aboutsummaryrefslogtreecommitdiff
path: root/doc/man1/pkcs12.pod
diff options
context:
space:
mode:
authorJung-uk Kim <jkim@FreeBSD.org>2018-09-13 19:18:07 +0000
committerJung-uk Kim <jkim@FreeBSD.org>2018-09-13 19:18:07 +0000
commita43ce912fc025d11e1395506111f75fc194d7ba5 (patch)
tree9794cf7720d75938ed0ea4f499c0dcd4b6eacdda /doc/man1/pkcs12.pod
parent02be298e504b8554caca6dc85af450e1ea44d19d (diff)
downloadsrc-a43ce912fc025d11e1395506111f75fc194d7ba5.tar.gz
src-a43ce912fc025d11e1395506111f75fc194d7ba5.zip
Import OpenSSL 1.1.1.vendor/openssl/1.1.1
Notes
Notes: svn path=/vendor-crypto/openssl/dist/; revision=338658 svn path=/vendor-crypto/openssl/1.1.1/; revision=338659; tag=vendor/openssl/1.1.1
Diffstat (limited to 'doc/man1/pkcs12.pod')
-rw-r--r--doc/man1/pkcs12.pod391
1 files changed, 391 insertions, 0 deletions
diff --git a/doc/man1/pkcs12.pod b/doc/man1/pkcs12.pod
new file mode 100644
index 000000000000..3389e595fed7
--- /dev/null
+++ b/doc/man1/pkcs12.pod
@@ -0,0 +1,391 @@
+=pod
+
+=head1 NAME
+
+openssl-pkcs12,
+pkcs12 - PKCS#12 file utility
+
+=head1 SYNOPSIS
+
+B<openssl> B<pkcs12>
+[B<-help>]
+[B<-export>]
+[B<-chain>]
+[B<-inkey file_or_id>]
+[B<-certfile filename>]
+[B<-name name>]
+[B<-caname name>]
+[B<-in filename>]
+[B<-out filename>]
+[B<-noout>]
+[B<-nomacver>]
+[B<-nocerts>]
+[B<-clcerts>]
+[B<-cacerts>]
+[B<-nokeys>]
+[B<-info>]
+[B<-des | -des3 | -idea | -aes128 | -aes192 | -aes256 | -aria128 | -aria192 | -aria256 | -camellia128 | -camellia192 | -camellia256 | -nodes>]
+[B<-noiter>]
+[B<-maciter | -nomaciter | -nomac>]
+[B<-twopass>]
+[B<-descert>]
+[B<-certpbe cipher>]
+[B<-keypbe cipher>]
+[B<-macalg digest>]
+[B<-keyex>]
+[B<-keysig>]
+[B<-password arg>]
+[B<-passin arg>]
+[B<-passout arg>]
+[B<-rand file...>]
+[B<-writerand file>]
+[B<-CAfile file>]
+[B<-CApath dir>]
+[B<-no-CAfile>]
+[B<-no-CApath>]
+[B<-CSP name>]
+
+=head1 DESCRIPTION
+
+The B<pkcs12> command allows PKCS#12 files (sometimes referred to as
+PFX files) to be created and parsed. PKCS#12 files are used by several
+programs including Netscape, MSIE and MS Outlook.
+
+=head1 OPTIONS
+
+There are a lot of options the meaning of some depends of whether a PKCS#12 file
+is being created or parsed. By default a PKCS#12 file is parsed. A PKCS#12
+file can be created by using the B<-export> option (see below).
+
+=head1 PARSING OPTIONS
+
+=over 4
+
+=item B<-help>
+
+Print out a usage message.
+
+=item B<-in filename>
+
+This specifies filename of the PKCS#12 file to be parsed. Standard input is used
+by default.
+
+=item B<-out filename>
+
+The filename to write certificates and private keys to, standard output by
+default. They are all written in PEM format.
+
+=item B<-passin arg>
+
+The PKCS#12 file (i.e. input file) password source. For more information about
+the format of B<arg> see the B<PASS PHRASE ARGUMENTS> section in
+L<openssl(1)>.
+
+=item B<-passout arg>
+
+Pass phrase source to encrypt any outputted private keys with. For more
+information about the format of B<arg> see the B<PASS PHRASE ARGUMENTS> section
+in L<openssl(1)>.
+
+=item B<-password arg>
+
+With -export, -password is equivalent to -passout.
+Otherwise, -password is equivalent to -passin.
+
+=item B<-noout>
+
+This option inhibits output of the keys and certificates to the output file
+version of the PKCS#12 file.
+
+=item B<-clcerts>
+
+Only output client certificates (not CA certificates).
+
+=item B<-cacerts>
+
+Only output CA certificates (not client certificates).
