diff options
author | Roman Divacky <rdivacky@FreeBSD.org> | 2009-10-14 18:03:49 +0000 |
---|---|---|
committer | Roman Divacky <rdivacky@FreeBSD.org> | 2009-10-14 18:03:49 +0000 |
commit | 4c8b24812ddcd1dedaca343a6d4e76f91f398981 (patch) | |
tree | 137ebebcae16fb0ce7ab4af456992bbd8d22fced /lib/Analysis/CFG.cpp | |
parent | 5362a71c02e7d448a8ce98cf00c47e353fba5d04 (diff) | |
download | src-4c8b24812ddcd1dedaca343a6d4e76f91f398981.tar.gz src-4c8b24812ddcd1dedaca343a6d4e76f91f398981.zip |
Update clang to r84119.vendor/clang/clang-r84119
Notes
Notes:
svn path=/vendor/clang/dist/; revision=198092
svn path=/vendor/clang/clang-84119/; revision=198093; tag=vendor/clang/clang-r84119
Diffstat (limited to 'lib/Analysis/CFG.cpp')
-rw-r--r-- | lib/Analysis/CFG.cpp | 2084 |
1 files changed, 2084 insertions, 0 deletions
diff --git a/lib/Analysis/CFG.cpp b/lib/Analysis/CFG.cpp new file mode 100644 index 000000000000..7b1d50cb3aee --- /dev/null +++ b/lib/Analysis/CFG.cpp @@ -0,0 +1,2084 @@ +//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the CFG and CFGBuilder classes for representing and +// building Control-Flow Graphs (CFGs) from ASTs. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Support/SaveAndRestore.h" +#include "clang/Analysis/CFG.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/PrettyPrinter.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Format.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" + +using namespace clang; + +namespace { + +static SourceLocation GetEndLoc(Decl* D) { + if (VarDecl* VD = dyn_cast<VarDecl>(D)) + if (Expr* Ex = VD->getInit()) + return Ex->getSourceRange().getEnd(); + + return D->getLocation(); +} + +/// CFGBuilder - This class implements CFG construction from an AST. +/// The builder is stateful: an instance of the builder should be used to only +/// construct a single CFG. +/// +/// Example usage: +/// +/// CFGBuilder builder; +/// CFG* cfg = builder.BuildAST(stmt1); +/// +/// CFG construction is done via a recursive walk of an AST. We actually parse +/// the AST in reverse order so that the successor of a basic block is +/// constructed prior to its predecessor. This allows us to nicely capture +/// implicit fall-throughs without extra basic blocks. +/// +class VISIBILITY_HIDDEN CFGBuilder { + ASTContext *Context; + CFG* cfg; + + CFGBlock* Block; + CFGBlock* Succ; + CFGBlock* ContinueTargetBlock; + CFGBlock* BreakTargetBlock; + CFGBlock* SwitchTerminatedBlock; + CFGBlock* DefaultCaseBlock; + + // LabelMap records the mapping from Label expressions to their blocks. + typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy; + LabelMapTy LabelMap; + + // A list of blocks that end with a "goto" that must be backpatched to their + // resolved targets upon completion of CFG construction. + typedef std::vector<CFGBlock*> BackpatchBlocksTy; + BackpatchBlocksTy BackpatchBlocks; + + // A list of labels whose address has been taken (for indirect gotos). + typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy; + LabelSetTy AddressTakenLabels; + +public: + explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG + Block(NULL), Succ(NULL), + ContinueTargetBlock(NULL), BreakTargetBlock(NULL), + SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) {} + + ~CFGBuilder() { delete cfg; } + + // buildCFG - Used by external clients to construct the CFG. + CFG* buildCFG(Stmt *Statement, ASTContext *C); + +private: + // Visitors to walk an AST and construct the CFG. + CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd); + CFGBlock *VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd); + CFGBlock *VisitBlockExpr(BlockExpr* E, bool alwaysAdd); + CFGBlock *VisitBlockDeclRefExpr(BlockDeclRefExpr* E, bool alwaysAdd); + CFGBlock *VisitBreakStmt(BreakStmt *B); + CFGBlock *VisitCallExpr(CallExpr *C, bool alwaysAdd); + CFGBlock *VisitCaseStmt(CaseStmt *C); + CFGBlock *VisitChooseExpr(ChooseExpr *C); + CFGBlock *VisitCompoundStmt(CompoundStmt *C); + CFGBlock *VisitConditionalOperator(ConditionalOperator *C); + CFGBlock *VisitContinueStmt(ContinueStmt *C); + CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); + CFGBlock *VisitDeclStmt(DeclStmt *DS); + CFGBlock *VisitDeclSubExpr(Decl* D); + CFGBlock *VisitDefaultStmt(DefaultStmt *D); + CFGBlock *VisitDoStmt(DoStmt *D); + CFGBlock *VisitForStmt(ForStmt *F); + CFGBlock *VisitGotoStmt(GotoStmt* G); + CFGBlock *VisitIfStmt(IfStmt *I); + CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); + CFGBlock *VisitLabelStmt(LabelStmt *L); + CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); + CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); + CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); + CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); + CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); + CFGBlock *VisitReturnStmt(ReturnStmt* R); + CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, bool alwaysAdd); + CFGBlock *VisitStmtExpr(StmtExpr *S, bool alwaysAdd); + CFGBlock *VisitSwitchStmt(SwitchStmt *S); + CFGBlock *VisitWhileStmt(WhileStmt *W); + + CFGBlock *Visit(Stmt *S, bool alwaysAdd = false); + CFGBlock *VisitStmt(Stmt *S, bool alwaysAdd); + CFGBlock *VisitChildren(Stmt* S); + + // NYS == Not Yet Supported + CFGBlock* NYS() { + badCFG = true; + return Block; + } + + void autoCreateBlock() { if (!Block) Block = createBlock(); } + CFGBlock *createBlock(bool add_successor = true); + bool FinishBlock(CFGBlock* B); + CFGBlock *addStmt(Stmt *S) { return Visit(S, true); } + + void AppendStmt(CFGBlock *B, Stmt *S) { + B->appendStmt(S, cfg->getBumpVectorContext()); + } + + void AddSuccessor(CFGBlock *B, CFGBlock *S) { + B->addSuccessor(S, cfg->getBumpVectorContext()); + } + + /// TryResult - a class representing a variant over the values + /// 'true', 'false', or 'unknown'. This is returned by TryEvaluateBool, + /// and is used by the CFGBuilder to decide if a branch condition + /// can be decided up front during CFG construction. + class TryResult { + int X; + public: + TryResult(bool b) : X(b ? 1 : 0) {} + TryResult() : X(-1) {} + + bool isTrue() const { return X == 1; } + bool isFalse() const { return X == 0; } + bool isKnown() const { return X >= 0; } + void negate() { + assert(isKnown()); + X ^= 0x1; + } + }; + + /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 + /// if we can evaluate to a known value, otherwise return -1. + TryResult TryEvaluateBool(Expr *S) { + Expr::EvalResult Result; + if (!S->isTypeDependent() && !S->isValueDependent() && + S->Evaluate(Result, *Context) && Result.Val.isInt()) + return Result.Val.getInt().getBoolValue(); + + return TryResult(); + } + + bool badCFG; +}; + +// FIXME: Add support for dependent-sized array types in C++? +// Does it even make sense to build a CFG for an uninstantiated template? +static VariableArrayType* FindVA(Type* t) { + while (ArrayType* vt = dyn_cast<ArrayType>(t)) { + if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt)) + if (vat->getSizeExpr()) + return vat; + + t = vt->getElementType().getTypePtr(); + } + + return 0; +} + +/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an +/// arbitrary statement. Examples include a single expression or a function +/// body (compound statement). The ownership of the returned CFG is +/// transferred to the caller. If CFG construction fails, this method returns +/// NULL. +CFG* CFGBuilder::buildCFG(Stmt* Statement, ASTContext* C) { + Context = C; + assert(cfg); + if (!Statement) + return NULL; + + badCFG = false; + + // Create an empty block that will serve as the exit block for the CFG. Since + // this is the first block added to