aboutsummaryrefslogblamecommitdiff
path: root/lib/Target/Hexagon/HexagonSplitDouble.cpp
blob: 25b2affa2f0b162cda5775a3dd0555a9ff3191a3 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153













                                                                                




                                             
                      

























































































                                                                              










































































































































































































































































































































                                                                               
                                                               























                                                                         
                                                                  
















































































































































































                                                                               
                                                



























































































































































































































































































































































































































































































































                                                                               


                                      










































                                                                              
//===--- HexagonSplitDouble.cpp -------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "hsdr"

#include "HexagonRegisterInfo.h"
#include "HexagonTargetMachine.h"

#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"

#include <map>
#include <set>
#include <vector>

using namespace llvm;

namespace llvm {
  FunctionPass *createHexagonSplitDoubleRegs();
  void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
}

namespace {
  static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
      cl::desc("Maximum number of split partitions"));
  static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
      cl::desc("Do not split loads or stores"));

  class HexagonSplitDoubleRegs : public MachineFunctionPass {
  public:
    static char ID;
    HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr),
        TII(nullptr) {
      initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
    }
    const char *getPassName() const override {
      return "Hexagon Split Double Registers";
    }
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    static const TargetRegisterClass *const DoubleRC;

    const HexagonRegisterInfo *TRI;
    const HexagonInstrInfo *TII;
    const MachineLoopInfo *MLI;
    MachineRegisterInfo *MRI;

    typedef std::set<unsigned> USet;
    typedef std::map<unsigned,USet> UUSetMap;
    typedef std::pair<unsigned,unsigned> UUPair;
    typedef std::map<unsigned,UUPair> UUPairMap;
    typedef std::map<const MachineLoop*,USet> LoopRegMap;

    bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
    bool isVolatileInstr(const MachineInstr *MI) const;
    bool isFixedInstr(const MachineInstr *MI) const;
    void partitionRegisters(UUSetMap &P2Rs);
    int32_t profit(const MachineInstr *MI) const;
    bool isProfitable(const USet &Part, LoopRegMap &IRM) const;

    void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
    void collectIndRegs(LoopRegMap &IRM);

    void createHalfInstr(unsigned Opc, MachineInstr *MI,
        const UUPairMap &PairMap, unsigned SubR);
    void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
    void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
    void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
    void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
    void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
    void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
    bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
    void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
    void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
    bool splitPartition(const USet &Part);

    static int Counter;
    static void dump_partition(raw_ostream&, const USet&,
       const TargetRegisterInfo&);
  };
  char HexagonSplitDoubleRegs::ID;
  int HexagonSplitDoubleRegs::Counter = 0;
  const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC
      = &Hexagon::DoubleRegsRegClass;
}

INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
  "Hexagon Split Double Registers", false, false)


void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
      const USet &Part, const TargetRegisterInfo &TRI) {
  dbgs() << '{';
  for (auto I : Part)
    dbgs() << ' ' << PrintReg(I, &TRI);
  dbgs() << " }";
}


bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
  for (auto I : IRM) {
    const USet &Rs = I.second;
    if (Rs.find(Reg) != Rs.end())
      return true;
  }
  return false;
}


bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
  for (auto &I : MI->memoperands())
    if (I->isVolatile())
      return true;
  return false;
}


bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
  if (MI->mayLoad() || MI->mayStore())
    if (MemRefsFixed || isVolatileInstr(MI))
      return true;
  if (MI->isDebugValue())
    return false;

  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    default:
      return true;

    case TargetOpcode::PHI:
    case TargetOpcode::COPY:
      break;

    case Hexagon::L2_loadrd_io:
      // Not handling stack stores (only reg-based addresses).
      if (MI->getOperand(1).isReg())
        break;
      return true;
    case Hexagon::S2_storerd_io:
      // Not handling stack stores (only reg-based addresses).
      if (MI->getOperand(0).isReg())
        break;
      return true;
    case Hexagon::L2_loadrd_pi:
    case Hexagon::S2_storerd_pi:

