//===-- TargetParser - Parser for target features ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a target parser to recognise hardware features such as
// FPU/CPU/ARCH names as well as specific support such as HDIV, etc.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include <cctype>
using namespace llvm;
using namespace ARM;
using namespace AArch64;
namespace {
// List of canonical FPU names (use getFPUSynonym) and which architectural
// features they correspond to (use getFPUFeatures).
// FIXME: TableGen this.
// The entries must appear in the order listed in ARM::FPUKind for correct indexing
static const struct {
const char *NameCStr;
size_t NameLength;
ARM::FPUKind ID;
ARM::FPUVersion FPUVersion;
ARM::NeonSupportLevel NeonSupport;
ARM::FPURestriction Restriction;
StringRef getName() const { return StringRef(NameCStr, NameLength); }
} FPUNames[] = {
#define ARM_FPU(NAME, KIND, VERSION, NEON_SUPPORT, RESTRICTION) \
{ NAME, sizeof(NAME) - 1, KIND, VERSION, NEON_SUPPORT, RESTRICTION },
#include "llvm/Support/ARMTargetParser.def"
};
// List of canonical arch names (use getArchSynonym).
// This table also provides the build attribute fields for CPU arch
// and Arch ID, according to the Addenda to the ARM ABI, chapters
// 2.4 and 2.3.5.2 respectively.
// FIXME: SubArch values were simplified to fit into the expectations
// of the triples and are not conforming with their official names.
// Check to see if the expectation should be changed.
// FIXME: TableGen this.
template <typename T> struct ArchNames {
const char *NameCStr;
size_t NameLength;
const char *CPUAttrCStr;
size_t CPUAttrLength;
const char *SubArchCStr;
size_t SubArchLength;
unsigned DefaultFPU;
unsigned ArchBaseExtensions;
T ID;
ARMBuildAttrs::CPUArch ArchAttr; // Arch ID in build attributes.
StringRef getName() const { return StringRef(NameCStr, NameLength); }
// CPU class in build attributes.
StringRef getCPUAttr() const { return StringRef(CPUAttrCStr, CPUAttrLength); }
// Sub-Arch name.
StringRef getSubArch() const { return StringRef(SubArchCStr, SubArchLength); }
};
ArchNames<ARM::ArchKind> ARCHNames[] = {
#define ARM_ARCH(NAME, ID, CPU_ATTR, SUB_ARCH, ARCH_ATTR, ARCH_FPU, ARCH_BASE_EXT) \
{NAME, sizeof(NAME) - 1, CPU_ATTR, sizeof(CPU_ATTR) - 1, SUB_ARCH, \
sizeof(SUB_ARCH) - 1, ARCH_FPU, ARCH_BASE_EXT, ARM::ArchKind::ID, ARCH_ATTR},
#include "llvm/Support/ARMTargetParser.def"
};
ArchNames<AArch64::ArchKind> AArch64ARCHNames[] = {
#define AARCH64_ARCH(NAME, ID, CPU_ATTR, SUB_ARCH, ARCH_ATTR, ARCH_FPU, ARCH_BASE_EXT) \
{NAME, sizeof(NAME) - 1, CPU_ATTR, sizeof(CPU_ATTR) - 1, SUB_ARCH, \
sizeof(SUB_ARCH) - 1, ARCH_FPU, ARCH_BASE_EXT, AArch64::ArchKind::ID, ARCH_ATTR},
#include "llvm/Support/AArch64TargetParser.def"
};
// List of Arch Extension names.
// FIXME: TableGen this.
static const struct {
const char *NameCStr;
size_t NameLength;
unsigned ID;
const char *Feature;
const char *NegFeature;
StringRef getName() const { return StringRef(NameCStr, NameLength); }
} ARCHExtNames[] = {
#define ARM_ARCH_EXT_NAME(NAME, ID, FEATURE, NEGFEATURE) \
{ NAME, sizeof(NAME) - 1, ID, FEATURE, NEGFEATURE },
#include "llvm/Support/ARMTargetParser.def"
},AArch64ARCHExtNames[] = {
#define AARCH64_ARCH_EXT_NAME(NAME, ID, FEATURE, NEGFEATURE) \
{ NAME, sizeof(NAME) - 1, ID, FEATURE, NEGFEATURE },
#include "llvm/Support/AArch64TargetParser.def"
};
// List of HWDiv names (use getHWDivSynonym) and which architectural
// features they correspond to (use getHWDivFeatures).
