aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit009b1c42aa6266385f2c37e227516b24077e6dd7 (patch)
tree64ba909838c23261cace781ece27d106134ea451 /lib/Analysis/ConstantFolding.cpp
downloadsrc-009b1c42aa6266385f2c37e227516b24077e6dd7.tar.gz
src-009b1c42aa6266385f2c37e227516b24077e6dd7.zip
Import LLVM, at r72732.vendor/llvm/llvm-r72732
Notes
Notes: svn path=/vendor/llvm/dist/; revision=193323 svn path=/vendor/llvm/llvm-r72732/; revision=193324; tag=vendor/llvm/llvm-r72732
Diffstat (limited to 'lib/Analysis/ConstantFolding.cpp')
-rw-r--r--lib/Analysis/ConstantFolding.cpp829
1 files changed, 829 insertions, 0 deletions
diff --git a/lib/Analysis/ConstantFolding.cpp b/lib/Analysis/ConstantFolding.cpp
new file mode 100644
index 000000000000..e5ab3226ce49
--- /dev/null
+++ b/lib/Analysis/ConstantFolding.cpp
@@ -0,0 +1,829 @@
+//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions determines the possibility of performing constant
+// folding.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include <cerrno>
+#include <cmath>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Constant Folding internal helper functions
+//===----------------------------------------------------------------------===//
+
+/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
+/// from a global, return the global and the constant. Because of
+/// constantexprs, this function is recursive.
+static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
+ int64_t &Offset, const TargetData &TD) {
+ // Trivial case, constant is the global.
+ if ((GV = dyn_cast<GlobalValue>(C))) {
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, if this isn't a constant expr, bail out.
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
+ if (!CE) return false;
+
+ // Look through ptr->int and ptr->ptr casts.
+ if (CE->getOpcode() == Instruction::PtrToInt ||
+ CE->getOpcode() == Instruction::BitCast)
+ return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
+
+ // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
+ if (CE->getOpcode() == Instruction::GetElementPtr) {
+ // Cannot compute this if the element type of the pointer is missing size
+ // info.
+ if (!cast<PointerType>(CE->getOperand(0)->getType())
+ ->getElementType()->isSized())
+ return false;
+
+ // If the base isn't a global+constant, we aren't either.
+ if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
+ return false;
+
+ // Otherwise, add any offset that our operands provide.
+ gep_type_iterator GTI = gep_type_begin(CE);
+ for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
+ i != e; ++i, ++GTI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(*i);
+ if (!CI) return false; // Index isn't a simple constant?
+ if (CI->getZExtValue() == 0) continue; // Not adding anything.
+
+ if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
+ // N = N + Offset
+ Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
+ } else {
+ const SequentialType *SQT = cast<SequentialType>(*GTI);
+ Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
+ }
+ }
+ return true;
+ }
+
+ return false;
+}
+
+
+/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
+/// Attempt to symbolically evaluate the result of a binary operator merging
+/// these together. If target data info is available, it is provided as TD,
+/// otherwise TD is null.
+static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
+ Constant *Op1, const TargetData *TD){
+ // SROA
+
+ // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
+ // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
+ // bits.
+
+
+ // If the constant expr is something like &A[123] - &A[4].f, fold this into a
+ // constant. This happens frequently when iterating over a global array.
+ if (Opc == Instruction::Sub && TD) {
+ GlobalValue *GV1, *GV2;
+ int64_t Offs1, Offs2;
+
+ if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
+ if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
+ GV1 == GV2) {
+ // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
+ return ConstantInt::get(Op0->getType(), Offs1-Offs2);
+ }
+ }
+
+ return 0;
+}
+
+/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
+/// constant expression, do so.
+static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
+ const Type *ResultTy,
+ const TargetData *TD) {
+ Constant *Ptr = Ops[0];
+ if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
+ return 0;
+
+ uint64_t BasePtr = 0;
+ if (!Ptr->isNullValue()) {
+ // If this is a inttoptr from a constant int, we can fold this as the base,
+ // otherwise we can't.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
+ if (CE->getOpcode() == Instruction::IntToPtr)
+ if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
+ BasePtr = Base->getZExtValue();
+
+ if (BasePtr == 0)
+ return 0;
+ }
+
+ // If this is a constant expr gep that is effectively computing an
+ // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
+ for (unsigned i = 1; i != NumOps; ++i)
+ if (!isa<ConstantInt>(Ops[i]))
+ return false;
+
+ uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
+ (Value**)Ops+1, NumOps-1);
+ Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
+ return ConstantExpr::getIntToPtr(C, ResultTy);
+}
+
+/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
+/// targetdata. Return 0 if unfoldable.
