in the assembler.
///
/// By default it's 0, which means bundling is disabled.
unsigned BundleAlignSize;
unsigned RelaxAll : 1;
unsigned SubsectionsViaSymbols : 1;
/// ELF specific e_header flags
// It would be good if there were an MCELFAssembler class to hold this.
// ELF header flags are used both by the integrated and standalone assemblers.
// Access to the flags is necessary in cases where assembler directives affect
// which flags to be set.
unsigned ELFHeaderEFlags;
/// Used to communicate Linker Optimization Hint information between
/// the Streamer and the .o writer
MCLOHContainer LOHContainer;
VersionMinInfoType VersionMinInfo;
private:
/// Evaluate a fixup to a relocatable expression and the value which should be
/// placed into the fixup.
///
/// \param Layout The layout to use for evaluation.
/// \param Fixup The fixup to evaluate.
/// \param DF The fragment the fixup is inside.
/// \param Target [out] On return, the relocatable expression the fixup
/// evaluates to.
/// \param Value [out] On return, the value of the fixup as currently laid
/// out.
/// \return Whether the fixup value was fully resolved. This is true if the
/// \p Value result is fixed, otherwise the value may change due to
/// relocation.
bool evaluateFixup(const MCAsmLayout &Layout, const MCFixup &Fixup,
const MCFragment *DF, MCValue &Target,
uint64_t &Value) const;
/// Check whether a fixup can be satisfied, or whether it needs to be relaxed
/// (increased in size, in order to hold its value correctly).
bool fixupNeedsRelaxation(const MCFixup &Fixup, const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const;
/// Check whether the given fragment needs relaxation.
bool fragmentNeedsRelaxation(const MCRelaxableFragment *IF,
const MCAsmLayout &Layout) const;
/// \brief Perform one layout iteration and return true if any offsets
/// were adjusted.
bool layoutOnce(MCAsmLayout &Layout);
/// \brief Perform one layout iteration of the given section and return true
/// if any offsets were adjusted.
bool layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec);
bool relaxInstruction(MCAsmLayout &Layout, MCRelaxableFragment &IF);
bool relaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
bool relaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
bool relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF);
/// finishLayout - Finalize a layout, including fragment lowering.
void finishLayout(MCAsmLayout &Layout);
std::pair<uint64_t, bool> handleFixup(const MCAsmLayout &Layout,
MCFragment &F, const MCFixup &Fixup);
public:
/// Compute the effective fragment size assuming it is laid out at the given
/// \p SectionAddress and \p FragmentOffset.
uint64_t computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const;
/// Find the symbol which defines the atom containing the given symbol, or
/// null if there is no such symbol.
const MCSymbol *getAtom(const MCSymbol &S) const;
/// Check whether a particular symbol is visible to the linker and is required
/// in the symbol table, or whether it can be discarded by the assembler. This
/// also effects whether the assembler treats the label as potentially
/// defining a separate atom.
bool isSymbolLinkerVisible(const MCSymbol &SD) const;
/// Emit the section contents using the given object writer.
void writeSectionData(const MCSection *Section,
const MCAsmLayout &Layout) const;
/// Check whether a given symbol has been flagged with .thumb_func.
bool isThumbFunc(const MCSymbol *Func) const;
/// Flag a function symbol as the target of a .thumb_func directive.
void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
/// ELF e_header flags
unsigned getELFHeaderEFlags() const { return ELFHeaderEFlags; }
void setELFHeaderEFlags(unsigned Flags) { ELFHeaderEFlags = Flags; }
/// MachO deployment target version information.
const VersionMinInfoType &getVersionMinInfo() const { return VersionMinInfo; }
void setVersionMinInfo(MCVersionMinType Kind, unsigned Major, unsigned Minor,
unsigned Update) {
VersionMinInfo.Kind = Kind;
VersionMinInfo.Major = Major;
VersionMinInfo.Minor = Minor;
VersionMinInfo.Update = Update;
}
public:
/// Construct a new assembler instance.
///
/// \param OS The stream to output to.
//
// FIXME: How are we going to parameterize this? Two obvious options are stay
// concrete and require clients to pass in a target like object. The other
// option is to make this abstract, and have targets provide concrete
// implementations as we do with AsmParser.
MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
raw_ostream &OS);
~MCAssembler();
/// Reuse an assembler instance
///
void reset();
MCContext &getContext() const { return Context; }
MCAsmBackend &getBackend() const { return Backend; }
MCCodeEmitter &getEmitter() const { return Emitter; }
MCObjectWriter &getWriter() const { return Writer; }
/// Finish - Do final processing and write the object to the output stream.