// FIXME: TableGen this.
static const struct {
const char *NameCStr;
size_t NameLength;
unsigned ID;
StringRef getName() const { return StringRef(NameCStr, NameLength); }
} HWDivNames[] = {
#define ARM_HW_DIV_NAME(NAME, ID) { NAME, sizeof(NAME) - 1, ID },
#include "llvm/Support/ARMTargetParser.def"
};
// List of CPU names and their arches.
// The same CPU can have multiple arches and can be default on multiple arches.
// When finding the Arch for a CPU, first-found prevails. Sort them accordingly.
// When this becomes table-generated, we'd probably need two tables.
// FIXME: TableGen this.
template <typename T> struct CpuNames {
const char *NameCStr;
size_t NameLength;
T ArchID;
bool Default; // is $Name the default CPU for $ArchID ?
unsigned DefaultExtensions;
StringRef getName() const { return StringRef(NameCStr, NameLength); }
};
CpuNames<ARM::ArchKind> CPUNames[] = {
#define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
{ NAME, sizeof(NAME) - 1, ARM::ArchKind::ID, IS_DEFAULT, DEFAULT_EXT },
#include "llvm/Support/ARMTargetParser.def"
};
CpuNames<AArch64::ArchKind> AArch64CPUNames[] = {
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
{ NAME, sizeof(NAME) - 1, AArch64::ArchKind::ID, IS_DEFAULT, DEFAULT_EXT },
#include "llvm/Support/AArch64TargetParser.def"
};
} // namespace
// ======================================================= //
// Information by ID
// ======================================================= //
StringRef ARM::getFPUName(unsigned FPUKind) {
if (FPUKind >= ARM::FK_LAST)
return StringRef();
return FPUNames[FPUKind].getName();
}
FPUVersion ARM::getFPUVersion(unsigned FPUKind) {
if (FPUKind >= ARM::FK_LAST)
return FPUVersion::NONE;
return FPUNames[FPUKind].FPUVersion;
}
ARM::NeonSupportLevel ARM::getFPUNeonSupportLevel(unsigned FPUKind) {
if (FPUKind >= ARM::FK_LAST)
return ARM::NeonSupportLevel::None;
return FPUNames[FPUKind].NeonSupport;
}
ARM::FPURestriction ARM::getFPURestriction(unsigned FPUKind) {
if (FPUKind >= ARM::FK_LAST)
return ARM::FPURestriction::None;
return FPUNames[FPUKind].Restriction;
}
unsigned llvm::ARM::getDefaultFPU(StringRef CPU, ArchKind AK) {
if (CPU == "generic")
return ARCHNames[static_cast<unsigned>(AK)].DefaultFPU;
return StringSwitch<unsigned>(CPU)
#define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
.Case(NAME, DEFAULT_FPU)
#include "llvm/Support/ARMTargetParser.def"
.Default(ARM::FK_INVALID);
}
unsigned llvm::ARM::getDefaultExtensions(StringRef CPU, ArchKind AK) {
if (CPU == "generic")
return ARCHNames[static_cast<unsigned>(AK)].ArchBaseExtensions;
return StringSwitch<unsigned>(CPU)
#define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
.Case(NAME, ARCHNames[static_cast<unsigned>(ARM::ArchKind::ID)]\
.ArchBaseExtensions | DEFAULT_EXT)
#include "llvm/Support/ARMTargetParser.def"
.Default(ARM::AEK_INVALID);
}
bool llvm::ARM::getHWDivFeatures(unsigned HWDivKind,
std::vector<StringRef> &Features) {
if (HWDivKind == ARM::AEK_INVALID)
return false;
if (HWDivKind & ARM::AEK_HWDIVARM)
Features.push_back("+hwdiv-arm");
else
Features.push_back("-hwdiv-arm");
if (HWDivKind & ARM::AEK_HWDIVTHUMB)
Features.push_back("+hwdiv");
else
Features.push_back("-hwdiv");
return true;
}
bool llvm::ARM::getExtensionFeatures(unsigned Extensions,
std::vector<StringRef> &Features) {
if (Extensions == ARM::AEK_INVALID)
return false;
if (Extensions & ARM::AEK_CRC)
Features.push_back("+crc");
else
Features.push_back("-crc");
if (Extensions & ARM::AEK_DSP)
Features.push_back("+dsp");
else
Features.push_back("-dsp");
if (Extensions & ARM::AEK_RAS)
Features.push_back("+ras");
else
Features.push_back("-ras");
if (Extensions & ARM::AEK_DOTPROD)
Features.push_back("+dotprod");
else
Features.push_back("-dotprod");
return getHWDivFeatures(Extensions, Features);
}
bool llvm::ARM::getFPUFeatures(unsigned FPUKind,
std::vector<StringRef> &Features) {
if (FPUKind >= ARM::FK_LAST || FPUKind == ARM::FK_INVALID)
return false;
// fp-only-sp and d16 subtarget features are independent of each other, so we
// must enable/disable both.