+static Constant *FoldBitCast(Constant *C, const Type *DestTy,
+ const TargetData &TD) {
+ // If this is a bitcast from constant vector -> vector, fold it.
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
+ if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
+ // If the element types match, VMCore can fold it.
+ unsigned NumDstElt = DestVTy->getNumElements();
+ unsigned NumSrcElt = CV->getNumOperands();
+ if (NumDstElt == NumSrcElt)
+ return 0;
+
+ const Type *SrcEltTy = CV->getType()->getElementType();
+ const Type *DstEltTy = DestVTy->getElementType();
+
+ // Otherwise, we're changing the number of elements in a vector, which
+ // requires endianness information to do the right thing. For example,
+ // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ // folds to (little endian):
+ // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
+ // and to (big endian):
+ // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
+
+ // First thing is first. We only want to think about integer here, so if
+ // we have something in FP form, recast it as integer.
+ if (DstEltTy->isFloatingPoint()) {
+ // Fold to an vector of integers with same size as our FP type.
+ unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
+ const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
+ NumDstElt);
+ // Recursively handle this integer conversion, if possible.
+ C = FoldBitCast(C, DestIVTy, TD);
+ if (!C) return 0;
+
+ // Finally, VMCore can handle this now that #elts line up.
+ return ConstantExpr::getBitCast(C, DestTy);
+ }
+
+ // Okay, we know the destination is integer, if the input is FP, convert
+ // it to integer first.
+ if (SrcEltTy->isFloatingPoint()) {
+ unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
+ const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
+ NumSrcElt);
+ // Ask VMCore to do the conversion now that #elts line up.
+ C = ConstantExpr::getBitCast(C, SrcIVTy);
+ CV = dyn_cast<ConstantVector>(C);
+ if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
+ }
+
+ // Now we know that the input and output vectors are both integer vectors
+ // of the same size, and that their #elements is not the same. Do the
+ // conversion here, which depends on whether the input or output has
+ // more elements.
+ bool isLittleEndian = TD.isLittleEndian();
+
+ SmallVector<Constant*, 32> Result;
+ if (NumDstElt < NumSrcElt) {
+ // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
+ Constant *Zero = Constant::getNullValue(DstEltTy);
+ unsigned Ratio = NumSrcElt/NumDstElt;
+ unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
+ unsigned SrcElt = 0;
+ for (unsigned i = 0; i != NumDstElt; ++i) {
+ // Build each element of the result.
+ Constant *Elt = Zero;
+ unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
+ if (!Src) return 0; // Reject constantexpr elements.
+
+ // Zero extend the element to the right size.
+ Src = ConstantExpr::getZExt(Src, Elt->getType());
+
+ // Shift it to the right place, depending on endianness.
+ Src = ConstantExpr::getShl(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
+
+ // Mix it in.
+ Elt = ConstantExpr::getOr(Elt, Src);
+ }
+ Result.push_back(Elt);
+ }
+ } else {
+ // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
+ unsigned Ratio = NumDstElt/NumSrcElt;
+ unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
+
+ // Loop over each source value, expanding into multiple results.
+ for (unsigned i = 0; i != NumSrcElt; ++i) {
+ Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
+ if (!Src) return 0; // Reject constantexpr elements.
+
+ unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
+ for (unsigned j = 0; j != Ratio; ++j) {
+ // Shift the piece of the value into the right place, depending on
+ // endianness.
+ Constant *Elt = ConstantExpr::getLShr(Src,
+ ConstantInt::get(Src->getType(), ShiftAmt));
+ ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
+
+ // Truncate and remember this piece.
+ Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
+ }
+ }
+ }
+
+ return ConstantVector::get(Result.data(), Result.size());
+ }
+ }
+
+ return 0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Constant Folding public APIs
+//===----------------------------------------------------------------------===//
+
+
+/// ConstantFoldInstruction - Attempt to constant fold the specified
+/// instruction. If successful, the constant result is returned, if not, null
+/// is returned. Note that this function can only fail when attempting to fold
+/// instructions like loads and stores, which have no constant expression form.
