aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitec2b103c267a06a66e926f62cd96767b280f5cf5 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /lib/Sema/SemaExpr.cpp
downloadsrc-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz
src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes: svn path=/vendor/clang/dist/; revision=193326 svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/Sema/SemaExpr.cpp')
-rw-r--r--lib/Sema/SemaExpr.cpp5395
1 files changed, 5395 insertions, 0 deletions
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp
new file mode 100644
index 000000000000..ee5132a7d8e0
--- /dev/null
+++ b/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,5395 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/Designator.h"
+#include "clang/Parse/Scope.h"
+using namespace clang;
+
+/// \brief Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
+ // See if the decl is deprecated.
+ if (D->getAttr<DeprecatedAttr>()) {
+ // Implementing deprecated stuff requires referencing deprecated
+ // stuff. Don't warn if we are implementing a deprecated
+ // construct.
+ bool isSilenced = false;
+
+ if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
+ // If this reference happens *in* a deprecated function or method, don't
+ // warn.
+ isSilenced = ND->getAttr<DeprecatedAttr>();
+
+ // If this is an Objective-C method implementation, check to see if the
+ // method was deprecated on the declaration, not the definition.
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
+ // The semantic decl context of a ObjCMethodDecl is the
+ // ObjCImplementationDecl.
+ if (ObjCImplementationDecl *Impl
+ = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
+
+ MD = Impl->getClassInterface()->getMethod(Context,
+ MD->getSelector(),
+ MD->isInstanceMethod());
+ isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
+ }
+ }
+ }
+
+ if (!isSilenced)
+ Diag(Loc, diag::warn_deprecated) << D->getDeclName();
+ }
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted()) {
+ Diag(Loc, diag::err_deleted_function_use);
+ Diag(D->getLocation(), diag::note_unavailable_here) << true;
+ return true;
+ }
+ }
+
+ // See if the decl is unavailable
+ if (D->getAttr<UnavailableAttr>()) {
+ Diag(Loc, diag::warn_unavailable) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_unavailable_here) << 0;
+ }
+
+ return false;
+}
+
+/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
+/// (and other functions in future), which have been declared with sentinel
+/// attribute. It warns if call does not have the sentinel argument.
+///
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ Expr **Args, unsigned NumArgs)
+{
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+ int sentinelPos = attr->getSentinel();
+ int nullPos = attr->getNullPos();
+
+ // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
+ // base class. Then we won't be needing two versions of the same code.
+ unsigned int i = 0;
+ bool warnNotEnoughArgs = false;
+ int isMethod = 0;
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = MD->param_end();
+ for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ isMethod = 1;
+ }
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // skip over named parameters.
+ ObjCMethodDecl::param_iterator P, E = FD->param_end();
+ for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (P != E || i >= NumArgs);
+ }
+ else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
+ // block or function pointer call.
+ QualType Ty = V->getType();
+ if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
+ const FunctionType *FT = Ty->isFunctionPointerType()
+ ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
+ : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned k;
+ for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
+ if (nullPos)
+ --nullPos;
+ else
+ ++i;
+ }
+ warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
+ }
+ if (Ty->isBlockPointerType())
+ isMethod = 2;
+ }
+ else
+ return;
+ }
+ else
+ return;
+
+ if (warnNotEnoughArgs) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ int sentinel = i;
+ while (sentinelPos > 0 && i < NumArgs-1) {
+ --sentinelPos;
+ ++i;
+ }
+ if (sentinelPos > 0) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ return;
+ }
+ while (i < NumArgs-1) {
+ ++i;
+ ++sentinel;
+ }
+ Expr *sentinelExpr = Args[sentinel];
+ if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
+ !sentinelExpr->isNullPointerConstant(Context))) {
+ Diag(Loc, diag::warn_missing_sentinel) << isMethod;
+ Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ }
+ return;
+}
+
+SourceRange Sema::getExprRange(ExprTy *E) const {
+ Expr *Ex = (Expr *)E;
+ return Ex? Ex->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+void Sema::DefaultFunctionArrayConversion(Expr *&E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType())
+ ImpCastExprToType(E, Context.getPointerType(Ty));
+ else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
+ E->isLvalue(Context) == Expr::LV_Valid)
+ ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
+ }
+}
+
+/// \brief Whether this is a promotable bitfield reference according
+/// to C99 6.3.1.1p2, bullet 2.
+///
+/// \returns the type this bit-field will promote to, or NULL if no
+/// promotion occurs.