    case Hexagon::A2_tfrpi:
    case Hexagon::A2_combineii:
    case Hexagon::A4_combineir:
    case Hexagon::A4_combineii:
    case Hexagon::A4_combineri:
    case Hexagon::A2_combinew:
    case Hexagon::CONST64_Int_Real:

    case Hexagon::A2_sxtw:

    case Hexagon::A2_andp:
    case Hexagon::A2_orp:
    case Hexagon::A2_xorp:
    case Hexagon::S2_asl_i_p_or:
    case Hexagon::S2_asl_i_p:
    case Hexagon::S2_asr_i_p:
    case Hexagon::S2_lsr_i_p:
      break;
  }

  for (auto &Op : MI->operands()) {
    if (!Op.isReg())
      continue;
    unsigned R = Op.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(R))
      return true;
  }
  return false;
}


void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
  typedef std::map<unsigned,unsigned> UUMap;
  typedef std::vector<unsigned> UVect;

  unsigned NumRegs = MRI->getNumVirtRegs();
  BitVector DoubleRegs(NumRegs);
  for (unsigned i = 0; i < NumRegs; ++i) {
    unsigned R = TargetRegisterInfo::index2VirtReg(i);
    if (MRI->getRegClass(R) == DoubleRC)
      DoubleRegs.set(i);
  }

  BitVector FixedRegs(NumRegs);
  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
    unsigned R = TargetRegisterInfo::index2VirtReg(x);
    MachineInstr *DefI = MRI->getVRegDef(R);
    // In some cases a register may exist, but never be defined or used.
    // It should never appear anywhere, but mark it as "fixed", just to be
    // safe.
    if (!DefI || isFixedInstr(DefI))
      FixedRegs.set(x);
  }

  UUSetMap AssocMap;
  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
    if (FixedRegs[x])
      continue;
    unsigned R = TargetRegisterInfo::index2VirtReg(x);
    DEBUG(dbgs() << PrintReg(R, TRI) << " ~~");
    USet &Asc = AssocMap[R];
    for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
         U != Z; ++U) {
      MachineOperand &Op = *U;
      MachineInstr *UseI = Op.getParent();
      if (isFixedInstr(UseI))
        continue;
      for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
        MachineOperand &MO = UseI->getOperand(i);
        // Skip non-registers or registers with subregisters.
        if (&MO == &Op || !MO.isReg() || MO.getSubReg())
          continue;
        unsigned T = MO.getReg();
        if (!TargetRegisterInfo::isVirtualRegister(T)) {
          FixedRegs.set(x);
          continue;
        }
        if (MRI->getRegClass(T) != DoubleRC)
          continue;
        unsigned u = TargetRegisterInfo::virtReg2Index(T);
        if (FixedRegs[u])
          continue;
        DEBUG(dbgs() << ' ' << PrintReg(T, TRI));
        Asc.insert(T);
        // Make it symmetric.
        AssocMap[T].insert(R);
      }
    }
    DEBUG(dbgs() << '\n');
  }

  UUMap R2P;
  unsigned NextP = 1;
  USet Visited;
  for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
    unsigned R = TargetRegisterInfo::index2VirtReg(x);
    if (Visited.count(R))
      continue;
    // Create a new partition for R.
    unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
    UVect WorkQ;
    WorkQ.push_back(R);
    for (unsigned i = 0; i < WorkQ.size(); ++i) {
      unsigned T = WorkQ[i];
      if (Visited.count(T))
        continue;
      R2P[T] = ThisP;
      Visited.insert(T);
      // Add all registers associated with T.
      USet &Asc = AssocMap[T];
      for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
        WorkQ.push_back(*J);
    }
  }

  for (auto I : R2P)
    P2Rs[I.second].insert(I.first);
}


static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
  int32_t P = 0;
  bool LoZ1 = false, HiZ1 = false;
  if (Lo == 0 || Lo == 0xFFFFFFFF)
    P += 10, LoZ1 = true;
  if (Hi == 0 || Hi == 0xFFFFFFFF)
    P += 10, HiZ1 = true;
  if (!LoZ1 && !HiZ1 && Lo == Hi)
    P += 3;
  return P;
}


