aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/BasicAliasAnalysis.cpp
diff options
context:
space:
mode:
authorRoman Divacky <rdivacky@FreeBSD.org>2009-12-01 11:07:05 +0000
committerRoman Divacky <rdivacky@FreeBSD.org>2009-12-01 11:07:05 +0000
commit06f9d4012fb8acea3e9861d5722b5965dbb724d9 (patch)
treeffe0478472eaa0686f11cb02c6df7d257b8719b0 /lib/Analysis/BasicAliasAnalysis.cpp
parent76e2e0ebfdd3d91b07a75822865ea3e9121a99ce (diff)
downloadsrc-06f9d4012fb8acea3e9861d5722b5965dbb724d9.tar.gz
src-06f9d4012fb8acea3e9861d5722b5965dbb724d9.zip
Update LLVM to r90226.
Notes
Notes: svn path=/vendor/llvm/dist/; revision=199989
Diffstat (limited to 'lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r--lib/Analysis/BasicAliasAnalysis.cpp894
1 files changed, 280 insertions, 614 deletions
diff --git a/lib/Analysis/BasicAliasAnalysis.cpp b/lib/Analysis/BasicAliasAnalysis.cpp
index b8d69f41c2a5..b2983c722e22 100644
--- a/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/lib/Analysis/BasicAliasAnalysis.cpp
@@ -14,8 +14,6 @@
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
@@ -25,12 +23,13 @@
#include "llvm/IntrinsicInst.h"
#include "llvm/Operator.h"
#include "llvm/Pass.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
#include <algorithm>
using namespace llvm;
@@ -38,26 +37,6 @@ using namespace llvm;
// Useful predicates
//===----------------------------------------------------------------------===//
-static const Value *GetGEPOperands(const Value *V,
- SmallVector<Value*, 16> &GEPOps) {
- assert(GEPOps.empty() && "Expect empty list to populate!");
- GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
- cast<User>(V)->op_end());
-
- // Accumulate all of the chained indexes into the operand array
- V = cast<User>(V)->getOperand(0);
-
- while (const GEPOperator *G = dyn_cast<GEPOperator>(V)) {
- if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
- !cast<Constant>(GEPOps[0])->isNullValue())
- break; // Don't handle folding arbitrary pointer offsets yet...
- GEPOps.erase(GEPOps.begin()); // Drop the zero index
- GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
- V = G->getOperand(0);
- }
- return V;
-}
-
/// isKnownNonNull - Return true if we know that the specified value is never
/// null.
static bool isKnownNonNull(const Value *V) {
@@ -79,7 +58,12 @@ static bool isKnownNonNull(const Value *V) {
static bool isNonEscapingLocalObject(const Value *V) {
// If this is a local allocation, check to see if it escapes.
if (isa<AllocaInst>(V) || isNoAliasCall(V))
- return !PointerMayBeCaptured(V, false);
+ // Set StoreCaptures to True so that we can assume in our callers that the
+ // pointer is not the result of a load instruction. Currently
+ // PointerMayBeCaptured doesn't have any special analysis for the
+ // StoreCaptures=false case; if it did, our callers could be refined to be
+ // more precise.
+ return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
// If this is an argument that corresponds to a byval or noalias argument,
// then it has not escaped before entering the function. Check if it escapes
@@ -89,7 +73,7 @@ static bool isNonEscapingLocalObject(const Value *V) {
// Don't bother analyzing arguments already known not to escape.
if (A->hasNoCaptureAttr())
return true;
- return !PointerMayBeCaptured(V, false);
+ return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
}
return false;
}
@@ -159,7 +143,6 @@ namespace {
llvm_unreachable("This method may not be called on this function!");
}
- virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
virtual bool pointsToConstantMemory(const Value *P) { return false; }
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
return ModRef;
@@ -167,7 +150,6 @@ namespace {
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
return ModRef;
}
- virtual bool hasNoModRefInfoForCalls() const { return true; }
virtual void deleteValue(Value *V) {}
virtual void copyValue(Value *From, Value *To) {}
@@ -206,10 +188,6 @@ namespace {
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
- /// hasNoModRefInfoForCalls - We can provide mod/ref information against
- /// non-escaping allocations.
