aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/MemoryDependenceAnalysis.cpp
diff options
context:
space:
mode:
authorRoman Divacky <rdivacky@FreeBSD.org>2009-12-15 18:09:07 +0000
committerRoman Divacky <rdivacky@FreeBSD.org>2009-12-15 18:09:07 +0000
commit571945e6affd20b19264ec22495da418d0fbdbb4 (patch)
tree076117cdf3579003f07cad4cdf0593347ce58150 /lib/Analysis/MemoryDependenceAnalysis.cpp
parent06f9d4012fb8acea3e9861d5722b5965dbb724d9 (diff)
downloadsrc-571945e6affd20b19264ec22495da418d0fbdbb4.tar.gz
src-571945e6affd20b19264ec22495da418d0fbdbb4.zip
Update LLVM to 91430.
Notes
Notes: svn path=/vendor/llvm/dist/; revision=200581
Diffstat (limited to 'lib/Analysis/MemoryDependenceAnalysis.cpp')
-rw-r--r--lib/Analysis/MemoryDependenceAnalysis.cpp525
1 files changed, 129 insertions, 396 deletions
diff --git a/lib/Analysis/MemoryDependenceAnalysis.cpp b/lib/Analysis/MemoryDependenceAnalysis.cpp
index ae6f970eff4c..a0c77063d96d 100644
--- a/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ b/lib/Analysis/MemoryDependenceAnalysis.cpp
@@ -23,6 +23,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/PredIteratorCache.h"
@@ -172,7 +173,7 @@ MemDepResult MemoryDependenceAnalysis::
getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
BasicBlock::iterator ScanIt, BasicBlock *BB) {
- Value *invariantTag = 0;
+ Value *InvariantTag = 0;
// Walk backwards through the basic block, looking for dependencies.
while (ScanIt != BB->begin()) {
@@ -180,34 +181,36 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
// If we're in an invariant region, no dependencies can be found before
// we pass an invariant-begin marker.
- if (invariantTag == Inst) {
- invariantTag = 0;
+ if (InvariantTag == Inst) {
+ InvariantTag = 0;
continue;
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ }
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ // Debug intrinsics don't cause dependences.
+ if (isa<DbgInfoIntrinsic>(Inst)) continue;
+
// If we pass an invariant-end marker, then we've just entered an
// invariant region and can start ignoring dependencies.
if (II->getIntrinsicID() == Intrinsic::invariant_end) {
- uint64_t invariantSize = ~0ULL;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2)))
- invariantSize = CI->getZExtValue();
-
- AliasAnalysis::AliasResult R =
- AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
+ // FIXME: This only considers queries directly on the invariant-tagged
+ // pointer, not on query pointers that are indexed off of them. It'd
+ // be nice to handle that at some point.
+ AliasAnalysis::AliasResult R =
+ AA->alias(II->getOperand(3), ~0U, MemPtr, ~0U);
if (R == AliasAnalysis::MustAlias) {
- invariantTag = II->getOperand(1);
+ InvariantTag = II->getOperand(1);
continue;
}
// If we reach a lifetime begin or end marker, then the query ends here
// because the value is undefined.
- } else if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
- II->getIntrinsicID() == Intrinsic::lifetime_end) {
- uint64_t invariantSize = ~0ULL;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1)))
- invariantSize = CI->getZExtValue();
-
+ } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
+ // FIXME: This only considers queries directly on the invariant-tagged
+ // pointer, not on query pointers that are indexed off of them. It'd
+ // be nice to handle that at some point.
AliasAnalysis::AliasResult R =
- AA->alias(II->getOperand(2), invariantSize, MemPtr, MemSize);
+ AA->alias(II->getOperand(2), ~0U, MemPtr, ~0U);
if (R == AliasAnalysis::MustAlias)
return MemDepResult::getDef(II);
}
@@ -215,10 +218,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
// If we're querying on a load and we're in an invariant region, we're done
// at this point. Nothing a load depends on can live in an invariant region.
- if (isLoad && invariantTag) continue;
-
- // Debug intrinsics don't cause dependences.