int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
  unsigned ImmX = 0;
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    case TargetOpcode::PHI:
      for (const auto &Op : MI->operands())
        if (!Op.getSubReg())
          return 0;
      return 10;
    case TargetOpcode::COPY:
      if (MI->getOperand(1).getSubReg() != 0)
        return 10;
      return 0;

    case Hexagon::L2_loadrd_io:
    case Hexagon::S2_storerd_io:
      return -1;
    case Hexagon::L2_loadrd_pi:
    case Hexagon::S2_storerd_pi:
      return 2;

    case Hexagon::A2_tfrpi:
    case Hexagon::CONST64_Int_Real: {
      uint64_t D = MI->getOperand(1).getImm();
      unsigned Lo = D & 0xFFFFFFFFULL;
      unsigned Hi = D >> 32;
      return profitImm(Lo, Hi);
    }
    case Hexagon::A2_combineii:
    case Hexagon::A4_combineii:
      return profitImm(MI->getOperand(1).getImm(),
                       MI->getOperand(2).getImm());
    case Hexagon::A4_combineri:
      ImmX++;
    case Hexagon::A4_combineir: {
      ImmX++;
      int64_t V = MI->getOperand(ImmX).getImm();
      if (V == 0 || V == -1)
        return 10;
      // Fall through into A2_combinew.
    }
    case Hexagon::A2_combinew:
      return 2;

    case Hexagon::A2_sxtw:
      return 3;

    case Hexagon::A2_andp:
    case Hexagon::A2_orp:
    case Hexagon::A2_xorp:
      return 1;

    case Hexagon::S2_asl_i_p_or: {
      unsigned S = MI->getOperand(3).getImm();
      if (S == 0 || S == 32)
        return 10;
      return -1;
    }
    case Hexagon::S2_asl_i_p:
    case Hexagon::S2_asr_i_p:
    case Hexagon::S2_lsr_i_p:
      unsigned S = MI->getOperand(2).getImm();
      if (S == 0 || S == 32)
        return 10;
      if (S == 16)
        return 5;
      if (S == 48)
        return 7;
      return -10;
  }

  return 0;
}


bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
      const {
  unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0;
  int32_t TotalP = 0;

  for (unsigned DR : Part) {
    MachineInstr *DefI = MRI->getVRegDef(DR);
    int32_t P = profit(DefI);
    if (P == INT_MIN)
      return false;
    TotalP += P;
    // Reduce the profitability of splitting induction registers.
    if (isInduction(DR, IRM))
      TotalP -= 30;

    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
         U != W; ++U) {
      MachineInstr *UseI = U->getParent();
      if (isFixedInstr(UseI)) {
        FixedNum++;
        // Calculate the cost of generating REG_SEQUENCE instructions.
        for (auto &Op : UseI->operands()) {
          if (Op.isReg() && Part.count(Op.getReg()))
            if (Op.getSubReg())
              TotalP -= 2;
        }
        continue;
      }
      // If a register from this partition is used in a fixed instruction,
      // and there is also a register in this partition that is used in
      // a loop phi node, then decrease the splitting profit as this can
      // confuse the modulo scheduler.
      if (UseI->isPHI()) {
        const MachineBasicBlock *PB = UseI->getParent();
        const MachineLoop *L = MLI->getLoopFor(PB);
        if (L && L->getHeader() == PB)
          LoopPhiNum++;
      }
      // Splittable instruction.
      SplitNum++;
      int32_t P = profit(UseI);
      if (P == INT_MIN)
        return false;
      TotalP += P;
    }
  }

  if (FixedNum > 0 && LoopPhiNum > 0)
    TotalP -= 20*LoopPhiNum;

  DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
  return TotalP > 0;
}


void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
      USet &Rs) {
  const MachineBasicBlock *HB = L->getHeader();
  const MachineBasicBlock *LB = L->getLoopLatch();
  if (!HB || !LB)
    return;