- virtual bool hasNoModRefInfoForCalls() const { return false; }
-
/// pointsToConstantMemory - Chase pointers until we find a (constant
/// global) or not.
bool pointsToConstantMemory(const Value *P);
@@ -218,13 +196,14 @@ namespace {
// VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
SmallPtrSet<const Value*, 16> VisitedPHIs;
- // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
- // against another.
- AliasResult aliasGEP(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size);
+ // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
+ // instruction against another.
+ AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
+ const Value *V2, unsigned V2Size,
+ const Value *UnderlyingV1, const Value *UnderlyingV2);
- // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
- // against another.
+ // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
+ // instruction against another.
AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
const Value *V2, unsigned V2Size);
@@ -234,15 +213,6 @@ namespace {
AliasResult aliasCheck(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
-
- // CheckGEPInstructions - Check two GEP instructions with known
- // must-aliasing base pointers. This checks to see if the index expressions
- // preclude the pointers from aliasing...
- AliasResult
- CheckGEPInstructions(const Type* BasePtr1Ty,
- Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
- const Type *BasePtr2Ty,
- Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
};
} // End of anonymous namespace
@@ -264,107 +234,124 @@ ImmutablePass *llvm::createBasicAliasAnalysisPass() {
bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
if (const GlobalVariable *GV =
dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
+ // Note: this doesn't require GV to be "ODR" because it isn't legal for a
+ // global to be marked constant in some modules and non-constant in others.
+ // GV may even be a declaration, not a definition.
return GV->isConstant();
return false;
}
-// getModRefInfo - Check to see if the specified callsite can clobber the
-// specified memory object. Since we only look at local properties of this
-// function, we really can't say much about this query. We do, however, use
-// simple "address taken" analysis on local objects.
-//
+/// getModRefInfo - Check to see if the specified callsite can clobber the
+/// specified memory object. Since we only look at local properties of this
+/// function, we really can't say much about this query. We do, however, use
+/// simple "address taken" analysis on local objects.
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- if (!isa<Constant>(P)) {
- const Value *Object = P->getUnderlyingObject();
-
- // If this is a tail call and P points to a stack location, we know that
- // the tail call cannot access or modify the local stack.
- // We cannot exclude byval arguments here; these belong to the caller of
- // the current function not to the current function, and a tail callee
- // may reference them.
- if (isa<AllocaInst>(Object))
- if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
- if (CI->isTailCall())
- return NoModRef;
-
- // If the pointer is to a locally allocated object that does not escape,
- // then the call can not mod/ref the pointer unless the call takes the
- // argument without capturing it.
- if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
- bool passedAsArg = false;
- // TODO: Eventually only check 'nocapture' arguments.
- for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
- CI != CE; ++CI)
- if (isa<PointerType>((*CI)->getType()) &&
- alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
- passedAsArg = true;
-
- if (!passedAsArg)
+ const Value *Object = P->getUnderlyingObject();
+
+ // If this is a tail call and P points to a stack location, we know that
+ // the tail call cannot access or modify the local stack.
+ // We cannot exclude byval arguments here; these belong to the caller of
+ // the current function not to the current function, and a tail callee
+ // may reference them.
+ if (isa<AllocaInst>(Object))
+ if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
+ if (CI->isTailCall())
return NoModRef;
- }
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::memcpy:
- case Intrinsic::memmove: {
- unsigned Len = ~0U;
- if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
- Len = LenCI->getZExtValue();
- Value *Dest = II->getOperand(1);
- Value *Src = II->getOperand(2);
- if (alias(Dest, Len, P, Size) == NoAlias) {
- if (alias(Src, Len, P, Size) == NoAlias)
- return NoModRef;
- return Ref;
- }
- }
- break;
- case Intrinsic::memset:
- if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
- unsigned Len = LenCI->getZExtValue();
- Value *Dest = II->getOperand(1);
- if (alias(Dest, Len, P, Size) == NoAlias)
- return NoModRef;
- }
- break;
- case Intrinsic::atomic_cmp_swap:
- case Intrinsic::atomic_swap:
- case Intrinsic::atomic_load_add:
- case Intrinsic::atomic_load_sub:
- case Intrinsic::atomic_load_and:
- case Intrinsic::atomic_load_nand:
- case Intrinsic::atomic_load_or:
- case Intrinsic::atomic_load_xor:
- case Intrinsic::atomic_load_max:
- case Intrinsic::atomic_load_min:
- case Intrinsic::atomic_load_umax:
- case Intrinsic::atomic_load_umin:
- if (TD) {
- Value *Op1 = II->getOperand(1);
- unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
- if (alias(Op1, Op1Size, P, Size) == NoAlias)
- return NoModRef;
- }
+
+ // If the pointer is to a locally allocated object that does not escape,
+ // then the call can not mod/ref the pointer unless the call takes the pointer
+ // as an argument, and itself doesn't capture it.