switch (FPUNames[FPUKind].Restriction) {
case ARM::FPURestriction::SP_D16:
Features.push_back("+fp-only-sp");
Features.push_back("+d16");
break;
case ARM::FPURestriction::D16:
Features.push_back("-fp-only-sp");
Features.push_back("+d16");
break;
case ARM::FPURestriction::None:
Features.push_back("-fp-only-sp");
Features.push_back("-d16");
break;
}
// FPU version subtarget features are inclusive of lower-numbered ones, so
// enable the one corresponding to this version and disable all that are
// higher. We also have to make sure to disable fp16 when vfp4 is disabled,
// as +vfp4 implies +fp16 but -vfp4 does not imply -fp16.
switch (FPUNames[FPUKind].FPUVersion) {
case ARM::FPUVersion::VFPV5:
Features.push_back("+fp-armv8");
break;
case ARM::FPUVersion::VFPV4:
Features.push_back("+vfp4");
Features.push_back("-fp-armv8");
break;
case ARM::FPUVersion::VFPV3_FP16:
Features.push_back("+vfp3");
Features.push_back("+fp16");
Features.push_back("-vfp4");
Features.push_back("-fp-armv8");
break;
case ARM::FPUVersion::VFPV3:
Features.push_back("+vfp3");
Features.push_back("-fp16");
Features.push_back("-vfp4");
Features.push_back("-fp-armv8");
break;
case ARM::FPUVersion::VFPV2:
Features.push_back("+vfp2");
Features.push_back("-vfp3");
Features.push_back("-fp16");
Features.push_back("-vfp4");
Features.push_back("-fp-armv8");
break;
case ARM::FPUVersion::NONE:
Features.push_back("-vfp2");
Features.push_back("-vfp3");
Features.push_back("-fp16");
Features.push_back("-vfp4");
Features.push_back("-fp-armv8");
break;
}
// crypto includes neon, so we handle this similarly to FPU version.
switch (FPUNames[FPUKind].NeonSupport) {
case ARM::NeonSupportLevel::Crypto:
Features.push_back("+neon");
Features.push_back("+crypto");
break;
case ARM::NeonSupportLevel::Neon:
Features.push_back("+neon");
Features.push_back("-crypto");
break;
case ARM::NeonSupportLevel::None:
Features.push_back("-neon");
Features.push_back("-crypto");
break;
}
return true;
}
StringRef llvm::ARM::getArchName(ArchKind AK) {
return ARCHNames[static_cast<unsigned>(AK)].getName();
}
StringRef llvm::ARM::getCPUAttr(ArchKind AK) {
return ARCHNames[static_cast<unsigned>(AK)].getCPUAttr();
}
StringRef llvm::ARM::getSubArch(ArchKind AK) {
return ARCHNames[static_cast<unsigned>(AK)].getSubArch();
}
unsigned llvm::ARM::getArchAttr(ArchKind AK) {
return ARCHNames[static_cast<unsigned>(AK)].ArchAttr;
}
StringRef llvm::ARM::getArchExtName(unsigned ArchExtKind) {
for (const auto AE : ARCHExtNames) {
if (ArchExtKind == AE.ID)
return AE.getName();
}
return StringRef();
}
StringRef llvm::ARM::getArchExtFeature(StringRef ArchExt) {
if (ArchExt.startswith("no")) {
StringRef ArchExtBase(ArchExt.substr(2));
for (const auto AE : ARCHExtNames) {
if (AE.NegFeature && ArchExtBase == AE.getName())
return StringRef(AE.NegFeature);
}
}
for (const auto AE : ARCHExtNames) {
if (AE.Feature && ArchExt == AE.getName())
return StringRef(AE.Feature);
}
return StringRef();
}
StringRef llvm::ARM::getHWDivName(unsigned HWDivKind) {
for (const auto D : HWDivNames) {
if (HWDivKind == D.ID)
return D.getName();
}
return StringRef();
}
StringRef llvm::ARM::getDefaultCPU(StringRef Arch) {
ArchKind AK = parseArch(Arch);
if (AK == ARM::ArchKind::INVALID)
return StringRef();
// Look for multiple AKs to find the default for pair AK+Name.