  // Examine the latch branch. Expect it to be a conditional branch to
  // the header (either "br-cond header" or "br-cond exit; br header").
  MachineBasicBlock *TB = 0, *FB = 0;
  MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
  SmallVector<MachineOperand,2> Cond;
  bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
  // Only analyzable conditional branches. HII::AnalyzeBranch will put
  // the branch opcode as the first element of Cond, and the predicate
  // operand as the second.
  if (BadLB || Cond.size() != 2)
    return;
  // Only simple jump-conditional (with or without negation).
  if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
    return;
  // Must go to the header.
  if (TB != HB && FB != HB)
    return;
  assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch");
  // Expect a predicate register.
  unsigned PR = Cond[1].getReg();
  assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);

  // Get the registers on which the loop controlling compare instruction
  // depends.
  unsigned CmpR1 = 0, CmpR2 = 0;
  const MachineInstr *CmpI = MRI->getVRegDef(PR);
  while (CmpI->getOpcode() == Hexagon::C2_not)
    CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());

  int Mask = 0, Val = 0;
  bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
  if (!OkCI)
    return;
  // Eliminate non-double input registers.
  if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
    CmpR1 = 0;
  if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
    CmpR2 = 0;
  if (!CmpR1 && !CmpR2)
    return;

  // Now examine the top of the loop: the phi nodes that could poten-
  // tially define loop induction registers. The registers defined by
  // such a phi node would be used in a 64-bit add, which then would
  // be used in the loop compare instruction.

  // Get the set of all double registers defined by phi nodes in the
  // loop header.
  typedef std::vector<unsigned> UVect;
  UVect DP;
  for (auto &MI : *HB) {
    if (!MI.isPHI())
      break;
    const MachineOperand &MD = MI.getOperand(0);
    unsigned R = MD.getReg();
    if (MRI->getRegClass(R) == DoubleRC)
      DP.push_back(R);
  }
  if (DP.empty())
    return;

  auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
    for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
         I != E; ++I) {
      const MachineInstr *UseI = I->getParent();
      if (UseI->getOpcode() != Hexagon::A2_addp)
        continue;
      // Get the output from the add. If it is one of the inputs to the
      // loop-controlling compare instruction, then R is likely an induc-
      // tion register.
      unsigned T = UseI->getOperand(0).getReg();
      if (T == CmpR1 || T == CmpR2)
        return false;
    }
    return true;
  };
  UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp);
  Rs.insert(DP.begin(), End);
  Rs.insert(CmpR1);
  Rs.insert(CmpR2);

  DEBUG({
    dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: ";
    dump_partition(dbgs(), Rs, *TRI);
    dbgs() << '\n';
  });
}


void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
  typedef std::vector<MachineLoop*> LoopVector;
  LoopVector WorkQ;

  for (auto I : *MLI)
    WorkQ.push_back(I);
  for (unsigned i = 0; i < WorkQ.size(); ++i) {
    for (auto I : *WorkQ[i])
      WorkQ.push_back(I);
  }

  USet Rs;
  for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
    MachineLoop *L = WorkQ[i];
    Rs.clear();
    collectIndRegsForLoop(L, Rs);
    if (!Rs.empty())
      IRM.insert(std::make_pair(L, Rs));
  }
}


void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
      const UUPairMap &PairMap, unsigned SubR) {
  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));

  for (auto &Op : MI->operands()) {
    if (!Op.isReg()) {
      NewI->addOperand(Op);
      continue;
    }
    // For register operands, set the subregister.
    unsigned R = Op.getReg();
    unsigned SR = Op.getSubReg();
    bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
    bool isKill = Op.isKill();
    if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
      isKill = false;
      UUPairMap::const_iterator F = PairMap.find(R);
      if (F == PairMap.end()) {
        SR = SubR;
      } else {
        const UUPair &P = F->second;
        R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second;
        SR = 0;
      }
    }
    auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
          Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
          Op.isInternalRead());
    NewI->addOperand(CO);
  }
}