- if (isa<DbgInfoIntrinsic>(Inst)) continue;
+ if (isLoad && InvariantTag) continue;
// Values depend on loads if the pointers are must aliased. This means that
// a load depends on another must aliased load from the same value.
@@ -243,7 +243,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// There can't be stores to the value we care about inside an
// invariant region.
- if (invariantTag) continue;
+ if (InvariantTag) continue;
// If alias analysis can tell that this store is guaranteed to not modify
// the query pointer, ignore it. Use getModRefInfo to handle cases where
@@ -292,7 +292,7 @@ getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
case AliasAnalysis::Mod:
// If we're in an invariant region, we can ignore calls that ONLY
// modify the pointer.
- if (invariantTag) continue;
+ if (InvariantTag) continue;
return MemDepResult::getClobber(Inst);
case AliasAnalysis::Ref:
// If the call is known to never store to the pointer, and if this is a
@@ -374,21 +374,22 @@ MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
IntrinsicID = II->getIntrinsicID();
switch (IntrinsicID) {
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- MemPtr = QueryInst->getOperand(2);
- MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue();
- break;
- case Intrinsic::invariant_end:
- MemPtr = QueryInst->getOperand(3);
- MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue();
- break;
- default:
- CallSite QueryCS = CallSite::get(QueryInst);
- bool isReadOnly = AA->onlyReadsMemory(QueryCS);
- LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
- QueryParent);
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ MemPtr = QueryInst->getOperand(2);
+ MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue();
+ break;
+ case Intrinsic::invariant_end:
+ MemPtr = QueryInst->getOperand(3);
+ MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue();
+ break;
+ default:
+ CallSite QueryCS = CallSite::get(QueryInst);
+ bool isReadOnly = AA->onlyReadsMemory(QueryCS);
+ LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
+ QueryParent);
+ break;
}
} else {
// Non-memory instruction.
@@ -421,7 +422,7 @@ static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
if (Count == 0) return;
for (unsigned i = 1; i != unsigned(Count); ++i)
- assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
+ assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
}
#endif
@@ -462,8 +463,8 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
// determine what is dirty, seeding our initial DirtyBlocks worklist.
for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
I != E; ++I)
- if (I->second.isDirty())
- DirtyBlocks.push_back(I->first);
+ if (I->getResult().isDirty())
+ DirtyBlocks.push_back(I->getBB());
// Sort the cache so that we can do fast binary search lookups below.
std::sort(Cache.begin(), Cache.end());
@@ -501,27 +502,27 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
DEBUG(AssertSorted(Cache, NumSortedEntries));
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
- std::make_pair(DirtyBB, MemDepResult()));
- if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
+ NonLocalDepEntry(DirtyBB));
+ if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
--Entry;
- MemDepResult *ExistingResult = 0;
+ NonLocalDepEntry *ExistingResult = 0;
if (Entry != Cache.begin()+NumSortedEntries &&
- Entry->first == DirtyBB) {
+ Entry->getBB() == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
// is done.
- if (!Entry->second.isDirty())
+ if (!Entry->getResult().isDirty())
continue;
// Otherwise, remember this slot so we can update the value.
- ExistingResult = &Entry->second;
+ ExistingResult = &*Entry;
}
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (ExistingResult) {
- if (Instruction *Inst = ExistingResult->getInst()) {
+ if (Instruction *Inst = ExistingResult->getResult().getInst()) {
ScanPos = Inst;
// We're removing QueryInst's use of Inst.
RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
@@ -545,9 +546,9 @@ MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
- *ExistingResult = Dep;
+ ExistingResult->setResult(Dep, 0);
else
- Cache.push_back(std::make_pair(DirtyBB, Dep));
+ Cache.push_back(NonLocalDepEntry(DirtyBB, Dep, 0));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the association!
@@ -587,17 +588,20 @@ getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
+ PHITransAddr Address(Pointer, TD);
+
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
// a block with multiple different pointers. This can happen during PHI
// translation.