+static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
+ FieldDecl *Field = E->getBitField();
+ if (!Field)
+ return QualType();
+
+ const BuiltinType *BT = Field->getType()->getAsBuiltinType();
+ if (!BT)
+ return QualType();
+
+ if (BT->getKind() != BuiltinType::Bool &&
+ BT->getKind() != BuiltinType::Int &&
+ BT->getKind() != BuiltinType::UInt)
+ return QualType();
+
+ llvm::APSInt BitWidthAP;
+ if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
+ return QualType();
+
+ uint64_t BitWidth = BitWidthAP.getZExtValue();
+ uint64_t IntSize = Context.getTypeSize(Context.IntTy);
+ if (BitWidth < IntSize ||
+ (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
+ return Context.IntTy;
+
+ if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
+ return Context.UnsignedIntTy;
+
+ return QualType();
+}
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes surpressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+ if (Ty->isPromotableIntegerType()) {
+ ImpCastExprToType(Expr, Context.IntTy);
+ return Expr;
+ } else {
+ QualType T = isPromotableBitField(Expr, Context);
+ if (!T.isNull()) {
+ ImpCastExprToType(Expr, T);
+ return Expr;
+ }
+ }
+
+ DefaultFunctionArrayConversion(Expr);
+ return Expr;
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float are promoted to
+/// double. All other argument types are converted by UsualUnaryConversions().
+void Sema::DefaultArgumentPromotion(Expr *&Expr) {
+ QualType Ty = Expr->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ // If this is a 'float' (CVR qualified or typedef) promote to double.
+ if (const BuiltinType *BT = Ty->getAsBuiltinType())
+ if (BT->getKind() == BuiltinType::Float)
+ return ImpCastExprToType(Expr, Context.DoubleTy);
+
+ UsualUnaryConversions(Expr);
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will warn if the resulting type is not a POD type, and rejects ObjC
+/// interfaces passed by value. This returns true if the argument type is
+/// completely illegal.
+bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
+ DefaultArgumentPromotion(Expr);
+
+ if (Expr->getType()->isObjCInterfaceType()) {
+ Diag(Expr->getLocStart(),
+ diag::err_cannot_pass_objc_interface_to_vararg)
+ << Expr->getType() << CT;
+ return true;
+ }
+
+ if (!Expr->getType()->isPODType())
+ Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << Expr->getType() << CT;
+
+ return false;
+}
+
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with
+/// GCC.
+QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
+ bool isCompAssign) {
+ if (!isCompAssign)
+ UsualUnaryConversions(lhsExpr);
+
+ UsualUnaryConversions(rhsExpr);
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhs =
+ Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
+ QualType rhs =
+ Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+ return lhs;
+
+ // Perform bitfield promotions.
+ QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
+ if (!LHSBitfieldPromoteTy.isNull())
+ lhs = LHSBitfieldPromoteTy;
+ QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
+ if (!RHSBitfieldPromoteTy.isNull())
+ rhs = RHSBitfieldPromoteTy;
+
+ QualType destType = UsualArithmeticConversionsType(lhs, rhs);
+ if (!isCompAssign)
+ ImpCastExprToType(lhsExpr, destType);
+ ImpCastExprToType(rhsExpr, destType);
+ return destType;
+}
+
+QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
+ // Perform the usual unary conversions. We do this early so that
+ // integral promotions to "int" can allow us to exit early, in the
+ // lhs == rhs check. Also, for conversion purposes, we ignore any
+ // qualifiers. For example, "const float" and "float" are
+ // equivalent.
+ if (lhs->isPromotableIntegerType())
+ lhs = Context.IntTy;
+ else
+ lhs = lhs.getUnqualifiedType();
+ if (rhs->isPromotableIntegerType())
+ rhs = Context.IntTy;
+ else
+ rhs = rhs.getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (lhs == rhs)
+ return lhs;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+ return lhs;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (lhs->isComplexType() || rhs->isComplexType()) {
+ // if we have an integer operand, the result is the complex type.
+ if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
+ // convert the rhs to the lhs complex type.
+ return lhs;
+ }
+ if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
+ // convert the lhs to the rhs complex type.
+ return rhs;
+ }
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+ int result = Context.getFloatingTypeOrder(lhs, rhs);
+
+ if (result > 0) { // The left side is bigger, convert rhs.
+ rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
+ } else if (result < 0) { // The right side is bigger, convert lhs.
+ lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
+ }
+ // At this point, lhs and rhs have the same rank/size. Now, make sure the
+ // domains match. This is a requirement for our implementation, C99
+ // does not require this promotion.
+ if (lhs != rhs) { // Domains don't match, we have complex/float mix.
+ if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
+ return rhs;
+ } else { // handle "_Complex double, double".
+ return lhs;
+ }
+ }
+ return lhs; // The domain/size match exactly.
+ }
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
+ // if we have an integer operand, the result is the real floating type.
+ if (rhs->isIntegerType()) {
+ // convert rhs to the lhs floating point type.
+ return lhs;
+ }
+ if (rhs->isComplexIntegerType()) {
+ // convert rhs to the complex floating point type.
+ return Context.getComplexType(lhs);
+ }
+ if (lhs->isIntegerType()) {
+ // convert lhs to the rhs floating point type.
+ return rhs;
+ }
+ if (lhs->isComplexIntegerType()) {
+ // convert lhs to the complex floating point type.
+ return Context.getComplexType(rhs);
+ }
+ // We have two real floating types, float/complex combos were handled above.
+ // Convert the smaller operand to the bigger result.
+ int result = Context.getFloatingTypeOrder(lhs, rhs);
+ if (result > 0) // convert the rhs
+ return lhs;
+ assert(result < 0 && "illegal float comparison");
+ return rhs; // convert the lhs
+ }
+ if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
+ // Handle GCC complex int extension.