for (const auto CPU : CPUNames) {
if (CPU.ArchID == AK && CPU.Default)
return CPU.getName();
}
// If we can't find a default then target the architecture instead
return "generic";
}
StringRef llvm::AArch64::getFPUName(unsigned FPUKind) {
return ARM::getFPUName(FPUKind);
}
ARM::FPUVersion AArch64::getFPUVersion(unsigned FPUKind) {
return ARM::getFPUVersion(FPUKind);
}
ARM::NeonSupportLevel AArch64::getFPUNeonSupportLevel(unsigned FPUKind) {
return ARM::getFPUNeonSupportLevel( FPUKind);
}
ARM::FPURestriction AArch64::getFPURestriction(unsigned FPUKind) {
return ARM::getFPURestriction(FPUKind);
}
unsigned llvm::AArch64::getDefaultFPU(StringRef CPU, ArchKind AK) {
if (CPU == "generic")
return AArch64ARCHNames[static_cast<unsigned>(AK)].DefaultFPU;
return StringSwitch<unsigned>(CPU)
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
.Case(NAME, DEFAULT_FPU)
#include "llvm/Support/AArch64TargetParser.def"
.Default(ARM::FK_INVALID);
}
unsigned llvm::AArch64::getDefaultExtensions(StringRef CPU, ArchKind AK) {
if (CPU == "generic")
return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchBaseExtensions;
return StringSwitch<unsigned>(CPU)
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
.Case(NAME, \
AArch64ARCHNames[static_cast<unsigned>(AArch64::ArchKind::ID)] \
.ArchBaseExtensions | \
DEFAULT_EXT)
#include "llvm/Support/AArch64TargetParser.def"
.Default(AArch64::AEK_INVALID);
}
AArch64::ArchKind llvm::AArch64::getCPUArchKind(StringRef CPU) {
if (CPU == "generic")
return AArch64::ArchKind::ARMV8A;
return StringSwitch<AArch64::ArchKind>(CPU)
#define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \
.Case(NAME, AArch64::ArchKind:: ID)
#include "llvm/Support/AArch64TargetParser.def"
.Default(AArch64::ArchKind::INVALID);
}
bool llvm::AArch64::getExtensionFeatures(unsigned Extensions,
std::vector<StringRef> &Features) {
if (Extensions == AArch64::AEK_INVALID)
return false;
if (Extensions & AArch64::AEK_FP)
Features.push_back("+fp-armv8");
if (Extensions & AArch64::AEK_SIMD)
Features.push_back("+neon");
if (Extensions & AArch64::AEK_CRC)
Features.push_back("+crc");
if (Extensions & AArch64::AEK_CRYPTO)
Features.push_back("+crypto");
if (Extensions & AArch64::AEK_DOTPROD)
Features.push_back("+dotprod");
if (Extensions & AArch64::AEK_FP16)
Features.push_back("+fullfp16");
if (Extensions & AArch64::AEK_PROFILE)
Features.push_back("+spe");
if (Extensions & AArch64::AEK_RAS)
Features.push_back("+ras");
if (Extensions & AArch64::AEK_LSE)
Features.push_back("+lse");
if (Extensions & AArch64::AEK_RDM)
Features.push_back("+rdm");
if (Extensions & AArch64::AEK_SVE)
Features.push_back("+sve");
if (Extensions & AArch64::AEK_RCPC)
Features.push_back("+rcpc");
return true;
}
bool llvm::AArch64::getFPUFeatures(unsigned FPUKind,
std::vector<StringRef> &Features) {
return ARM::getFPUFeatures(FPUKind, Features);