+///
+Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ if (PN->getNumIncomingValues() == 0)
+ return UndefValue::get(PN->getType());
+
+ Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
+ if (Result == 0) return 0;
+
+ // Handle PHI nodes specially here...
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
+ return 0; // Not all the same incoming constants...
+
+ // If we reach here, all incoming values are the same constant.
+ return Result;
+ }
+
+ // Scan the operand list, checking to see if they are all constants, if so,
+ // hand off to ConstantFoldInstOperands.
+ SmallVector<Constant*, 8> Ops;
+ for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
+ if (Constant *Op = dyn_cast<Constant>(*i))
+ Ops.push_back(Op);
+ else
+ return 0; // All operands not constant!
+
+ if (const CmpInst *CI = dyn_cast<CmpInst>(I))
+ return ConstantFoldCompareInstOperands(CI->getPredicate(),
+ Ops.data(), Ops.size(), TD);
+ else
+ return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
+ Ops.data(), Ops.size(), TD);
+}
+
+/// ConstantFoldConstantExpression - Attempt to fold the constant expression
+/// using the specified TargetData. If successful, the constant result is
+/// result is returned, if not, null is returned.
+Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
+ const TargetData *TD) {
+ assert(TD && "ConstantFoldConstantExpression requires a valid TargetData.");
+
+ SmallVector<Constant*, 8> Ops;
+ for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
+ Ops.push_back(cast<Constant>(*i));
+
+ if (CE->isCompare())
+ return ConstantFoldCompareInstOperands(CE->getPredicate(),
+ Ops.data(), Ops.size(), TD);
+ else
+ return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
+ Ops.data(), Ops.size(), TD);
+}
+
+/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
+/// specified opcode and operands. If successful, the constant result is
+/// returned, if not, null is returned. Note that this function can fail when
+/// attempting to fold instructions like loads and stores, which have no
+/// constant expression form.
+///
+Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
+ Constant* const* Ops, unsigned NumOps,
+ const TargetData *TD) {
+ // Handle easy binops first.
+ if (Instruction::isBinaryOp(Opcode)) {
+ if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
+ if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
+ return C;
+
+ return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
+ }
+
+ switch (Opcode) {
+ default: return 0;
+ case Instruction::Call:
+ if (Function *F = dyn_cast<Function>(Ops[0]))
+ if (canConstantFoldCallTo(F))
+ return ConstantFoldCall(F, Ops+1, NumOps-1);
+ return 0;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::VICmp:
+ case Instruction::VFCmp:
+ assert(0 &&"This function is invalid for compares: no predicate specified");
+ case Instruction::PtrToInt:
+ // If the input is a inttoptr, eliminate the pair. This requires knowing
+ // the width of a pointer, so it can't be done in ConstantExpr::getCast.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
+ if (TD && CE->getOpcode() == Instruction::IntToPtr) {
+ Constant *Input = CE->getOperand(0);
+ unsigned InWidth = Input->getType()->getPrimitiveSizeInBits();
+ if (TD->getPointerSizeInBits() < InWidth) {
+ Constant *Mask =
+ ConstantInt::get(APInt::getLowBitsSet(InWidth,
+ TD->getPointerSizeInBits()));
+ Input = ConstantExpr::getAnd(Input, Mask);
+ }
+ // Do a zext or trunc to get to the dest size.
+ return ConstantExpr::getIntegerCast(Input, DestTy, false);
+ }
+ }
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::IntToPtr:
+ // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
+ // the int size is >= the ptr size. This requires knowing the width of a
+ // pointer, so it can't be done in ConstantExpr::getCast.
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
+ if (TD &&
+ TD->getPointerSizeInBits() <=
+ CE->getType()->getPrimitiveSizeInBits()) {
+ if (CE->getOpcode() == Instruction::PtrToInt) {
+ Constant *Input = CE->getOperand(0);
+ Constant *C = FoldBitCast(Input, DestTy, *TD);
+ return C ? C : ConstantExpr::getBitCast(Input, DestTy);
+ }
+ // If there's a constant offset added to the integer value before
+ // it is casted back to a pointer, see if the expression can be
+ // converted into a GEP.