DenseMap<BasicBlock*, Value*> Visited;
- if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
+ if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
Result, Visited, true))
return;
Result.clear();
- Result.push_back(std::make_pair(FromBB,
- MemDepResult::getClobber(FromBB->begin())));
+ Result.push_back(NonLocalDepEntry(FromBB,
+ MemDepResult::getClobber(FromBB->begin()),
+ Pointer));
}
/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
@@ -613,30 +617,30 @@ GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
// the cache set. If so, find it.
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
- std::make_pair(BB, MemDepResult()));
- if (Entry != Cache->begin() && prior(Entry)->first == BB)
+ NonLocalDepEntry(BB));
+ if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
--Entry;
- MemDepResult *ExistingResult = 0;
- if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
- ExistingResult = &Entry->second;
+ NonLocalDepEntry *ExistingResult = 0;
+ if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
+ ExistingResult = &*Entry;
// If we have a cached entry, and it is non-dirty, use it as the value for
// this dependency.
- if (ExistingResult && !ExistingResult->isDirty()) {
+ if (ExistingResult && !ExistingResult->getResult().isDirty()) {
++NumCacheNonLocalPtr;
- return *ExistingResult;
+ return ExistingResult->getResult();
}
// Otherwise, we have to scan for the value. If we have a dirty cache
// entry, start scanning from its position, otherwise we scan from the end
// of the block.
BasicBlock::iterator ScanPos = BB->end();
- if (ExistingResult && ExistingResult->getInst()) {
- assert(ExistingResult->getInst()->getParent() == BB &&
+ if (ExistingResult && ExistingResult->getResult().getInst()) {
+ assert(ExistingResult->getResult().getInst()->getParent() == BB &&
"Instruction invalidated?");
++NumCacheDirtyNonLocalPtr;
- ScanPos = ExistingResult->getInst();
+ ScanPos = ExistingResult->getResult().getInst();
// Eliminating the dirty entry from 'Cache', so update the reverse info.
ValueIsLoadPair CacheKey(Pointer, isLoad);
@@ -652,9 +656,9 @@ GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
- *ExistingResult = Dep;
+ ExistingResult->setResult(Dep, Pointer);
else
- Cache->push_back(std::make_pair(BB, Dep));
+ Cache->push_back(NonLocalDepEntry(BB, Dep, Pointer));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the reverse association because we just added it
@@ -683,7 +687,7 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
break;
case 2: {
// Two new entries, insert the last one into place.
- MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
+ NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end()-1, Val);
@@ -693,7 +697,7 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
case 1:
// One new entry, Just insert the new value at the appropriate position.
if (Cache.size() != 1) {
- MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
+ NonLocalDepEntry Val = Cache.back();
Cache.pop_back();
MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.end(), Val);
@@ -707,275 +711,6 @@ SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
}
}
-/// isPHITranslatable - Return true if the specified computation is derived from
-/// a PHI node in the current block and if it is simple enough for us to handle.
-static bool isPHITranslatable(Instruction *Inst) {
- if (isa<PHINode>(Inst))
- return true;
-
- // We can handle bitcast of a PHI, but the PHI needs to be in the same block
- // as the bitcast.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- Instruction *OpI = dyn_cast<Instruction>(BC->getOperand(0));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- return true;
- return isPHITranslatable(OpI);
- }
-
- // We can translate a GEP if all of its operands defined in this block are phi
- // translatable.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Instruction *OpI = dyn_cast<Instruction>(GEP->getOperand(i));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- continue;
-
- if (!isPHITranslatable(OpI))
- return false;
- }
- return true;
- }
-
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- return true;
- return isPHITranslatable(OpI);
- }
-
- // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
- // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
- // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
-
- return false;
-}
-
-/// GetPHITranslatedValue - Given a computation that satisfied the
-/// isPHITranslatable predicate, see if we can translate the computation into
-/// the specified predecessor block. If so, return that value.
-Value *MemoryDependenceAnalysis::
-GetPHITranslatedValue(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred,
- const TargetData *TD) const {
- // If the input value is not an instruction, or if it is not defined in CurBB,
- // then we don't need to phi translate it.