}
bool llvm::AArch64::getArchFeatures(AArch64::ArchKind AK,
std::vector<StringRef> &Features) {
if (AK == AArch64::ArchKind::ARMV8_1A)
Features.push_back("+v8.1a");
if (AK == AArch64::ArchKind::ARMV8_2A)
Features.push_back("+v8.2a");
if (AK == AArch64::ArchKind::ARMV8_3A)
Features.push_back("+v8.3a");
if (AK == AArch64::ArchKind::ARMV8_4A)
Features.push_back("+v8.4a");
return AK != AArch64::ArchKind::INVALID;
}
StringRef llvm::AArch64::getArchName(ArchKind AK) {
return AArch64ARCHNames[static_cast<unsigned>(AK)].getName();
}
StringRef llvm::AArch64::getCPUAttr(ArchKind AK) {
return AArch64ARCHNames[static_cast<unsigned>(AK)].getCPUAttr();
}
StringRef llvm::AArch64::getSubArch(ArchKind AK) {
return AArch64ARCHNames[static_cast<unsigned>(AK)].getSubArch();
}
unsigned llvm::AArch64::getArchAttr(ArchKind AK) {
return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchAttr;
}
StringRef llvm::AArch64::getArchExtName(unsigned ArchExtKind) {
for (const auto &AE : AArch64ARCHExtNames)
if (ArchExtKind == AE.ID)
return AE.getName();
return StringRef();
}
StringRef llvm::AArch64::getArchExtFeature(StringRef ArchExt) {
if (ArchExt.startswith("no")) {
StringRef ArchExtBase(ArchExt.substr(2));
for (const auto &AE : AArch64ARCHExtNames) {
if (AE.NegFeature && ArchExtBase == AE.getName())
return StringRef(AE.NegFeature);
}
}
for (const auto &AE : AArch64ARCHExtNames)
if (AE.Feature && ArchExt == AE.getName())
return StringRef(AE.Feature);
return StringRef();
}
StringRef llvm::AArch64::getDefaultCPU(StringRef Arch) {
AArch64::ArchKind AK = parseArch(Arch);
if (AK == ArchKind::INVALID)
return StringRef();
// Look for multiple AKs to find the default for pair AK+Name.
for (const auto &CPU : AArch64CPUNames)
if (CPU.ArchID == AK && CPU.Default)
return CPU.getName();
// If we can't find a default then target the architecture instead
return "generic";
}
unsigned llvm::AArch64::checkArchVersion(StringRef Arch) {
if (Arch.size() >= 2 && Arch[0] == 'v' && std::isdigit(Arch[1]))
return (Arch[1] - 48);
return 0;
}
// ======================================================= //
// Parsers
// ======================================================= //
static StringRef getHWDivSynonym(StringRef HWDiv) {
return StringSwitch<StringRef>(HWDiv)
.Case("thumb,arm", "arm,thumb")
.Default(HWDiv);
}
static StringRef getFPUSynonym(StringRef FPU) {
return StringSwitch<StringRef>(FPU)
.Cases("fpa", "fpe2", "fpe3", "maverick", "invalid") // Unsupported
.Case("vfp2", "vfpv2")
.Case("vfp3", "vfpv3")
.Case("vfp4", "vfpv4")
.Case("vfp3-d16", "vfpv3-d16")
.Case("vfp4-d16", "vfpv4-d16")
.Cases("fp4-sp-d16", "vfpv4-sp-d16", "fpv4-sp-d16")
.Cases("fp4-dp-d16", "fpv4-dp-d16", "vfpv4-d16")
.Case("fp5-sp-d16", "fpv5-sp-d16")
.Cases("fp5-dp-d16", "fpv5-dp-d16", "fpv5-d16")
// FIXME: Clang uses it, but it's bogus, since neon defaults to vfpv3.