+ const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+ const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+
+ if (lhsComplexInt && rhsComplexInt) {
+ if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
+ rhsComplexInt->getElementType()) >= 0)
+ return lhs; // convert the rhs
+ return rhs;
+ } else if (lhsComplexInt && rhs->isIntegerType()) {
+ // convert the rhs to the lhs complex type.
+ return lhs;
+ } else if (rhsComplexInt && lhs->isIntegerType()) {
+ // convert the lhs to the rhs complex type.
+ return rhs;
+ }
+ }
+ // Finally, we have two differing integer types.
+ // The rules for this case are in C99 6.3.1.8
+ int compare = Context.getIntegerTypeOrder(lhs, rhs);
+ bool lhsSigned = lhs->isSignedIntegerType(),
+ rhsSigned = rhs->isSignedIntegerType();
+ QualType destType;
+ if (lhsSigned == rhsSigned) {
+ // Same signedness; use the higher-ranked type
+ destType = compare >= 0 ? lhs : rhs;
+ } else if (compare != (lhsSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ destType = lhsSigned ? rhs : lhs;
+ } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ destType = lhsSigned ? lhs : rhs;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
+ }
+ return destType;
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+Action::OwningExprResult
+Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
+ assert(NumStringToks && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, NumStringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ llvm::SmallVector<SourceLocation, 4> StringTokLocs;
+ for (unsigned i = 0; i != NumStringToks; ++i)
+ StringTokLocs.push_back(StringToks[i].getLocation());
+
+ QualType StrTy = Context.CharTy;
+ if (Literal.AnyWide) StrTy = Context.getWCharType();
+ if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
+
+ // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
+ if (getLangOptions().CPlusPlus)
+ StrTy.addConst();
+
+ // Get an array type for the string, according to C99 6.4.5. This includes
+ // the nul terminator character as well as the string length for pascal
+ // strings.
+ StrTy = Context.getConstantArrayType(StrTy,
+ llvm::APInt(32, Literal.GetNumStringChars()+1),
+ ArrayType::Normal, 0);
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ return Owned(StringLiteral::Create(Context, Literal.GetString(),
+ Literal.GetStringLength(),
+ Literal.AnyWide, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size()));
+}
+
+/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
+/// CurBlock to VD should cause it to be snapshotted (as we do for auto
+/// variables defined outside the block) or false if this is not needed (e.g.
+/// for values inside the block or for globals).
+///
+/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
+/// up-to-date.
+///
+static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
+ ValueDecl *VD) {
+ // If the value is defined inside the block, we couldn't snapshot it even if
+ // we wanted to.
+ if (CurBlock->TheDecl == VD->getDeclContext())
+ return false;
+
+ // If this is an enum constant or function, it is constant, don't snapshot.
+ if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
+ return false;
+
+ // If this is a reference to an extern, static, or global variable, no need to
+ // snapshot it.
+ // FIXME: What about 'const' variables in C++?
+ if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
+ if (!Var->hasLocalStorage())
+ return false;
+
+ // Blocks that have these can't be constant.
+ CurBlock->hasBlockDeclRefExprs = true;
+
+ // If we have nested blocks, the decl may be declared in an outer block (in
+ // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
+ // be defined outside all of the current blocks (in which case the blocks do
+ // all get the bit). Walk the nesting chain.
+ for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
+ NextBlock = NextBlock->PrevBlockInfo) {
+ // If we found the defining block for the variable, don't mark the block as
+ // having a reference outside it.
+ if (NextBlock->TheDecl == VD->getDeclContext())
+ break;
+
+ // Otherwise, the DeclRef from the inner block causes the outer one to need
+ // a snapshot as well.
+ NextBlock->hasBlockDeclRefExprs = true;
+ }
+
+ return true;
+}
+
+
+
+/// ActOnIdentifierExpr - The parser read an identifier in expression context,
+/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
+/// identifier is used in a function call context.
+/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
+/// class or namespace that the identifier must be a member of.
+Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
+ IdentifierInfo &II,
+ bool HasTrailingLParen,
+ const CXXScopeSpec *SS,
+ bool isAddressOfOperand) {
+ return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
+ isAddressOfOperand);
+}
+
+/// BuildDeclRefExpr - Build either a DeclRefExpr or a
+/// QualifiedDeclRefExpr based on whether or not SS is a
+/// nested-name-specifier.
+DeclRefExpr *
+Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
+ bool TypeDependent, bool ValueDependent,
+ const CXXScopeSpec *SS) {
+ if (SS && !SS->isEmpty()) {
+ return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
+ ValueDependent, SS->getRange(),
+ static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
+ } else
+ return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
+}
+
+/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
+/// variable corresponding to the anonymous union or struct whose type
+/// is Record.
+static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
+ RecordDecl *Record) {
+ assert(Record->isAnonymousStructOrUnion() &&
+ "Record must be an anonymous struct or union!");
+
+ // FIXME: Once Decls are directly linked together, this will be an O(1)
+ // operation rather than a slow walk through DeclContext's vector (which
+ // itself will be eliminated). DeclGroups might make this even better.