+ if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
+ isNonEscapingLocalObject(Object)) {
+ bool PassedAsArg = false;
+ unsigned ArgNo = 0;
+ for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+ CI != CE; ++CI, ++ArgNo) {
+ // Only look at the no-capture pointer arguments.
+ if (!isa<PointerType>((*CI)->getType()) ||
+ !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
+ continue;
+
+ // If this is a no-capture pointer argument, see if we can tell that it
+ // is impossible to alias the pointer we're checking. If not, we have to
+ // assume that the call could touch the pointer, even though it doesn't
+ // escape.
+ if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
+ PassedAsArg = true;
break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start: {
- unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
- if (alias(II->getOperand(2), PtrSize, P, Size) == NoAlias)
- return NoModRef;
- }
- break;
- case Intrinsic::invariant_end: {
- unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
- if (alias(II->getOperand(3), PtrSize, P, Size) == NoAlias)
- return NoModRef;
- }
- break;
}
}
+
+ if (!PassedAsArg)
+ return NoModRef;
+ }
+
+ // Finally, handle specific knowledge of intrinsics.
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
+ if (II == 0)
+ return AliasAnalysis::getModRefInfo(CS, P, Size);
+
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove: {
+ unsigned Len = ~0U;
+ if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
+ Len = LenCI->getZExtValue();
+ Value *Dest = II->getOperand(1);
+ Value *Src = II->getOperand(2);
+ if (isNoAlias(Dest, Len, P, Size)) {
+ if (isNoAlias(Src, Len, P, Size))
+ return NoModRef;
+ return Ref;
+ }
+ break;
+ }
+ case Intrinsic::memset:
+ // Since memset is 'accesses arguments' only, the AliasAnalysis base class
+ // will handle it for the variable length case.
+ if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
+ unsigned Len = LenCI->getZExtValue();
+ Value *Dest = II->getOperand(1);
+ if (isNoAlias(Dest, Len, P, Size))
+ return NoModRef;
+ }
+ break;
+ case Intrinsic::atomic_cmp_swap:
+ case Intrinsic::atomic_swap:
+ case Intrinsic::atomic_load_add:
+ case Intrinsic::atomic_load_sub:
+ case Intrinsic::atomic_load_and:
+ case Intrinsic::atomic_load_nand:
+ case Intrinsic::atomic_load_or:
+ case Intrinsic::atomic_load_xor:
+ case Intrinsic::atomic_load_max:
+ case Intrinsic::atomic_load_min:
+ case Intrinsic::atomic_load_umax:
+ case Intrinsic::atomic_load_umin:
+ if (TD) {
+ Value *Op1 = II->getOperand(1);
+ unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
+ if (isNoAlias(Op1, Op1Size, P, Size))
+ return NoModRef;
+ }
+ break;
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start: {
+ unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
+ if (isNoAlias(II->getOperand(2), PtrSize, P, Size))
+ return NoModRef;
+ break;
+ }
+ case Intrinsic::invariant_end: {
+ unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
+ if (isNoAlias(II->getOperand(3), PtrSize, P, Size))
+ return NoModRef;
+ break;
+ }
}
// The AliasAnalysis base class has some smarts, lets use them.
@@ -389,141 +376,157 @@ BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
return NoAA::getModRefInfo(CS1, CS2);
}
-// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
-// against another.
-//
+/// GetIndiceDifference - Dest and Src are the variable indices from two
+/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
+/// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
+/// difference between the two pointers.
+static void GetIndiceDifference(
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
+ const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
+ if (Src.empty()) return;
+
+ for (unsigned i = 0, e = Src.size(); i != e; ++i) {
+ const Value *V = Src[i].first;
+ int64_t Scale = Src[i].second;
+
+ // Find V in Dest. This is N^2, but pointer indices almost never have more
+ // than a few variable indexes.