- Instruction *Inst = dyn_cast<Instruction>(InVal);
- if (Inst == 0 || Inst->getParent() != CurBB)
- return InVal;
-
- if (PHINode *PN = dyn_cast<PHINode>(Inst))
- return PN->getIncomingValueForBlock(Pred);
-
- // Handle bitcast of PHI.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- // PHI translate the input operand.
- Value *PHIIn = GetPHITranslatedValue(BC->getOperand(0), CurBB, Pred, TD);
- if (PHIIn == 0) return 0;
-
- // Constants are trivial to phi translate.
- if (Constant *C = dyn_cast<Constant>(PHIIn))
- return ConstantExpr::getBitCast(C, BC->getType());
-
- // Otherwise we have to see if a bitcasted version of the incoming pointer
- // is available. If so, we can use it, otherwise we have to fail.
- for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
- UI != E; ++UI) {
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
- if (BCI->getType() == BC->getType())
- return BCI;
- }
- return 0;
- }
-
- // Handle getelementptr with at least one PHI translatable operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- SmallVector<Value*, 8> GEPOps;
- BasicBlock *CurBB = GEP->getParent();
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Value *GEPOp = GEP->getOperand(i);
- // No PHI translation is needed of operands whose values are live in to
- // the predecessor block.
- if (!isa<Instruction>(GEPOp) ||
- cast<Instruction>(GEPOp)->getParent() != CurBB) {
- GEPOps.push_back(GEPOp);
- continue;
- }
-
- // If the operand is a phi node, do phi translation.
- Value *InOp = GetPHITranslatedValue(GEPOp, CurBB, Pred, TD);
- if (InOp == 0) return 0;
-
- GEPOps.push_back(InOp);
- }
-
- // Simplify the GEP to handle 'gep x, 0' -> x etc.
- if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD))
- return V;
-
- // Scan to see if we have this GEP available.
- Value *APHIOp = GEPOps[0];
- for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
- UI != E; ++UI) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
- if (GEPI->getType() == GEP->getType() &&
- GEPI->getNumOperands() == GEPOps.size() &&
- GEPI->getParent()->getParent() == CurBB->getParent()) {
- bool Mismatch = false;
- for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
- if (GEPI->getOperand(i) != GEPOps[i]) {
- Mismatch = true;
- break;
- }
- if (!Mismatch)
- return GEPI;
- }
- }
- return 0;
- }
-
- // Handle add with a constant RHS.
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- // PHI translate the LHS.
- Value *LHS;
- Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
- Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
- bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
- bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
-
- if (OpI == 0 || OpI->getParent() != Inst->getParent())
- LHS = Inst->getOperand(0);
- else {
- LHS = GetPHITranslatedValue(Inst->getOperand(0), CurBB, Pred, TD);
- if (LHS == 0)
- return 0;
- }
-
- // If the PHI translated LHS is an add of a constant, fold the immediates.
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
- if (BOp->getOpcode() == Instruction::Add)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
- LHS = BOp->getOperand(0);
- RHS = ConstantExpr::getAdd(RHS, CI);
- isNSW = isNUW = false;
- }
-
- // See if the add simplifies away.
- if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD))
- return Res;
-
- // Otherwise, see if we have this add available somewhere.
- for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
- UI != E; ++UI) {
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
- if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
- BO->getParent()->getParent() == CurBB->getParent())
- return BO;
- }
-
- return 0;
- }
-
- return 0;
-}
-
-/// GetAvailablePHITranslatePointer - Return the value computed by
-/// PHITranslatePointer if it dominates PredBB, otherwise return null.
-Value *MemoryDependenceAnalysis::
-GetAvailablePHITranslatedValue(Value *V,
- BasicBlock *CurBB, BasicBlock *PredBB,
- const TargetData *TD,
- const DominatorTree &DT) const {
- // See if PHI translation succeeds.
- V = GetPHITranslatedValue(V, CurBB, PredBB, TD);
- if (V == 0) return 0;
-
- // Make sure the value is live in the predecessor.