+ if (CE->getOpcode() == Instruction::Add)
+ if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
+ if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
+ if (R->getOpcode() == Instruction::PtrToInt)
+ if (GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(R->getOperand(0))) {
+ const PointerType *GVTy = cast<PointerType>(GV->getType());
+ if (const ArrayType *AT =
+ dyn_cast<ArrayType>(GVTy->getElementType())) {
+ const Type *ElTy = AT->getElementType();
+ uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
+ APInt PSA(L->getValue().getBitWidth(), AllocSize);
+ if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
+ L->getValue().urem(PSA) == 0) {
+ APInt ElemIdx = L->getValue().udiv(PSA);
+ if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
+ AT->getNumElements()))) {
+ Constant *Index[] = {
+ Constant::getNullValue(CE->getType()),
+ ConstantInt::get(ElemIdx)
+ };
+ return ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
+ }
+ }
+ }
+ }
+ }
+ }
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
+ case Instruction::BitCast:
+ if (TD)
+ if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
+ return C;
+ return ConstantExpr::getBitCast(Ops[0], DestTy);
+ case Instruction::Select:
+ return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ExtractElement:
+ return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
+ case Instruction::InsertElement:
+ return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
+ case Instruction::ShuffleVector:
+ return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
+ case Instruction::GetElementPtr:
+ if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
+ return C;
+
+ return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
+ }
+}
+
+/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
+/// instruction (icmp/fcmp) with the specified operands. If it fails, it
+/// returns a constant expression of the specified operands.
+///
+Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
+ Constant*const * Ops,
+ unsigned NumOps,
+ const TargetData *TD) {
+ // fold: icmp (inttoptr x), null -> icmp x, 0
+ // fold: icmp (ptrtoint x), 0 -> icmp x, null
+ // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
+ // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
+ //
+ // ConstantExpr::getCompare cannot do this, because it doesn't have TD
+ // around to know if bit truncation is happening.
+ if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
+ if (TD && Ops[1]->isNullValue()) {
+ const Type *IntPtrTy = TD->getIntPtrType();
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if (CE0->getOpcode() == Instruction::PtrToInt &&
+ CE0->getType() == IntPtrTy) {
+ Constant *C = CE0->getOperand(0);
+ Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
+ // FIXME!
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ }
+ }
+
+ if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
+ if (TD && CE0->getOpcode() == CE1->getOpcode()) {
+ const Type *IntPtrTy = TD->getIntPtrType();
+
+ if (CE0->getOpcode() == Instruction::IntToPtr) {
+ // Convert the integer value to the right size to ensure we get the
+ // proper extension or truncation.
+ Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
+ IntPtrTy, false);
+ Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
+ IntPtrTy, false);
+ Constant *NewOps[] = { C0, C1 };
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ }
+
+ // Only do this transformation if the int is intptrty in size, otherwise
+ // there is a truncation or extension that we aren't modeling.
+ if ((CE0->getOpcode() == Instruction::PtrToInt &&
+ CE0->getType() == IntPtrTy &&
+ CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
+ Constant *NewOps[] = {
+ CE0->getOperand(0), CE1->getOperand(0)
+ };
+ return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
+ }
+ }
+ }
+ }
+ return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
+}
+
+
+/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
+/// getelementptr constantexpr, return the constant value being addressed by the
+/// constant expression, or null if something is funny and we can't decide.
+Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
+ ConstantExpr *CE) {
+ if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
+ return 0; // Do not allow stepping over the value!
+
+ // Loop over all of the operands, tracking down which value we are
+ // addressing...
+ gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
+ for (++I; I != E; ++I)
+ if (const StructType *STy = dyn_cast<StructType>(*I)) {
+ ConstantInt *CU = cast<ConstantInt>(I.getOperand());
+ assert(CU->getZExtValue() < STy->getNumElements() &&
+ "Struct index out of range!");
+ unsigned El = (unsigned)CU->getZExtValue();
+ if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
+ C = CS->getOperand(El);
+ } else if (isa<ConstantAggregateZero>(C)) {
+ C = Constant::getNullValue(STy->getElementType(El));
+ } else if (isa<UndefValue>(C)) {
+ C = UndefValue::get(STy->getElementType(El));
+ } else {
+ return 0;
+ }
+ } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
+ if (CI->getZExtValue() >= ATy->getNumElements())
+ return 0;
+ if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
+ C = CA->getOperand(CI->getZExtValue());
+ else if (isa<ConstantAggregateZero>(C))
+ C = Constant::getNullValue(ATy->getElementType());
+ else if (isa<UndefValue>(C))
+ C = UndefValue::get(ATy->getElementType());
+ else
+ return 0;
+ } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
+ if (CI->getZExtValue() >= PTy->getNumElements())
+ return 0;
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
+ C = CP->getOperand(CI->getZExtValue());
+ else if (isa<ConstantAggregateZero>(C))
+ C = Constant::getNullValue(PTy->getElementType());
+ else if (isa<UndefValue>(C))
+ C = UndefValue::get(PTy->getElementType());
+ else
+ return 0;
+ } else {
+ return 0;
+ }
+ } else {
+ return 0;
+ }
+ return C;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Constant Folding for Calls
+//
+
+/// canConstantFoldCallTo - Return true if its even possible to fold a call to
+/// the specified function.
+bool
+llvm::canConstantFoldCallTo(const Function *F) {
+ switch (F->getIntrinsicID()) {
+ case Intrinsic::sqrt:
+ case Intrinsic::powi:
+ case Intrinsic::bswap:
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ return true;
+ default: break;
+ }
+
+ if (!F->hasName()) return false;
+ const char *Str = F->getNameStart();
+ unsigned Len = F->getNameLen();
+
+ // In these cases, the check of the length is required. We don't want to
+ // return true for a name like "cos\0blah" which strcmp would return equal to
+ // "cos", but has length 8.
+ switch (Str[0]) {
+ default: return false;
+ case 'a':
+ if (Len == 4)
+ return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
+ !strcmp(Str, "atan");
+ else if (Len == 5)
+ return !strcmp(Str, "atan2");
+ return false;
+ case 'c':
+ if (Len == 3)
+ return !strcmp(Str, "cos");
+ else if (Len == 4)
+ return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
+ !strcmp(Str, "cosh");
+ return false;
+ case 'e':
+ if (Len == 3)
+ return !strcmp(Str, "exp");
+ return false;
+ case 'f':
+ if (Len == 4)
+ return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
+ else if (Len == 5)
+ return !strcmp(Str, "floor");
+ return false;
+ break;
+ case 'l':
+ if (Len == 3 && !strcmp(Str, "log"))
+ return true;
+ if (Len == 5 && !strcmp(Str, "log10"))
+ return true;
+ return false;
+ case 'p':
+ if (Len == 3 && !strcmp(Str, "pow"))
+ return true;
+ return false;
+ case 's':
+ if (Len == 3)
+ return !strcmp(Str, "sin");
+ if (Len == 4)
+ return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
+ !strcmp(Str, "sinf");
+ if (Len == 5)
+ return !strcmp(Str, "sqrtf");
+ return false;
+ case 't':
+ if (Len == 3 && !strcmp(Str, "tan"))
+ return true;
+ else if (Len == 4 && !strcmp(Str, "tanh"))
+ return true;
+ return false;
+ }
+}
+
+static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
+ const Type *Ty) {
+ errno = 0;
+ V = NativeFP(V);
+ if (errno != 0) {
+ errno = 0;
+ return 0;
+ }
+
+ if (Ty == Type::FloatTy)
+ return ConstantFP::get(APFloat((float)V));
+ if (Ty == Type::DoubleTy)
+ return ConstantFP::get(APFloat(V));
+ assert(0 && "Can only constant fold float/double");
+ return 0; // dummy return to suppress warning
+}
+
+static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
+ double V, double W,
+ const Type *Ty) {
+ errno = 0;
+ V = NativeFP(V, W);
+ if (errno != 0) {
+ errno = 0;
+ return 0;
+ }
+
+ if (Ty == Type::FloatTy)
+ return ConstantFP::get(APFloat((float)V));
+ if (Ty == Type::DoubleTy)
+ return ConstantFP::get(APFloat(V));
+ assert(0 && "Can only constant fold float/double");
+ return 0; // dummy return to suppress warning
+}
+
+/// ConstantFoldCall - Attempt to constant fold a call to the specified function
+/// with the specified arguments, returning null if unsuccessful.