+ for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
+ if (Dest[j].first != V) continue;
+
+ // If we found it, subtract off Scale V's from the entry in Dest. If it
+ // goes to zero, remove the entry.
+ if (Dest[j].second != Scale)
+ Dest[j].second -= Scale;
+ else
+ Dest.erase(Dest.begin()+j);
+ Scale = 0;
+ break;
+ }
+
+ // If we didn't consume this entry, add it to the end of the Dest list.
+ if (Scale)
+ Dest.push_back(std::make_pair(V, -Scale));
+ }
+}
+
+/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
+/// against another pointer. We know that V1 is a GEP, but we don't know
+/// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),
+/// UnderlyingV2 is the same for V2.
+///
AliasAnalysis::AliasResult
-BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
- const Value *V2, unsigned V2Size) {
+BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
+ const Value *V2, unsigned V2Size,
+ const Value *UnderlyingV1,
+ const Value *UnderlyingV2) {
+ int64_t GEP1BaseOffset;
+ SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
+
// If we have two gep instructions with must-alias'ing base pointers, figure
// out if the indexes to the GEP tell us anything about the derived pointer.
- // Note that we also handle chains of getelementptr instructions as well as
- // constant expression getelementptrs here.
- //
- if (isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
- const User *GEP1 = cast<User>(V1);
- const User *GEP2 = cast<User>(V2);
+ if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
+ // Do the base pointers alias?
+ AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
- // If V1 and V2 are identical GEPs, just recurse down on both of them.
- // This allows us to analyze things like:
- // P = gep A, 0, i, 1
- // Q = gep B, 0, i, 1
- // by just analyzing A and B. This is even safe for variable indices.
- if (GEP1->getType() == GEP2->getType() &&
- GEP1->getNumOperands() == GEP2->getNumOperands() &&
- GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
- // All operands are the same, ignoring the base.
- std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
- return aliasCheck(GEP1->getOperand(0), V1Size,
- GEP2->getOperand(0), V2Size);
+ // If we get a No or May, then return it immediately, no amount of analysis
+ // will improve this situation.
+ if (BaseAlias != MustAlias) return BaseAlias;
- // Drill down into the first non-gep value, to test for must-aliasing of
- // the base pointers.
- while (isa<GEPOperator>(GEP1->getOperand(0)) &&
- GEP1->getOperand(1) ==
- Constant::getNullValue(GEP1->getOperand(1)->getType()))
- GEP1 = cast<User>(GEP1->getOperand(0));
- const Value *BasePtr1 = GEP1->getOperand(0);
-
- while (isa<GEPOperator>(GEP2->getOperand(0)) &&
- GEP2->getOperand(1) ==
- Constant::getNullValue(GEP2->getOperand(1)->getType()))
- GEP2 = cast<User>(GEP2->getOperand(0));
- const Value *BasePtr2 = GEP2->getOperand(0);
-
- // Do the base pointers alias?
- AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
- if (BaseAlias == NoAlias) return NoAlias;
- if (BaseAlias == MustAlias) {
- // If the base pointers alias each other exactly, check to see if we can
- // figure out anything about the resultant pointers, to try to prove
- // non-aliasing.
-
- // Collect all of the chained GEP operands together into one simple place
- SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
- BasePtr1 = GetGEPOperands(V1, GEP1Ops);
- BasePtr2 = GetGEPOperands(V2, GEP2Ops);
-
- // If GetGEPOperands were able to fold to the same must-aliased pointer,
- // do the comparison.
- if (BasePtr1 == BasePtr2) {
- AliasResult GAlias =
- CheckGEPInstructions(BasePtr1->getType(),
- &GEP1Ops[0], GEP1Ops.size(), V1Size,
- BasePtr2->getType(),
- &GEP2Ops[0], GEP2Ops.size(), V2Size);
- if (GAlias != MayAlias)
- return GAlias;
- }
+ // Otherwise, we have a MustAlias. Since the base pointers alias each other
+ // exactly, see if the computed offset from the common pointer tells us
+ // about the relation of the resulting pointer.
+ const Value *GEP1BasePtr =
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+
+ int64_t GEP2BaseOffset;
+ SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
+ const Value *GEP2BasePtr =
+ DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
+
+ // If DecomposeGEPExpression isn't able to look all the way through the
+ // addressing operation, we must not have TD and this is too complex for us
+ // to handle without it.