+ DeclContext *Ctx = Record->getDeclContext();
+ for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
+ DEnd = Ctx->decls_end(Context);
+ D != DEnd; ++D) {
+ if (*D == Record) {
+ // The object for the anonymous struct/union directly
+ // follows its type in the list of declarations.
+ ++D;
+ assert(D != DEnd && "Missing object for anonymous record");
+ assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
+ return *D;
+ }
+ }
+
+ assert(false && "Missing object for anonymous record");
+ return 0;
+}
+
+/// \brief Given a field that represents a member of an anonymous
+/// struct/union, build the path from that field's context to the
+/// actual member.
+///
+/// Construct the sequence of field member references we'll have to
+/// perform to get to the field in the anonymous union/struct. The
+/// list of members is built from the field outward, so traverse it
+/// backwards to go from an object in the current context to the field
+/// we found.
+///
+/// \returns The variable from which the field access should begin,
+/// for an anonymous struct/union that is not a member of another
+/// class. Otherwise, returns NULL.
+VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
+ llvm::SmallVectorImpl<FieldDecl *> &Path) {
+ assert(Field->getDeclContext()->isRecord() &&
+ cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
+ && "Field must be stored inside an anonymous struct or union");
+
+ Path.push_back(Field);
+ VarDecl *BaseObject = 0;
+ DeclContext *Ctx = Field->getDeclContext();
+ do {
+ RecordDecl *Record = cast<RecordDecl>(Ctx);
+ Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
+ if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
+ Path.push_back(AnonField);
+ else {
+ BaseObject = cast<VarDecl>(AnonObject);
+ break;
+ }
+ Ctx = Ctx->getParent();
+ } while (Ctx->isRecord() &&
+ cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
+
+ return BaseObject;
+}
+
+Sema::OwningExprResult
+Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
+ FieldDecl *Field,
+ Expr *BaseObjectExpr,
+ SourceLocation OpLoc) {
+ llvm::SmallVector<FieldDecl *, 4> AnonFields;
+ VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
+ AnonFields);
+
+ // Build the expression that refers to the base object, from
+ // which we will build a sequence of member references to each
+ // of the anonymous union objects and, eventually, the field we
+ // found via name lookup.
+ bool BaseObjectIsPointer = false;
+ unsigned ExtraQuals = 0;
+ if (BaseObject) {
+ // BaseObject is an anonymous struct/union variable (and is,
+ // therefore, not part of another non-anonymous record).
+ if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
+ BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
+ SourceLocation());
+ ExtraQuals
+ = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
+ } else if (BaseObjectExpr) {
+ // The caller provided the base object expression. Determine
+ // whether its a pointer and whether it adds any qualifiers to the
+ // anonymous struct/union fields we're looking into.
+ QualType ObjectType = BaseObjectExpr->getType();
+ if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
+ BaseObjectIsPointer = true;
+ ObjectType = ObjectPtr->getPointeeType();
+ }
+ ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
+ } else {
+ // We've found a member of an anonymous struct/union that is
+ // inside a non-anonymous struct/union, so in a well-formed
+ // program our base object expression is "this".
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
+ if (!MD->isStatic()) {
+ QualType AnonFieldType
+ = Context.getTagDeclType(
+ cast<RecordDecl>(AnonFields.back()->getDeclContext()));
+ QualType ThisType = Context.getTagDeclType(MD->getParent());
+ if ((Context.getCanonicalType(AnonFieldType)
+ == Context.getCanonicalType(ThisType)) ||
+ IsDerivedFrom(ThisType, AnonFieldType)) {
+ // Our base object expression is "this".
+ BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
+ MD->getThisType(Context));
+ BaseObjectIsPointer = true;
+ }
+ } else {
+ return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
+ << Field->getDeclName());
+ }
+ ExtraQuals = MD->getTypeQualifiers();
+ }
+
+ if (!BaseObjectExpr)
+ return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
+ << Field->getDeclName());
+ }
+
+ // Build the implicit member references to the field of the
+ // anonymous struct/union.
+ Expr *Result = BaseObjectExpr;
+ for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
+ FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
+ FI != FIEnd; ++FI) {
+ QualType MemberType = (*FI)->getType();
+ if (!(*FI)->isMutable()) {
+ unsigned combinedQualifiers
+ = MemberType.getCVRQualifiers() | ExtraQuals;
+ MemberType = MemberType.getQualifiedType(combinedQualifiers);
+ }
+ Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
+ OpLoc, MemberType);
+ BaseObjectIsPointer = false;
+ ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
+ }
+
+ return Owned(Result);
+}
+
+/// ActOnDeclarationNameExpr - The parser has read some kind of name
+/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
+/// performs lookup on that name and returns an expression that refers
+/// to that name. This routine isn't directly called from the parser,
+/// because the parser doesn't know about DeclarationName. Rather,
+/// this routine is called by ActOnIdentifierExpr,
+/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
+/// which form the DeclarationName from the corresponding syntactic
+/// forms.