+
+=item B<-nocerts>
+
+No certificates at all will be output.
+
+=item B<-nokeys>
+
+No private keys will be output.
+
+=item B<-info>
+
+Output additional information about the PKCS#12 file structure, algorithms
+used and iteration counts.
+
+=item B<-des>
+
+Use DES to encrypt private keys before outputting.
+
+=item B<-des3>
+
+Use triple DES to encrypt private keys before outputting, this is the default.
+
+=item B<-idea>
+
+Use IDEA to encrypt private keys before outputting.
+
+=item B<-aes128>, B<-aes192>, B<-aes256>
+
+Use AES to encrypt private keys before outputting.
+
+=item B<-aria128>, B<-aria192>, B<-aria256>
+
+Use ARIA to encrypt private keys before outputting.
+
+=item B<-camellia128>, B<-camellia192>, B<-camellia256>
+
+Use Camellia to encrypt private keys before outputting.
+
+=item B<-nodes>
+
+Don't encrypt the private keys at all.
+
+=item B<-nomacver>
+
+Don't attempt to verify the integrity MAC before reading the file.
+
+=item B<-twopass>
+
+Prompt for separate integrity and encryption passwords: most software
+always assumes these are the same so this option will render such
+PKCS#12 files unreadable.
+
+=back
+
+=head1 FILE CREATION OPTIONS
+
+=over 4
+
+=item B<-export>
+
+This option specifies that a PKCS#12 file will be created rather than
+parsed.
+
+=item B<-out filename>
+
+This specifies filename to write the PKCS#12 file to. Standard output is used
+by default.
+
+=item B<-in filename>
+
+The filename to read certificates and private keys from, standard input by
+default. They must all be in PEM format. The order doesn't matter but one
+private key and its corresponding certificate should be present. If additional
+certificates are present they will also be included in the PKCS#12 file.
+
+=item B<-inkey file_or_id>
+
+File to read private key from. If not present then a private key must be present
+in the input file.
+If no engine is used, the argument is taken as a file; if an engine is
+specified, the argument is given to the engine as a key identifier.
+
+=item B<-name friendlyname>
+
+This specifies the "friendly name" for the certificate and private key. This
+name is typically displayed in list boxes by software importing the file.
+
+=item B<-certfile filename>
+
+A filename to read additional certificates from.
+
+=item B<-caname friendlyname>
+
+This specifies the "friendly name" for other certificates. This option may be
+used multiple times to specify names for all certificates in the order they
+appear. Netscape ignores friendly names on other certificates whereas MSIE
+displays them.
+
+=item B<-pass arg>, B<-passout arg>
+
+The PKCS#12 file (i.e. output file) password source. For more information about
+the format of B<arg> see the B<PASS PHRASE ARGUMENTS> section in
+L<openssl(1)>.
+
+=item B<-passin password>
+
+Pass phrase source to decrypt any input private keys with. For more information
+about the format of B<arg> see the B<PASS PHRASE ARGUMENTS> section in
+L<openssl(1)>.
+
+=item B<-chain>
+
+If this option is present then an attempt is made to include the entire
+certificate chain of the user certificate. The standard CA store is used
+for this search. If the search fails it is considered a fatal error.
+
+=item B<-descert>
+
+Encrypt the certificate using triple DES, this may render the PKCS#12
+file unreadable by some "export grade" software. By default the private
+key is encrypted using triple DES and the certificate using 40 bit RC2.
+
+=item B<-keypbe alg>, B<-certpbe alg>
+
+These options allow the algorithm used to encrypt the private key and
+certificates to be selected. Any PKCS#5 v1.5 or PKCS#12 PBE algorithm name
+can be used (see B<NOTES> section for more information). If a cipher name
+(as output by the B<list-cipher-algorithms> command is specified then it
+is used with PKCS#5 v2.0. For interoperability reasons it is advisable to only
+use PKCS#12 algorithms.
+
+=item B<-keyex|-keysig>
+
+Specifies that the private key is to be used for key exchange or just signing.
+This option is only interpreted by MSIE and similar MS software. Normally
+"export grade" software will only allow 512 bit RSA keys to be used for
+encryption purposes but arbitrary length keys for signing. The B<-keysig>
+option marks the key for signing only. Signing only keys can be used for
+S/MIME signing, authenticode (ActiveX control signing) and SSL client
+authentication, however due to a bug only MSIE 5.0 and later support
+the use of signing only keys for SSL client authentication.
+
+=item B<-macalg digest>
+
+Specify the MAC digest algorithm. If not included them SHA1 will be used.
+
+=item B<-nomaciter>, B<-noiter>
+
+These options affect the iteration counts on the MAC and key algorithms.