+ if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
+ assert(TD == 0 &&
+ "DecomposeGEPExpression and getUnderlyingObject disagree!");
+ return MayAlias;
}
- }
+
+ // Subtract the GEP2 pointer from the GEP1 pointer to find out their
+ // symbolic difference.
+ GEP1BaseOffset -= GEP2BaseOffset;
+ GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
+
+ } else {
+ // Check to see if these two pointers are related by the getelementptr
+ // instruction. If one pointer is a GEP with a non-zero index of the other
+ // pointer, we know they cannot alias.
- // Check to see if these two pointers are related by a getelementptr
- // instruction. If one pointer is a GEP with a non-zero index of the other
- // pointer, we know they cannot alias.
- //
- if (V1Size == ~0U || V2Size == ~0U)
- return MayAlias;
+ // If both accesses are unknown size, we can't do anything useful here.
+ if (V1Size == ~0U && V2Size == ~0U)
+ return MayAlias;
- SmallVector<Value*, 16> GEPOperands;
- const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
-
- AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
- if (R != MustAlias)
- // If V2 may alias GEP base pointer, conservatively returns MayAlias.
- // If V2 is known not to alias GEP base pointer, then the two values
- // cannot alias per GEP semantics: "A pointer value formed from a
- // getelementptr instruction is associated with the addresses associated
- // with the first operand of the getelementptr".
- return R;
-
- // If there is at least one non-zero constant index, we know they cannot
- // alias.
- bool ConstantFound = false;
- bool AllZerosFound = true;
- for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
- if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
- if (!C->isNullValue()) {
- ConstantFound = true;
- AllZerosFound = false;
- break;
- }
- } else {
- AllZerosFound = false;
+ AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
+ if (R != MustAlias)
+ // If V2 may alias GEP base pointer, conservatively returns MayAlias.
+ // If V2 is known not to alias GEP base pointer, then the two values
+ // cannot alias per GEP semantics: "A pointer value formed from a
+ // getelementptr instruction is associated with the addresses associated
+ // with the first operand of the getelementptr".
+ return R;
+
+ const Value *GEP1BasePtr =
+ DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
+
+ // If DecomposeGEPExpression isn't able to look all the way through the
+ // addressing operation, we must not have TD and this is too complex for us
+ // to handle without it.
+ if (GEP1BasePtr != UnderlyingV1) {
+ assert(TD == 0 &&
+ "DecomposeGEPExpression and getUnderlyingObject disagree!");
+ return MayAlias;
}
-
- // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
- // the ptr, the end result is a must alias also.
- if (AllZerosFound)
+ }
+
+ // In the two GEP Case, if there is no difference in the offsets of the
+ // computed pointers, the resultant pointers are a must alias. This
+ // hapens when we have two lexically identical GEP's (for example).
+ //
+ // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
+ // must aliases the GEP, the end result is a must alias also.
+ if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
return MustAlias;
- if (ConstantFound) {
- if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
+ // If we have a known constant offset, see if this offset is larger than the
+ // access size being queried. If so, and if no variable indices can remove
+ // pieces of this constant, then we know we have a no-alias. For example,
+ // &A[100] != &A.
+
+ // In order to handle cases like &A[100][i] where i is an out of range
+ // subscript, we have to ignore all constant offset pieces that are a multiple
+ // of a scaled index. Do this by removing constant offsets that are a
+ // multiple of any of our variable indices. This allows us to transform
+ // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
+ // provides an offset of 4 bytes (assuming a <= 4 byte access).
+ for (unsigned i = 0, e = GEP1VariableIndices.size();
+ i != e && GEP1BaseOffset;++i)
+ if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
+ GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
+
+ // If our known offset is bigger than the access size, we know we don't have
+ // an alias.
+ if (GEP1BaseOffset) {
+ if (GEP1BaseOffset >= (int64_t)V2Size ||
+ GEP1BaseOffset <= -(int64_t)V1Size)
return NoAlias;
-
- // Otherwise we have to check to see that the distance is more than
- // the size of the argument... build an index vector that is equal to
- // the arguments provided, except substitute 0's for any variable
- // indexes we find...
