diff options
author | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:58:47 +0000 |
---|---|---|
committer | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:58:47 +0000 |
commit | ec2b103c267a06a66e926f62cd96767b280f5cf5 (patch) | |
tree | ce7d964cbb5e39695b71481698f10cb099c23d4a /lib/Analysis/GRExprEngine.cpp | |
download | src-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip |
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes:
svn path=/vendor/clang/dist/; revision=193326
svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/Analysis/GRExprEngine.cpp')
-rw-r--r-- | lib/Analysis/GRExprEngine.cpp | 3426 |
1 files changed, 3426 insertions, 0 deletions
diff --git a/lib/Analysis/GRExprEngine.cpp b/lib/Analysis/GRExprEngine.cpp new file mode 100644 index 000000000000..e8c5be51d6ac --- /dev/null +++ b/lib/Analysis/GRExprEngine.cpp @@ -0,0 +1,3426 @@ +//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines a meta-engine for path-sensitive dataflow analysis that +// is built on GREngine, but provides the boilerplate to execute transfer +// functions and build the ExplodedGraph at the expression level. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/PathSensitive/GRExprEngine.h" +#include "clang/Analysis/PathSensitive/GRExprEngineBuilders.h" +#include "clang/Analysis/PathSensitive/BugReporter.h" +#include "clang/AST/ParentMap.h" +#include "clang/AST/StmtObjC.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/PrettyStackTrace.h" +#include "llvm/Support/Streams.h" +#include "llvm/ADT/ImmutableList.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/raw_ostream.h" + +#ifndef NDEBUG +#include "llvm/Support/GraphWriter.h" +#include <sstream> +#endif + +using namespace clang; +using llvm::dyn_cast; +using llvm::cast; +using llvm::APSInt; + +//===----------------------------------------------------------------------===// +// Engine construction and deletion. +//===----------------------------------------------------------------------===// + +namespace { + +class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck { + typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks; + typedef llvm::DenseMap<void*,Checks> MapTy; + + MapTy M; + Checks::Factory F; + Checks AllStmts; + +public: + MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : + F(Alloc), AllStmts(F.GetEmptyList()) {} + + virtual ~MappedBatchAuditor() { + llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited; + + for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) + for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ + + GRSimpleAPICheck* check = *I; + + if (AlreadyVisited.count(check)) + continue; + + AlreadyVisited.insert(check); + delete check; + } + } + + void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) { + assert (A && "Check cannot be null."); + void* key = reinterpret_cast<void*>((uintptr_t) C); + MapTy::iterator I = M.find(key); + M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); + } + + void AddCheck(GRSimpleAPICheck *A) { + assert (A && "Check cannot be null."); + AllStmts = F.Concat(A, AllStmts); + } + + virtual bool Audit(NodeTy* N, GRStateManager& VMgr) { + // First handle the auditors that accept all statements. + bool isSink = false; + for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I) + isSink |= (*I)->Audit(N, VMgr); + + // Next handle the auditors that accept only specific statements. + Stmt* S = cast<PostStmt>(N->getLocation()).getStmt(); + void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass()); + MapTy::iterator MI = M.find(key); + if (MI != M.end()) { + for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) + isSink |= (*I)->Audit(N, VMgr); + } + + return isSink; + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Engine construction and deletion. +//===----------------------------------------------------------------------===// + +static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { + IdentifierInfo* II = &Ctx.Idents.get(name); + return Ctx.Selectors.getSelector(0, &II); +} + + +GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, + LiveVariables& L, BugReporterData& BRD, + bool purgeDead, bool eagerlyAssume, + StoreManagerCreator SMC, + ConstraintManagerCreator CMC) + : CoreEngine(cfg, CD, Ctx, *this), + G(CoreEngine.getGraph()), + Liveness(L), + Builder(NULL), + StateMgr(G.getContext(), SMC, CMC, G.getAllocator(), cfg, CD, L), + SymMgr(StateMgr.getSymbolManager()), + ValMgr(StateMgr.getValueManager()), + CurrentStmt(NULL), + NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), + RaiseSel(GetNullarySelector("raise", G.getContext())), + PurgeDead(purgeDead), + BR(BRD, *this), + EagerlyAssume(eagerlyAssume) {} + +GRExprEngine::~GRExprEngine() { + BR.FlushReports(); + delete [] NSExceptionInstanceRaiseSelectors; +} + +//===----------------------------------------------------------------------===// +// Utility methods. +//===----------------------------------------------------------------------===// + + +void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { + StateMgr.TF = tf; + tf->RegisterChecks(getBugReporter()); + tf->RegisterPrinters(getStateManager().Printers); +} + +void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { + if (!BatchAuditor) + BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); + + ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); +} + +void GRExprEngine::AddCheck(GRSimpleAPICheck *A) { + if (!BatchAuditor) + BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); + + ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A); +} + +const GRState* GRExprEngine::getInitialState() { + const GRState *state = StateMgr.getInitialState(); + + // Precondition: the first argument of 'main' is an integer guaranteed + // to be > 0. + // FIXME: It would be nice if we had a more general mechanism to add + // such preconditions. Some day. + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(&StateMgr.getCodeDecl())) + if (strcmp(FD->getIdentifier()->getName(), "main") == 0 && + FD->getNumParams() > 0) { + const ParmVarDecl *PD = FD->getParamDecl(0); + QualType T = PD->getType(); + if (T->isIntegerType()) + if (const MemRegion *R = StateMgr.getRegion(PD)) { + SVal V = GetSVal(state, loc::MemRegionVal(R)); + SVal Constraint = EvalBinOp(state, BinaryOperator::GT, V, + ValMgr.makeZeroVal(T), + getContext().IntTy); + bool isFeasible = false; + const GRState *newState = Assume(state, Constraint, true, + isFeasible); + if (newState) state = newState; + } + } + + return state; +} + +//===----------------------------------------------------------------------===// +// Top-level transfer function logic (Dispatcher). +//===----------------------------------------------------------------------===// + +void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { + + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + S->getLocStart(), + "Error evaluating statement"); + + Builder = &builder; + EntryNode = builder.getLastNode(); + + // FIXME: Consolidate. + CurrentStmt = S; + StateMgr.CurrentStmt = S; + + // Set up our simple checks. + if (BatchAuditor) + Builder->setAuditor(BatchAuditor.get()); + + // Create the cleaned state. + SymbolReaper SymReaper(Liveness, SymMgr); + CleanedState = PurgeDead ? StateMgr.RemoveDeadBindings(EntryNode->getState(), + CurrentStmt, SymReaper) + : EntryNode->getState(); + + // Process any special transfer function for dead symbols. + NodeSet Tmp; + + if (!SymReaper.hasDeadSymbols()) + Tmp.Add(EntryNode); + else { + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); + Builder->PurgingDeadSymbols = true; + + getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S, + CleanedState, SymReaper); + + if (!Builder->BuildSinks && !Builder->HasGeneratedNode) + Tmp.Add(EntryNode); + } + + bool HasAutoGenerated = false; + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + NodeSet Dst; + + // Set the cleaned state. + Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); + + // Visit the statement. + Visit(S, *I, Dst); + + // Do we need to auto-generate a node? We only need to do this to generate + // a node with a "cleaned" state; GRCoreEngine will actually handle + // auto-transitions for other cases. + if (Dst.size() == 1 && *Dst.begin() == EntryNode + && !Builder->HasGeneratedNode && !HasAutoGenerated) { + HasAutoGenerated = true; + builder.generateNode(S, GetState(EntryNode), *I); + } + } + + // NULL out these variables to cleanup. + CleanedState = NULL; + EntryNode = NULL; + + // FIXME: Consolidate. + StateMgr.CurrentStmt = 0; + CurrentStmt = 0; + + Builder = NULL; +} + +void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + S->getLocStart(), + "Error evaluating statement"); + + // FIXME: add metadata to the CFG so that we can disable + // this check when we KNOW that there is no block-level subexpression. + // The motivation is that this check requires a hashtable lookup. + + if (S != CurrentStmt && getCFG().isBlkExpr(S)) { + Dst.Add(Pred); + return; + } + + switch (S->getStmtClass()) { + + default: + // Cases we intentionally have "default" handle: + // AddrLabelExpr, IntegerLiteral, CharacterLiteral + + Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. + break; + + case Stmt::ArraySubscriptExprClass: + VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false); + break; + + case Stmt::AsmStmtClass: + VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); + break; + + case Stmt::BinaryOperatorClass: { + BinaryOperator* B = cast<BinaryOperator>(S); + + if (B->isLogicalOp()) { + VisitLogicalExpr(B, Pred, Dst); + break; + } + else if (B->getOpcode() == BinaryOperator::Comma) { + const GRState* state = GetState(Pred); + MakeNode(Dst, B, Pred, BindExpr(state, B, GetSVal(state, B->getRHS()))); + break; + } + + if (EagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) { + NodeSet Tmp; + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); + EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); + } + else + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); + + break; + } + + case Stmt::CallExprClass: + case Stmt::CXXOperatorCallExprClass: { + CallExpr* C = cast<CallExpr>(S); + VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); + break; + } + + // FIXME: ChooseExpr is really a constant. We need to fix + // the CFG do not model them as explicit control-flow. + + case Stmt::ChooseExprClass: { // __builtin_choose_expr + ChooseExpr* C = cast<ChooseExpr>(S); + VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); + break; + } + + case Stmt::CompoundAssignOperatorClass: + VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); + break; + + case Stmt::CompoundLiteralExprClass: + VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false); + break; + + case Stmt::ConditionalOperatorClass: { // '?' operator + ConditionalOperator* C = cast<ConditionalOperator>(S); + VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); + break; + } + + case Stmt::DeclRefExprClass: + case Stmt::QualifiedDeclRefExprClass: + VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false); + break; + + case Stmt::DeclStmtClass: + VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); + break; + + case Stmt::ImplicitCastExprClass: + case Stmt::CStyleCastExprClass: { + CastExpr* C = cast<CastExpr>(S); + VisitCast(C, C->getSubExpr(), Pred, Dst); + break; + } + + case Stmt::InitListExprClass: + VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); + break; + + case Stmt::MemberExprClass: + VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false); + break; + + case Stmt::ObjCIvarRefExprClass: + VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false); + break; + + case Stmt::ObjCForCollectionStmtClass: + VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); + break; + + case Stmt::ObjCMessageExprClass: { + VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); + break; + } + + case Stmt::ObjCAtThrowStmtClass: { + // FIXME: This is not complete. We basically treat @throw as + // an abort. + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + Builder->BuildSinks = true; + MakeNode(Dst, S, Pred, GetState(Pred)); + break; + } + + case Stmt::ParenExprClass: + Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst); + break; + + case Stmt::ReturnStmtClass: + VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); + break; + + case Stmt::SizeOfAlignOfExprClass: + VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); + break; + + case Stmt::StmtExprClass: { + StmtExpr* SE = cast<StmtExpr>(S); + + if (SE->getSubStmt()->body_empty()) { + // Empty statement expression. + assert(SE->getType() == getContext().VoidTy + && "Empty statement expression must have void type."); + Dst.Add(Pred); + break; + } + + if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { + const GRState* state = GetState(Pred); + MakeNode(Dst, SE, Pred, BindExpr(state, SE, GetSVal(state, LastExpr))); + } + else + Dst.Add(Pred); + + break; + } + + case Stmt::StringLiteralClass: + VisitLValue(cast<StringLiteral>(S), Pred, Dst); + break; + + case Stmt::UnaryOperatorClass: { + UnaryOperator *U = cast<UnaryOperator>(S); + if (EagerlyAssume && (U->getOpcode() == UnaryOperator::LNot)) { + NodeSet Tmp; + VisitUnaryOperator(U, Pred, Tmp, false); + EvalEagerlyAssume(Dst, Tmp, U); + } + else + VisitUnaryOperator(U, Pred, Dst, false); + break; + } + } +} + +void GRExprEngine::VisitLValue(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { + + Ex = Ex->IgnoreParens(); + + if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { + Dst.Add(Pred); + return; + } + + switch (Ex->getStmtClass()) { + + case Stmt::ArraySubscriptExprClass: + VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::DeclRefExprClass: + case Stmt::QualifiedDeclRefExprClass: + VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::ObjCIvarRefExprClass: + VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::UnaryOperatorClass: + VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true); + return; + + case Stmt::MemberExprClass: + VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::CompoundLiteralExprClass: + VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true); + return; + + case Stmt::ObjCPropertyRefExprClass: + case Stmt::ObjCKVCRefExprClass: + // FIXME: Property assignments are lvalues, but not really "locations". + // e.g.: self.x = something; + // Here the "self.x" really can translate to a method call (setter) when + // the assignment is made. Moreover, the entire assignment expression + // evaluate to whatever "something" is, not calling the "getter" for + // the property (which would make sense since it can have side effects). + // We'll probably treat this as a location, but not one that we can + // take the address of. Perhaps we need a new SVal class for cases + // like thsis? + // Note that we have a similar problem for bitfields, since they don't + // have "locations" in the sense that we can take their address. + Dst.Add(Pred); + return; + + case Stmt::StringLiteralClass: { + const GRState* state = GetState(Pred); + SVal V = StateMgr.GetLValue(state, cast<StringLiteral>(Ex)); + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); + return; + } + + default: + // Arbitrary subexpressions can return aggregate temporaries that + // can be used in a lvalue context. We need to enhance our support + // of such temporaries in both the environment and the store, so right + // now we just do a regular visit. + assert ((Ex->getType()->isAggregateType()) && + "Other kinds of expressions with non-aggregate/union types do" + " not have lvalues."); + + Visit(Ex, Pred, Dst); + } +} + +//===----------------------------------------------------------------------===// +// Block entrance. (Update counters). +//===----------------------------------------------------------------------===// + +bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, + GRBlockCounter BC) { + + return BC.getNumVisited(B->getBlockID()) < 3; +} + +//===----------------------------------------------------------------------===// +// Generic node creation. +//===----------------------------------------------------------------------===// + +GRExprEngine::NodeTy* GRExprEngine::MakeNode(NodeSet& Dst, Stmt* S, + NodeTy* Pred, + const GRState* St, + ProgramPoint::Kind K, + const void *tag) { + + assert (Builder && "GRStmtNodeBuilder not present."); + SaveAndRestore<const void*> OldTag(Builder->Tag); + Builder->Tag = tag; + return Builder->MakeNode(Dst, S, Pred, St, K); +} + +//===----------------------------------------------------------------------===// +// Branch processing. +//===----------------------------------------------------------------------===// + +const GRState* GRExprEngine::MarkBranch(const GRState* state, + Stmt* Terminator, + bool branchTaken) { + + switch (Terminator->getStmtClass()) { + default: + return state; + + case Stmt::BinaryOperatorClass: { // '&&' and '||' + + BinaryOperator* B = cast<BinaryOperator>(Terminator); + BinaryOperator::Opcode Op = B->getOpcode(); + + assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); + + // For &&, if we take the true branch, then the value of the whole + // expression is that of the RHS expression. + // + // For ||, if we take the false branch, then the value of the whole + // expression is that of the RHS expression. + + Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || + (Op == BinaryOperator::LOr && !branchTaken) + ? B->getRHS() : B->getLHS(); + + return BindBlkExpr(state, B, UndefinedVal(Ex)); + } + + case Stmt::ConditionalOperatorClass: { // ?: + + ConditionalOperator* C = cast<ConditionalOperator>(Terminator); + + // For ?, if branchTaken == true then the value is either the LHS or + // the condition itself. (GNU extension). + + Expr* Ex; + + if (branchTaken) + Ex = C->getLHS() ? C->getLHS() : C->getCond(); + else + Ex = C->getRHS(); + + return BindBlkExpr(state, C, UndefinedVal(Ex)); + } + + case Stmt::ChooseExprClass: { // ?: + + ChooseExpr* C = cast<ChooseExpr>(Terminator); + + Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); + return BindBlkExpr(state, C, UndefinedVal(Ex)); + } + } +} + +/// RecoverCastedSymbol - A helper function for ProcessBranch that is used +/// to try to recover some path-sensitivity for casts of symbolic +/// integers that promote their values (which are currently not tracked well). +/// This function returns the SVal bound to Condition->IgnoreCasts if all the +// cast(s) did was sign-extend the original value. +static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, + Stmt* Condition, ASTContext& Ctx) { + + Expr *Ex = dyn_cast<Expr>(Condition); + if (!Ex) + return UnknownVal(); + + uint64_t bits = 0; + bool bitsInit = false; + + while (CastExpr *CE = dyn_cast<CastExpr>(Ex)) { + QualType T = CE->getType(); + + if (!T->isIntegerType()) + return UnknownVal(); + + uint64_t newBits = Ctx.getTypeSize(T); + if (!bitsInit || newBits < bits) { + bitsInit = true; + bits = newBits; + } + + Ex = CE->getSubExpr(); + } + + // We reached a non-cast. Is it a symbolic value? + QualType T = Ex->getType(); + + if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) + return UnknownVal(); + + return StateMgr.GetSVal(state, Ex); +} + +void GRExprEngine::ProcessBranch(Stmt* Condition, Stmt* Term, + BranchNodeBuilder& builder) { + + // Remove old bindings for subexpressions. + const GRState* PrevState = + StateMgr.RemoveSubExprBindings(builder.getState()); + + // Check for NULL conditions; e.g. "for(;;)" + if (!Condition) { + builder.markInfeasible(false); + return; + } + + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), + Condition->getLocStart(), + "Error evaluating branch"); + + SVal V = GetSVal(PrevState, Condition); + + switch (V.getBaseKind()) { + default: + break; + + case SVal::UnknownKind: { + if (Expr *Ex = dyn_cast<Expr>(Condition)) { + if (Ex->getType()->isIntegerType()) { + // Try to recover some path-sensitivity. Right now casts of symbolic + // integers that promote their values are currently not tracked well. + // If 'Condition' is such an expression, try and recover the + // underlying value and use that instead. + SVal recovered = RecoverCastedSymbol(getStateManager(), + builder.getState(), Condition, + getContext()); + + if (!recovered.isUnknown()) { + V = recovered; + break; + } + } + } + + builder.generateNode(MarkBranch(PrevState, Term, true), true); + builder.generateNode(MarkBranch(PrevState, Term, false), false); + return; + } + + case SVal::UndefinedKind: { + NodeTy* N = builder.generateNode(PrevState, true); + + if (N) { + N->markAsSink(); + UndefBranches.insert(N); + } + + builder.markInfeasible(false); + return; + } + } + + // Process the true branch. + + bool isFeasible = false; + const GRState* state = Assume(PrevState, V, true, isFeasible); + + if (isFeasible) + builder.generateNode(MarkBranch(state, Term, true), true); + else + builder.markInfeasible(true); + + // Process the false branch. + + isFeasible = false; + state = Assume(PrevState, V, false, isFeasible); + + if (isFeasible) + builder.generateNode(MarkBranch(state, Term, false), false); + else + builder.markInfeasible(false); +} + +/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a computed goto jump. +void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { + + const GRState* state = builder.getState(); + SVal V = GetSVal(state, builder.getTarget()); + + // Three possibilities: + // + // (1) We know the computed label. + // (2) The label is NULL (or some other constant), or Undefined. + // (3) We have no clue about the label. Dispatch to all targets. + // + + typedef IndirectGotoNodeBuilder::iterator iterator; + + if (isa<loc::GotoLabel>(V)) { + LabelStmt* L = cast<loc::GotoLabel>(V).getLabel(); + + for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { + if (I.getLabel() == L) { + builder.generateNode(I, state); + return; + } + } + + assert (false && "No block with label."); + return; + } + + if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { + // Dispatch to the first target and mark it as a sink. + NodeTy* N = builder.generateNode(builder.begin(), state, true); + UndefBranches.insert(N); + return; + } + + // This is really a catch-all. We don't support symbolics yet. + // FIXME: Implement dispatch for symbolic pointers. + + for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) + builder.generateNode(I, state); +} + + +void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, + NodeTy* Pred, NodeSet& Dst) { + + assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); + + const GRState* state = GetState(Pred); + SVal X = GetBlkExprSVal(state, Ex); + + assert (X.isUndef()); + + Expr* SE = (Expr*) cast<UndefinedVal>(X).getData(); + + assert (SE); + + X = GetBlkExprSVal(state, SE); + + // Make sure that we invalidate the previous binding. + MakeNode(Dst, Ex, Pred, StateMgr.BindExpr(state, Ex, X, true, true)); +} + +/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor +/// nodes by processing the 'effects' of a switch statement. +void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { + typedef SwitchNodeBuilder::iterator iterator; + const GRState* state = builder.getState(); + Expr* CondE = builder.getCondition(); + SVal CondV = GetSVal(state, CondE); + + if (CondV.isUndef()) { + NodeTy* N = builder.generateDefaultCaseNode(state, true); + UndefBranches.insert(N); + return; + } + + const GRState* DefaultSt = state; + bool DefaultFeasible = false; + + for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { + CaseStmt* Case = cast<CaseStmt>(I.getCase()); + + // Evaluate the LHS of the case value. + Expr::EvalResult V1; + bool b = Case->getLHS()->Evaluate(V1, getContext()); + + // Sanity checks. These go away in Release builds. + assert(b && V1.Val.isInt() && !V1.HasSideEffects + && "Case condition must evaluate to an integer constant."); + b = b; // silence unused variable warning + assert(V1.Val.getInt().getBitWidth() == + getContext().getTypeSize(CondE->getType())); + + // Get the RHS of the case, if it exists. + Expr::EvalResult V2; + + if (Expr* E = Case->getRHS()) { + b = E->Evaluate(V2, getContext()); + assert(b && V2.Val.isInt() && !V2.HasSideEffects + && "Case condition must evaluate to an integer constant."); + b = b; // silence unused variable warning + } + else + V2 = V1; + + // FIXME: Eventually we should replace the logic below with a range + // comparison, rather than concretize the values within the range. + // This should be easy once we have "ranges" for NonLVals. + + do { + nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); + SVal Res = EvalBinOp(DefaultSt, BinaryOperator::EQ, CondV, CaseVal, + getContext().IntTy); + + // Now "assume" that the case matches. + bool isFeasible = false; + const GRState* StNew = Assume(state, Res, true, isFeasible); + + if (isFeasible) { + builder.generateCaseStmtNode(I, StNew); + + // If CondV evaluates to a constant, then we know that this + // is the *only* case that we can take, so stop evaluating the + // others. + if (isa<nonloc::ConcreteInt>(CondV)) + return; + } + + // Now "assume" that the case doesn't match. Add this state + // to the default state (if it is feasible). + + isFeasible = false; + StNew = Assume(DefaultSt, Res, false, isFeasible); + + if (isFeasible) { + DefaultFeasible = true; + DefaultSt = StNew; + } + + // Concretize the next value in the range. + if (V1.Val.getInt() == V2.Val.getInt()) + break; + + ++V1.Val.getInt(); + assert (V1.Val.getInt() <= V2.Val.getInt()); + + } while (true); + } + + // If we reach here, than we know that the default branch is + // possible. + if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt); +} + +//===----------------------------------------------------------------------===// +// Transfer functions: logical operations ('&&', '||'). +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, + NodeSet& Dst) { + + assert (B->getOpcode() == BinaryOperator::LAnd || + B->getOpcode() == BinaryOperator::LOr); + + assert (B == CurrentStmt && getCFG().isBlkExpr(B)); + + const GRState* state = GetState(Pred); + SVal X = GetBlkExprSVal(state, B); + + assert (X.isUndef()); + + Expr* Ex = (Expr*) cast<UndefinedVal>(X).getData(); + + assert (Ex); + + if (Ex == B->getRHS()) { + + X = GetBlkExprSVal(state, Ex); + + // Handle undefined values. + + if (X.isUndef()) { + MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); + return; + } + + // We took the RHS. Because the value of the '&&' or '||' expression must + // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 + // or 1. Alternatively, we could take a lazy approach, and calculate this + // value later when necessary. We don't have the machinery in place for + // this right now, and since most logical expressions are used for branches, + // the payoff is not likely to be large. Instead, we do eager evaluation. + + bool isFeasible = false; + const GRState* NewState = Assume(state, X, true, isFeasible); + + if (isFeasible) + MakeNode(Dst, B, Pred, + BindBlkExpr(NewState, B, MakeConstantVal(1U, B))); + + isFeasible = false; + NewState = Assume(state, X, false, isFeasible); + + if (isFeasible) + MakeNode(Dst, B, Pred, + BindBlkExpr(NewState, B, MakeConstantVal(0U, B))); + } + else { + // We took the LHS expression. Depending on whether we are '&&' or + // '||' we know what the value of the expression is via properties of + // the short-circuiting. + + X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); + MakeNode(Dst, B, Pred, BindBlkExpr(state, B, X)); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Loads and stores. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* Ex, NodeTy* Pred, NodeSet& Dst, + bool asLValue) { + + const GRState* state = GetState(Pred); + + const NamedDecl* D = Ex->getDecl(); + + if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { + + SVal V = StateMgr.GetLValue(state, VD); + + if (asLValue) + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, Ex, Pred, state, V); + return; + + } else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { + assert(!asLValue && "EnumConstantDecl does not have lvalue."); + + BasicValueFactory& BasicVals = StateMgr.getBasicVals(); + SVal V = nonloc::ConcreteInt(BasicVals.getValue(ED->getInitVal())); + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V)); + return; + + } else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { + assert(asLValue); + SVal V = ValMgr.getFunctionPointer(FD); + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), + ProgramPoint::PostLValueKind); + return; + } + + assert (false && + "ValueDecl support for this ValueDecl not implemented."); +} + +/// VisitArraySubscriptExpr - Transfer function for array accesses +void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred, + NodeSet& Dst, bool asLValue) { + + Expr* Base = A->getBase()->IgnoreParens(); + Expr* Idx = A->getIdx()->IgnoreParens(); + NodeSet Tmp; + + if (Base->getType()->isVectorType()) { + // For vector types get its lvalue. + // FIXME: This may not be correct. Is the rvalue of a vector its location? + // In fact, I think this is just a hack. We need to get the right + // semantics. + VisitLValue(Base, Pred, Tmp); + } + else + Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal. + + for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { + NodeSet Tmp2; + Visit(Idx, *I1, Tmp2); // Evaluate the index. + + for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) { + const GRState* state = GetState(*I2); + SVal V = StateMgr.GetLValue(state, A->getType(), + GetSVal(state, Base), + GetSVal(state, Idx)); + + if (asLValue) + MakeNode(Dst, A, *I2, BindExpr(state, A, V), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, A, *I2, state, V); + } + } +} + +/// VisitMemberExpr - Transfer function for member expressions. +void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred, + NodeSet& Dst, bool asLValue) { + + Expr* Base = M->getBase()->IgnoreParens(); + NodeSet Tmp; + + if (M->isArrow()) + Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f + else + VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f + + FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl()); + if (!Field) // FIXME: skipping member expressions for non-fields + return; + + for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { + const GRState* state = GetState(*I); + // FIXME: Should we insert some assumption logic in here to determine + // if "Base" is a valid piece of memory? Before we put this assumption + // later when using FieldOffset lvals (which we no longer have). + SVal L = StateMgr.GetLValue(state, GetSVal(state, Base), Field); + + if (asLValue) + MakeNode(Dst, M, *I, BindExpr(state, M, L), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, M, *I, state, L); + } +} + +/// EvalBind - Handle the semantics of binding a value to a specific location. +/// This method is used by EvalStore and (soon) VisitDeclStmt, and others. +void GRExprEngine::EvalBind(NodeSet& Dst, Expr* Ex, NodeTy* Pred, + const GRState* state, SVal location, SVal Val) { + + const GRState* newState = 0; + + if (location.isUnknown()) { + // We know that the new state will be the same as the old state since + // the location of the binding is "unknown". Consequently, there + // is no reason to just create a new node. + newState = state; + } + else { + // We are binding to a value other than 'unknown'. Perform the binding + // using the StoreManager. + newState = StateMgr.BindLoc(state, cast<Loc>(location), Val); + } + + // The next thing to do is check if the GRTransferFuncs object wants to + // update the state based on the new binding. If the GRTransferFunc object + // doesn't do anything, just auto-propagate the current state. + GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, Pred, newState, Ex, + newState != state); + + getTF().EvalBind(BuilderRef, location, Val); +} + +/// EvalStore - Handle the semantics of a store via an assignment. +/// @param Dst The node set to store generated state nodes +/// @param Ex The expression representing the location of the store +/// @param state The current simulation state +/// @param location The location to store the value +/// @param Val The value to be stored +void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred, + const GRState* state, SVal location, SVal Val, + const void *tag) { + + assert (Builder && "GRStmtNodeBuilder must be defined."); + + // Evaluate the location (checks for bad dereferences). + Pred = EvalLocation(Ex, Pred, state, location, tag); + + if (!Pred) + return; + + assert (!location.isUndef()); + state = GetState(Pred); + + // Proceed with the store. + SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); + SaveAndRestore<const void*> OldTag(Builder->Tag); + Builder->PointKind = ProgramPoint::PostStoreKind; + Builder->Tag = tag; + EvalBind(Dst, Ex, Pred, state, location, Val); +} + +void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, + const GRState* state, SVal location, + const void *tag) { + + // Evaluate the location (checks for bad dereferences). + Pred = EvalLocation(Ex, Pred, state, location, tag); + + if (!Pred) + return; + + state = GetState(Pred); + + // Proceed with the load. + ProgramPoint::Kind K = ProgramPoint::PostLoadKind; + + // FIXME: Currently symbolic analysis "generates" new symbols + // for the contents of values. We need a better approach. + + if (location.isUnknown()) { + // This is important. We must nuke the old binding. + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, UnknownVal()), K, tag); + } + else { + SVal V = GetSVal(state, cast<Loc>(location), Ex->getType()); + MakeNode(Dst, Ex, Pred, BindExpr(state, Ex, V), K, tag); + } +} + +void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred, + const GRState* state, SVal location, SVal Val, + const void *tag) { + + NodeSet TmpDst; + EvalStore(TmpDst, StoreE, Pred, state, location, Val, tag); + + for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I) + MakeNode(Dst, Ex, *I, (*I)->getState(), ProgramPoint::PostStmtKind, tag); +} + +GRExprEngine::NodeTy* GRExprEngine::EvalLocation(Stmt* Ex, NodeTy* Pred, + const GRState* state, + SVal location, + const void *tag) { + + SaveAndRestore<const void*> OldTag(Builder->Tag); + Builder->Tag = tag; + + // Check for loads/stores from/to undefined values. + if (location.isUndef()) { + NodeTy* N = + Builder->generateNode(Ex, state, Pred, + ProgramPoint::PostUndefLocationCheckFailedKind); + + if (N) { + N->markAsSink(); + UndefDeref.insert(N); + } + + return 0; + } + + // Check for loads/stores from/to unknown locations. Treat as No-Ops. + if (location.isUnknown()) + return Pred; + + // During a load, one of two possible situations arise: + // (1) A crash, because the location (pointer) was NULL. + // (2) The location (pointer) is not NULL, and the dereference works. + // + // We add these assumptions. + + Loc LV = cast<Loc>(location); + + // "Assume" that the pointer is not NULL. + bool isFeasibleNotNull = false; + const GRState* StNotNull = Assume(state, LV, true, isFeasibleNotNull); + + // "Assume" that the pointer is NULL. + bool isFeasibleNull = false; + GRStateRef StNull = GRStateRef(Assume(state, LV, false, isFeasibleNull), + getStateManager()); + + if (isFeasibleNull) { + + // Use the Generic Data Map to mark in the state what lval was null. + const SVal* PersistentLV = getBasicVals().getPersistentSVal(LV); + StNull = StNull.set<GRState::NullDerefTag>(PersistentLV); + + // We don't use "MakeNode" here because the node will be a sink + // and we have no intention of processing it later. + NodeTy* NullNode = + Builder->generateNode(Ex, StNull, Pred, + ProgramPoint::PostNullCheckFailedKind); + + if (NullNode) { + + NullNode->markAsSink(); + + if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); + else ExplicitNullDeref.insert(NullNode); + } + } + + if (!isFeasibleNotNull) + return 0; + + // Check for out-of-bound array access. + if (isa<loc::MemRegionVal>(LV)) { + const MemRegion* R = cast<loc::MemRegionVal>(LV).getRegion(); + if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) { + // Get