.Case("neon-vfpv3", "neon")
.Default(FPU);
}
static StringRef getArchSynonym(StringRef Arch) {
return StringSwitch<StringRef>(Arch)
.Case("v5", "v5t")
.Case("v5e", "v5te")
.Case("v6j", "v6")
.Case("v6hl", "v6k")
.Cases("v6m", "v6sm", "v6s-m", "v6-m")
.Cases("v6z", "v6zk", "v6kz")
.Cases("v7", "v7a", "v7hl", "v7l", "v7-a")
.Case("v7r", "v7-r")
.Case("v7m", "v7-m")
.Case("v7em", "v7e-m")
.Cases("v8", "v8a", "v8l", "aarch64", "arm64", "v8-a")
.Case("v8.1a", "v8.1-a")
.Case("v8.2a", "v8.2-a")
.Case("v8.3a", "v8.3-a")
.Case("v8.4a", "v8.4-a")
.Case("v8r", "v8-r")
.Case("v8m.base", "v8-m.base")
.Case("v8m.main", "v8-m.main")
.Default(Arch);
}
// MArch is expected to be of the form (arm|thumb)?(eb)?(v.+)?(eb)?, but
// (iwmmxt|xscale)(eb)? is also permitted. If the former, return
// "v.+", if the latter, return unmodified string, minus 'eb'.
// If invalid, return empty string.
StringRef llvm::ARM::getCanonicalArchName(StringRef Arch) {
size_t offset = StringRef::npos;
StringRef A = Arch;
StringRef Error = "";
// Begins with "arm" / "thumb", move past it.
if (A.startswith("arm64"))
offset = 5;
else if (A.startswith("arm"))
offset = 3;
else if (A.startswith("thumb"))
offset = 5;
else if (A.startswith("aarch64")) {
offset = 7;
// AArch64 uses "_be", not "eb" suffix.
if (A.find("eb") != StringRef::npos)
return Error;
if (A.substr(offset, 3) == "_be")
offset += 3;
}
// Ex. "armebv7", move past the "eb".
if (offset != StringRef::npos && A.substr(offset, 2) == "eb")
offset += 2;
// Or, if it ends with eb ("armv7eb"), chop it off.
else if (A.endswith("eb"))
A = A.substr(0, A.size() - 2);
// Trim the head
if (offset != StringRef::npos)
A = A.substr(offset);
// Empty string means offset reached the end, which means it's valid.
if (A.empty())
return Arch;
// Only match non-marketing names
if (offset != StringRef::npos) {
// Must start with 'vN'.
if (A.size() >= 2 && (A[0] != 'v' || !std::isdigit(A[1])))
return Error;
// Can't have an extra 'eb'.
if (A.find("eb") != StringRef::npos)
return Error;
}
// Arch will either be a 'v' name (v7a) or a marketing name (xscale).
return A;
}
unsigned llvm::ARM::parseHWDiv(StringRef HWDiv) {
StringRef Syn = getHWDivSynonym(HWDiv);
for (const auto D : HWDivNames) {
if (Syn == D.getName())
return D.ID;
}
return ARM::AEK_INVALID;
}
unsigned llvm::ARM::parseFPU(StringRef FPU) {
StringRef Syn = getFPUSynonym(FPU);
for (const auto F : FPUNames) {
if (Syn == F.getName())
return F.ID;
}
return ARM::FK_INVALID;
}
// Allows partial match, ex. "v7a" matches "armv7a".