- if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
- if (!DT.dominates(Inst->getParent(), PredBB))
- return 0;
- return V;
-}
-
-
-/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
-/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
-/// block. All newly created instructions are added to the NewInsts list.
-///
-Value *MemoryDependenceAnalysis::
-InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
- BasicBlock *PredBB, const TargetData *TD,
- const DominatorTree &DT,
- SmallVectorImpl<Instruction*> &NewInsts) const {
- // See if we have a version of this value already available and dominating
- // PredBB. If so, there is no need to insert a new copy.
- if (Value *Res = GetAvailablePHITranslatedValue(InVal, CurBB, PredBB, TD, DT))
- return Res;
-
- // If we don't have an available version of this value, it must be an
- // instruction.
- Instruction *Inst = cast<Instruction>(InVal);
-
- // Handle bitcast of PHI translatable value.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
- Value *OpVal = InsertPHITranslatedPointer(BC->getOperand(0),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
-
- // Otherwise insert a bitcast at the end of PredBB.
- BitCastInst *New = new BitCastInst(OpVal, InVal->getType(),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- NewInsts.push_back(New);
- return New;
- }
-
- // Handle getelementptr with at least one PHI operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
- SmallVector<Value*, 8> GEPOps;
- BasicBlock *CurBB = GEP->getParent();
- for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
- Value *OpVal = InsertPHITranslatedPointer(GEP->getOperand(i),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
- GEPOps.push_back(OpVal);
- }
-
- GetElementPtrInst *Result =
- GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- Result->setIsInBounds(GEP->isInBounds());
- NewInsts.push_back(Result);
- return Result;
- }
-
-#if 0
- // FIXME: This code works, but it is unclear that we actually want to insert
- // a big chain of computation in order to make a value available in a block.
- // This needs to be evaluated carefully to consider its cost trade offs.
-
- // Handle add with a constant RHS.
- if (Inst->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Inst->getOperand(1))) {
- // PHI translate the LHS.
- Value *OpVal = InsertPHITranslatedPointer(Inst->getOperand(0),
- CurBB, PredBB, TD, DT, NewInsts);
- if (OpVal == 0) return 0;
-
- BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
- InVal->getName()+".phi.trans.insert",
- PredBB->getTerminator());
- Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
- Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
- NewInsts.push_back(Res);
- return Res;
- }
-#endif
-
- return 0;
-}
-
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
/// results to the results vector and keep track of which blocks are visited in
@@ -989,14 +724,14 @@ InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
/// not compute dependence information for some reason. This should be treated
/// as a clobber dependence on the first instruction in the predecessor block.
bool MemoryDependenceAnalysis::
-getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
+getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
bool isLoad, BasicBlock *StartBB,
SmallVectorImpl<NonLocalDepEntry> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
bool SkipFirstBlock) {
// Look up the cached info for Pointer.
- ValueIsLoadPair CacheKey(Pointer, isLoad);
+ ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
&NonLocalPointerDeps[CacheKey];
@@ -1013,8 +748,9 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
if (!Visited.empty()) {
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
- DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
- if (VI == Visited.end() || VI->second == Pointer) continue;
+ DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
+ if (VI == Visited.end() || VI->second == Pointer.getAddr())
+ continue;
// We have a pointer mismatch in a block. Just return clobber, saying
// that something was clobbered in this result. We could also do a
@@ -1025,8 +761,8 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
I != E; ++I) {
- Visited.insert(std::make_pair(I->first, Pointer));
- if (!I->second.isNonLocal())
+ Visited.insert(std::make_pair(I->getBB(), Pointer.getAddr()));
+ if (!I->getResult().isNonLocal())
Result.push_back(*I);
}
++NumCacheCompleteNonLocalPtr;
@@ -1065,30 +801,27 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// Get the dependency info for Pointer in BB. If we have cached
// information, we will use it, otherwise we compute it.