+///
+/// HasTrailingLParen indicates whether this identifier is used in a
+/// function call context. LookupCtx is only used for a C++
+/// qualified-id (foo::bar) to indicate the class or namespace that
+/// the identifier must be a member of.
+///
+/// isAddressOfOperand means that this expression is the direct operand
+/// of an address-of operator. This matters because this is the only
+/// situation where a qualified name referencing a non-static member may
+/// appear outside a member function of this class.
+Sema::OwningExprResult
+Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
+ DeclarationName Name, bool HasTrailingLParen,
+ const CXXScopeSpec *SS,
+ bool isAddressOfOperand) {
+ // Could be enum-constant, value decl, instance variable, etc.
+ if (SS && SS->isInvalid())
+ return ExprError();
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // FIXME: Member of the current instantiation.
+ if (SS && isDependentScopeSpecifier(*SS)) {
+ return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
+ Loc, SS->getRange(),
+ static_cast<NestedNameSpecifier *>(SS->getScopeRep())));
+ }
+
+ LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
+ false, true, Loc);
+
+ if (Lookup.isAmbiguous()) {
+ DiagnoseAmbiguousLookup(Lookup, Name, Loc,
+ SS && SS->isSet() ? SS->getRange()
+ : SourceRange());
+ return ExprError();
+ }
+
+ NamedDecl *D = Lookup.getAsDecl();
+
+ // If this reference is in an Objective-C method, then ivar lookup happens as
+ // well.
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (II && getCurMethodDecl()) {
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+ if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
+ ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
+ ClassDeclared)) {
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ bool IsClsMethod = getCurMethodDecl()->isClassMethod();
+ // If a class method attemps to use a free standing ivar, this is
+ // an error.
+ if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
+ return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
+ << IV->getDeclName());
+ // If a class method uses a global variable, even if an ivar with
+ // same name exists, use the global.
+ if (!IsClsMethod) {
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ ClassDeclared != IFace)
+ Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
+ return Owned(new (Context)
+ ObjCIvarRefExpr(IV, IV->getType(), Loc,
+ SelfExpr.takeAs<Expr>(), true, true));
+ }
+ }
+ }
+ else if (getCurMethodDecl()->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
+ ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ IFace == ClassDeclared)
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+ // Needed to implement property "super.method" notation.
+ if (D == 0 && II->isStr("super")) {
+ QualType T;
+
+ if (getCurMethodDecl()->isInstanceMethod())
+ T = Context.getPointerType(Context.getObjCInterfaceType(
+ getCurMethodDecl()->getClassInterface()));
+ else
+ T = Context.getObjCClassType();
+ return Owned(new (Context) ObjCSuperExpr(Loc, T));
+ }
+ }
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
+ HasTrailingLParen;
+
+ if (ADL && D == 0) {
+ // We've seen something of the form
+ //
+ // identifier(
+ //
+ // and we did not find any entity by the name
+ // "identifier". However, this identifier is still subject to
+ // argument-dependent lookup, so keep track of the name.
+ return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
+ Context.OverloadTy,
+ Loc));
+ }
+
+ if (D == 0) {
+ // Otherwise, this could be an implicitly declared function reference (legal
+ // in C90, extension in C99).
+ if (HasTrailingLParen && II &&
+ !getLangOptions().CPlusPlus) // Not in C++.
+ D = ImplicitlyDefineFunction(Loc, *II, S);
+ else {
+ // If this name wasn't predeclared and if this is not a function call,
+ // diagnose the problem.
+ if (SS && !SS->isEmpty())
+ return ExprError(Diag(Loc, diag::err_typecheck_no_member)
+ << Name << SS->getRange());
+ else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
+ return ExprError(Diag(Loc, diag::err_undeclared_use)
+ << Name.getAsString());
+ else
+ return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
+ }
+ }
+
+ // If this is an expression of the form &Class::member, don't build an
+ // implicit member ref, because we want a pointer to the member in general,
+ // not any specific instance's member.
+ if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
+ DeclContext *DC = computeDeclContext(*SS);
+ if (D && isa<CXXRecordDecl>(DC)) {
+ QualType DType;
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ DType = FD->getType().getNonReferenceType();
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ DType = Method->getType();
+ } else if (isa<OverloadedFunctionDecl>(D)) {
+ DType = Context.OverloadTy;
+ }
+ // Could be an inner type. That's diagnosed below, so ignore it here.
+ if (!DType.isNull()) {
+ // The pointer is type- and value-dependent if it points into something
+ // dependent.
+ bool Dependent = DC->isDependentContext();
+ return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
+ }
+ }
+ }
+
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
+ if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
+ return BuildAnonymousStructUnionMemberReference(Loc, FD);
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
+ if (!MD->isStatic()) {
+ // C++ [class.mfct.nonstatic]p2:
+ // [...] if name lookup (3.4.1) resolves the name in the
+ // id-expression to a nonstatic nontype member of class X or of
+ // a base class of X, the id-expression is transformed into a
+ // class member access expression (5.2.5) using (*this) (9.3.2)
+ // as the postfix-expression to the left of the '.' operator.