+Unless you wish to produce files compatible with MSIE 4.0 you should leave
+these options alone.
+
+To discourage attacks by using large dictionaries of common passwords the
+algorithm that derives keys from passwords can have an iteration count applied
+to it: this causes a certain part of the algorithm to be repeated and slows it
+down. The MAC is used to check the file integrity but since it will normally
+have the same password as the keys and certificates it could also be attacked.
+By default both MAC and encryption iteration counts are set to 2048, using
+these options the MAC and encryption iteration counts can be set to 1, since
+this reduces the file security you should not use these options unless you
+really have to. Most software supports both MAC and key iteration counts.
+MSIE 4.0 doesn't support MAC iteration counts so it needs the B<-nomaciter>
+option.
+
+=item B<-maciter>
+
+This option is included for compatibility with previous versions, it used
+to be needed to use MAC iterations counts but they are now used by default.
+
+=item B<-nomac>
+
+Don't attempt to provide the MAC integrity.
+
+=item B<-rand file...>
+
+A file or files containing random data used to seed the random number
+generator.
+Multiple files can be specified separated by an OS-dependent character.
+The separator is B<;> for MS-Windows, B<,> for OpenVMS, and B<:> for
+all others.
+
+=item [B<-writerand file>]
+
+Writes random data to the specified I<file> upon exit.
+This can be used with a subsequent B<-rand> flag.
+
+=item B<-CAfile file>
+
+CA storage as a file.
+
+=item B<-CApath dir>
+
+CA storage as a directory. This directory must be a standard certificate
+directory: that is a hash of each subject name (using B<x509 -hash>) should be
+linked to each certificate.
+
+=item B<-no-CAfile>
+
+Do not load the trusted CA certificates from the default file location.
+
+=item B<-no-CApath>
+
+Do not load the trusted CA certificates from the default directory location.
+
+=item B<-CSP name>
+
+Write B<name> as a Microsoft CSP name.
+
+=back
+
+=head1 NOTES
+
+Although there are a large number of options most of them are very rarely
+used. For PKCS#12 file parsing only B<-in> and B<-out> need to be used
+for PKCS#12 file creation B<-export> and B<-name> are also used.
+
+If none of the B<-clcerts>, B<-cacerts> or B<-nocerts> options are present
+then all certificates will be output in the order they appear in the input
+PKCS#12 files. There is no guarantee that the first certificate present is
+the one corresponding to the private key. Certain software which requires
+a private key and certificate and assumes the first certificate in the
+file is the one corresponding to the private key: this may not always
+be the case. Using the B<-clcerts> option will solve this problem by only
+outputting the certificate corresponding to the private key. If the CA
+certificates are required then they can be output to a separate file using
+the B<-nokeys -cacerts> options to just output CA certificates.
+
+The B<-keypbe> and B<-certpbe> algorithms allow the precise encryption
+algorithms for private keys and certificates to be specified. Normally
+the defaults are fine but occasionally software can't handle triple DES
+encrypted private keys, then the option B<-keypbe PBE-SHA1-RC2-40> can
+be used to reduce the private key encryption to 40 bit RC2. A complete
+description of all algorithms is contained in the B<pkcs8> manual page.
+
+Prior 1.1 release passwords containing non-ASCII characters were encoded
+in non-compliant manner, which limited interoperability, in first hand
+with Windows. But switching to standard-compliant password encoding
+poses problem accessing old data protected with broken encoding. For
+this reason even legacy encodings is attempted when reading the
+data. If you use PKCS#12 files in production application you are advised
+to convert the data, because implemented heuristic approach is not
+MT-safe, its sole goal is to facilitate the data upgrade with this
+utility.
+
+=head1 EXAMPLES
+
+Parse a PKCS#12 file and output it to a file:
+
+ openssl pkcs12 -in file.p12 -out file.pem
+
+Output only client certificates to a file:
+
+ openssl pkcs12 -in file.p12 -clcerts -out file.pem
+
+Don't encrypt the private key:
+
+ openssl pkcs12 -in file.p12 -out file.pem -nodes
+
+Print some info about a PKCS#12 file:
+
+ openssl pkcs12 -in file.p12 -info -noout
+
+Create a PKCS#12 file:
+
+ openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate"
+
+Include some extra certificates:
+
+ openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate" \
+ -certfile othercerts.pem
+
+=head1 SEE ALSO
+
+L<pkcs8(1)>
+
+=head1 COPYRIGHT
+
+Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved.
+
+Licensed under the OpenSSL license (the "License"). You may not use
+this file except in compliance with the License. You can obtain a copy
+in the file LICENSE in the source distribution or at
+L<https://www.openssl.org/source/license.html>.
+
+=cut