DEBUG(AssertSorted(*Cache, NumSortedEntries));
- MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
- BB, Cache, NumSortedEntries);
+ MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
+ isLoad, BB, Cache,
+ NumSortedEntries);
// If we got a Def or Clobber, add this to the list of results.
if (!Dep.isNonLocal()) {
- Result.push_back(NonLocalDepEntry(BB, Dep));
+ Result.push_back(NonLocalDepEntry(BB, Dep, Pointer.getAddr()));
continue;
}
}
// If 'Pointer' is an instruction defined in this block, then we need to do
// phi translation to change it into a value live in the predecessor block.
- // If phi translation fails, then we can't continue dependence analysis.
- Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
- bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
-
- // If no PHI translation is needed, just add all the predecessors of this
- // block to scan them as well.
- if (!NeedsPHITranslation) {
+ // If not, we just add the predecessors to the worklist and scan them with
+ // the same Pointer.
+ if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
SkipFirstBlock = false;
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
// Verify that we haven't looked at this block yet.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
+ InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
if (InsertRes.second) {
// First time we've looked at *PI.
Worklist.push_back(*PI);
@@ -1098,16 +831,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If we have seen this block before, but it was with a different
// pointer then we have a phi translation failure and we have to treat
// this as a clobber.
- if (InsertRes.first->second != Pointer)
+ if (InsertRes.first->second != Pointer.getAddr())
goto PredTranslationFailure;
}
continue;
}
- // If we do need to do phi translation, then there are a bunch of different
- // cases, because we have to find a Value* live in the predecessor block. We
- // know that PtrInst is defined in this block at least.
-
+ // We do need to do phi translation, if we know ahead of time we can't phi
+ // translate this value, don't even try.
+ if (!Pointer.IsPotentiallyPHITranslatable())
+ goto PredTranslationFailure;
+
// We may have added values to the cache list before this PHI translation.
// If so, we haven't done anything to ensure that the cache remains sorted.
// Sort it now (if needed) so that recursive invocations of
@@ -1117,19 +851,17 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
NumSortedEntries = Cache->size();
}
-
- // If this is a computation derived from a PHI node, use the suitably
- // translated incoming values for each pred as the phi translated version.
- if (!isPHITranslatable(PtrInst))
- goto PredTranslationFailure;
-
Cache = 0;
-
+
for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
BasicBlock *Pred = *PI;
- // Get the PHI translated pointer in this predecessor. This can fail and
- // return null if not translatable.
- Value *PredPtr = GetPHITranslatedValue(PtrInst, BB, Pred, TD);
+
+ // Get the PHI translated pointer in this predecessor. This can fail if
+ // not translatable, in which case the getAddr() returns null.
+ PHITransAddr PredPointer(Pointer);
+ PredPointer.PHITranslateValue(BB, Pred);
+
+ Value *PredPtrVal = PredPointer.getAddr();
// Check to see if we have already visited this pred block with another
// pointer. If so, we can't do this lookup. This failure can occur
@@ -1137,12 +869,12 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// the successor translates to a pointer value different than the
// pointer the block was first analyzed with.
std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
- InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
+ InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
if (!InsertRes.second) {
// If the predecessor was visited with PredPtr, then we already did
// the analysis and can ignore it.
- if (InsertRes.first->second == PredPtr)
+ if (InsertRes.first->second == PredPtrVal)
continue;
// Otherwise, the block was previously analyzed with a different
@@ -1155,10 +887,11 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// predecessor, then we have to assume that the pointer is clobbered in
// that predecessor. We can still do PRE of the load, which would insert
// a computation of the pointer in this predecessor.
- if (PredPtr == 0) {
+ if (PredPtrVal == 0) {
// Add the entry to the Result list.
NonLocalDepEntry Entry(Pred,
- MemDepResult::getClobber(Pred->getTerminator()));
+ MemDepResult::getClobber(Pred->getTerminator()),
+ PredPtrVal);
Result.push_back(Entry);
// Add it to the cache for this CacheKey so that subsequent queries get
@@ -1167,27 +900,27 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
MemoryDependenceAnalysis::NonLocalDepInfo::iterator It =
std::upper_bound(Cache->begin(), Cache->end(), Entry);
- if (It != Cache->begin() && prior(It)->first == Pred)
+ if (It != Cache->begin() && (It-1)->getBB() == Pred)
--It;
- if (It == Cache->end() || It->first != Pred) {
+ if (It == Cache->end() || It->getBB() != Pred) {
Cache->insert(It, Entry);
// Add it to the reverse map.
ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
- } else if (!It->second.isDirty()) {
+ } else if (!It->getResult().isDirty()) {
// noop
- } else if (It->second.getInst() == Pred->getTerminator()) {
+ } else if (It->getResult().getInst() == Pred->getTerminator()) {
// Same instruction, clear the dirty marker.
- It->second = Entry.second;
- } else if (It->second.getInst() == 0) {
+ It->setResult(Entry.getResult(), PredPtrVal);
+ } else if (It->getResult().getInst() == 0) {
// Dirty, with no instruction, just add this.
- It->second = Entry.second;
+ It->setResult(Entry.getResult(), PredPtrVal);
ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
} else {
// Otherwise, dirty with a different instruction.
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, It->second.getInst(),
- CacheKey);
- It->second = Entry.second;
+ RemoveFromReverseMap(ReverseNonLocalPtrDeps,
+ It->getResult().getInst(), CacheKey);
+ It->setResult(Entry.getResult(),PredPtrVal);
ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
}
Cache = 0;
@@ -1201,7 +934,7 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
// If we have a problem phi translating, fall through to the code below
// to handle the failure condition.
- if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
+ if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
Result, Visited))
goto PredTranslationFailure;
}
@@ -1245,12 +978,12 @@ getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
assert(I != Cache->rend() && "Didn't find current block??");
- if (I->first != BB)
+ if (I->getBB() != BB)
continue;
- assert(I->second.isNonLocal() &&
+ assert(I->getResult().isNonLocal() &&
"Should only be here with transparent block");
- I->second = MemDepResult::getClobber(BB->begin());
+ I->setResult(MemDepResult::getClobber(BB->begin()), Pointer.getAddr());
ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
Result.push_back(*I);
break;
@@ -1276,9 +1009,9 @@ RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
NonLocalDepInfo &PInfo = It->second.second;
for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
- Instruction *Target = PInfo[i].second.getInst();
+ Instruction *Target = PInfo[i].getResult().getInst();
if (Target == 0) continue; // Ignore non-local dep results.
- assert(Target->getParent() == PInfo[i].first);
+ assert(Target->getParent() == PInfo[i].getBB());
// Eliminating the dirty entry from 'Cache', so update the reverse info.
RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
@@ -1315,7 +1048,7 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
NonLocalDepInfo &BlockMap = NLDI->second.first;
for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
DI != DE; ++DI)
- if (Instruction *Inst = DI->second.getInst())
+ if (Instruction *Inst = DI->getResult().getInst())
RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
NonLocalDeps.erase(NLDI);
}
@@ -1403,10 +1136,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
DE = INLD.first.end(); DI != DE; ++DI) {
- if (DI->second.getInst() != RemInst) continue;
+ if (DI->getResult().getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
- DI->second = NewDirtyVal;
+ DI->setResult(NewDirtyVal, DI->getAddress());
if (Instruction *NextI = NewDirtyVal.getInst())
ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
@@ -1445,10 +1178,10 @@ void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Update any entries for RemInst to use the instruction after it.
for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
DI != DE; ++DI) {
- if (DI->second.getInst() != RemInst) continue;
+ if (DI->getResult().getInst() != RemInst) continue;
// Convert to a dirty entry for the subsequent instruction.
- DI->second = NewDirtyVal;
+ DI->setResult(NewDirtyVal, DI->getAddress());
if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
@@ -1489,7 +1222,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
const NonLocalDepInfo &Val = I->second.second;
for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
II != E; ++II)
- assert(II->second.getInst() != D && "Inst occurs as NLPD value");
+ assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
@@ -1498,7 +1231,7 @@ void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
const PerInstNLInfo &INLD = I->second;
for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
EE = INLD.first.end(); II != EE; ++II)
- assert(II->second.getInst() != D && "Inst occurs in data structures");
+ assert(II->getResult().getInst() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),