+ DeclContext *Ctx = 0;
+ QualType MemberType;
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ Ctx = FD->getDeclContext();
+ MemberType = FD->getType();
+
+ if (const ReferenceType *RefType = MemberType->getAsReferenceType())
+ MemberType = RefType->getPointeeType();
+ else if (!FD->isMutable()) {
+ unsigned combinedQualifiers
+ = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
+ MemberType = MemberType.getQualifiedType(combinedQualifiers);
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (!Method->isStatic()) {
+ Ctx = Method->getParent();
+ MemberType = Method->getType();
+ }
+ } else if (OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(D)) {
+ for (OverloadedFunctionDecl::function_iterator
+ Func = Ovl->function_begin(),
+ FuncEnd = Ovl->function_end();
+ Func != FuncEnd; ++Func) {
+ if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
+ if (!DMethod->isStatic()) {
+ Ctx = Ovl->getDeclContext();
+ MemberType = Context.OverloadTy;
+ break;
+ }
+ }
+ }
+
+ if (Ctx && Ctx->isRecord()) {
+ QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
+ QualType ThisType = Context.getTagDeclType(MD->getParent());
+ if ((Context.getCanonicalType(CtxType)
+ == Context.getCanonicalType(ThisType)) ||
+ IsDerivedFrom(ThisType, CtxType)) {
+ // Build the implicit member access expression.
+ Expr *This = new (Context) CXXThisExpr(SourceLocation(),
+ MD->getThisType(Context));
+ return Owned(new (Context) MemberExpr(This, true, D,
+ Loc, MemberType));
+ }
+ }
+ }
+ }
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
+ if (MD->isStatic())
+ // "invalid use of member 'x' in static member function"
+ return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
+ << FD->getDeclName());
+ }
+
+ // Any other ways we could have found the field in a well-formed
+ // program would have been turned into implicit member expressions
+ // above.
+ return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
+ << FD->getDeclName());
+ }
+
+ if (isa<TypedefDecl>(D))
+ return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
+ if (isa<ObjCInterfaceDecl>(D))
+ return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
+ if (isa<NamespaceDecl>(D))
+ return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
+
+ // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
+ if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
+ return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
+ false, false, SS));
+ else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
+ return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
+ false, false, SS));
+ ValueDecl *VD = cast<ValueDecl>(D);
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
+ return ExprError();
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
+ // Warn about constructs like:
+ // if (void *X = foo()) { ... } else { X }.
+ // In the else block, the pointer is always false.
+
+ // FIXME: In a template instantiation, we don't have scope
+ // information to check this property.
+ if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
+ Scope *CheckS = S;
+ while (CheckS) {
+ if (CheckS->isWithinElse() &&
+ CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
+ if (Var->getType()->isBooleanType())
+ ExprError(Diag(Loc, diag::warn_value_always_false)
+ << Var->getDeclName());
+ else
+ ExprError(Diag(Loc, diag::warn_value_always_zero)
+ << Var->getDeclName());
+ break;
+ }
+
+ // Move up one more control parent to check again.
+ CheckS = CheckS->getControlParent();
+ if (CheckS)
+ CheckS = CheckS->getParent();
+ }
+ }
+ } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
+ if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ QualType T = Func->getType();
+ QualType NoProtoType = T;
+ if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
+ NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
+ return Owned(BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS));
+ }
+ }
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl())
+ return ExprError();
+
+ // If the identifier reference is inside a block, and it refers to a value
+ // that is outside the block, create a BlockDeclRefExpr instead of a
+ // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
+ // the block is formed.
+ //
+ // We do not do this for things like enum constants, global variables, etc,
+ // as they do not get snapshotted.
+ //
+ if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
+ QualType ExprTy = VD->getType().getNonReferenceType();
+ // The BlocksAttr indicates the variable is bound by-reference.
+ if (VD->getAttr<BlocksAttr>())
+ return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
+
+ // Variable will be bound by-copy, make it const within the closure.
+ ExprTy.addConst();
+ return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false));
+ }
+ // If this reference is not in a block or if the referenced variable is
+ // within the block, create a normal DeclRefExpr.
+
+ bool TypeDependent = false;
+ bool ValueDependent = false;
+ if (getLangOptions().CPlusPlus) {
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // - an identifier that was declared with a dependent type,
+ if (VD->getType()->isDependentType())
+ TypeDependent = true;
+ // - FIXME: a template-id that is dependent,
+ // - a conversion-function-id that specifies a dependent type,
+ else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType())
+ TypeDependent = true;
+ // - a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ else if (SS && !SS->isEmpty()) {
+ for (DeclContext *DC = computeDeclContext(*SS);
+ DC; DC = DC->getParent()) {
+ // FIXME: could stop early at namespace scope.
+ if (DC->isRecord()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ if (Context.getTypeDeclType(Record)->isDependentType()) {
+ TypeDependent = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // C++ [temp.dep.constexpr]p2:
+ //
+ // An identifier is value-dependent if it is:
+ // - a name declared with a dependent type,
+ if (TypeDependent)
+ ValueDependent = true;
+ // - the name of a non-type template parameter,
+ else if (isa<NonTypeTemplateParmDecl>(VD))
+ ValueDependent = true;
+ // - a constant with integral or enumeration type and is
+ // initialized with an expression that is value-dependent
+ // (FIXME!).