the CFG, it will be implicitly registered + // as the exit block. + Succ = createBlock(); + assert(Succ == &cfg->getExit()); + Block = NULL; // the EXIT block is empty. Create all other blocks lazily. + + // Visit the statements and create the CFG. + CFGBlock* B = addStmt(Statement); + if (!B) B = Succ; + + if (B) { + // Finalize the last constructed block. This usually involves reversing the + // order of the statements in the block. + if (Block) FinishBlock(B); + + // Backpatch the gotos whose label -> block mappings we didn't know when we + // encountered them. + for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), + E = BackpatchBlocks.end(); I != E; ++I ) { + + CFGBlock* B = *I; + GotoStmt* G = cast<GotoStmt>(B->getTerminator()); + LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); + + // If there is no target for the goto, then we are looking at an + // incomplete AST. Handle this by not registering a successor. + if (LI == LabelMap.end()) continue; + + AddSuccessor(B, LI->second); + } + + // Add successors to the Indirect Goto Dispatch block (if we have one). + if (CFGBlock* B = cfg->getIndirectGotoBlock()) + for (LabelSetTy::iterator I = AddressTakenLabels.begin(), + E = AddressTakenLabels.end(); I != E; ++I ) { + + // Lookup the target block. + LabelMapTy::iterator LI = LabelMap.find(*I); + + // If there is no target block that contains label, then we are looking + // at an incomplete AST. Handle this by not registering a successor. + if (LI == LabelMap.end()) continue; + + AddSuccessor(B, LI->second); + } + + Succ = B; + } + + // Create an empty entry block that has no predecessors. + cfg->setEntry(createBlock()); + + if (badCFG) { + delete cfg; + cfg = NULL; + return NULL; + } + + // NULL out cfg so that repeated calls to the builder will fail and that the + // ownership of the constructed CFG is passed to the caller. + CFG* t = cfg; + cfg = NULL; + return t; +} + +/// createBlock - Used to lazily create blocks that are connected +/// to the current (global) succcessor. +CFGBlock* CFGBuilder::createBlock(bool add_successor) { + CFGBlock* B = cfg->createBlock(); + if (add_successor && Succ) + AddSuccessor(B, Succ); + return B; +} + +/// FinishBlock - "Finalize" the block by checking if we have a bad CFG. +bool CFGBuilder::FinishBlock(CFGBlock* B) { + if (badCFG) + return false; + + assert(B); + return true; +} + +/// Visit - Walk the subtree of a statement and add extra +/// blocks for ternary operators, &&, and ||. We also process "," and +/// DeclStmts (which may contain nested control-flow). +CFGBlock* CFGBuilder::Visit(Stmt * S, bool alwaysAdd) { +tryAgain: + switch (S->getStmtClass()) { + default: + return VisitStmt(S, alwaysAdd); + + case Stmt::AddrLabelExprClass: + return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), alwaysAdd); + + case Stmt::BinaryOperatorClass: + return VisitBinaryOperator(cast<BinaryOperator>(S), alwaysAdd); + + case Stmt::BlockExprClass: + return VisitBlockExpr(cast<BlockExpr>(S), alwaysAdd); + + case Stmt::BlockDeclRefExprClass: + return VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), alwaysAdd); + + case Stmt::BreakStmtClass: + return VisitBreakStmt(cast<BreakStmt>(S)); + + case Stmt::CallExprClass: + return VisitCallExpr(cast<CallExpr>(S), alwaysAdd); + + case Stmt::CaseStmtClass: + return VisitCaseStmt(cast<CaseStmt>(S)); + + case Stmt::ChooseExprClass: + return VisitChooseExpr(cast<ChooseExpr>(S)); + + case Stmt::CompoundStmtClass: + return VisitCompoundStmt(cast<CompoundStmt>(S)); + + case Stmt::ConditionalOperatorClass: + return VisitConditionalOperator(cast<ConditionalOperator>(S)); + + case Stmt::ContinueStmtClass: + return VisitContinueStmt(cast<ContinueStmt>(S)); + + case Stmt::DeclStmtClass: + return VisitDeclStmt(cast<DeclStmt>(S)); + + case Stmt::DefaultStmtClass: + return VisitDefaultStmt(cast<DefaultStmt>(S)); + + case Stmt::DoStmtClass: + return VisitDoStmt(cast<DoStmt>(S)); + + case Stmt::ForStmtClass: + return VisitForStmt(cast<ForStmt>(S)); + + case Stmt::GotoStmtClass: + return VisitGotoStmt(cast<GotoStmt>(S)); + + case Stmt::IfStmtClass: + return VisitIfStmt(cast<IfStmt>(S)); + + case Stmt::IndirectGotoStmtClass: + return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); + + case Stmt::LabelStmtClass: + return VisitLabelStmt(cast<LabelStmt>(S)); + + case Stmt::ObjCAtCatchStmtClass: + return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); + + case Stmt::CXXThrowExprClass: + return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); + + case Stmt::ObjCAtSynchronizedStmtClass: + return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); + + case Stmt::ObjCAtThrowStmtClass: + return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); + + case Stmt::ObjCAtTryStmtClass: + return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); + + case Stmt::ObjCForCollectionStmtClass: + return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); + + case Stmt::ParenExprClass: + S = cast<ParenExpr>(S)->getSubExpr(); + goto tryAgain; + + case Stmt::NullStmtClass: + return Block; + + case Stmt::ReturnStmtClass: + return VisitReturnStmt(cast<ReturnStmt>(S)); + + case Stmt::SizeOfAlignOfExprClass: + return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), alwaysAdd); + + case Stmt::StmtExprClass: + return VisitStmtExpr(cast<StmtExpr>(S), alwaysAdd); + + case Stmt::SwitchStmtClass: + return VisitSwitchStmt(cast<SwitchStmt>(S)); + + case Stmt::WhileStmtClass: + return VisitWhileStmt(cast<WhileStmt>(S)); + } +} + +CFGBlock *CFGBuilder::VisitStmt(Stmt *S, bool alwaysAdd) { + if (alwaysAdd) { + autoCreateBlock(); + AppendStmt(Block, S); + } + + return VisitChildren(S); +} + +/// VisitChildren - Visit the children of a Stmt. +CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) { + CFGBlock *B = Block; + for (Stmt::child_iterator I = Terminator->child_begin(), + E = Terminator->child_end(); I != E; ++I) { + if (*I) B = Visit(*I); + } + return B; +} + +CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd) { + AddressTakenLabels.insert(A->getLabel()); + + if (alwaysAdd) { + autoCreateBlock(); + AppendStmt(Block, A); + } + + return Block; +} + +CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd) { + if (B->isLogicalOp()) { // && or || + CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); + AppendStmt(ConfluenceBlock, B); + + if (!FinishBlock(ConfluenceBlock)) + return 0; + + // create the block evaluating the LHS + CFGBlock* LHSBlock = createBlock(false); + LHSBlock->setTerminator(B); + + // create the block evaluating the RHS + Succ = ConfluenceBlock; + Block = NULL; + CFGBlock* RHSBlock = addStmt(B->getRHS()); + if (!FinishBlock(RHSBlock)) + return 0; + + // See if this is a known constant. + TryResult KnownVal = TryEvaluateBool(B->getLHS()); + if (KnownVal.isKnown() && (B->getOpcode() == BinaryOperator::LOr)) + KnownVal.negate(); + + // Now link the LHSBlock with RHSBlock. + if (B->getOpcode() == BinaryOperator::LOr) { + AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock); + AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock); + } else { + assert (B->getOpcode() == BinaryOperator::LAnd); + AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock); + AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock); + } + + // Generate the blocks for evaluating the LHS. + Block = LHSBlock; + return addStmt(B->getLHS()); + } + else if (B->getOpcode() == BinaryOperator::Comma) { // , + autoCreateBlock(); + AppendStmt(Block, B); + addStmt(B->getRHS()); + return addStmt(B->getLHS()); + } + + return VisitStmt(B, alwaysAdd); +} + +CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr* E, bool