void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
      const UUPairMap &PairMap) {
  bool Load = MI->mayLoad();
  unsigned OrigOpc = MI->getOpcode();
  bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
                  OrigOpc == Hexagon::S2_storerd_pi);
  MachineInstr *LowI, *HighI;
  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  // Index of the base-address-register operand.
  unsigned AdrX = PostInc ? (Load ? 2 : 1)
                          : (Load ? 1 : 0);
  MachineOperand &AdrOp = MI->getOperand(AdrX);
  unsigned RSA = getRegState(AdrOp);
  MachineOperand &ValOp = Load ? MI->getOperand(0)
                               : (PostInc ? MI->getOperand(3)
                                          : MI->getOperand(2));
  UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
  assert(F != PairMap.end());

  if (Load) {
    const UUPair &P = F->second;
    int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
             .addImm(Off);
    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
              .addImm(Off+4);
  } else {
    const UUPair &P = F->second;
    int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
    LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
             .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
             .addImm(Off)
             .addReg(P.first);
    HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
              .addImm(Off+4)
              .addReg(P.second);
  }

  if (PostInc) {
    // Create the increment of the address register.
    int64_t Inc = Load ? MI->getOperand(3).getImm()
                       : MI->getOperand(2).getImm();
    MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
    const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
    unsigned NewR = MRI->createVirtualRegister(RC);
    assert(!UpdOp.getSubReg() && "Def operand with subreg");
    BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
      .addReg(AdrOp.getReg(), RSA)
      .addImm(Inc);
    MRI->replaceRegWith(UpdOp.getReg(), NewR);
    // The original instruction will be deleted later.
  }

  // Generate a new pair of memory-operands.
  MachineFunction &MF = *B.getParent();
  for (auto &MO : MI->memoperands()) {
    const MachinePointerInfo &Ptr = MO->getPointerInfo();
    MachineMemOperand::Flags F = MO->getFlags();
    int A = MO->getAlignment();

    auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
    LowI->addMemOperand(MF, Tmp1);
    auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
    HighI->addMemOperand(MF, Tmp2);
  }
}


void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineOperand &Op0 = MI->getOperand(0);
  MachineOperand &Op1 = MI->getOperand(1);
  assert(Op0.isReg() && Op1.isImm());
  uint64_t V = Op1.getImm();

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
  assert(F != PairMap.end());
  const UUPair &P = F->second;

  // The operand to A2_tfrsi can only have 32 significant bits. Immediate
  // values in MachineOperand are stored as 64-bit integers, and so the
  // value -1 may be represented either as 64-bit -1, or 4294967295. Both
  // will have the 32 higher bits truncated in the end, but -1 will remain
  // as -1, while the latter may appear to be a large unsigned value
  // requiring a constant extender. The casting to int32_t will select the
  // former representation. (The same reasoning applies to all 32-bit
  // values.)
  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
    .addImm(int32_t(V & 0xFFFFFFFFULL));
  BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
    .addImm(int32_t(V >> 32));
}


void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineOperand &Op0 = MI->getOperand(0);
  MachineOperand &Op1 = MI->getOperand(1);
  MachineOperand &Op2 = MI->getOperand(2);
  assert(Op0.isReg());

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
  assert(F != PairMap.end());
  const UUPair &P = F->second;

  if (Op1.isImm()) {
    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
      .addImm(Op1.getImm());
  } else if (Op1.isReg()) {
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
      .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
  } else
    llvm_unreachable("Unexpected operand");

  if (Op2.isImm()) {
    BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
      .addImm(Op2.getImm());
  } else if (Op2.isReg()) {
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
      .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
  } else
    llvm_unreachable("Unexpected operand");
}


void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineOperand &Op0 = MI->getOperand(0);
  MachineOperand &Op1 = MI->getOperand(1);
  assert(Op0.isReg() && Op1.isReg());

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
  assert(F != PairMap.end());
  const UUPair &P = F->second;
  unsigned RS = getRegState(Op1);

  BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
    .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
  BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
    .addReg(Op1.getReg(), RS, Op1.getSubReg())
    .addImm(31);
}


void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineOperand &Op0 = MI->getOperand(0);
  MachineOperand &Op1 = MI->getOperand(1);
  MachineOperand &Op2 = MI->getOperand(2);
  assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
  int64_t Sh64 = Op2.getImm();
  assert(Sh64 >= 0 && Sh64 < 64);
  unsigned S = Sh64;