ARM::ArchKind ARM::parseArch(StringRef Arch) {
Arch = getCanonicalArchName(Arch);
StringRef Syn = getArchSynonym(Arch);
for (const auto A : ARCHNames) {
if (A.getName().endswith(Syn))
return A.ID;
}
return ARM::ArchKind::INVALID;
}
unsigned llvm::ARM::parseArchExt(StringRef ArchExt) {
for (const auto A : ARCHExtNames) {
if (ArchExt == A.getName())
return A.ID;
}
return ARM::AEK_INVALID;
}
ARM::ArchKind llvm::ARM::parseCPUArch(StringRef CPU) {
for (const auto C : CPUNames) {
if (CPU == C.getName())
return C.ArchID;
}
return ARM::ArchKind::INVALID;
}
void llvm::ARM::fillValidCPUArchList(SmallVectorImpl<StringRef> &Values) {
for (const CpuNames<ARM::ArchKind> &Arch : CPUNames) {
if (Arch.ArchID != ARM::ArchKind::INVALID)
Values.push_back(Arch.getName());
}
}
void llvm::AArch64::fillValidCPUArchList(SmallVectorImpl<StringRef> &Values) {
for (const CpuNames<AArch64::ArchKind> &Arch : AArch64CPUNames) {
if (Arch.ArchID != AArch64::ArchKind::INVALID)
Values.push_back(Arch.getName());
}
}
// ARM, Thumb, AArch64
ARM::ISAKind ARM::parseArchISA(StringRef Arch) {
return StringSwitch<ARM::ISAKind>(Arch)
.StartsWith("aarch64", ARM::ISAKind::AARCH64)
.StartsWith("arm64", ARM::ISAKind::AARCH64)
.StartsWith("thumb", ARM::ISAKind::THUMB)
.StartsWith("arm", ARM::ISAKind::ARM)
.Default(ARM::ISAKind::INVALID);
}
// Little/Big endian
ARM::EndianKind ARM::parseArchEndian(StringRef Arch) {
if (Arch.startswith("armeb") || Arch.startswith("thumbeb") ||
Arch.startswith("aarch64_be"))
return ARM::EndianKind::BIG;
if (Arch.startswith("arm") || Arch.startswith("thumb")) {
if (Arch.endswith("eb"))
return ARM::EndianKind::BIG;
else
return ARM::EndianKind::LITTLE;
}
if (Arch.startswith("aarch64"))
return ARM::EndianKind::LITTLE;
return ARM::EndianKind::INVALID;
}
// Profile A/R/M
ARM::ProfileKind ARM::parseArchProfile(StringRef Arch) {
Arch = getCanonicalArchName(Arch);
switch (parseArch(Arch)) {
case ARM::ArchKind::ARMV6M:
case ARM::ArchKind::ARMV7M:
case ARM::ArchKind::ARMV7EM:
case ARM::ArchKind::ARMV8MMainline:
case ARM::ArchKind::ARMV8MBaseline:
return ARM::ProfileKind::M;
case ARM::ArchKind::ARMV7R:
case ARM::ArchKind::ARMV8R:
return ARM::ProfileKind::R;
case ARM::ArchKind::ARMV7A:
case ARM::ArchKind::ARMV7VE:
case ARM::ArchKind::ARMV7K:
case ARM::ArchKind::ARMV8A:
case ARM::ArchKind::ARMV8_1A:
case ARM::ArchKind::ARMV8_2A:
case ARM::ArchKind::ARMV8_3A:
case ARM::ArchKind::ARMV8_4A:
return ARM::ProfileKind::A;
case ARM::ArchKind::ARMV2:
case ARM::ArchKind::ARMV2A:
case ARM::ArchKind::ARMV3:
case ARM::ArchKind::ARMV3M:
case ARM::ArchKind::ARMV4:
case ARM::ArchKind::ARMV4T:
case ARM::ArchKind::ARMV5T:
case ARM::ArchKind::ARMV5TE:
case ARM::ArchKind::ARMV5TEJ:
case ARM::ArchKind::ARMV6:
case ARM::ArchKind::ARMV6K:
case ARM::ArchKind::ARMV6T2:
case ARM::ArchKind::ARMV6KZ:
case ARM::ArchKind::ARMV7S:
case ARM::ArchKind::IWMMXT:
case ARM::ArchKind::IWMMXT2:
case ARM::ArchKind::XSCALE:
case ARM::ArchKind::INVALID:
return ARM::ProfileKind::INVALID;
}
llvm_unreachable("Unhandled architecture");
}
// Version number (ex. v7 = 7).