alwaysAdd) { + // FIXME + return NYS(); +} + +CFGBlock *CFGBuilder::VisitBlockDeclRefExpr(BlockDeclRefExpr* E, + bool alwaysAdd) { + // FIXME + return NYS(); +} + +CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { + // "break" is a control-flow statement. Thus we stop processing the current + // block. + if (Block && !FinishBlock(Block)) + return 0; + + // Now create a new block that ends with the break statement. + Block = createBlock(false); + Block->setTerminator(B); + + // If there is no target for the break, then we are looking at an incomplete + // AST. This means that the CFG cannot be constructed. + if (BreakTargetBlock) + AddSuccessor(Block, BreakTargetBlock); + else + badCFG = true; + + + return Block; +} + +CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, bool alwaysAdd) { + // If this is a call to a no-return function, this stops the block here. + bool NoReturn = false; + if (C->getCallee()->getType().getNoReturnAttr()) { + NoReturn = true; + } + + if (FunctionDecl *FD = C->getDirectCallee()) + if (FD->hasAttr<NoReturnAttr>()) + NoReturn = true; + + if (!NoReturn) + return VisitStmt(C, alwaysAdd); + + if (Block && !FinishBlock(Block)) + return 0; + + // Create new block with no successor for the remaining pieces. + Block = createBlock(false); + AppendStmt(Block, C); + + // Wire this to the exit block directly. + AddSuccessor(Block, &cfg->getExit()); + + return VisitChildren(C); +} + +CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C) { + CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); + AppendStmt(ConfluenceBlock, C); + if (!FinishBlock(ConfluenceBlock)) + return 0; + + Succ = ConfluenceBlock; + Block = NULL; + CFGBlock* LHSBlock = addStmt(C->getLHS()); + if (!FinishBlock(LHSBlock)) + return 0; + + Succ = ConfluenceBlock; + Block = NULL; + CFGBlock* RHSBlock = addStmt(C->getRHS()); + if (!FinishBlock(RHSBlock)) + return 0; + + Block = createBlock(false); + // See if this is a known constant. + const TryResult& KnownVal = TryEvaluateBool(C->getCond()); + AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock); + AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock); + Block->setTerminator(C); + return addStmt(C->getCond()); +} + + +CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) { + CFGBlock* LastBlock = Block; + + for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend(); + I != E; ++I ) { + LastBlock = addStmt(*I); + + if (badCFG) + return NULL; + } + return LastBlock; +} + +CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C) { + // Create the confluence block that will "merge" the results of the ternary + // expression. + CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); + AppendStmt(ConfluenceBlock, C); + if (!FinishBlock(ConfluenceBlock)) + return 0; + + // Create a block for the LHS expression if there is an LHS expression. A + // GCC extension allows LHS to be NULL, causing the condition to be the + // value that is returned instead. + // e.g: x ?: y is shorthand for: x ? x : y; + Succ = ConfluenceBlock; + Block = NULL; + CFGBlock* LHSBlock = NULL; + if (C->getLHS()) { + LHSBlock = addStmt(C->getLHS()); + if (!FinishBlock(LHSBlock)) + return 0; + Block = NULL; + } + + // Create the block for the RHS expression. + Succ = ConfluenceBlock; + CFGBlock* RHSBlock = addStmt(C->getRHS()); + if (!FinishBlock(RHSBlock)) + return 0; + + // Create the block that will contain the condition. + Block = createBlock(false); + + // See if this is a known constant. + const TryResult& KnownVal = TryEvaluateBool(C->getCond()); + if (LHSBlock) { + AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock); + } else { + if (KnownVal.isFalse()) { + // If we know the condition is false, add NULL as the successor for + // the block containing the condition. In this case, the confluence + // block will have just one predecessor. + AddSuccessor(Block, 0); + assert(ConfluenceBlock->pred_size() == 1); + } else { + // If we have no LHS expression, add the ConfluenceBlock as a direct + // successor for the block containing the condition. Moreover, we need to + // reverse the order of the predecessors in the ConfluenceBlock because + // the RHSBlock will have been added to the succcessors already, and we + // want the first predecessor to the the block containing the expression + // for the case when the ternary expression evaluates to true. + AddSuccessor(Block, ConfluenceBlock); + assert(ConfluenceBlock->pred_size() == 2); + std::reverse(ConfluenceBlock->pred_begin(), + ConfluenceBlock->pred_end()); + } + } + + AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock); + Block->setTerminator(C); + return addStmt(C->getCond()); +} + +CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { + autoCreateBlock(); + + if (DS->isSingleDecl()) { + AppendStmt(Block, DS); + return VisitDeclSubExpr(DS->getSingleDecl()); + } + + CFGBlock *B = 0; + + // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy. + typedef llvm::SmallVector<Decl*,10> BufTy; + BufTy Buf(DS->decl_begin(), DS->decl_end()); + + for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) { + // Get the alignment of the new DeclStmt, padding out to >=8 bytes. + unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8 + ? 8 : llvm::AlignOf<DeclStmt>::Alignment; + + // Allocate the DeclStmt using the BumpPtrAllocator. It will get + // automatically freed with the CFG. + DeclGroupRef DG(*I); + Decl *D = *I; + void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A); + DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); + + // Append the fake DeclStmt to block. + AppendStmt(Block, DSNew); + B = VisitDeclSubExpr(D); + } + + return B; +} + +/// VisitDeclSubExpr - Utility method to add block-level expressions for +/// initializers in Decls. +CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) { + assert(Block); + + VarDecl *VD = dyn_cast<VarDecl>(D); + + if (!VD) + return Block; + + Expr *Init = VD->getInit(); + + if (Init) { + // Optimization: Don't create separate block-level statements for literals. + switch (Init->getStmtClass()) { + case Stmt::IntegerLiteralClass: + case Stmt::CharacterLiteralClass: + case Stmt::StringLiteralClass: + break; + default: + Block = addStmt(Init); + } + } + + // If the type of VD is a VLA, then we must process its size expressions. + for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0; + VA = FindVA(VA->getElementType().getTypePtr())) + Block = addStmt(VA->getSizeExpr()); + + return Block; +} + +CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) { + // We may see an if statement in the middle of a basic block, or it may be the + // first statement we are processing. In either case, we create a new basic + // block. First, we create the blocks for the then...else statements, and + // then we create the block containing the if statement. If we were in the + // middle of a block, we stop processing that block. That block is then the + // implicit successor for the "then" and "else" clauses. + + // The block we were proccessing is now finished. Make it the successor + // block. + if (Block) { + Succ = Block; + if (!FinishBlock(Block)) + return 0; + } + + // Process the false branch. + CFGBlock* ElseBlock = Succ; + + if (Stmt* Else = I->getElse()) { + SaveAndRestore<CFGBlock*> sv(Succ); + + // NULL out Block so that the recursive call to Visit will + // create a new basic block. + Block = NULL; + ElseBlock = addStmt(Else); + + if (!ElseBlock) // Can occur when the Else body has all NullStmts. + ElseBlock = sv.get(); + else if (Block) { + if (!FinishBlock(ElseBlock)) + return 