/// \p Writer is used for custom object writer (as the MCJIT does),
/// if not specified it is automatically created from backend.
void Finish();
// FIXME: This does not belong here.
bool getSubsectionsViaSymbols() const { return SubsectionsViaSymbols; }
void setSubsectionsViaSymbols(bool Value) { SubsectionsViaSymbols = Value; }
bool getRelaxAll() const { return RelaxAll; }
void setRelaxAll(bool Value) { RelaxAll = Value; }
bool isBundlingEnabled() const { return BundleAlignSize != 0; }
unsigned getBundleAlignSize() const { return BundleAlignSize; }
void setBundleAlignSize(unsigned Size) {
assert((Size == 0 || !(Size & (Size - 1))) &&
"Expect a power-of-two bundle align size");
BundleAlignSize = Size;
}
/// \name Section List Access
/// @{
iterator begin() { return Sections.begin(); }
const_iterator begin() const { return Sections.begin(); }
iterator end() { return Sections.end(); }
const_iterator end() const { return Sections.end(); }
size_t size() const { return Sections.size(); }
/// @}
/// \name Symbol List Access
/// @{
symbol_iterator symbol_begin() { return Symbols.begin(); }
const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
symbol_iterator symbol_end() { return Symbols.end(); }
const_symbol_iterator symbol_end() const { return Symbols.end(); }
symbol_range symbols() { return make_range(symbol_begin(), symbol_end()); }
const_symbol_range symbols() const {
return make_range(symbol_begin(), symbol_end());
}
size_t symbol_size() const { return Symbols.size(); }
/// @}
/// \name Indirect Symbol List Access
/// @{
// FIXME: This is a total hack, this should not be here. Once things are
// factored so that the streamer has direct access to the .o writer, it can
// disappear.
std::vector<IndirectSymbolData> &getIndirectSymbols() {
return IndirectSymbols;
}
indirect_symbol_iterator indirect_symbol_begin() {
return IndirectSymbols.begin();
}
const_indirect_symbol_iterator indirect_symbol_begin() const {
return IndirectSymbols.begin();
}
indirect_symbol_iterator indirect_symbol_end() {
return IndirectSymbols.end();
}
const_indirect_symbol_iterator indirect_symbol_end() const {
return IndirectSymbols.end();
}
size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
/// @}
/// \name Linker Option List Access
/// @{
std::vector<std::vector<std::string>> &getLinkerOptions() {
return LinkerOptions;
}
/// @}
/// \name Data Region List Access
/// @{
// FIXME: This is a total hack, this should not be here. Once things are
// factored so that the streamer has direct access to the .o writer, it can
// disappear.
std::vector<DataRegionData> &getDataRegions() { return DataRegions; }
data_region_iterator data_region_begin() { return DataRegions.begin(); }
const_data_region_iterator data_region_begin() const {
return DataRegions.begin();
}
data_region_iterator data_region_end() { return DataRegions.end(); }
const_data_region_iterator data_region_end() const {
return DataRegions.end();
}
size_t data_region_size() const { return DataRegions.size(); }
/// @}
/// \name Data Region List Access
/// @{
// FIXME: This is a total hack, this should not be here. Once things are
// factored so that the streamer has direct access to the .o writer, it can
// disappear.
MCLOHContainer &getLOHContainer() { return LOHContainer; }
const MCLOHContainer &getLOHContainer() const {
return const_cast<MCAssembler *>(this)->getLOHContainer();
}
/// @}
/// \name Backend Data Access
/// @{
bool registerSection(MCSection &Section) {
if (Section.isRegistered())
return false;
Sections.push_back(&Section);
Section.setIsRegistered(true);
return true;
}
void registerSymbol(const MCSymbol &Symbol, bool *Created = nullptr);
ArrayRef<std::string> getFileNames() { return FileNames; }
void addFileName(StringRef FileName) {
if (std::find(FileNames.begin(), FileNames.end(), FileName) ==
FileNames.end())
FileNames.push_back(FileName);
}
/// \brief Write the necessary bundle padding to the given object writer.
/// Expects a fragment \p F containing instructions and its size \p FSize.
void writeFragmentPadding(const MCFragment &F, uint64_t FSize,
MCObjectWriter *OW) const;
/// @}
void dump();
};
/// \brief Compute the amount of padding required before the fragment \p F to
/// obey bundling restrictions, where \p FOffset is the fragment's offset in
/// its section and \p FSize is the fragment's size.
uint64_t computeBundlePadding(const MCAssembler &Assembler, const MCFragment *F,
uint64_t FOffset, uint64_t FSize);
} // end namespace llvm
#endif