+
+Constant *
+llvm::ConstantFoldCall(Function *F,
+ Constant* const* Operands, unsigned NumOperands) {
+ if (!F->hasName()) return 0;
+ const char *Str = F->getNameStart();
+ unsigned Len = F->getNameLen();
+
+ const Type *Ty = F->getReturnType();
+ if (NumOperands == 1) {
+ if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return 0;
+ /// Currently APFloat versions of these functions do not exist, so we use
+ /// the host native double versions. Float versions are not called
+ /// directly but for all these it is true (float)(f((double)arg)) ==
+ /// f(arg). Long double not supported yet.
+ double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
+ Op->getValueAPF().convertToDouble();
+ switch (Str[0]) {
+ case 'a':
+ if (Len == 4 && !strcmp(Str, "acos"))
+ return ConstantFoldFP(acos, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "asin"))
+ return ConstantFoldFP(asin, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "atan"))
+ return ConstantFoldFP(atan, V, Ty);
+ break;
+ case 'c':
+ if (Len == 4 && !strcmp(Str, "ceil"))
+ return ConstantFoldFP(ceil, V, Ty);
+ else if (Len == 3 && !strcmp(Str, "cos"))
+ return ConstantFoldFP(cos, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "cosh"))
+ return ConstantFoldFP(cosh, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "cosf"))
+ return ConstantFoldFP(cos, V, Ty);
+ break;
+ case 'e':
+ if (Len == 3 && !strcmp(Str, "exp"))
+ return ConstantFoldFP(exp, V, Ty);
+ break;
+ case 'f':
+ if (Len == 4 && !strcmp(Str, "fabs"))
+ return ConstantFoldFP(fabs, V, Ty);
+ else if (Len == 5 && !strcmp(Str, "floor"))
+ return ConstantFoldFP(floor, V, Ty);
+ break;
+ case 'l':
+ if (Len == 3 && !strcmp(Str, "log") && V > 0)
+ return ConstantFoldFP(log, V, Ty);
+ else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
+ return ConstantFoldFP(log10, V, Ty);
+ else if (!strcmp(Str, "llvm.sqrt.f32") ||
+ !strcmp(Str, "llvm.sqrt.f64")) {
+ if (V >= -0.0)
+ return ConstantFoldFP(sqrt, V, Ty);
+ else // Undefined
+ return Constant::getNullValue(Ty);
+ }
+ break;
+ case 's':
+ if (Len == 3 && !strcmp(Str, "sin"))
+ return ConstantFoldFP(sin, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "sinh"))
+ return ConstantFoldFP(sinh, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
+ return ConstantFoldFP(sqrt, V, Ty);
+ else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
+ return ConstantFoldFP(sqrt, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "sinf"))
+ return ConstantFoldFP(sin, V, Ty);
+ break;
+ case 't':
+ if (Len == 3 && !strcmp(Str, "tan"))
+ return ConstantFoldFP(tan, V, Ty);
+ else if (Len == 4 && !strcmp(Str, "tanh"))
+ return ConstantFoldFP(tanh, V, Ty);
+ break;
+ default:
+ break;
+ }
+ } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
+ if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
+ return ConstantInt::get(Op->getValue().byteSwap());
+ else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
+ return ConstantInt::get(Ty, Op->getValue().countPopulation());
+ else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
+ return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
+ else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
+ return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
+ }
+ } else if (NumOperands == 2) {
+ if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
+ if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
+ return 0;
+ double Op1V = Ty==Type::FloatTy ?
+ (double)Op1->getValueAPF().convertToFloat():
+ Op1->getValueAPF().convertToDouble();
+ if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
+ double Op2V = Ty==Type::FloatTy ?
+ (double)Op2->getValueAPF().convertToFloat():
+ Op2->getValueAPF().convertToDouble();
+
+ if (Len == 3 && !strcmp(Str, "pow")) {
+ return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
+ } else if (Len == 4 && !strcmp(Str, "fmod")) {
+ return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
+ } else if (Len == 5 && !strcmp(Str, "atan2")) {
+ return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
+ }
+ } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
+ if (!strcmp(Str, "llvm.powi.f32")) {
+ return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
+ (int)Op2C->getZExtValue())));
+ } else if (!strcmp(Str, "llvm.powi.f64")) {
+ return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
+ (int)Op2C->getZExtValue())));
+ }
+ }
+ }
+ }
+ return 0;
+}
+