0; + } + } + + // Process the true branch. + CFGBlock* ThenBlock; + { + Stmt* Then = I->getThen(); + assert (Then); + SaveAndRestore<CFGBlock*> sv(Succ); + Block = NULL; + ThenBlock = addStmt(Then); + + if (!ThenBlock) { + // We can reach here if the "then" body has all NullStmts. + // Create an empty block so we can distinguish between true and false + // branches in path-sensitive analyses. + ThenBlock = createBlock(false); + AddSuccessor(ThenBlock, sv.get()); + } else if (Block) { + if (!FinishBlock(ThenBlock)) + return 0; + } + } + + // Now create a new block containing the if statement. + Block = createBlock(false); + + // Set the terminator of the new block to the If statement. + Block->setTerminator(I); + + // See if this is a known constant. + const TryResult &KnownVal = TryEvaluateBool(I->getCond()); + + // Now add the successors. + AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock); + AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock); + + // Add the condition as the last statement in the new block. This may create + // new blocks as the condition may contain control-flow. Any newly created + // blocks will be pointed to be "Block". + return addStmt(I->getCond()); +} + + +CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) { + // If we were in the middle of a block we stop processing that block. + // + // NOTE: If a "return" appears in the middle of a block, this means that the + // code afterwards is DEAD (unreachable). We still keep a basic block + // for that code; a simple "mark-and-sweep" from the entry block will be + // able to report such dead blocks. + if (Block) + FinishBlock(Block); + + // Create the new block. + Block = createBlock(false); + + // The Exit block is the only successor. + AddSuccessor(Block, &cfg->getExit()); + + // Add the return statement to the block. This may create new blocks if R + // contains control-flow (short-circuit operations). + return VisitStmt(R, true); +} + +CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) { + // Get the block of the labeled statement. Add it to our map. + addStmt(L->getSubStmt()); + CFGBlock* LabelBlock = Block; + + if (!LabelBlock) // This can happen when the body is empty, i.e. + LabelBlock = createBlock(); // scopes that only contains NullStmts. + + assert(LabelMap.find(L) == LabelMap.end() && "label already in map"); + LabelMap[ L ] = LabelBlock; + + // Labels partition blocks, so this is the end of the basic block we were + // processing (L is the block's label). Because this is label (and we have + // already processed the substatement) there is no extra control-flow to worry + // about. + LabelBlock->setLabel(L); + if (!FinishBlock(LabelBlock)) + return 0; + + // We set Block to NULL to allow lazy creation of a new block (if necessary); + Block = NULL; + + // This block is now the implicit successor of other blocks. + Succ = LabelBlock; + + return LabelBlock; +} + +CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) { + // Goto is a control-flow statement. Thus we stop processing the current + // block and create a new one. + if (Block) + FinishBlock(Block); + + Block = createBlock(false); + Block->setTerminator(G); + + // If we already know the mapping to the label block add the successor now. + LabelMapTy::iterator I = LabelMap.find(G->getLabel()); + + if (I == LabelMap.end()) + // We will need to backpatch this block later. + BackpatchBlocks.push_back(Block); + else + AddSuccessor(Block, I->second); + + return Block; +} + +CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) { + CFGBlock* LoopSuccessor = NULL; + + // "for" is a control-flow statement. Thus we stop processing the current + // block. + if (Block) { + if (!FinishBlock(Block)) + return 0; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock* ExitConditionBlock = createBlock(false); + CFGBlock* EntryConditionBlock = ExitConditionBlock; + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(F); + + // Now add the actual condition to the condition block. Because the condition + // itself may contain control-flow, new blocks may be created. + if (Stmt* C = F->getCond()) { + Block = ExitConditionBlock; + EntryConditionBlock = addStmt(C); + if (Block) { + if (!FinishBlock(EntryConditionBlock)) + return 0; + } + } + + // The condition block is the implicit successor for the loop body as well as + // any code above the loop. + Succ = EntryConditionBlock; + + // See if this is a known constant. + TryResult KnownVal(true); + + if (F->getCond()) + KnownVal = TryEvaluateBool(F->getCond()); + + // Now create the loop body. + { + assert (F->getBody()); + + // Save the current values for Block, Succ, and continue and break targets + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), + save_continue(ContinueTargetBlock), + save_break(BreakTargetBlock); + + // Create a new block to contain the (bottom) of the loop body. + Block = NULL; + + if (Stmt* I = F->getInc()) { + // Generate increment code in its own basic block. This is the target of + // continue statements. + Succ = addStmt(I); + } else { + // No increment code. Create a special, empty, block that is used as the + // target block for "looping back" to the start of the loop. + assert(Succ == EntryConditionBlock); + Succ = createBlock(); + } + + // Finish up the increment (or empty) block if it hasn't been already. + if (Block) { + assert(Block == Succ); + if (!FinishBlock(Block)) + return 0; + Block = 0; + } + + ContinueTargetBlock = Succ; + + // The starting block for the loop increment is the block that should + // represent the 'loop target' for looping back to the start of the loop. + ContinueTargetBlock->setLoopTarget(F); + + // All breaks should go to the code following the loop. + BreakTargetBlock = LoopSuccessor; + + // Now populate the body block, and in the process create new blocks as we + // walk the body of the loop. + CFGBlock* BodyBlock = addStmt(F->getBody()); + + if (!BodyBlock) + BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;" + else if (Block && !FinishBlock(BodyBlock)) + return 0; + + // This new body block is a successor to our "exit" condition block. + AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock); + } + + // Link up the condition block with the code that follows the loop. (the + // false branch). + AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor); + + // If the loop contains initialization, create a new block for those + // statements. This block can also contain statements that precede the loop. + if (Stmt* I = F->getInit()) { + Block = createBlock(); + return addStmt(I); + } else { + // There is no loop initialization. We are thus basically a while loop. + // NULL out Block to force lazy block construction. + Block = NULL; + Succ = EntryConditionBlock; + return EntryConditionBlock; + } +} + +CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) { + // Objective-C fast enumeration 'for' statements: + // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC + // + // for ( Type newVariable in collection_expression ) { statements } + // + // becomes: + // + // prologue: + // 1. collection_expression + // T. jump to loop_entry + // loop_entry: + // 1. side-effects of element expression + // 1. ObjCForCollectionStmt [performs binding to newVariable] + // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] + // TB: + // statements + // T. jump to loop_entry + // FB: + // what comes after + // + // and + // + // Type existingItem; + // for ( existingItem in expression ) { statements } + // + // becomes: + // + // the same with newVariable replaced with existingItem; the binding