+ }
+
+ return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
+ TypeDependent, ValueDependent, SS));
+}
+
+Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
+ tok::TokenKind Kind) {
+ PredefinedExpr::IdentType IT;
+
+ switch (Kind) {
+ default: assert(0 && "Unknown simple primary expr!");
+ case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
+ case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
+ }
+
+ // Pre-defined identifiers are of type char[x], where x is the length of the
+ // string.
+ unsigned Length;
+ if (FunctionDecl *FD = getCurFunctionDecl())
+ Length = FD->getIdentifier()->getLength();
+ else if (ObjCMethodDecl *MD = getCurMethodDecl())
+ Length = MD->getSynthesizedMethodSize();
+ else {
+ Diag(Loc, diag::ext_predef_outside_function);
+ // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
+ Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
+ }
+
+
+ llvm::APInt LengthI(32, Length + 1);
+ QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
+ return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
+}
+
+Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
+ llvm::SmallString<16> CharBuffer;
+ CharBuffer.resize(Tok.getLength());
+ const char *ThisTokBegin = &CharBuffer[0];
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
+
+ CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
+
+ return Owned(new (Context) CharacterLiteral(Literal.getValue(),
+ Literal.isWide(),
+ type, Tok.getLocation()));
+}
+
+Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ unsigned IntSize = Context.Target.getIntWidth();
+ return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
+ Context.IntTy, Tok.getLocation()));
+ }
+
+ llvm::SmallString<512> IntegerBuffer;
+ // Add padding so that NumericLiteralParser can overread by one character.
+ IntegerBuffer.resize(Tok.getLength()+1);
+ const char *ThisTokBegin = &IntegerBuffer[0];
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
+
+ NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
+ Tok.getLocation(), PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ Expr *Res;
+
+ if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (!Literal.isLong)
+ Ty = Context.DoubleTy;
+ else
+ Ty = Context.LongDoubleTy;
+
+ const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
+
+ // isExact will be set by GetFloatValue().
+ bool isExact = false;
+ Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
+ &isExact, Ty, Tok.getLocation());
+
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // long long is a C99 feature.
+ if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
+ Literal.isLongLong)
+ Diag(Tok.getLocation(), diag::ext_longlong);
+
+ // Get the value in the widest-possible width.
+ llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, warn and force to ull.
+ Diag(Tok.getLocation(), diag::warn_integer_too_large);
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+ if (!Literal.isLong && !Literal.isLongLong) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.Target.getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong) {
+ unsigned LongSize = Context.Target.getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ Width = LongSize;
+ }
+ }
+
+ // Finally, check long long if needed.
+ if (Ty.isNull()) {
+ unsigned LongLongSize = Context.Target.getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we probably have something that
+ // does not fit in a signed long long, but has no U suffix.
+ if (Ty.isNull()) {
+ Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.Target.getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal.trunc(Width);
+ }
+ Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary)
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ return Owned(Res);
+}
+
+Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
+ SourceLocation R, ExprArg Val) {
+ Expr *E = Val.takeAs<Expr>();
+ assert((E != 0) && "ActOnParenExpr() missing expr");
+ return Owned(new (Context) ParenExpr(L, R, E));
+}
+
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// See C99 6.3.2.1p[2-4] for more details.
+bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
+ SourceLocation OpLoc,
+ const SourceRange &ExprRange,
+ bool isSizeof) {
+ if (exprType->isDependentType())
+ return false;
+
+ // C99 6.5.3.4p1:
+ if (isa<FunctionType>(exprType)) {
+ // alignof(function) is allowed as an extension.
+ if (isSizeof)
+ Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension.
+ if (exprType->isVoidType()) {
+ Diag(OpLoc, diag::ext_sizeof_void_type)
+ << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
+ return false;
+ }
+
+ if (RequireCompleteType(OpLoc, exprType,
+ isSizeof ? diag::err_sizeof_incomplete_type :
+ diag::err_alignof_incomplete_type,
+ ExprRange))
+ return true;
+
+ // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
+ if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
+ Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
+ << exprType << isSizeof << ExprRange;
+ return true;
+ }
+
+ return false;
+}
+
+bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
+ const SourceRange &ExprRange) {
+ E = E->IgnoreParens();
+
+ // alignof decl is always ok.
+ if (isa<DeclRefExpr>(E))
+ return false;
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getBitField()) {
+ Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
+ return true;
+ }
+
+ // Alignment of a field access is always okay, so long as it isn't a
+ // bit-field.
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
+ return false;
+
+ return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
+}
+
+/// \brief Build a sizeof or alignof expression given a type operand.
+Action::OwningExprResult
+Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
+ bool isSizeOf, SourceRange R) {
+ if (T.isNull())
+ return ExprError();
+
+ if (!T->isDependentType() &&
+ CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
+ Context.getSizeType(), OpLoc,
+ R.getEnd()));
+}
+
+/// \brief Build a sizeof or alignof expression given an expression
+/// operand.