- if (TD &&
- cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
- for (unsigned i = 0; i != GEPOperands.size(); ++i)
- if (!isa<ConstantInt>(GEPOperands[i]))
- GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
- int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
- &GEPOperands[0],
- GEPOperands.size());
-
- if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
- return NoAlias;
- }
}
-
+
return MayAlias;
}
-// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select instruction
-// against another.
+/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
+/// instruction against another.
AliasAnalysis::AliasResult
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
const Value *V2, unsigned V2Size) {
@@ -683,22 +686,31 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
(V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
return NoAlias;
- // If one pointer is the result of a call/invoke and the other is a
+ // If one pointer is the result of a call/invoke or load and the other is a
// non-escaping local object, then we know the object couldn't escape to a
- // point where the call could return it.
- if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
- isNonEscapingLocalObject(O2) && O1 != O2)
- return NoAlias;
- if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
- isNonEscapingLocalObject(O1) && O1 != O2)
- return NoAlias;
+ // point where the call could return it. The load case works because
+ // isNonEscapingLocalObject considers all stores to be escapes (it
+ // passes true for the StoreCaptures argument to PointerMayBeCaptured).
+ if (O1 != O2) {
+ if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
+ isa<Argument>(O1)) &&
+ isNonEscapingLocalObject(O2))
+ return NoAlias;
+ if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
+ isa<Argument>(O2)) &&
+ isNonEscapingLocalObject(O1))
+ return NoAlias;
+ }
+ // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
+ // GEP can't simplify, we don't even look at the PHI cases.
if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
std::swap(V1, V2);
std::swap(V1Size, V2Size);
+ std::swap(O1, O2);
}
- if (isa<GEPOperator>(V1))
- return aliasGEP(V1, V1Size, V2, V2Size);
+ if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
+ return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
std::swap(V1, V2);
@@ -717,351 +729,5 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
return MayAlias;
}
-// This function is used to determine if the indices of two GEP instructions are
-// equal. V1 and V2 are the indices.
-static bool IndexOperandsEqual(Value *V1, Value *V2) {
- if (V1->getType() == V2->getType())
- return V1 == V2;
- if (Constant *C1 = dyn_cast<Constant>(V1))
- if (Constant *C2 = dyn_cast<Constant>(V2)) {
- // Sign extend the constants to long types, if necessary
- if (C1->getType() != Type::getInt64Ty(C1->getContext()))
- C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
- if (C2->getType() != Type::getInt64Ty(C1->getContext()))
- C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
- return C1 == C2;
- }
- return false;
-}
-
-/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
-/// base pointers. This checks to see if the index expressions preclude the
-/// pointers from aliasing...
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::CheckGEPInstructions(
- const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
- const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
- // We currently can't handle the case when the base pointers have different
- // primitive types. Since this is uncommon anyway, we are happy being
- // extremely conservative.
- if (BasePtr1Ty != BasePtr2Ty)
- return MayAlias;
-
- const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
-
- // Find the (possibly empty) initial sequence of equal values... which are not
- // necessarily constants.
- unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
- unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
- unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
- unsigned UnequalOper = 0;
- while (UnequalOper != MinOperands &&
- IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
- // Advance through the type as we go...
- ++UnequalOper;
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
- BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
- else {
- // If all operands equal each other, then the derived pointers must
- // alias each other...
- BasePtr1Ty = 0;
- assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
- "Ran out of type nesting, but not out of operands?");
- return MustAlias;
- }
- }
-
- // If we have seen all constant operands, and run out of indexes on one of the
- // getelementptrs, check to see if the tail of the leftover one is all zeros.
- // If so, return mustalias.
- if (UnequalOper == MinOperands) {
- if (NumGEP1Ops < NumGEP2Ops) {
- std::swap(GEP1Ops, GEP2Ops);
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
-
- bool AllAreZeros = true;
- for (unsigned i = UnequalOper; i != MaxOperands; ++i)
- if (!isa<Constant>(GEP1Ops[i]) ||
- !cast<Constant>(GEP1Ops[i])->isNullValue()) {
- AllAreZeros = false;
- break;
- }
- if (AllAreZeros) return MustAlias;
- }
-
-
- // So now we know that the indexes derived from the base pointers,
- // which are known to alias, are different. We can still determine a
- // no-alias result if there are differing constant pairs in the index
- // chain. For example:
- // A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
- //
- // We have to be careful here about array accesses. In particular, consider:
- // A[1][0] vs A[0][i]
- // In this case, we don't *know* that the array will be accessed in bounds:
- // the index could even be negative. Because of this, we have to
- // conservatively *give up* and return may alias. We disregard differing
- // array subscripts that are followed by a variable index without going
- // through a struct.