works + // the same except that for one ObjCForCollectionStmt::getElement() returns + // a DeclStmt and the other returns a DeclRefExpr. + // + + CFGBlock* LoopSuccessor = 0; + + if (Block) { + if (!FinishBlock(Block)) + return 0; + LoopSuccessor = Block; + Block = 0; + } else + LoopSuccessor = Succ; + + // Build the condition blocks. + CFGBlock* ExitConditionBlock = createBlock(false); + CFGBlock* EntryConditionBlock = ExitConditionBlock; + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(S); + + // The last statement in the block should be the ObjCForCollectionStmt, which + // performs the actual binding to 'element' and determines if there are any + // more items in the collection. + AppendStmt(ExitConditionBlock, S); + Block = ExitConditionBlock; + + // Walk the 'element' expression to see if there are any side-effects. We + // generate new blocks as necesary. We DON'T add the statement by default to + // the CFG unless it contains control-flow. + EntryConditionBlock = Visit(S->getElement(), false); + if (Block) { + if (!FinishBlock(EntryConditionBlock)) + return 0; + Block = 0; + } + + // The condition block is the implicit successor for the loop body as well as + // any code above the loop. + Succ = EntryConditionBlock; + + // Now create the true branch. + { + // Save the current values for Succ, continue and break targets. + SaveAndRestore<CFGBlock*> save_Succ(Succ), + save_continue(ContinueTargetBlock), save_break(BreakTargetBlock); + + BreakTargetBlock = LoopSuccessor; + ContinueTargetBlock = EntryConditionBlock; + + CFGBlock* BodyBlock = addStmt(S->getBody()); + + if (!BodyBlock) + BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;" + else if (Block) { + if (!FinishBlock(BodyBlock)) + return 0; + } + + // This new body block is a successor to our "exit" condition block. + AddSuccessor(ExitConditionBlock, BodyBlock); + } + + // Link up the condition block with the code that follows the loop. + // (the false branch). + AddSuccessor(ExitConditionBlock, LoopSuccessor); + + // Now create a prologue block to contain the collection expression. + Block = createBlock(); + return addStmt(S->getCollection()); +} + +CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) { + // FIXME: Add locking 'primitives' to CFG for @synchronized. + + // Inline the body. + CFGBlock *SyncBlock = addStmt(S->getSynchBody()); + + // The sync body starts its own basic block. This makes it a little easier + // for diagnostic clients. + if (SyncBlock) { + if (!FinishBlock(SyncBlock)) + return 0; + + Block = 0; + } + + Succ = SyncBlock; + + // Inline the sync expression. + return addStmt(S->getSynchExpr()); +} + +CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) { + // FIXME + return NYS(); +} + +CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) { + CFGBlock* LoopSuccessor = NULL; + + // "while" is a control-flow statement. Thus we stop processing the current + // block. + if (Block) { + if (!FinishBlock(Block)) + return 0; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock* ExitConditionBlock = createBlock(false); + CFGBlock* EntryConditionBlock = ExitConditionBlock; + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(W); + + // Now add the actual condition to the condition block. Because the condition + // itself may contain control-flow, new blocks may be created. Thus we update + // "Succ" after adding the condition. + if (Stmt* C = W->getCond()) { + Block = ExitConditionBlock; + EntryConditionBlock = addStmt(C); + assert(Block == EntryConditionBlock); + if (Block) { + if (!FinishBlock(EntryConditionBlock)) + return 0; + } + } + + // The condition block is the implicit successor for the loop body as well as + // any code above the loop. + Succ = EntryConditionBlock; + + // See if this is a known constant. + const TryResult& KnownVal = TryEvaluateBool(W->getCond()); + + // Process the loop body. + { + assert(W->getBody()); + + // Save the current values for Block, Succ, and continue and break targets + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), + save_continue(ContinueTargetBlock), + save_break(BreakTargetBlock); + + // Create an empty block to represent the transition block for looping back + // to the head of the loop. + Block = 0; + assert(Succ == EntryConditionBlock); + Succ = createBlock(); + Succ->setLoopTarget(W); + ContinueTargetBlock = Succ; + + // All breaks should go to the code following the loop. + BreakTargetBlock = LoopSuccessor; + + // NULL out Block to force lazy instantiation of blocks for the body. + Block = NULL; + + // Create the body. The returned block is the entry to the loop body. + CFGBlock* BodyBlock = addStmt(W->getBody()); + + if (!BodyBlock) + BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;" + else if (Block) { + if (!FinishBlock(BodyBlock)) + return 0; + } + + // Add the loop body entry as a successor to the condition. + AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock); + } + + // Link up the condition block with the code that follows the loop. (the + // false branch). + AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor); + + // There can be no more statements in the condition block since we loop back + // to this block. NULL out Block to force lazy creation of another block. + Block = NULL; + + // Return the condition block, which is the dominating block for the loop. + Succ = EntryConditionBlock; + return EntryConditionBlock; +} + + +CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) { + // FIXME: For now we pretend that @catch and the code it contains does not + // exit. + return Block; +} + +CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) { + // FIXME: This isn't complete. We basically treat @throw like a return + // statement. + + // If we were in the middle of a block we stop processing that block. + if (Block && !FinishBlock(Block)) + return 0; + + // Create the new block. + Block = createBlock(false); + + // The Exit block is the only successor. + AddSuccessor(Block, &cfg->getExit()); + + // Add the statement to the block. This may create new blocks if S contains + // control-flow (short-circuit operations). + return VisitStmt(S, true); +} + +CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) { + // If we were in the middle of a block we stop processing that block. + if (Block && !FinishBlock(Block)) + return 0; + + // Create the new block. + Block = createBlock(false); + + // The Exit block is the only successor. + AddSuccessor(Block, &cfg->getExit()); + + // Add the statement to the block. This may create new blocks if S contains + // control-flow (short-circuit operations). + return VisitStmt(T, true); +} + +CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) { + CFGBlock* LoopSuccessor = NULL; + + // "do...while" is a control-flow statement. Thus we stop processing the + // current block. + if (Block) { + if (!FinishBlock(Block)) + return 0; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock* ExitConditionBlock = createBlock(false); + CFGBlock* EntryConditionBlock = ExitConditionBlock; + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(D); + + // Now add the actual condition to the condition block. Because the condition + // itself may contain control-flow, new blocks may be created. + if (Stmt* C = D->getCond()) { + Block = ExitConditionBlock; + EntryConditionBlock = addStmt(C); + if (Block) { + if (!FinishBlock(EntryConditionBlock)) + return 0; + } + } + + // The condition block is the implicit successor for the loop body. + Succ = EntryConditionBlock; + + // See if this is a known constant. + const TryResult &KnownVal = TryEvaluateBool(D->getCond()); + + // Process the loop body. + CFGBlock* BodyBlock = NULL; + { + assert (D->getBody()); + + // Save the current values for Block, Succ, and continue and break targets + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), + save_continue(ContinueTargetBlock), + save_break(BreakTargetBlock); + + // All continues within this loop should go to the condition block + ContinueTargetBlock = EntryConditionBlock; + + // All breaks should go to the code following the loop. + BreakTargetBlock = LoopSuccessor; + + // NULL out Block to force lazy instantiation of blocks for the body. + Block = NULL; + + // Create the body. The returned block is the entry to the loop body. + BodyBlock = addStmt(D->getBody()); + + if (!BodyBlock) + BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" + else if (Block) { + if (!FinishBlock(BodyBlock)) + return 0; + } + + // Add an intermediate block between the BodyBlock and the + // ExitConditionBlock to represent the "loop back" transition. Create an + // empty block to represent the transition block for looping back to the + // head of the loop. + // FIXME: Can we do this more efficiently without adding another block? + Block = NULL; + Succ = BodyBlock; + CFGBlock *LoopBackBlock = createBlock(); + LoopBackBlock->setLoopTarget(D); + + // Add the loop body entry as a successor to the condition. + AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : LoopBackBlock); + } + + // Link up the condition block with the code that follows the loop. + // (the false branch). + AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor); + + // There can be no more statements in the body block(s) since we loop back to + // the body. NULL out Block to force lazy creation of another block. + Block = NULL; + + // Return the loop body, which is the dominating block for the loop. + Succ = BodyBlock; + return BodyBlock; +} + +CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) { + // "continue" is a control-flow statement. Thus we stop processing the + // current block. + if (Block && !FinishBlock(Block)) + return 0; + + // Now create a new block that ends with the continue statement. + Block = createBlock(false); + Block->setTerminator(C); + + // If there is no target for the continue, then we are looking at an + // incomplete AST. This means the CFG cannot be constructed. + if (ContinueTargetBlock) + AddSuccessor(Block, ContinueTargetBlock); + else + badCFG = true; + + return Block; +} + +CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, + bool alwaysAdd) { + + if (alwaysAdd) { + autoCreateBlock(); + AppendStmt(Block, E); + } + + // VLA types have expressions that must be evaluated. + if (E->isArgumentType()) { + for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr()); + VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) + addStmt(VA->getSizeExpr()); + } + + return Block; +} + +/// VisitStmtExpr - Utility method to handle (nested) statement +/// expressions (a GCC extension). +CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, bool alwaysAdd) { + if (alwaysAdd) { + autoCreateBlock(); + AppendStmt(Block, SE); + } + return VisitCompoundStmt(SE->getSubStmt()); +} + +CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) { + // "switch" is a control-flow statement. Thus we stop processing the current + // block. + CFGBlock* SwitchSuccessor = NULL; + + if (Block) { + if (!FinishBlock(Block)) + return 0; + SwitchSuccessor = Block; + } else SwitchSuccessor = Succ; + + // Save the current "switch" context. + SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock), + save_break(BreakTargetBlock), + save_default(DefaultCaseBlock); + + // Set the "default" case to be the block after the switch statement. If the + // switch statement contains a "default:", this value will be overwritten with + // the block for that code. + DefaultCaseBlock = SwitchSuccessor; + + // Create a new block that will contain the switch statement. + SwitchTerminatedBlock = createBlock(false); + + // Now process the switch body. The code after the switch is the implicit + // successor. + Succ = SwitchSuccessor; + BreakTargetBlock = SwitchSuccessor; + + // When visiting the body, the case statements should automatically get linked + // up to the switch. We also don't keep a pointer to the body, since all + // control-flow from the switch goes to case/default statements. + assert (Terminator->getBody() && "switch must contain a non-NULL body"); + Block = NULL; + CFGBlock *BodyBlock = addStmt(Terminator->getBody()); + if (Block) { + if (!FinishBlock(BodyBlock)) + return 0; + } + + // If we have no "default:" case, the default transition is to the code + // following the switch body. + AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock); + + // Add the terminator and condition in the switch block. + SwitchTerminatedBlock->setTerminator(Terminator); + assert (Terminator->getCond() && "switch condition must be non-NULL"); + Block = SwitchTerminatedBlock; + + return addStmt(Terminator->getCond()); +} + +CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) { + // CaseStmts are essentially labels, so they are the first statement in a + // block. + + if (CS->getSubStmt()) + addStmt(CS->getSubStmt()); + + CFGBlock* CaseBlock = Block; + if (!CaseBlock) + CaseBlock = createBlock(); + + // Cases statements partition blocks, so this is the top of the basic block we + // were processing (the "case XXX:" is the label). + CaseBlock->setLabel(CS); + + if (!FinishBlock(CaseBlock)) + return 0; + + // Add this block to the list of successors for the block with the switch + // statement. + assert(SwitchTerminatedBlock); + AddSuccessor(SwitchTerminatedBlock, CaseBlock); + + // We set Block to NULL to allow lazy creation of a new block (if necessary) + Block = NULL; + + // This block is now the implicit successor of other blocks. + Succ = CaseBlock; + + return CaseBlock; +} + +CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) { + if (Terminator->getSubStmt()) + addStmt(Terminator->getSubStmt()); + + DefaultCaseBlock = Block; + + if (!DefaultCaseBlock) + DefaultCaseBlock = createBlock(); + + // Default statements partition blocks, so this is the top of the basic block + // we were processing (the "default:" is the label). + DefaultCaseBlock->setLabel(Terminator); + + if (!FinishBlock(DefaultCaseBlock)) + return 0; + + // Unlike case statements, we don't add the default block to the successors + // for the switch statement immediately. This is done when we finish + // processing the switch statement. This allows for the default case + // (including a fall-through to the code after the switch statement) to always + // be the last successor of a switch-terminated block. + + // We set Block to NULL to allow lazy creation of a new block (if necessary) + Block = NULL; + + // This block is now the implicit successor of other blocks. + Succ = DefaultCaseBlock; + + return DefaultCaseBlock; +} + +CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) { + // Lazily create the indirect-goto dispatch block if there isn't one already. + CFGBlock* IBlock = cfg->getIndirectGotoBlock(); + + if (!IBlock) { + IBlock = createBlock(false); + cfg->setIndirectGotoBlock(IBlock); + } + + // IndirectGoto is a control-flow statement. Thus we stop processing the + // current block and create a new one. + if (Block && !FinishBlock(Block)) + return 0; + + Block = createBlock(false); + Block->setTerminator(I); + AddSuccessor(Block, IBlock); + return addStmt(I->getTarget()); +} + +} // end anonymous namespace + +/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has +/// no successors or