  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
  assert(F != PairMap.end());
  const UUPair &P = F->second;
  unsigned LoR = P.first;
  unsigned HiR = P.second;
  using namespace Hexagon;

  unsigned Opc = MI->getOpcode();
  bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
  bool Left = !Right;
  bool Signed = (Opc == S2_asr_i_p);

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  unsigned RS = getRegState(Op1);
  unsigned ShiftOpc = Left ? S2_asl_i_r
                           : (Signed ? S2_asr_i_r : S2_lsr_i_r);
  unsigned LoSR = subreg_loreg;
  unsigned HiSR = subreg_hireg;

  if (S == 0) {
    // No shift, subregister copy.
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
      .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
      .addReg(Op1.getReg(), RS, HiSR);
  } else if (S < 32) {
    const TargetRegisterClass *IntRC = &IntRegsRegClass;
    unsigned TmpR = MRI->createVirtualRegister(IntRC);
    // Expansion:
    // Shift left:    DR = shl R, #s
    //   LoR  = shl R.lo, #s
    //   TmpR = extractu R.lo, #s, #32-s
    //   HiR  = or (TmpR, asl(R.hi, #s))
    // Shift right:   DR = shr R, #s
    //   HiR  = shr R.hi, #s
    //   TmpR = shr R.lo, #s
    //   LoR  = insert TmpR, R.hi, #s, #32-s

    // Shift left:
    //   LoR  = shl R.lo, #s
    // Shift right:
    //   TmpR = shr R.lo, #s

    // Make a special case for A2_aslh and A2_asrh (they are predicable as
    // opposed to S2_asl_i_r/S2_asr_i_r).
    if (S == 16 && Left)
      BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
    else if (S == 16 && Signed)
      BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
    else
      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
        .addImm(S);

    if (Left) {
      // TmpR = extractu R.lo, #s, #32-s
      BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
        .addImm(S)
        .addImm(32-S);
      // HiR  = or (TmpR, asl(R.hi, #s))
      BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
        .addReg(TmpR)
        .addReg(Op1.getReg(), RS, HiSR)
        .addImm(S);
    } else {
      // HiR  = shr R.hi, #s
      BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
        .addImm(S);
      // LoR  = insert TmpR, R.hi, #s, #32-s
      BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
        .addReg(TmpR)
        .addReg(Op1.getReg(), RS, HiSR)
        .addImm(S)
        .addImm(32-S);
    }
  } else if (S == 32) {
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
      .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
    if (!Signed)
      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
        .addImm(0);
    else  // Must be right shift.
      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
        .addReg(Op1.getReg(), RS, HiSR)
        .addImm(31);
  } else if (S < 64) {
    S -= 32;
    if (S == 16 && Left)
      BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
    else if (S == 16 && Signed)
      BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
        .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
    else
      BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
        .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
        .addImm(S);

    if (Signed)
      BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
        .addReg(Op1.getReg(), RS, HiSR)
        .addImm(31);
    else
      BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
        .addImm(0);
  }
}


void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineOperand &Op0 = MI->getOperand(0);
  MachineOperand &Op1 = MI->getOperand(1);
  MachineOperand &Op2 = MI->getOperand(2);
  MachineOperand &Op3 = MI->getOperand(3);
  assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
  int64_t Sh64 = Op3.getImm();
  assert(Sh64 >= 0 && Sh64 < 64);
  unsigned S = Sh64;

  UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
  assert(F != PairMap.end());
  const UUPair &P = F->second;
  unsigned LoR = P.first;
  unsigned HiR = P.second;
  using namespace Hexagon;

  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  unsigned RS1 = getRegState(Op1);
  unsigned RS2 = getRegState(Op2);
  const TargetRegisterClass *IntRC = &IntRegsRegClass;

  unsigned LoSR = subreg_loreg;
  unsigned HiSR = subreg_hireg;

  // Op0 = S2_asl_i_p_or Op1, Op2, Op3
  // means:  Op0 = or (Op1, asl(Op2, Op3))