- //
- unsigned SizeMax = std::max(G1S, G2S);
- if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
-
- // Scan for the first operand that is constant and unequal in the
- // two getelementptrs...
- unsigned FirstConstantOper = UnequalOper;
- for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
- const Value *G1Oper = GEP1Ops[FirstConstantOper];
- const Value *G2Oper = GEP2Ops[FirstConstantOper];
-
- if (G1Oper != G2Oper) // Found non-equal constant indexes...
- if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
- if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
- if (G1OC->getType() != G2OC->getType()) {
- // Sign extend both operands to long.
- const Type *Int64Ty = Type::getInt64Ty(G1OC->getContext());
- if (G1OC->getType() != Int64Ty)
- G1OC = ConstantExpr::getSExt(G1OC, Int64Ty);
- if (G2OC->getType() != Int64Ty)
- G2OC = ConstantExpr::getSExt(G2OC, Int64Ty);
- GEP1Ops[FirstConstantOper] = G1OC;
- GEP2Ops[FirstConstantOper] = G2OC;
- }
-
- if (G1OC != G2OC) {
- // Handle the "be careful" case above: if this is an array/vector
- // subscript, scan for a subsequent variable array index.
- if (const SequentialType *STy =
- dyn_cast<SequentialType>(BasePtr1Ty)) {
- const Type *NextTy = STy;
- bool isBadCase = false;
-
- for (unsigned Idx = FirstConstantOper;
- Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
- const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
- if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
- isBadCase = true;
- break;
- }
- // If the array is indexed beyond the bounds of the static type
- // at this level, it will also fall into the "be careful" case.
- // It would theoretically be possible to analyze these cases,
- // but for now just be conservatively correct.
- if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
- if (cast<ConstantInt>(G1OC)->getZExtValue() >=
- ATy->getNumElements() ||
- cast<ConstantInt>(G2OC)->getZExtValue() >=
- ATy->getNumElements()) {
- isBadCase = true;
- break;
- }
- if (const VectorType *VTy = dyn_cast<VectorType>(STy))
- if (cast<ConstantInt>(G1OC)->getZExtValue() >=
- VTy->getNumElements() ||
- cast<ConstantInt>(G2OC)->getZExtValue() >=
- VTy->getNumElements()) {
- isBadCase = true;
- break;
- }
- STy = cast<SequentialType>(NextTy);
- NextTy = cast<SequentialType>(NextTy)->getElementType();
- }
-
- if (isBadCase) G1OC = 0;
- }
-
- // Make sure they are comparable (ie, not constant expressions), and
- // make sure the GEP with the smaller leading constant is GEP1.
- if (G1OC) {
- Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
- G1OC, G2OC);
- if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
- if (CV->getZExtValue()) { // If they are comparable and G2 > G1
- std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
- break;
- }
- }
- }
- }
- BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
- }
-
- // No shared constant operands, and we ran out of common operands. At this
- // point, the GEP instructions have run through all of their operands, and we
- // haven't found evidence that there are any deltas between the GEP's.
- // However, one GEP may have more operands than the other. If this is the
- // case, there may still be hope. Check this now.
- if (FirstConstantOper == MinOperands) {
- // Without TargetData, we won't know what the offsets are.
- if (!TD)
- return MayAlias;
-
- // Make GEP1Ops be the longer one if there is a longer one.
- if (NumGEP1Ops < NumGEP2Ops) {
- std::swap(GEP1Ops, GEP2Ops);
- std::swap(NumGEP1Ops, NumGEP2Ops);
- }
-
- // Is there anything to check?
- if (NumGEP1Ops > MinOperands) {
- for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
- if (isa<ConstantInt>(GEP1Ops[i]) &&
- !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
- // Yup, there's a constant in the tail. Set all variables to
- // constants in the GEP instruction to make it suitable for
- // TargetData::getIndexedOffset.
- for (i = 0; i != MaxOperands; ++i)
- if (!isa<ConstantInt>(GEP1Ops[i]))
- GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
- // Okay, now get the offset. This is the relative offset for the full
- // instruction.