unsigned llvm::ARM::parseArchVersion(StringRef Arch) {
Arch = getCanonicalArchName(Arch);
switch (parseArch(Arch)) {
case ARM::ArchKind::ARMV2:
case ARM::ArchKind::ARMV2A:
return 2;
case ARM::ArchKind::ARMV3:
case ARM::ArchKind::ARMV3M:
return 3;
case ARM::ArchKind::ARMV4:
case ARM::ArchKind::ARMV4T:
return 4;
case ARM::ArchKind::ARMV5T:
case ARM::ArchKind::ARMV5TE:
case ARM::ArchKind::IWMMXT:
case ARM::ArchKind::IWMMXT2:
case ARM::ArchKind::XSCALE:
case ARM::ArchKind::ARMV5TEJ:
return 5;
case ARM::ArchKind::ARMV6:
case ARM::ArchKind::ARMV6K:
case ARM::ArchKind::ARMV6T2:
case ARM::ArchKind::ARMV6KZ:
case ARM::ArchKind::ARMV6M:
return 6;
case ARM::ArchKind::ARMV7A:
case ARM::ArchKind::ARMV7VE:
case ARM::ArchKind::ARMV7R:
case ARM::ArchKind::ARMV7M:
case ARM::ArchKind::ARMV7S:
case ARM::ArchKind::ARMV7EM:
case ARM::ArchKind::ARMV7K:
return 7;
case ARM::ArchKind::ARMV8A:
case ARM::ArchKind::ARMV8_1A:
case ARM::ArchKind::ARMV8_2A:
case ARM::ArchKind::ARMV8_3A:
case ARM::ArchKind::ARMV8_4A:
case ARM::ArchKind::ARMV8R:
case ARM::ArchKind::ARMV8MBaseline:
case ARM::ArchKind::ARMV8MMainline:
return 8;
case ARM::ArchKind::INVALID:
return 0;
}
llvm_unreachable("Unhandled architecture");
}
StringRef llvm::ARM::computeDefaultTargetABI(const Triple &TT, StringRef CPU) {
StringRef ArchName =
CPU.empty() ? TT.getArchName() : ARM::getArchName(ARM::parseCPUArch(CPU));
if (TT.isOSBinFormatMachO()) {
if (TT.getEnvironment() == Triple::EABI ||
TT.getOS() == Triple::UnknownOS ||
llvm::ARM::parseArchProfile(ArchName) == ARM::ProfileKind::M)
return "aapcs";
if (TT.isWatchABI())
return "aapcs16";
return "apcs-gnu";
} else if (TT.isOSWindows())
// FIXME: this is invalid for WindowsCE.
return "aapcs";
// Select the default based on the platform.
switch (TT.getEnvironment()) {
case Triple::Android:
case Triple::GNUEABI:
case Triple::GNUEABIHF:
case Triple::MuslEABI:
case Triple::MuslEABIHF:
return "aapcs-linux";
case Triple::EABIHF:
case Triple::EABI:
return "aapcs";
default:
if (TT.isOSNetBSD())
return "apcs-gnu";
if (TT.isOSOpenBSD())
return "aapcs-linux";
return "aapcs";
}
}
StringRef llvm::AArch64::getCanonicalArchName(StringRef Arch) {
return ARM::getCanonicalArchName(Arch);
}
unsigned llvm::AArch64::parseFPU(StringRef FPU) {
return ARM::parseFPU(FPU);
}
// Allows partial match, ex. "v8a" matches "armv8a".
AArch64::ArchKind AArch64::parseArch(StringRef Arch) {
Arch = getCanonicalArchName(Arch);
if (checkArchVersion(Arch) < 8)
return ArchKind::INVALID;
StringRef Syn = getArchSynonym(Arch);
for (const auto A : AArch64ARCHNames) {
if (A.getName().endswith(Syn))
return A.ID;
}
return ArchKind::INVALID;
}
AArch64::ArchExtKind llvm::AArch64::parseArchExt(StringRef ArchExt) {
for (const auto A : AArch64ARCHExtNames) {
if (ArchExt == A.getName())
return static_cast<ArchExtKind>(A.ID);
}
return AArch64::AEK_INVALID;
}
AArch64::ArchKind llvm::AArch64::parseCPUArch(StringRef CPU) {
for (const auto C : AArch64CPUNames) {
if (CPU == C.getName())
return C.ArchID;
}
return ArchKind::INVALID;
}
// ARM, Thumb, AArch64
ARM::ISAKind AArch64::parseArchISA(StringRef Arch) {
return ARM::parseArchISA(Arch);
}
// Little/Big endian
ARM::EndianKind AArch64::parseArchEndian(StringRef Arch) {
return ARM::parseArchEndian(Arch);
}
// Profile A/R/M
ARM::ProfileKind AArch64::parseArchProfile(StringRef Arch) {
return ARM::parseArchProfile(Arch);
}
// Version number (ex. v8 = 8).
unsigned llvm::AArch64::parseArchVersion(StringRef Arch) {
return ARM::parseArchVersion(Arch);
}
bool llvm::AArch64::isX18ReservedByDefault(const Triple &TT) {
return TT.isOSDarwin() || TT.isOSFuchsia() || TT.isOSWindows();
}