  // Expansion of
  //   DR = or (R1, asl(R2, #s))
  //
  //   LoR  = or (R1.lo, asl(R2.lo, #s))
  //   Tmp1 = extractu R2.lo, #s, #32-s
  //   Tmp2 = or R1.hi, Tmp1
  //   HiR  = or (Tmp2, asl(R2.hi, #s))

  if (S == 0) {
    // DR  = or (R1, asl(R2, #0))
    //    -> or (R1, R2)
    // i.e. LoR = or R1.lo, R2.lo
    //      HiR = or R1.hi, R2.hi
    BuildMI(B, MI, DL, TII->get(A2_or), LoR)
      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
      .addReg(Op1.getReg(), RS1, HiSR)
      .addReg(Op2.getReg(), RS2, HiSR);
  } else if (S < 32) {
    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
      .addImm(S);
    unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
    BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
      .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
      .addImm(S)
      .addImm(32-S);
    unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
    BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
      .addReg(Op1.getReg(), RS1, HiSR)
      .addReg(TmpR1);
    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
      .addReg(TmpR2)
      .addReg(Op2.getReg(), RS2, HiSR)
      .addImm(S);
  } else if (S == 32) {
    // DR  = or (R1, asl(R2, #32))
    //    -> or R1, R2.lo
    // LoR = R1.lo
    // HiR = or R1.hi, R2.lo
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
    BuildMI(B, MI, DL, TII->get(A2_or), HiR)
      .addReg(Op1.getReg(), RS1, HiSR)
      .addReg(Op2.getReg(), RS2, LoSR);
  } else if (S < 64) {
    // DR  = or (R1, asl(R2, #s))
    //
    // LoR = R1:lo
    // HiR = or (R1:hi, asl(R2:lo, #s-32))
    S -= 32;
    BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
      .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
    BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
      .addReg(Op1.getReg(), RS1, HiSR)
      .addReg(Op2.getReg(), RS2, LoSR)
      .addImm(S);
  }
}


bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
      const UUPairMap &PairMap) {
  DEBUG(dbgs() << "Splitting: " << *MI);
  bool Split = false;
  unsigned Opc = MI->getOpcode();
  using namespace Hexagon;

  switch (Opc) {
    case TargetOpcode::PHI:
    case TargetOpcode::COPY: {
      unsigned DstR = MI->getOperand(0).getReg();
      if (MRI->getRegClass(DstR) == DoubleRC) {
        createHalfInstr(Opc, MI, PairMap, subreg_loreg);
        createHalfInstr(Opc, MI, PairMap, subreg_hireg);
        Split = true;
      }
      break;
    }
    case A2_andp:
      createHalfInstr(A2_and, MI, PairMap, subreg_loreg);
      createHalfInstr(A2_and, MI, PairMap, subreg_hireg);
      Split = true;
      break;
    case A2_orp:
      createHalfInstr(A2_or, MI, PairMap, subreg_loreg);
      createHalfInstr(A2_or, MI, PairMap, subreg_hireg);
      Split = true;
      break;
    case A2_xorp:
      createHalfInstr(A2_xor, MI, PairMap, subreg_loreg);
      createHalfInstr(A2_xor, MI, PairMap, subreg_hireg);
      Split = true;
      break;

    case L2_loadrd_io:
    case L2_loadrd_pi:
    case S2_storerd_io:
    case S2_storerd_pi:
      splitMemRef(MI, PairMap);
      Split = true;
      break;

    case A2_tfrpi:
    case CONST64_Int_Real:
      splitImmediate(MI, PairMap);
      Split = true;
      break;

    case A2_combineii:
    case A4_combineir:
    case A4_combineii:
    case A4_combineri:
    case A2_combinew:
      splitCombine(MI, PairMap);
      Split = true;
      break;

    case A2_sxtw:
      splitExt(MI, PairMap);
      Split = true;
      break;

    case S2_asl_i_p:
    case S2_asr_i_p:
    case S2_lsr_i_p:
      splitShift(MI, PairMap);
      Split = true;
      break;

    case S2_asl_i_p_or:
      splitAslOr(MI, PairMap);
      Split = true;
      break;

    default:
      llvm_unreachable("Instruction not splitable");
      return false;
  }