- int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
- NumGEP1Ops);
-
- // Now check without any constants at the end.
- int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
- MinOperands);
-
- // Make sure we compare the absolute difference.
- if (Offset1 > Offset2)
- std::swap(Offset1, Offset2);
-
- // If the tail provided a bit enough offset, return noalias!
- if ((uint64_t)(Offset2-Offset1) >= SizeMax)
- return NoAlias;
- // Otherwise break - we don't look for another constant in the tail.
- break;
- }
- }
-
- // Couldn't find anything useful.
- return MayAlias;
- }
-
- // If there are non-equal constants arguments, then we can figure
- // out a minimum known delta between the two index expressions... at
- // this point we know that the first constant index of GEP1 is less
- // than the first constant index of GEP2.
-
- // Advance BasePtr[12]Ty over this first differing constant operand.
- BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
- getTypeAtIndex(GEP2Ops[FirstConstantOper]);
- BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
- getTypeAtIndex(GEP1Ops[FirstConstantOper]);
-
- // We are going to be using TargetData::getIndexedOffset to determine the
- // offset that each of the GEP's is reaching. To do this, we have to convert
- // all variable references to constant references. To do this, we convert the
- // initial sequence of array subscripts into constant zeros to start with.
- const Type *ZeroIdxTy = GEPPointerTy;
- for (unsigned i = 0; i != FirstConstantOper; ++i) {
- if (!isa<StructType>(ZeroIdxTy))
- GEP1Ops[i] = GEP2Ops[i] =
- Constant::getNullValue(Type::getInt32Ty(ZeroIdxTy->getContext()));
-
- if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
- ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
- }
-
- // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
-
- // Loop over the rest of the operands...
- for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
- const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
- const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
- // If they are equal, use a zero index...
- if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
- if (!isa<ConstantInt>(Op1))
- GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
- // Otherwise, just keep the constants we have.
- } else {
- if (Op1) {
- if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If this is an array index, make sure the array element is in range.
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
- if (Op1C->getZExtValue() >= AT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
- if (Op1C->getZExtValue() >= VT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- }
-
- } else {
- // GEP1 is known to produce a value less than GEP2. To be
- // conservatively correct, we must assume the largest possible
- // constant is used in this position. This cannot be the initial
- // index to the GEP instructions (because we know we have at least one
- // element before this one with the different constant arguments), so
- // we know that the current index must be into either a struct or
- // array. Because we know it's not constant, this cannot be a
- // structure index. Because of this, we can calculate the maximum
- // value possible.
- //
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
- GEP1Ops[i] =
- ConstantInt::get(Type::getInt64Ty(AT->getContext()),
- AT->getNumElements()-1);
- else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
- GEP1Ops[i] =
- ConstantInt::get(Type::getInt64Ty(VT->getContext()),
- VT->getNumElements()-1);
- }
- }
-
- if (Op2) {
- if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
- // If this is an array index, make sure the array element is in range.
- if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
- if (Op2C->getZExtValue() >= AT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
- if (Op2C->getZExtValue() >= VT->getNumElements())
- return MayAlias; // Be conservative with out-of-range accesses
- }
- } else { // Conservatively assume the minimum value for this index
- GEP2Ops[i] = Constant::getNullValue(Op2->getType());
- }
- }
- }
-
- if (BasePtr1Ty && Op1) {
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
- BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
- else
- BasePtr1Ty = 0;
- }
-
- if (BasePtr2Ty && Op2) {
- if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
- BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
- else
- BasePtr2Ty = 0;
- }
- }
-
- if (TD && GEPPointerTy->getElementType()->isSized()) {
- int64_t Offset1 =
- TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
- int64_t Offset2 =
- TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
- assert(Offset1 != Offset2 &&
- "There is at least one different constant here!");
-
- // Make sure we compare the absolute difference.
- if (Offset1 > Offset2)
- std::swap(Offset1, Offset2);
-
- if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
- //cerr << "Determined that these two GEP's don't alias ["
- // << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
- return NoAlias;
- }
- }
- return MayAlias;
-}
-
-// Make sure that anything that uses AliasAnalysis pulls in this file...
+// Make sure that anything that uses AliasAnalysis pulls in this file.
DEFINING_FILE_FOR(BasicAliasAnalysis)