the index of the accessed element. + SVal Idx = ER->getIndex(); + // Get the extent of the array. + SVal NumElements = getStoreManager().getSizeInElements(StNotNull, + ER->getSuperRegion()); + + bool isFeasibleInBound = false; + const GRState* StInBound = AssumeInBound(StNotNull, Idx, NumElements, + true, isFeasibleInBound); + + bool isFeasibleOutBound = false; + const GRState* StOutBound = AssumeInBound(StNotNull, Idx, NumElements, + false, isFeasibleOutBound); + + if (isFeasibleOutBound) { + // Report warning. Make sink node manually. + NodeTy* OOBNode = + Builder->generateNode(Ex, StOutBound, Pred, + ProgramPoint::PostOutOfBoundsCheckFailedKind); + + if (OOBNode) { + OOBNode->markAsSink(); + + if (isFeasibleInBound) + ImplicitOOBMemAccesses.insert(OOBNode); + else + ExplicitOOBMemAccesses.insert(OOBNode); + } + } + + if (!isFeasibleInBound) + return 0; + + StNotNull = StInBound; + } + } + + // Generate a new node indicating the checks succeed. + return Builder->generateNode(Ex, StNotNull, Pred, + ProgramPoint::PostLocationChecksSucceedKind); +} + +//===----------------------------------------------------------------------===// +// Transfer function: OSAtomics. +// +// FIXME: Eventually refactor into a more "plugin" infrastructure. +//===----------------------------------------------------------------------===// + +// Mac OS X: +// http://developer.apple.com/documentation/Darwin/Reference/Manpages/man3 +// atomic.3.html +// +static bool EvalOSAtomicCompareAndSwap(ExplodedNodeSet<GRState>& Dst, + GRExprEngine& Engine, + GRStmtNodeBuilder<GRState>& Builder, + CallExpr* CE, SVal L, + ExplodedNode<GRState>* Pred) { + + // Not enough arguments to match OSAtomicCompareAndSwap? + if (CE->getNumArgs() != 3) + return false; + + ASTContext &C = Engine.getContext(); + Expr *oldValueExpr = CE->getArg(0); + QualType oldValueType = C.getCanonicalType(oldValueExpr->getType()); + + Expr *newValueExpr = CE->getArg(1); + QualType newValueType = C.getCanonicalType(newValueExpr->getType()); + + // Do the types of 'oldValue' and 'newValue' match? + if (oldValueType != newValueType) + return false; + + Expr *theValueExpr = CE->getArg(2); + const PointerType *theValueType = theValueExpr->getType()->getAsPointerType(); + + // theValueType not a pointer? + if (!theValueType) + return false; + + QualType theValueTypePointee = + C.getCanonicalType(theValueType->getPointeeType()).getUnqualifiedType(); + + // The pointee must match newValueType and oldValueType. + if (theValueTypePointee != newValueType) + return false; + + static unsigned magic_load = 0; + static unsigned magic_store = 0; + + const void *OSAtomicLoadTag = &magic_load; + const void *OSAtomicStoreTag = &magic_store; + + // Load 'theValue'. + GRStateManager &StateMgr = Engine.getStateManager(); + const GRState *state = Pred->getState(); + ExplodedNodeSet<GRState> Tmp; + SVal location = StateMgr.GetSVal(state, theValueExpr); + Engine.EvalLoad(Tmp, theValueExpr, Pred, state, location, OSAtomicLoadTag); + + for (ExplodedNodeSet<GRState>::iterator I = Tmp.begin(), E = Tmp.end(); + I != E; ++I) { + + ExplodedNode<GRState> *N = *I; + const GRState *stateLoad = N->getState(); + SVal theValueVal = StateMgr.GetSVal(stateLoad, theValueExpr); + SVal oldValueVal = StateMgr.GetSVal(stateLoad, oldValueExpr); + + // Perform the comparison. + SVal Cmp = Engine.EvalBinOp(stateLoad, + BinaryOperator::EQ, theValueVal, oldValueVal, + Engine.getContext().IntTy); + bool isFeasible = false; + const GRState *stateEqual = StateMgr.Assume(stateLoad, Cmp, true, + isFeasible); + + // Were they equal? + if (isFeasible) { + // Perform the store. + ExplodedNodeSet<GRState> TmpStore; + Engine.EvalStore(TmpStore, theValueExpr, N, stateEqual, location, + StateMgr.GetSVal(stateEqual, newValueExpr), + OSAtomicStoreTag); + + // Now bind the result of the comparison. + for (ExplodedNodeSet<GRState>::iterator I2 = TmpStore.begin(), + E2 = TmpStore.end(); I2 != E2; ++I2) { + ExplodedNode<GRState> *predNew = *I2; + const GRState *stateNew = predNew->getState(); + SVal Res = Engine.getValueManager().makeTruthVal(true, CE->getType()); + Engine.MakeNode(Dst, CE, predNew, Engine.BindExpr(stateNew, CE, Res)); + } + } + + // Were they not equal? + isFeasible = false; + const GRState *stateNotEqual = StateMgr.Assume(stateLoad, Cmp, false, + isFeasible); + + if (isFeasible) { + SVal Res = Engine.getValueManager().makeTruthVal(false, CE->getType()); + Engine.MakeNode(Dst, CE, N, Engine.BindExpr(stateNotEqual, CE, Res)); + } + } + + return true; +} + +static bool EvalOSAtomic(ExplodedNodeSet<GRState>& Dst, + GRExprEngine& Engine, + GRStmtNodeBuilder<GRState>& Builder, + CallExpr* CE, SVal L, + ExplodedNode<GRState>* Pred) { + const FunctionDecl* FD = L.getAsFunctionDecl(); + if (!FD) + return false; + + const char *FName = FD->getNameAsCString(); + + // Check for compare and swap. + if (strncmp(FName, "OSAtomicCompareAndSwap", 22) == 0 || + strncmp(FName, "objc_atomicCompareAndSwap", 25) == 0) + return EvalOSAtomicCompareAndSwap(Dst, Engine, Builder, CE, L, Pred); + + // FIXME: Other atomics. + return false; +} + +//===----------------------------------------------------------------------===// +// Transfer function: Function calls. +//===----------------------------------------------------------------------===// + +void GRExprEngine::EvalCall(NodeSet& Dst, CallExpr* CE, SVal L, NodeTy* Pred) { + assert (Builder && "GRStmtNodeBuilder must be defined."); + + // FIXME: Allow us to chain together transfer functions. + if (EvalOSAtomic(Dst, *this, *Builder, CE, L, Pred)) + return; + + getTF().EvalCall(Dst, *this, *Builder, CE, L, Pred); +} + +void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, + CallExpr::arg_iterator AI, + CallExpr::arg_iterator AE, + NodeSet& Dst) +{ + // Determine the type of function we're calling (if available). + const FunctionProtoType *Proto = NULL; + QualType FnType = CE->getCallee()->IgnoreParens()->getType(); + if (const PointerType *FnTypePtr = FnType->getAsPointerType()) + Proto = FnTypePtr->getPointeeType()->getAsFunctionProtoType(); + + VisitCallRec(CE, Pred, AI, AE, Dst, Proto, /*ParamIdx=*/0); +} + +void GRExprEngine::VisitCallRec(CallExpr* CE, NodeTy* Pred, + CallExpr::arg_iterator AI, + CallExpr::arg_iterator AE, + NodeSet& Dst, const FunctionProtoType *Proto, + unsigned ParamIdx) { + + // Process the arguments. + if (AI != AE) { + // If the call argument is being bound to a reference parameter, + // visit it as an lvalue, not an rvalue. + bool VisitAsLvalue = false; + if (Proto && ParamIdx < Proto->getNumArgs()) + VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType(); + + NodeSet DstTmp; + if (VisitAsLvalue) + VisitLValue(*AI, Pred, DstTmp); + else + Visit(*AI, Pred, DstTmp); + ++AI; + + for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) + VisitCallRec(CE, *DI, AI, AE, Dst, Proto, ParamIdx + 1); + + return; + } + + // If we reach here we have processed all of the arguments. Evaluate + // the callee expression. + + NodeSet DstTmp; + Expr* Callee = CE->getCallee()->IgnoreParens(); + + Visit(Callee, Pred, DstTmp); + + // Finally, evaluate the function call. + for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { + + const GRState* state = GetState(*DI); + SVal L = GetSVal(state, Callee); + + // FIXME: Add support for symbolic function calls (calls involving + // function pointer values that are symbolic). + + // Check for undefined control-flow or calls to NULL. + + if (L.isUndef() || isa<loc::ConcreteInt>(L)) { + NodeTy* N = Builder->generateNode(CE, state, *DI); + + if (N) { + N->markAsSink(); + BadCalls.insert(N); + } + + continue; + } + + // Check for the "noreturn" attribute. + + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + const FunctionDecl* FD = L.getAsFunctionDecl(); + if (FD) { + if (FD->getAttr<NoReturnAttr>() || FD->getAttr<AnalyzerNoReturnAttr>()) + Builder->BuildSinks = true; + else { + // HACK: Some functions are not marked noreturn, and don't return. + // Here are a few hardwired ones. If this takes too long, we can + // potentially cache these results. + const char* s = FD->getIdentifier()->getName(); + unsigned n = strlen(s); + + switch (n) { + default: + break; + + case 4: + if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; + break; + + case 5: + if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; + else if (!memcmp(s, "error", 5)) { + if (CE->getNumArgs() > 0) { + SVal X = GetSVal(state, *CE->arg_begin()); + // FIXME: use Assume to inspect the possible symbolic value of + // X. Also check the specific signature of error(). + nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&X); + if (CI && CI->getValue() != 0) + Builder->BuildSinks = true; + } + } + break; + + case 6: + if (!memcmp(s, "Assert", 6)) { + Builder->BuildSinks = true; + break; + } + + // FIXME: This is just a wrapper around throwing an exception. + // Eventually inter-procedural analysis should handle this easily. + if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true; + + break; + + case 7: + if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true; + break; + + case 8: + if (!memcmp(s ,"db_error", 8) || + !memcmp(s, "__assert", 8)) + Builder->BuildSinks = true; + break; + + case 12: + if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true; + break; + + case 13: + if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true; + break; + + case 14: + if (!memcmp(s, "dtrace_assfail", 14) || + !memcmp(s, "yy_fatal_error", 14)) + Builder->BuildSinks = true; + break; + + case 26: + if (!memcmp(s, "_XCAssertionFailureHandler", 26) || + !memcmp(s, "_DTAssertionFailureHandler", 26) || + !memcmp(s, "_TSAssertionFailureHandler", 26)) + Builder->BuildSinks = true; + + break; + } + + } + } + + // Evaluate the call. + + if (FD) { + + if (unsigned id = FD->getBuiltinID(getContext())) + switch (id) { + case Builtin::BI__builtin_expect: { + // For __builtin_expect, just return the value of the subexpression. + assert (CE->arg_begin() != CE->arg_end()); + SVal X = GetSVal(state, *(CE->arg_begin())); + MakeNode(Dst, CE, *DI, BindExpr(state, CE, X)); + continue; + } + + case Builtin::BI__builtin_alloca: { + // FIXME: Refactor into StoreManager itself? + MemRegionManager& RM = getStateManager().getRegionManager(); + const MemRegion* R = + RM.getAllocaRegion(CE, Builder->getCurrentBlockCount()); + + // Set the extent of the region in bytes. This enables us to use the + // SVal of the argument directly. If we save the extent in bits, we + // cannot represent values like symbol*8. + SVal Extent = GetSVal(state, *(CE->arg_begin())); + state = getStoreManager().setExtent(state, R, Extent); + + MakeNode(Dst, CE, *DI, BindExpr(state, CE, loc::MemRegionVal(R))); + continue; + } + + default: + break; + } + } + + // Check any arguments passed-by-value against being undefined. + + bool badArg = false; + + for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); + I != E; ++I) { + + if (GetSVal(GetState(*DI), *I).isUndef()) { + NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); + + if (N) { + N->markAsSink(); + UndefArgs[N] = *I; + } + + badArg = true; + break; + } + } + + if (badArg) + continue; + + // Dispatch to the plug-in transfer function. + + unsigned size = Dst.size(); + SaveOr OldHasGen(Builder->HasGeneratedNode); + EvalCall(Dst, CE, L, *DI); + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + + if (!Builder->BuildSinks && Dst.size() == size && + !Builder->HasGeneratedNode) + MakeNode(Dst, CE, *DI, state); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +static std::pair<const void*,const void*> EagerlyAssumeTag + = std::pair<const void*,const void*>(&EagerlyAssumeTag,0); + +void GRExprEngine::EvalEagerlyAssume(NodeSet &Dst, NodeSet &Src, Expr *Ex) { + for (NodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { + NodeTy *Pred = *I; + + // Test if the previous node was as the same expression. This can happen + // when the expression fails to evaluate to anything meaningful and + // (as an optimization) we don't generate a node. + ProgramPoint P = Pred->getLocation(); + if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { + Dst.Add(Pred); + continue; + } + + const GRState* state = Pred->getState(); + SVal V = GetSVal(state, Ex); + if (isa<nonloc::SymExprVal>(V)) { + // First assume that the condition is true. + bool isFeasible = false; + const GRState *stateTrue = Assume(state, V, true, isFeasible); + if (isFeasible) { + stateTrue = BindExpr(stateTrue, Ex, MakeConstantVal(1U, Ex)); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), + stateTrue, Pred)); + } + + // Next, assume that the condition is false. + isFeasible = false; + const GRState *stateFalse = Assume(state, V, false, isFeasible); + if (isFeasible) { + stateFalse = BindExpr(stateFalse, Ex, MakeConstantVal(0U, Ex)); + Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag), + stateFalse, Pred)); + } + } + else + Dst.Add(Pred); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C ivar references. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitObjCIvarRefExpr(ObjCIvarRefExpr* Ex, + NodeTy* Pred, NodeSet& Dst, + bool asLValue) { + + Expr* Base = cast<Expr>(Ex->getBase()); + NodeSet Tmp; + Visit(Base, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + SVal BaseVal = GetSVal(state, Base); + SVal location = StateMgr.GetLValue(state, Ex->getDecl(), BaseVal); + + if (asLValue) + MakeNode(Dst, Ex, *I, BindExpr(state, Ex, location)); + else + EvalLoad(Dst, Ex, *I, state, location); + } +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C fast enumeration 'for' statements. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S, + NodeTy* Pred, NodeSet& Dst) { + + // ObjCForCollectionStmts are processed in two places. This method + // handles the case where an ObjCForCollectionStmt* occurs as one of the + // statements within a basic block. This transfer function does two things: + // + // (1) binds the next container value to 'element'. This creates a new + // node in the ExplodedGraph. + // + // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating + // whether or not the container has any more elements. This value + // will be tested in ProcessBranch. We need to explicitly bind + // this value because a container can contain nil elements. + // + // FIXME: Eventually this logic should actually do dispatches to + // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). + // This will require simulating a temporary NSFastEnumerationState, either + // through an SVal or through the use of MemRegions. This value can + // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop + // terminates we reclaim the temporary (it goes out of scope) and we + // we can test if the SVal is 0 or if the MemRegion is null (depending + // on what approach we take). + // + // For now: simulate (1) by assigning either a symbol or nil if the + // container is empty. Thus this transfer function will by default + // result in state splitting. + + Stmt* elem = S->getElement(); + SVal ElementV; + + if (DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { + VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); + assert (ElemD->getInit() == 0); + ElementV = getStateManager().GetLValue(GetState(Pred), ElemD); + VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); + return; + } + + NodeSet Tmp; + VisitLValue(cast<Expr>(elem), Pred, Tmp); + + for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + VisitObjCForCollectionStmtAux(S, *I, Dst, GetSVal(state, elem)); + } +} + +void GRExprEngine::VisitObjCForCollectionStmtAux(ObjCForCollectionStmt* S, + NodeTy* Pred, NodeSet& Dst, + SVal ElementV) { + + + + // Get the current state. Use 'EvalLocation' to determine if it is a null + // pointer, etc. + Stmt* elem = S->getElement(); + + Pred = EvalLocation(elem, Pred, GetState(Pred), ElementV); + if (!Pred) + return; + + GRStateRef state = GRStateRef(GetState(Pred), getStateManager()); + + // Handle the case where the container still has elements. + QualType IntTy = getContext().IntTy; + SVal TrueV = NonLoc::MakeVal(getBasicVals(), 1, IntTy); + GRStateRef hasElems = state.BindExpr(S, TrueV); + + // Handle the case where the container has no elements. + SVal FalseV = NonLoc::MakeVal(getBasicVals(), 0, IntTy); + GRStateRef noElems = state.BindExpr(S, FalseV); + + if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) + if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { + // FIXME: The proper thing to do is to really iterate over the + // container. We will do this with dispatch logic to the store. + // For now, just 'conjure' up a symbolic value. + QualType T = R->getValueType(getContext()); + assert (Loc::IsLocType(T)); + unsigned Count = Builder->getCurrentBlockCount(); + SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); + SVal V = Loc::MakeVal(getStoreManager().getRegionManager().getSymbolicRegion(Sym)); + hasElems = hasElems.BindLoc(ElementV, V); + + // Bind the location to 'nil' on the false branch. + SVal nilV = loc::ConcreteInt(getBasicVals().getValue(0, T)); + noElems = noElems.BindLoc(ElementV, nilV); + } + + // Create the new nodes. + MakeNode(Dst, S, Pred, hasElems); + MakeNode(Dst, S, Pred, noElems); +} + +//===----------------------------------------------------------------------===// +// Transfer function: Objective-C message expressions. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, + NodeSet& Dst){ + + VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), + Pred, Dst); +} + +void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, + ObjCMessageExpr::arg_iterator AI, + ObjCMessageExpr::arg_iterator AE, + NodeTy* Pred, NodeSet& Dst) { + if (AI == AE) { + + // Process the receiver. + + if (Expr* Receiver = ME->getReceiver()) { + NodeSet Tmp; + Visit(Receiver, Pred, Tmp); + + for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) + VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); + + return; + } + + VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); + return; + } + + NodeSet Tmp; + Visit(*AI, Pred, Tmp); + + ++AI; + + for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) + VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); +} + +void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, + NodeTy* Pred, + NodeSet& Dst) { + + // FIXME: More logic for the processing the method call. + + const GRState* state = GetState(Pred); + bool RaisesException = false; + + + if (Expr* Receiver = ME->getReceiver()) { + + SVal L = GetSVal(state, Receiver); + + // Check for undefined control-flow. + if (L.isUndef()) { + NodeTy* N = Builder->generateNode(ME, state, Pred); + + if (N) { + N->markAsSink(); + UndefReceivers.insert(N); + } + + return; + } + + // "Assume" that the receiver is not NULL. + bool isFeasibleNotNull = false; + const GRState *StNotNull = Assume(state, L, true, isFeasibleNotNull); + + // "Assume" that the receiver is NULL. + bool isFeasibleNull = false; + const GRState *StNull = Assume(state, L, false, isFeasibleNull); + + if (isFeasibleNull) { + QualType RetTy = ME->getType(); + + // Check if the receiver was nil and the return value a struct. + if(RetTy->isRecordType()) { + if (BR.getParentMap().isConsumedExpr(ME)) { + // The [0 ...] expressions will return garbage. Flag either an + // explicit or implicit error. Because of the structure of this + // function we currently do not bifurfacte the state graph at + // this point. + // FIXME: We should bifurcate and fill the returned struct with + // garbage. + if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { + N->markAsSink(); + if (isFeasibleNotNull) + NilReceiverStructRetImplicit.insert(N); + else + NilReceiverStructRetExplicit.insert(N); + } + } + } + else { + ASTContext& Ctx = getContext(); + if (RetTy != Ctx.VoidTy) { + if (BR.getParentMap().isConsumedExpr(ME)) { + // sizeof(void *) + const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy); + // sizeof(return type) + const uint64_t returnTypeSize = Ctx.getTypeSize(ME->getType()); + + if(voidPtrSize < returnTypeSize) { + if (NodeTy* N = Builder->generateNode(ME, StNull, Pred)) { + N->markAsSink(); + if(isFeasibleNotNull) + NilReceiverLargerThanVoidPtrRetImplicit.insert(N); + else + NilReceiverLargerThanVoidPtrRetExplicit.insert(N); + } + } + else if (!isFeasibleNotNull) { + // Handle the safe cases where the return value is 0 if the + // receiver is nil. + // + // FIXME: For now take the conservative approach that we only + // return null values if we *know* that the receiver is nil. + // This is because we can have surprises like: + // + // ... = [[NSScreens screens] objectAtIndex:0]; + // + // What can happen is that [... screens] could return nil, but + // it most likely isn't nil. We should assume the semantics + // of this case unless we have *a lot* more knowledge. + // + SVal V = ValMgr.makeZeroVal(ME->getType()); + MakeNode(Dst, ME, Pred, BindExpr(StNull, ME, V)); + return; + } + } + } + } + // We have handled the cases where the receiver is nil. The remainder + // of this method should assume that the receiver is not nil. + if (!StNotNull) + return; + + state = StNotNull; + } + + // Check if the "raise" message was sent. + if (ME->getSelector() == RaiseSel) + RaisesException = true; + } + else { + + IdentifierInfo* ClsName = ME->getClassName(); + Selector S = ME->getSelector(); + + // Check for special instance methods. + + if (!NSExceptionII) { + ASTContext& Ctx = getContext(); + + NSExceptionII = &Ctx.Idents.get("NSException"); + } + + if (ClsName == NSExceptionII) { + + enum { NUM_RAISE_SELECTORS = 2 }; + + // Lazily create a cache of the selectors. + + if (!NSExceptionInstanceRaiseSelectors) { + + ASTContext& Ctx = getContext(); + + NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; + + llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; + unsigned idx = 0; + + // raise:format: + II.push_back(&Ctx.Idents.get("raise")); + II.push_back(&Ctx.Idents.get("format")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + + // raise:format::arguments: + II.push_back(&Ctx.Idents.get("arguments")); + NSExceptionInstanceRaiseSelectors[idx++] = + Ctx.Selectors.getSelector(II.size(), &II[0]); + } + + for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) + if (S == NSExceptionInstanceRaiseSelectors[i]) { + RaisesException = true; break; + } + } + } + + // Check for any arguments that are uninitialized/undefined. + + for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); + I != E; ++I) { + + if (GetSVal(state, *I).isUndef()) { + + // Generate an error node for passing an uninitialized/undefined value + // as an argument to a message expression. This node is a sink. + NodeTy* N = Builder->generateNode(ME, state, Pred); + + if (N) { + N->markAsSink(); + MsgExprUndefArgs[N] = *I; + } + + return; + } + } + + // Check if we raise an exception. For now treat these as sinks. Eventually + // we will want to handle exceptions properly. + + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + + if (RaisesException) + Builder->BuildSinks = true; + + // Dispatch to plug-in transfer function. + + unsigned size = Dst.size(); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + EvalObjCMessageExpr(Dst, ME, Pred); + + // Handle the case where no nodes where generated. Auto-generate that + // contains the updated state if we aren't generating sinks. + + if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) + MakeNode(Dst, ME, Pred, state); +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Miscellaneous statements. +//===----------------------------------------------------------------------===// + +void GRExprEngine::VisitCastPointerToInteger(SVal V, const GRState* state, + QualType PtrTy, + Expr* CastE, NodeTy* Pred, + NodeSet& Dst) { + if (!V.isUnknownOrUndef()) { + // FIXME: Determine if the number of bits of the target type is + // equal or exceeds the number of bits to store the pointer value. + // If not, flag an error. + MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, EvalCast(cast<Loc>(V), + CastE->getType()))); + } + else + MakeNode(Dst, CastE, Pred, BindExpr(state, CastE, V)); +} + + +void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ + NodeSet S1; + QualType T = CastE->getType(); + QualType ExTy = Ex->getType(); + + if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) + T = ExCast->getTypeAsWritten(); + + if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType()) + VisitLValue(Ex, Pred, S1); + else + Visit(Ex, Pred, S1); + + // Check for casting to "void". + if (T->isVoidType()) { + for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) + Dst.Add(*I1); + + return; + } + + // FIXME: The rest of this should probably just go into EvalCall, and + // let the transfer function object be responsible for constructing + // nodes. + + for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { + NodeTy* N = *I1; + const GRState* state = GetState(N); + SVal V = GetSVal(state, Ex); + ASTContext& C = getContext(); + + // Unknown? + if (V.isUnknown()) { + Dst.Add(N); + continue; + } + + // Undefined? + if (V.isUndef()) + goto PassThrough; + + // For const casts, just propagate the value. + if (C.getCanonicalType(T).getUnqualifiedType() == + C.getCanonicalType(ExTy).getUnqualifiedType()) + goto PassThrough; + + // Check for casts from pointers to integers. + if (T->isIntegerType() && Loc::IsLocType(ExTy)) { + VisitCastPointerToInteger(V, state, ExTy, CastE, N, Dst); + continue; + } + + // Check for casts from integers to pointers. + if (Loc::IsLocType(T) && ExTy->isIntegerType()) { + if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&V)) { + // Just unpackage the lval and return it. + V = LV->getLoc(); + MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); + continue; + } + + goto DispatchCast; + } + + // Just pass through function and block pointers. + if (ExTy->isBlockPointerType() || ExTy->isFunctionPointerType()) { + assert(Loc::IsLocType(T)); + goto PassThrough; + } + + // Check for casts from array type to another type. + if (ExTy->isArrayType()) { + // We will always decay to a pointer. + V = StateMgr.ArrayToPointer(cast<Loc>(V)); + + // Are we casting from an array to a pointer? If so just pass on + // the decayed value. + if (T->isPointerType()) + goto PassThrough; + + // Are we casting from an array to an integer? If so, cast the decayed + // pointer value to an integer. + assert(T->isIntegerType()); + QualType ElemTy = cast<ArrayType>(ExTy)->getElementType(); + QualType PointerTy = getContext().getPointerType(ElemTy); + VisitCastPointerToInteger(V, state, PointerTy, CastE, N, Dst); + continue; + } + + // Check for casts from a region to a specific type. + if (loc::MemRegionVal *RV = dyn_cast<loc::MemRegionVal>(&V)) { + // FIXME: For TypedViewRegions, we should handle the case where the + // underlying symbolic pointer is a function pointer or + // block pointer. + + // FIXME: We should handle the case where we strip off view layers to get + // to a desugared type. + + assert(Loc::IsLocType(T)); + // We get a symbolic function pointer for a dereference of a function + // pointer, but it is of function type. Example: + + // struct FPRec { + // void (*my_func)(int * x); + // }; + // + // int bar(int x); + // + // int f1_a(struct FPRec* foo) { + // int x; + // (*foo->my_func)(&x); + // return bar(x)+1; // no-warning + // } + + assert(Loc::IsLocType(ExTy) || ExTy->isFunctionType()); + + const MemRegion* R = RV->getRegion(); + StoreManager& StoreMgr = getStoreManager(); + + // Delegate to store manager to get the result of casting a region + // to a different type. + const StoreManager::CastResult& Res = StoreMgr.CastRegion(state, R, T); + + // Inspect the result. If the MemRegion* returned is NULL, this + // expression evaluates to UnknownVal. + R = Res.getRegion(); + if (R) { V = loc::MemRegionVal(R); } else { V = UnknownVal(); } + + // Generate the new node in the ExplodedGraph. + MakeNode(Dst, CastE, N, BindExpr(Res.getState(), CastE, V)); + continue; + } + // All other cases. + DispatchCast: { + MakeNode(Dst, CastE, N, BindExpr(state, CastE, + EvalCast(V, CastE->getType()))); + continue; + } + + PassThrough: { + MakeNode(Dst, CastE, N, BindExpr(state, CastE, V)); + } + } +} + +void GRExprEngine::VisitCompoundLiteralExpr(CompoundLiteralExpr* CL, + NodeTy* Pred, NodeSet& Dst, + bool asLValue) { + InitListExpr* ILE = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); + NodeSet Tmp; + Visit(ILE, Pred, Tmp); + + for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { + const GRState* state = GetState(*I); + SVal ILV = GetSVal(state, ILE); + state = StateMgr.BindCompoundLiteral(state, CL, ILV); + + if (asLValue) + MakeNode(Dst, CL, *I, BindExpr(state, CL, StateMgr.GetLValue(state, CL))); + else + MakeNode(Dst, CL, *I, BindExpr(state, CL, ILV)); + } +} + +void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) { + + // The CFG has one DeclStmt per Decl. + Decl* D = *DS->decl_begin(); + + if (!D || !isa<VarDecl>(D)) + return; + + const VarDecl* VD = dyn_cast<VarDecl>(D); + Expr* InitEx = const_cast<Expr*>(VD->getInit()); + + // FIXME: static variables may have an initializer, but the second + // time a function is called those values may not be current. + NodeSet Tmp; + + if (InitEx) + Visit(InitEx, Pred, Tmp); + + if (Tmp.empty()) + Tmp.Add(Pred); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + unsigned Count = Builder->getCurrentBlockCount(); + + // Check if 'VD' is a VLA and if so check if has a non-zero size. + QualType T = getContext().getCanonicalType(VD->getType()); + if (VariableArrayType* VLA = dyn_cast<VariableArrayType>(T)) { + // FIXME: Handle multi-dimensional VLAs. + + Expr* SE = VLA->getSizeExpr(); + SVal Size = GetSVal(state, SE); + + if (Size.isUndef()) { + if (NodeTy* N = Builder->generateNode(DS, state, Pred)) { + N->markAsSink(); + ExplicitBadSizedVLA.insert(N); + } + continue; + } + + bool isFeasibleZero = false; + const GRState* ZeroSt = Assume(state, Size, false, isFeasibleZero); + + bool isFeasibleNotZero = false; + state = Assume(state, Size, true, isFeasibleNotZero); + + if (isFeasibleZero) { + if (NodeTy* N = Builder->generateNode(DS, ZeroSt, Pred)) { + N->markAsSink(); + if (isFeasibleNotZero) ImplicitBadSizedVLA.insert(N); + else ExplicitBadSizedVLA.insert(N); + } + } + + if (!isFeasibleNotZero) + continue; + } + + // Decls without InitExpr are not initialized explicitly. + if (InitEx) { + SVal InitVal = GetSVal(state, InitEx); + QualType T = VD->getType(); + + // Recover some path-sensitivity if a scalar value evaluated to + // UnknownVal. + if (InitVal.isUnknown() || + !getConstraintManager().canReasonAbout(InitVal)) { + InitVal = ValMgr.getConjuredSymbolVal(InitEx, Count); + } + + state = StateMgr.BindDecl(state, VD, InitVal); + + // The next thing to do is check if the GRTransferFuncs object wants to + // update the state based on the new binding. If the GRTransferFunc + // object doesn't do anything, just auto-propagate the current state. + GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, state, DS,true); + getTF().EvalBind(BuilderRef, loc::MemRegionVal(StateMgr.getRegion(VD)), + InitVal); + } + else { + state = StateMgr.BindDeclWithNoInit(state, VD); + MakeNode(Dst, DS, *I, state); + } + } +} + +namespace { + // This class is used by VisitInitListExpr as an item in a worklist + // for processing the values contained in an InitListExpr. +class VISIBILITY_HIDDEN InitListWLItem { +public: + llvm::ImmutableList<SVal> Vals; + GRExprEngine::NodeTy* N; + InitListExpr::reverse_iterator Itr; + + InitListWLItem(GRExprEngine::NodeTy* n, llvm::ImmutableList<SVal> vals, + InitListExpr::reverse_iterator itr) + : Vals(vals), N(n), Itr(itr) {} +}; +} + + +void GRExprEngine::VisitInitListExpr(InitListExpr* E, NodeTy* Pred, + NodeSet& Dst) { + + const GRState* state = GetState(Pred); + QualType T = getContext().getCanonicalType(E->getType()); + unsigned NumInitElements = E->getNumInits(); + + if (T->isArrayType() || T->isStructureType()) { + + llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); + + // Handle base case where the initializer has no elements. + // e.g: static int* myArray[] = {}; + if (NumInitElements == 0) { + SVal V = NonLoc::MakeCompoundVal(T, StartVals, getBasicVals()); + MakeNode(Dst, E, Pred, BindExpr(state, E, V)); + return; + } + + // Create a worklist to process the initializers. + llvm::SmallVector<InitListWLItem, 10> WorkList; + WorkList.reserve(NumInitElements); + WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); + InitListExpr::reverse_iterator ItrEnd = E->rend(); + + // Process the worklist until it is empty. + while (!WorkList.empty()) { + InitListWLItem X = WorkList.back(); + WorkList.pop_back(); + + NodeSet Tmp; + Visit(*X.Itr, X.N, Tmp); + + InitListExpr::reverse_iterator NewItr = X.Itr + 1; + + for (NodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { + // Get the last initializer value. + state = GetState(*NI); + SVal InitV = GetSVal(state, cast<Expr>(*X.Itr)); + + // Construct the new list of values by prepending the new value to + // the already constructed list. + llvm::ImmutableList<SVal> NewVals = + getBasicVals().consVals(InitV, X.Vals); + + if (NewItr == ItrEnd) { + // Now we have a list holding all init values. Make CompoundValData. + SVal V = NonLoc::MakeCompoundVal(T, NewVals, getBasicVals()); + + // Make final state and node. + MakeNode(Dst, E, *NI, BindExpr(state, E, V)); + } + else { + // Still some initializer values to go. Push them onto the worklist. + WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); + } + } + } + + return; + } + + if (T->isUnionType() || T->isVectorType()) { + // FIXME: to be implemented. + // Note: That vectors can return true for T->isIntegerType() + MakeNode(Dst, E, Pred, state); + return; + } + + if (Loc::IsLocType(T) || T->isIntegerType()) { + assert (E->getNumInits() == 1); + NodeSet Tmp; + Expr* Init = E->getInit(0); + Visit(Init, Pred, Tmp); + for (NodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I != EI; ++I) { + state = GetState(*I); + MakeNode(Dst, E, *I, BindExpr(state, E, GetSVal(state, Init))); + } + return; + } + + + printf("InitListExpr type = %s\n", T.getAsString().c_str()); + assert(0 && "unprocessed InitListExpr type"); +} + +/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). +void GRExprEngine::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr* Ex, + NodeTy* Pred, + NodeSet& Dst) { + QualType T = Ex->getTypeOfArgument(); + uint64_t amt; + + if (Ex->isSizeOf()) { + if (T == getContext().VoidTy) { + // sizeof(void) == 1 byte. + amt = 1; + } + else if (!T.getTypePtr()->isConstantSizeType()) { + // FIXME: Add support for VLAs. + return; + } + else if (T->isObjCInterfaceType()) { + // Some code tries to take the sizeof an ObjCInterfaceType, relying that + // the compiler has laid out its representation. Just report Unknown + // for these. + return; + } + else { + // All other cases. + amt = getContext().getTypeSize(T) / 8; + } + } + else // Get alignment of the type. + amt = getContext().getTypeAlign(T) / 8; + + MakeNode(Dst, Ex, Pred, + BindExpr(GetState(Pred), Ex, + NonLoc::MakeVal(getBasicVals(), amt, Ex->getType()))); +} + + +void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, + NodeSet& Dst, bool asLValue) { + + switch (U->getOpcode()) { + + default: + break; + + case UnaryOperator::Deref: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + const GRState* state = GetState(*I); + SVal location = GetSVal(state, Ex); + + if (asLValue) + MakeNode(Dst, U, *I, BindExpr(state, U, location), + ProgramPoint::PostLValueKind); + else + EvalLoad(Dst, U, *I, state, location); + } + + return; + } + + case UnaryOperator::Real: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UnaryOperator::Real is an identity operation. + assert (U->getType() == Ex->getType()); + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); + } + + return; + } + + case UnaryOperator::Imag: { + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + Dst.Add(*I); + continue; + } + + // For