  return Split;
}


void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
      const UUPairMap &PairMap) {
  for (auto &Op : MI->operands()) {
    if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
      continue;
    unsigned R = Op.getReg();
    UUPairMap::const_iterator F = PairMap.find(R);
    if (F == PairMap.end())
      continue;
    const UUPair &P = F->second;
    switch (Op.getSubReg()) {
      case Hexagon::subreg_loreg:
        Op.setReg(P.first);
        break;
      case Hexagon::subreg_hireg:
        Op.setReg(P.second);
        break;
    }
    Op.setSubReg(0);
  }
}


void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
      const UUPairMap &PairMap) {
  MachineBasicBlock &B = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();

  for (auto &Op : MI->operands()) {
    if (!Op.isReg() || !Op.isUse())
      continue;
    unsigned R = Op.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(R))
      continue;
    if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
      continue;
    UUPairMap::const_iterator F = PairMap.find(R);
    if (F == PairMap.end())
      continue;
    const UUPair &Pr = F->second;
    unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
    BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
      .addReg(Pr.first)
      .addImm(Hexagon::subreg_loreg)
      .addReg(Pr.second)
      .addImm(Hexagon::subreg_hireg);
    Op.setReg(NewDR);
  }
}


bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
  typedef std::set<MachineInstr*> MISet;
  bool Changed = false;

  DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
        dbgs() << '\n');

  UUPairMap PairMap;

  MISet SplitIns;
  for (unsigned DR : Part) {
    MachineInstr *DefI = MRI->getVRegDef(DR);
    SplitIns.insert(DefI);

    // Collect all instructions, including fixed ones.  We won't split them,
    // but we need to visit them again to insert the REG_SEQUENCE instructions.
    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
         U != W; ++U)
      SplitIns.insert(U->getParent());

    unsigned LoR = MRI->createVirtualRegister(IntRC);
    unsigned HiR = MRI->createVirtualRegister(IntRC);
    DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> "
                 << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n');
    PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
  }

  MISet Erase;
  for (auto MI : SplitIns) {
    if (isFixedInstr(MI)) {
      collapseRegPairs(MI, PairMap);
    } else {
      bool Done = splitInstr(MI, PairMap);
      if (Done)
        Erase.insert(MI);
      Changed |= Done;
    }
  }

  for (unsigned DR : Part) {
    // Before erasing "double" instructions, revisit all uses of the double
    // registers in this partition, and replace all uses of them with subre-
    // gisters, with the corresponding single registers.
    MISet Uses;
    for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
         U != W; ++U)
      Uses.insert(U->getParent());
    for (auto M : Uses)
      replaceSubregUses(M, PairMap);
  }

  for (auto MI : Erase) {
    MachineBasicBlock *B = MI->getParent();
    B->erase(MI);
  }

  return Changed;
}


bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
  DEBUG(dbgs() << "Splitting double registers in function: "
        << MF.getName() << '\n');

  if (skipFunction(*MF.getFunction()))
    return false;

  auto &ST = MF.getSubtarget<HexagonSubtarget>();
  TRI = ST.getRegisterInfo();
  TII = ST.getInstrInfo();
  MRI = &MF.getRegInfo();
  MLI = &getAnalysis<MachineLoopInfo>();

  UUSetMap P2Rs;
  LoopRegMap IRM;

  collectIndRegs(IRM);
  partitionRegisters(P2Rs);

  DEBUG({
    dbgs() << "Register partitioning: (partition #0 is fixed)\n";
    for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
      dbgs() << '#' << I->first << " -> ";
      dump_partition(dbgs(), I->second, *TRI);
      dbgs() << '\n';
    }
  });

  bool Changed = false;
  int Limit = MaxHSDR;

  for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
    if (I->first == 0)
      continue;
    if (Limit >= 0 && Counter >= Limit)
      break;
    USet &Part = I->second;
    DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
    if (!isProfitable(Part, IRM))
      continue;
    Counter++;
    Changed |= splitPartition(Part);
  }

  return Changed;
}

FunctionPass *llvm::createHexagonSplitDoubleRegs() {
  return new HexagonSplitDoubleRegs();
}