predecessors. If this is the first block created in the +/// CFG, it is automatically set to be the Entry and Exit of the CFG. +CFGBlock* CFG::createBlock() { + bool first_block = begin() == end(); + + // Create the block. + CFGBlock *Mem = getAllocator().Allocate<CFGBlock>(); + new (Mem) CFGBlock(NumBlockIDs++, BlkBVC); + Blocks.push_back(Mem, BlkBVC); + + // If this is the first block, set it as the Entry and Exit. + if (first_block) + Entry = Exit = &back(); + + // Return the block. + return &back(); +} + +/// buildCFG - Constructs a CFG from an AST. Ownership of the returned +/// CFG is returned to the caller. +CFG* CFG::buildCFG(Stmt* Statement, ASTContext *C) { + CFGBuilder Builder; + return Builder.buildCFG(Statement, C); +} + +//===----------------------------------------------------------------------===// +// CFG: Queries for BlkExprs. +//===----------------------------------------------------------------------===// + +namespace { + typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy; +} + +static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) { + if (!Terminator) + return; + + for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) { + if (!*I) continue; + + if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I)) + if (B->isAssignmentOp()) Set.insert(B); + + FindSubExprAssignments(*I, Set); + } +} + +static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) { + BlkExprMapTy* M = new BlkExprMapTy(); + + // Look for assignments that are used as subexpressions. These are the only + // assignments that we want to *possibly* register as a block-level + // expression. Basically, if an assignment occurs both in a subexpression and + // at the block-level, it is a block-level expression. + llvm::SmallPtrSet<Expr*,50> SubExprAssignments; + + for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) + for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) + FindSubExprAssignments(*BI, SubExprAssignments); + + for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) { + + // Iterate over the statements again on identify the Expr* and Stmt* at the + // block-level that are block-level expressions. + + for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) + if (Expr* Exp = dyn_cast<Expr>(*BI)) { + + if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) { + // Assignment expressions that are not nested within another + // expression are really "statements" whose value is never used by + // another expression. + if (B->isAssignmentOp() && !SubExprAssignments.count(Exp)) + continue; + } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) { + // Special handling for statement expressions. The last statement in + // the statement expression is also a block-level expr. + const CompoundStmt* C = Terminator->getSubStmt(); + if (!C->body_empty()) { + unsigned x = M->size(); + (*M)[C->body_back()] = x; + } + } + + unsigned x = M->size(); + (*M)[Exp] = x; + } + + // Look at terminators. The condition is a block-level expression. + + Stmt* S = (*I)->getTerminatorCondition(); + + if (S && M->find(S) == M->end()) { + unsigned x = M->size(); + (*M)[S] = x; + } + } + + return M; +} + +CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) { + assert(S != NULL); + if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); } + + BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap); + BlkExprMapTy::iterator I = M->find(S); + + if (I == M->end()) return CFG::BlkExprNumTy(); + else return CFG::BlkExprNumTy(I->second); +} + +unsigned CFG::getNumBlkExprs() { + if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap)) + return M->size(); + else { + // We assume callers interested in the number of BlkExprs will want + // the map constructed if it doesn't already exist. + BlkExprMap = (void*) PopulateBlkExprMap(*this); + return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size(); + } +} + +//===----------------------------------------------------------------------===// +// Cleanup: CFG dstor. +//===----------------------------------------------------------------------===// + +CFG::~CFG() { + delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap); +} + +//===----------------------------------------------------------------------===// +// CFG pretty printing +//===----------------------------------------------------------------------===// + +namespace { + +class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper { + + typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy; + StmtMapTy StmtMap; + signed CurrentBlock; + unsigned CurrentStmt; + const LangOptions &LangOpts; +public: + + StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) + : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) { + for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { + unsigned j = 1; + for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; + BI != BEnd; ++BI, ++j ) + StmtMap[*BI] = std::make_pair((*I)->getBlockID(),j); + } + } + + virtual ~StmtPrinterHelper() {} + + const LangOptions &getLangOpts() const { return LangOpts; } + void setBlockID(signed i) { CurrentBlock = i; } + void setStmtID(unsigned i) { CurrentStmt = i; } + + virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) { + + StmtMapTy::iterator I = StmtMap.find(Terminator); + + if (I == StmtMap.end()) + return false; + + if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock + && I->second.second == CurrentStmt) + return false; + + OS << "[B" << I->second.first << "." << I->second.second << "]"; + return true; + } +}; +} // end anonymous namespace + + +namespace { +class VISIBILITY_HIDDEN CFGBlockTerminatorPrint + : public StmtVisitor<CFGBlockTerminatorPrint,void> { + + llvm::raw_ostream& OS; + StmtPrinterHelper* Helper; + PrintingPolicy Policy; + +public: + CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper, + const PrintingPolicy &Policy) + : OS(os), Helper(helper), Policy(Policy) {} + + void VisitIfStmt(IfStmt* I) { + OS << "if "; + I->getCond()->printPretty(OS,Helper,Policy); + } + + // Default case. + void VisitStmt(Stmt* Terminator) { + Terminator->printPretty(OS, Helper, Policy); + } + + void VisitForStmt(ForStmt* F) { + OS << "for (" ; + if (F->getInit()) OS << "..."; + OS << "; "; + if (Stmt* C = F->getCond()) C->printPretty(OS, Helper, Policy); + OS << "; "; + if (F->getInc()) OS << "..."; + OS << ")"; + } + + void VisitWhileStmt(WhileStmt* W) { + OS << "while " ; + if (Stmt* C = W->getCond()) C->printPretty(OS, Helper, Policy); + } + + void VisitDoStmt(DoStmt* D) { + OS << "do ... while "; + if (Stmt* C = D->getCond()) C->printPretty(OS, Helper, Policy); + } + + void VisitSwitchStmt(SwitchStmt* Terminator) { + OS << "switch "; + Terminator->getCond()->printPretty(OS, Helper, Policy); + } + + void VisitConditionalOperator(ConditionalOperator* C) { + C->getCond()->printPretty(OS, Helper, Policy); + OS << " ? ... : ..."; + } + + void VisitChooseExpr(ChooseExpr* C) { + OS << "__builtin_choose_expr( "; + C->getCond()->printPretty(OS, Helper, Policy); + OS << " )"; + } + + void VisitIndirectGotoStmt(IndirectGotoStmt* I) { + OS << "goto *"; + I->getTarget()->printPretty(OS, Helper, Policy); + } + + void VisitBinaryOperator(BinaryOperator* B) { + if (!B->isLogicalOp()) { + VisitExpr(B); + return; + } + + B->getLHS()->printPretty(OS, Helper, Policy); + + switch (B->getOpcode()) { + case BinaryOperator::LOr: + OS << " || ..."; + return; + case BinaryOperator::LAnd: + OS << " && ..."; + return; + default: + assert(false && "Invalid logical operator."); + } + } + + void VisitExpr(Expr* E) { + E->printPretty(OS, Helper, Policy); + } +}; +} // end anonymous namespace + + +static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper, + Stmt* Terminator) { + if (Helper) { + // special printing for statement-expressions. + if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) { + CompoundStmt* Sub = SE->getSubStmt(); + + if (Sub->child_begin() != Sub->child_end()) { + OS << "({ ... ; "; + Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS); + OS << " })\n"; + return; + } + } + + // special printing for comma expressions. + if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) { + if (B->getOpcode() == BinaryOperator::Comma) { + OS << "... , "; + Helper->handledStmt(B->getRHS(),OS); + OS << '\n'; + return; + } + } + } + + Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts())); + + // Expressions need a newline. + if (isa<Expr>(Terminator)) OS << '\n'; +} + +static void print_block(llvm::raw_ostream& OS, const CFG* cfg, + const CFGBlock& B, + StmtPrinterHelper* Helper, bool print_edges) { + + if (Helper) Helper->setBlockID(B.getBlockID()); + + // Print the header. + OS << "\n [ B" << B.getBlockID(); + + if (&B == &cfg->getEntry()) + OS << " (ENTRY) ]\n"; + else if (&B == &cfg->getExit()) + OS << " (EXIT) ]\n"; + else if (&B == cfg->getIndirectGotoBlock()) + OS << " (INDIRECT GOTO DISPATCH) ]\n"; + else + OS << " ]\n"; + + // Print the label of this block. + if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) { + + if (print_edges) + OS << " "; + + if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator)) + OS << L->getName(); + else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) { + OS << "case "; + C->getLHS()->printPretty(OS, Helper, + PrintingPolicy(Helper->getLangOpts())); + if (C->getRHS()) { + OS << " ... "; + C->getRHS()->printPretty(OS, Helper, + PrintingPolicy(Helper->getLangOpts())); + } + } else if (isa<DefaultStmt>(Terminator)) + OS << "default"; + else + assert(false && "Invalid label statement in CFGBlock."); + + OS << ":\n"; + } + + // Iterate through the statements in the block and print them. + unsigned j = 1; + + for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; + I != E ; ++I, ++j ) { + + // Print the statement # in the basic block and the statement itself. + if (print_edges) + OS << " "; + + OS << llvm::format("%3d", j) << ": "; + + if (Helper) + Helper->setStmtID(j); + + print_stmt(OS,Helper,*I); + } + + // Print the terminator of this block. + if (B.getTerminator()) { + if (print_edges) + OS << " "; + + OS << " T: "; + + if (Helper) Helper->setBlockID(-1); + + CFGBlockTerminatorPrint TPrinter(OS, Helper, + PrintingPolicy(Helper->getLangOpts())); + TPrinter.Visit(const_cast<Stmt*>(B.getTerminator())); + OS << '\n'; + } + + if (print_edges) { + // Print the predecessors of this block. + OS << " Predecessors (" << B.pred_size() << "):"; + unsigned i = 0; + + for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); + I != E; ++I, ++i) { + + if (i == 8 || (i-8) == 0) + OS << "\n "; + + OS << " B" << (*I)->getBlockID(); + } + + OS << '\n'; + + // Print the successors of this block. + OS << " Successors (" << B.succ_size() << "):"; + i = 0; + + for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); + I != E; ++I, ++i) { + + if (i == 8 || (i-8) % 10 == 0) + OS << "\n "; + + if (*I) + OS << " B" << (*I)->getBlockID(); + else + OS << " NULL"; + } + + OS << '\n'; + } +} + + +/// dump - A simple pretty printer of a CFG that outputs to stderr. +void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); } + +/// print - A simple pretty printer of a CFG that outputs to an ostream. +void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const { + StmtPrinterHelper Helper(this, LO); + + // Print the entry block. + print_block(OS, this, getEntry(), &Helper, true); + + // Iterate through the CFGBlocks and print them one by one. + for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { + // Skip the entry block, because we already printed it. + if (&(**I) == &getEntry() || &(**I) == &getExit()) + continue; + + print_block(OS, this, **I, &Helper, true); + } + + // Print the exit block. + print_block(OS, this, getExit(), &Helper, true); + OS.flush(); +} + +/// dump - A simply pretty printer of a CFGBlock that outputs to stderr. +void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const { + print(llvm::errs(), cfg, LO); +} + +/// print - A simple pretty printer of a CFGBlock that outputs to an ostream. +/// Generally this will only be called from CFG::print. +void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg, + const LangOptions &LO) const { + StmtPrinterHelper Helper(cfg, LO); + print_block(OS, cfg, *this, &Helper, true); +} + +/// printTerminator - A simple pretty printer of the terminator of a CFGBlock. +void CFGBlock::printTerminator(llvm::raw_ostream &OS, + const LangOptions &LO) const { + CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO)); + TPrinter.Visit(const_cast<Stmt*>(getTerminator())); +} + +Stmt* CFGBlock::getTerminatorCondition() { + + if (!Terminator) + return NULL; + + Expr* E = NULL; + + switch (Terminator->getStmtClass()) { + default: + break; + + case Stmt::ForStmtClass: + E = cast<ForStmt>(Terminator)->getCond(); + break; + + case Stmt::WhileStmtClass: + E = cast<WhileStmt>(Terminator)->getCond(); + break; + + case Stmt::DoStmtClass: + E = cast<DoStmt>(Terminator)->getCond(); + break; + + case Stmt::IfStmtClass: + E = cast<IfStmt>(Terminator)->getCond(); + break; + + case Stmt::ChooseExprClass: + E = cast<ChooseExpr>(Terminator)->getCond(); + break; + + case Stmt::IndirectGotoStmtClass: + E = cast<IndirectGotoStmt>(Terminator)->getTarget(); + break; + + case Stmt::SwitchStmtClass: + E = cast<SwitchStmt>(Terminator)->getCond(); + break; + + case Stmt::ConditionalOperatorClass: + E = cast<ConditionalOperator>(Terminator)->getCond(); + break; + + case Stmt::BinaryOperatorClass: // '&&' and '||' + E = cast<BinaryOperator>(Terminator)->getLHS(); + break; + + case Stmt::ObjCForCollectionStmtClass: + return Terminator; + } + + return E ? E->IgnoreParens() : NULL; +} + +bool CFGBlock::hasBinaryBranchTerminator() const { + + if (!Terminator) + return false; + + Expr* E = NULL; + + switch (Terminator->getStmtClass()) { + default: + return false; + + case Stmt::ForStmtClass: + case Stmt::WhileStmtClass: + case Stmt::DoStmtClass: + case Stmt::IfStmtClass: + case Stmt::ChooseExprClass: + case Stmt::ConditionalOperatorClass: + case Stmt::BinaryOperatorClass: + return true; + } + + return E ? E->IgnoreParens() : NULL; +} + + +//===----------------------------------------------------------------------===// +// CFG Graphviz Visualization +//===----------------------------------------------------------------------===// + + +#ifndef NDEBUG +static StmtPrinterHelper* GraphHelper; +#endif + +void CFG::viewCFG(const LangOptions &LO) const { +#ifndef NDEBUG + StmtPrinterHelper H(this, LO); + GraphHelper = &H; + llvm::ViewGraph(this,"CFG"); + GraphHelper = NULL; +#endif +} + +namespace llvm { +template<> +struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { + static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph, + bool ShortNames) { + +#ifndef NDEBUG + std::string OutSStr; + llvm::raw_string_ostream Out(OutSStr); + print_block(Out,Graph, *Node, GraphHelper, false); + std::string& OutStr = Out.str(); + + if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); + + // Process string output to make it nicer... + for (unsigned i = 0; i != OutStr.length(); ++i) + if (OutStr[i] == '\n') { // Left justify + OutStr[i] = '\\'; + OutStr.insert(OutStr.begin()+i+1, 'l'); + } + + return OutStr; +#else + return ""; +#endif + } +}; +} // end namespace llvm |