all other types, UnaryOperator::Float returns 0. + assert (Ex->getType()->isIntegerType()); + const GRState* state = GetState(*I); + SVal X = NonLoc::MakeVal(getBasicVals(), 0, Ex->getType()); + MakeNode(Dst, U, *I, BindExpr(state, U, X)); + } + + return; + } + + // FIXME: Just report "Unknown" for OffsetOf. + case UnaryOperator::OffsetOf: + Dst.Add(Pred); + return; + + case UnaryOperator::Plus: assert (!asLValue); // FALL-THROUGH. + case UnaryOperator::Extension: { + + // Unary "+" is a no-op, similar to a parentheses. We still have places + // where it may be a block-level expression, so we need to + // generate an extra node that just propagates the value of the + // subexpression. + + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + MakeNode(Dst, U, *I, BindExpr(state, U, GetSVal(state, Ex))); + } + + return; + } + + case UnaryOperator::AddrOf: { + + assert(!asLValue); + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + VisitLValue(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + SVal V = GetSVal(state, Ex); + state = BindExpr(state, U, V); + MakeNode(Dst, U, *I, state); + } + + return; + } + + case UnaryOperator::LNot: + case UnaryOperator::Minus: + case UnaryOperator::Not: { + + assert (!asLValue); + Expr* Ex = U->getSubExpr()->IgnoreParens(); + NodeSet Tmp; + Visit(Ex, Pred, Tmp); + + for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { + const GRState* state = GetState(*I); + + // Get the value of the subexpression. + SVal V = GetSVal(state, Ex); + + if (V.isUnknownOrUndef()) { + MakeNode(Dst, U, *I, BindExpr(state, U, V)); + continue; + } + +// QualType DstT = getContext().getCanonicalType(U->getType()); +// QualType SrcT = getContext().getCanonicalType(Ex->getType()); +// +// if (DstT != SrcT) // Perform promotions. +// V = EvalCast(V, DstT); +// +// if (V.isUnknownOrUndef()) { +// MakeNode(Dst, U, *I, BindExpr(St, U, V)); +// continue; +// } + + switch (U->getOpcode()) { + default: + assert(false && "Invalid Opcode."); + break; + + case UnaryOperator::Not: + // FIXME: Do we need to handle promotions? + state = BindExpr(state, U, EvalComplement(cast<NonLoc>(V))); + break; + + case UnaryOperator::Minus: + // FIXME: Do we need to handle promotions? + state = BindExpr(state, U, EvalMinus(U, cast<NonLoc>(V))); + break; + + case UnaryOperator::LNot: + + // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." + // + // Note: technically we do "E == 0", but this is the same in the + // transfer functions as "0 == E". + + if (isa<Loc>(V)) { + Loc X = Loc::MakeNull(getBasicVals()); + SVal Result = EvalBinOp(state,BinaryOperator::EQ, cast<Loc>(V), X, + U->getType()); + state = BindExpr(state, U, Result); + } + else { + nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); +#if 0 + SVal Result = EvalBinOp(BinaryOperator::EQ, cast<NonLoc>(V), X); + state = SetSVal(state, U, Result); +#else + EvalBinOp(Dst, U, BinaryOperator::EQ, cast<NonLoc>(V), X, *I, + U->getType()); + continue; +#endif + } + + break; + } + + MakeNode(Dst, U, *I, state); + } + + return; + } + } + + // Handle ++ and -- (both pre- and post-increment). + + assert (U->isIncrementDecrementOp()); + NodeSet Tmp; + Expr* Ex = U->getSubExpr()->IgnoreParens(); + VisitLValue(Ex, Pred, Tmp); + + for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { + + const GRState* state = GetState(*I); + SVal V1 = GetSVal(state, Ex); + + // Perform a load. + NodeSet Tmp2; + EvalLoad(Tmp2, Ex, *I, state, V1); + + for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) { + + state = GetState(*I2); + SVal V2 = GetSVal(state, Ex); + + // Propagate unknown and undefined values. + if (V2.isUnknownOrUndef()) { + MakeNode(Dst, U, *I2, BindExpr(state, U, V2)); + continue; + } + + // Handle all other values. + BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add + : BinaryOperator::Sub; + + SVal Result = EvalBinOp(state, Op, V2, MakeConstantVal(1U, U), + U->getType()); + + // Conjure a new symbol if necessary to recover precision. + if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ + Result = ValMgr.getConjuredSymbolVal(Ex, + Builder->getCurrentBlockCount()); + + // If the value is a location, ++/-- should always preserve + // non-nullness. Check if the original value was non-null, and if so propagate + // that constraint. + if (Loc::IsLocType(U->getType())) { + SVal Constraint = EvalBinOp(state, BinaryOperator::EQ, V2, + ValMgr.makeZeroVal(U->getType()), + getContext().IntTy); + + bool isFeasible = false; + Assume(state, Constraint, true, isFeasible); + if (!isFeasible) { + // It isn't feasible for the original value to be null. + // Propagate this constraint. + Constraint = EvalBinOp(state, BinaryOperator::EQ, Result, + ValMgr.makeZeroVal(U->getType()), + getContext().IntTy); + + bool isFeasible = false; + state = Assume(state, Constraint, false, isFeasible); + assert(isFeasible && state); + } + } + } + + state = BindExpr(state, U, U->isPostfix() ? V2 : Result); + + // Perform the store. + EvalStore(Dst, U, *I2, state, V1, Result); + } + } +} + +void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { + VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); +} + +void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, + AsmStmt::outputs_iterator I, + AsmStmt::outputs_iterator E, + NodeTy* Pred, NodeSet& Dst) { + if (I == E) { + VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); + return; + } + + NodeSet Tmp; + VisitLValue(*I, Pred, Tmp); + + ++I; + + for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) + VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); +} + +void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, + AsmStmt::inputs_iterator I, + AsmStmt::inputs_iterator E, + NodeTy* Pred, NodeSet& Dst) { + if (I == E) { + + // We have processed both the inputs and the outputs. All of the outputs + // should evaluate to Locs. Nuke all of their values. + + // FIXME: Some day in the future it would be nice to allow a "plug-in" + // which interprets the inline asm and stores proper results in the + // outputs. + + const GRState* state = GetState(Pred); + + for (AsmStmt::outputs_iterator OI = A->begin_outputs(), + OE = A->end_outputs(); OI != OE; ++OI) { + + SVal X = GetSVal(state, *OI); + assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. + + if (isa<Loc>(X)) + state = BindLoc(state, cast<Loc>(X), UnknownVal()); + } + + MakeNode(Dst, A, Pred, state); + return; + } + + NodeSet Tmp; + Visit(*I, Pred, Tmp); + + ++I; + + for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) + VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); +} + +void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { + assert (Builder && "GRStmtNodeBuilder must be defined."); + + unsigned size = Dst.size(); + + SaveAndRestore<bool> OldSink(Builder->BuildSinks); + SaveOr OldHasGen(Builder->HasGeneratedNode); + + getTF().EvalReturn(Dst, *this, *Builder, S, Pred); + + // Handle the case where no nodes where generated. + + if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) + MakeNode(Dst, S, Pred, GetState(Pred)); +} + +void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { + + Expr* R = S->getRetValue(); + + if (!R) { + EvalReturn(Dst, S, Pred); + return; + } + + NodeSet Tmp; + Visit(R, Pred, Tmp); + + for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { + SVal X = GetSVal((*I)->getState(), R); + + // Check if we return the address of a stack variable. + if (isa<loc::MemRegionVal>(X)) { + // Determine if the value is on the stack. + const MemRegion* R = cast<loc::MemRegionVal>(&X)->getRegion(); + + if (R && getStateManager().hasStackStorage(R)) { + // Create a special node representing the error. + if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { + N->markAsSink(); + RetsStackAddr.insert(N); + } + continue; + } + } + // Check if we return an undefined value. + else if (X.isUndef()) { + if (NodeTy* N = Builder->generateNode(S, GetState(*I), *I)) { + N->markAsSink(); + RetsUndef.insert(N); + } + continue; + } + + EvalReturn(Dst, S, *I); + } +} + +//===----------------------------------------------------------------------===// +// Transfer functions: Binary operators. +//===----------------------------------------------------------------------===// + +const GRState* GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* state, + NodeTy* Pred, SVal Denom) { + + // Divide by undefined? (potentially zero) + + if (Denom.isUndef()) { + NodeTy* DivUndef = Builder->generateNode(Ex, state, Pred); + + if (DivUndef) { + DivUndef->markAsSink(); + ExplicitBadDivides.insert(DivUndef); + } + + return 0; + } + + // Check for divide/remainder-by-zero. + // First, "assume" that the denominator is 0 or undefined. + + bool isFeasibleZero = false; + const GRState* ZeroSt = Assume(state, Denom, false, isFeasibleZero); + + // Second, "assume" that the denominator cannot be 0. + + bool isFeasibleNotZero = false; + state = Assume(state, Denom, true, isFeasibleNotZero); + + // Create the node for the divide-by-zero (if it occurred). + + if (isFeasibleZero) + if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) { + DivZeroNode->markAsSink(); + + if (isFeasibleNotZero) + ImplicitBadDivides.insert(DivZeroNode); + else + ExplicitBadDivides.insert(DivZeroNode); + + } + + return isFeasibleNotZero ? state : 0; +} + +void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, + GRExprEngine::NodeTy* Pred, + GRExprEngine::NodeSet& Dst) { + + NodeSet Tmp1; + Expr* LHS = B->getLHS()->IgnoreParens(); + Expr* RHS = B->getRHS()->IgnoreParens(); + + // FIXME: Add proper support for ObjCKVCRefExpr. + if (isa<ObjCKVCRefExpr>(LHS)) { + Visit(RHS, Pred, Dst); + return; + } + + if (B->isAssignmentOp()) + VisitLValue(LHS, Pred, Tmp1); + else + Visit(LHS, Pred, Tmp1); + + for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) { + + SVal LeftV = GetSVal((*I1)->getState(), LHS); + + // Process the RHS. + + NodeSet Tmp2; + Visit(RHS, *I1, Tmp2); + + // With both the LHS and RHS evaluated, process the operation itself. + + for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) { + + const GRState* state = GetState(*I2); + const GRState* OldSt = state; + + SVal RightV = GetSVal(state, RHS); + BinaryOperator::Opcode Op = B->getOpcode(); + + switch (Op) { + + case BinaryOperator::Assign: { + + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + QualType T = RHS->getType(); + + if ((RightV.isUnknown() || + !getConstraintManager().canReasonAbout(RightV)) + && (Loc::IsLocType(T) || + (T->isScalarType() && T->isIntegerType()))) { + unsigned Count = Builder->getCurrentBlockCount(); + RightV = ValMgr.getConjuredSymbolVal(B->getRHS(), Count); + } + + // Simulate the effects of a "store": bind the value of the RHS + // to the L-Value represented by the LHS. + EvalStore(Dst, B, LHS, *I2, BindExpr(state, B, RightV), LeftV, + RightV); + continue; + } + + case BinaryOperator::Div: + case BinaryOperator::Rem: + + // Special checking for integer denominators. + if (RHS->getType()->isIntegerType() && + RHS->getType()->isScalarType()) { + + state = CheckDivideZero(B, state, *I2, RightV); + if (!state) continue; + } + + // FALL-THROUGH. + + default: { + + if (B->isAssignmentOp()) + break; + + // Process non-assignements except commas or short-circuited + // logical expressions (LAnd and LOr). + + SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType()); + + if (Result.isUnknown()) { + if (OldSt != state) { + // Generate a new node if we have already created a new state. + MakeNode(Dst, B, *I2, state); + } + else + Dst.Add(*I2); + + continue; + } + + if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { + + // The operands were *not* undefined, but the result is undefined. + // This is a special node that should be flagged as an error. + + if (NodeTy* UndefNode = Builder->generateNode(B, state, *I2)) { + UndefNode->markAsSink(); + UndefResults.insert(UndefNode); + } + + continue; + } + + // Otherwise, create a new node. + + MakeNode(Dst, B, *I2, BindExpr(state, B, Result)); + continue; + } + } + + assert (B->isCompoundAssignmentOp()); + + switch (Op) { + default: + assert(0 && "Invalid opcode for compound assignment."); + case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break; + case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break; + case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break; + case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break; + case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break; + case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break; + case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break; + case BinaryOperator::AndAssign: Op = BinaryOperator::And; break; + case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break; + case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break; + } + + // Perform a load (the LHS). This performs the checks for + // null dereferences, and so on. + NodeSet Tmp3; + SVal location = GetSVal(state, LHS); + EvalLoad(Tmp3, LHS, *I2, state, location); + + for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) { + + state = GetState(*I3); + SVal V = GetSVal(state, LHS); + + // Check for divide-by-zero. + if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) + && RHS->getType()->isIntegerType() + && RHS->getType()->isScalarType()) { + + // CheckDivideZero returns a new state where the denominator + // is assumed to be non-zero. + state = CheckDivideZero(B, state, *I3, RightV); + + if (!state) + continue; + } + + // Propagate undefined values (left-side). + if (V.isUndef()) { + EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, V), location, V); + continue; + } + + // Propagate unknown values (left and right-side). + if (RightV.isUnknown() || V.isUnknown()) { + EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, UnknownVal()), + location, UnknownVal()); + continue; + } + + // At this point: + // + // The LHS is not Undef/Unknown. + // The RHS is not Unknown. + + // Get the computation type. + QualType CTy = cast<CompoundAssignOperator>(B)->getComputationResultType(); + CTy = getContext().getCanonicalType(CTy); + + QualType CLHSTy = cast<CompoundAssignOperator>(B)->getComputationLHSType(); + CLHSTy = getContext().getCanonicalType(CTy); + + QualType LTy = getContext().getCanonicalType(LHS->getType()); + QualType RTy = getContext().getCanonicalType(RHS->getType()); + + // Promote LHS. + V = EvalCast(V, CLHSTy); + + // Evaluate operands and promote to result type. + if (RightV.isUndef()) { + // Propagate undefined values (right-side). + EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, RightV), location, + RightV); + continue; + } + + // Compute the result of the operation. + SVal Result = EvalCast(EvalBinOp(state, Op, V, RightV, CTy), + B->getType()); + + if (Result.isUndef()) { + // The operands were not undefined, but the result is undefined. + if (NodeTy* UndefNode = Builder->generateNode(B, state, *I3)) { + UndefNode->markAsSink(); + UndefResults.insert(UndefNode); + } + continue; + } + + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + + SVal LHSVal; + + if ((Result.isUnknown() || + !getConstraintManager().canReasonAbout(Result)) + && (Loc::IsLocType(CTy) + || (CTy->isScalarType() && CTy->isIntegerType()))) { + + unsigned Count = Builder->getCurrentBlockCount(); + + // The symbolic value is actually for the type of the left-hand side + // expression, not the computation type, as this is the value the + // LValue on the LHS will bind to. + LHSVal = ValMgr.getConjuredSymbolVal(B->getRHS(), LTy, Count); + + // However, we need to convert the symbol to the computation type. + Result = (LTy == CTy) ? LHSVal : EvalCast(LHSVal,CTy); + } + else { + // The left-hand side may bind to a different value then the + // computation type. + LHSVal = (LTy == CTy) ? Result : EvalCast(Result,LTy); + } + + EvalStore(Dst, B, LHS, *I3, BindExpr(state, B, Result), location, + LHSVal); + } + } + } +} + +//===----------------------------------------------------------------------===// +// Transfer-function Helpers. +//===----------------------------------------------------------------------===// + +void GRExprEngine::EvalBinOp(ExplodedNodeSet<GRState>& Dst, Expr* Ex, + BinaryOperator::Opcode Op, + NonLoc L, NonLoc R, + ExplodedNode<GRState>* Pred, QualType T) { + + GRStateSet OStates; + EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R, T); + + for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I) + MakeNode(Dst, Ex, Pred, *I); +} + +void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* state, + Expr* Ex, BinaryOperator::Opcode Op, + NonLoc L, NonLoc R, QualType T) { + + GRStateSet::AutoPopulate AP(OStates, state); + if (R.isValid()) getTF().EvalBinOpNN(OStates, *this, state, Ex, Op, L, R, T); +} + +SVal GRExprEngine::EvalBinOp(const GRState* state, BinaryOperator::Opcode Op, + SVal L, SVal R, QualType T) { + + if (L.isUndef() || R.isUndef()) + return UndefinedVal(); + + if (L.isUnknown() || R.isUnknown()) + return UnknownVal(); + + if (isa<Loc>(L)) { + if (isa<Loc>(R)) + return getTF().EvalBinOp(*this, Op, cast<Loc>(L), cast<Loc>(R)); + else + return getTF().EvalBinOp(*this, state, Op, cast<Loc>(L), cast<NonLoc>(R)); + } + + if (isa<Loc>(R)) { + // Support pointer arithmetic where the increment/decrement operand + // is on the left and the pointer on the right. + + assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub); + + // Commute the operands. + return getTF().EvalBinOp(*this, state, Op, cast<Loc>(R), cast<NonLoc>(L)); + } + else + return getTF().DetermEvalBinOpNN(*this, Op, cast<NonLoc>(L), + cast<NonLoc>(R), T); +} + +//===----------------------------------------------------------------------===// +// Visualization. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +static GRExprEngine* GraphPrintCheckerState; +static SourceManager* GraphPrintSourceManager; + +namespace llvm { +template<> +struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> : + public DefaultDOTGraphTraits { + + static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { + + if (GraphPrintCheckerState->isImplicitNullDeref(N) || + GraphPrintCheckerState->isExplicitNullDeref(N) || + GraphPrintCheckerState->isUndefDeref(N) || + GraphPrintCheckerState->isUndefStore(N) || + GraphPrintCheckerState->isUndefControlFlow(N) || + GraphPrintCheckerState->isExplicitBadDivide(N) || + GraphPrintCheckerState->isImplicitBadDivide(N) || + GraphPrintCheckerState->isUndefResult(N) || + GraphPrintCheckerState->isBadCall(N) || + GraphPrintCheckerState->isUndefArg(N)) + return "color=\"red\",style=\"filled\""; + + if (GraphPrintCheckerState->isNoReturnCall(N)) + return "color=\"blue\",style=\"filled\""; + + return ""; + } + + static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { + std::ostringstream Out; + + // Program Location. + ProgramPoint Loc = N->getLocation(); + + switch (Loc.getKind()) { + case ProgramPoint::BlockEntranceKind: + Out << "Block Entrance: B" + << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); + break; + + case ProgramPoint::BlockExitKind: + assert (false); + break; + + default: { + if (isa<PostStmt>(Loc)) { + const PostStmt& L = cast<PostStmt>(Loc); + Stmt* S = L.getStmt(); + SourceLocation SLoc = S->getLocStart(); + + Out << S->getStmtClassName() << ' ' << (void*) S << ' '; + llvm::raw_os_ostream OutS(Out); + S->printPretty(OutS); + OutS.flush(); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) + << "\\l"; + } + + if (isa<PostLoad>(Loc)) + Out << "\\lPostLoad\\l;"; + else if (isa<PostStore>(Loc)) + Out << "\\lPostStore\\l"; + else if (isa<PostLValue>(Loc)) + Out << "\\lPostLValue\\l"; + else if (isa<PostLocationChecksSucceed>(Loc)) + Out << "\\lPostLocationChecksSucceed\\l"; + else if (isa<PostNullCheckFailed>(Loc)) + Out << "\\lPostNullCheckFailed\\l"; + + if (GraphPrintCheckerState->isImplicitNullDeref(N)) + Out << "\\|Implicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isExplicitNullDeref(N)) + Out << "\\|Explicit-Null Dereference.\\l"; + else if (GraphPrintCheckerState->isUndefDeref(N)) + Out << "\\|Dereference of undefialied value.\\l"; + else if (GraphPrintCheckerState->isUndefStore(N)) + Out << "\\|Store to Undefined Loc."; + else if (GraphPrintCheckerState->isExplicitBadDivide(N)) + Out << "\\|Explicit divide-by zero or undefined value."; + else if (GraphPrintCheckerState->isImplicitBadDivide(N)) + Out << "\\|Implicit divide-by zero or undefined value."; + else if (GraphPrintCheckerState->isUndefResult(N)) + Out << "\\|Result of operation is undefined."; + else if (GraphPrintCheckerState->isNoReturnCall(N)) + Out << "\\|Call to function marked \"noreturn\"."; + else if (GraphPrintCheckerState->isBadCall(N)) + Out << "\\|Call to NULL/Undefined."; + else if (GraphPrintCheckerState->isUndefArg(N)) + Out << "\\|Argument in call is undefined"; + + break; + } + + const BlockEdge& E = cast<BlockEdge>(Loc); + Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" + << E.getDst()->getBlockID() << ')'; + + if (Stmt* T = E.getSrc()->getTerminator()) { + + SourceLocation SLoc = T->getLocStart(); + + Out << "\\|Terminator: "; + + llvm::raw_os_ostream OutS(Out); + E.getSrc()->printTerminator(OutS); + OutS.flush(); + + if (SLoc.isFileID()) { + Out << "\\lline=" + << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) + << " col=" + << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); + } + + if (isa<SwitchStmt>(T)) { + Stmt* Label = E.getDst()->getLabel(); + + if (Label) { + if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) { + Out << "\\lcase "; + llvm::raw_os_ostream OutS(Out); + C->getLHS()->printPretty(OutS); + OutS.flush(); + + if (Stmt* RHS = C->getRHS()) { + Out << " .. "; + RHS->printPretty(OutS); + OutS.flush(); + } + + Out << ":"; + } + else { + assert (isa<DefaultStmt>(Label)); + Out << "\\ldefault:"; + } + } + else + Out << "\\l(implicit) default:"; + } + else if (isa<IndirectGotoStmt>(T)) { + // FIXME + } + else { + Out << "\\lCondition: "; + if (*E.getSrc()->succ_begin() == E.getDst()) + Out << "true"; + else + Out << "false"; + } + + Out << "\\l"; + } + + if (GraphPrintCheckerState->isUndefControlFlow(N)) { + Out << "\\|Control-flow based on\\lUndefined value.\\l"; + } + } + } + + Out << "\\|StateID: " << (void*) N->getState() << "\\|"; + + GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager()); + state.printDOT(Out); + + Out << "\\l"; + return Out.str(); + } +}; +} // end llvm namespace +#endif + +#ifndef NDEBUG +template <typename ITERATOR> +GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } + +template <> +GRExprEngine::NodeTy* +GetGraphNode<llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator> + (llvm::DenseMap<GRExprEngine::NodeTy*, Expr*>::iterator I) { + return I->first; +} +#endif + +void GRExprEngine::ViewGraph(bool trim) { +#ifndef NDEBUG + if (trim) { + std::vector<NodeTy*> Src; + + // Flush any outstanding reports to make sure we cover all the nodes. + // This does not cause them to get displayed. + for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) + const_cast<BugType*>(*I)->FlushReports(BR); + + // Iterate through the reports and get their nodes. + for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { + for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); I2!=E2; ++I2) { + const BugReportEquivClass& EQ = *I2; + const BugReport &R = **EQ.begin(); + NodeTy *N = const_cast<NodeTy*>(R.getEndNode()); + if (N) Src.push_back(N); + } + } + + ViewGraph(&Src[0], &Src[0]+Src.size()); + } + else { + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; + } +#endif +} + +void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { +#ifndef NDEBUG + GraphPrintCheckerState = this; + GraphPrintSourceManager = &getContext().getSourceManager(); + + std::auto_ptr<GRExprEngine::GraphTy> TrimmedG(G.Trim(Beg, End).first); + + if (!TrimmedG.get()) + llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; + else + llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); + + GraphPrintCheckerState = NULL; + GraphPrintSourceManager = NULL; +#endif +} |