+Action::OwningExprResult
+Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
+ bool isSizeOf, SourceRange R) {
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (!isSizeOf) {
+ isInvalid = CheckAlignOfExpr(E, OpLoc, R);
+ } else if (E->getBitField()) { // C99 6.5.3.4p1.
+ Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
+ isInvalid = true;
+ } else {
+ isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
+ Context.getSizeType(), OpLoc,
+ R.getEnd()));
+}
+
+/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
+/// the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+Action::OwningExprResult
+Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
+ void *TyOrEx, const SourceRange &ArgRange) {
+ // If error parsing type, ignore.
+ if (TyOrEx == 0) return ExprError();
+
+ if (isType) {
+ QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
+ return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
+ }
+
+ // Get the end location.
+ Expr *ArgEx = (Expr *)TyOrEx;
+ Action::OwningExprResult Result
+ = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
+
+ if (Result.isInvalid())
+ DeleteExpr(ArgEx);
+
+ return move(Result);
+}
+
+QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
+ if (V->isTypeDependent())
+ return Context.DependentTy;
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V->getType()->getAsComplexType())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V->getType()->isArithmeticType())
+ return V->getType();
+
+ // Reject anything else.
+ Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
+ << (isReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+Action::OwningExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, ExprArg Input) {
+ Expr *Arg = (Expr *)Input.get();
+
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PostInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PostDec; break;
+ }
+
+ if (getLangOptions().CPlusPlus &&
+ (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
+ // Which overloaded operator?
+ OverloadedOperatorKind OverOp =
+ (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
+
+ // C++ [over.inc]p1:
+ //
+ // [...] If the function is a member function with one
+ // parameter (which shall be of type int) or a non-member
+ // function with two parameters (the second of which shall be
+ // of type int), it defines the postfix increment operator ++
+ // for objects of that type. When the postfix increment is
+ // called as a result of using the ++ operator, the int
+ // argument will have value zero.
+ Expr *Args[2] = {
+ Arg,
+ new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
+ /*isSigned=*/true), Context.IntTy, SourceLocation())
+ };
+
+ // Build the candidate set for overloading
+ OverloadCandidateSet CandidateSet;
+ AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (PerformObjectArgumentInitialization(Arg, Method))
+ return ExprError();
+ } else {
+ // Convert the arguments.
+ if (PerformCopyInitialization(Arg,
+ FnDecl->getParamDecl(0)->getType(),
+ "passing"))
+ return ExprError();
+ }
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAsFunctionType()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ Input.release();
+ Args[0] = Arg;
+ return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
+ Args, 2, ResultTy,
+ OpLoc));
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
+ "passing"))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Arg->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Arg->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ }
+
+ QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
+ Opc == UnaryOperator::PostInc);
+ if (result.isNull())
+ return ExprError();
+ Input.release();
+ return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
+}
+
+Action::OwningExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
+ ExprArg Idx, SourceLocation RLoc) {
+ Expr *LHSExp = static_cast<Expr*>(Base.get()),
+ *RHSExp = static_cast<Expr*>(Idx.get());
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
+ Base.release();
+ Idx.release();
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ Context.DependentTy, RLoc));
+ }
+
+ if (getLangOptions().CPlusPlus &&
+ (LHSExp->getType()->isRecordType() ||
+ LHSExp->getType()->isEnumeralType() ||
+ RHSExp->getType()->isRecordType() ||
+ RHSExp->getType()->isEnumeralType())) {
+ // Add the appropriate overloaded operators (C++ [over.match.oper])
+ // to the candidate set.
+ OverloadCandidateSet CandidateSet;
+ Expr *Args[2] = { LHSExp, RHSExp };
+ AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
+ SourceRange(LLoc, RLoc));
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (PerformObjectArgumentInitialization(LHSExp, Method) ||
+ PerformCopyInitialization(RHSExp,
+ FnDecl->getParamDecl(0)->getType(),
+ "passing"))
+ return ExprError();
+ } else {
+ // Convert the arguments.
+ if (PerformCopyInitialization(LHSExp,
+ FnDecl->getParamDecl(0)->getType(),
+ "passing") ||
+ PerformCopyInitialization(RHSExp,
+ FnDecl->getParamDecl(1)->getType(),
+ "passing"))
+ return ExprError();
+ }
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAsFunctionType()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ Base.release();
+ Idx.release();
+ Args[0] = LHSExp;
+ Args[1] = RHSExp;
+ return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
+ FnExpr, Args, 2,
+ ResultTy, LLoc));
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
+ "passing") ||
+ PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
+ "passing"))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(LLoc, diag::err_ovl_ambiguous_oper)
+ << "[]"
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(LLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << "[]"
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ }
+
+ // Perform default conversions.
+ DefaultFunctionArrayConversion(LHSExp);
+ DefaultFunctionArrayConversion(RHSExp);
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = Context.DependentTy;
+ } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+
+ // FIXME: need to deal with const...
+ ResultType = VTy->getElementType();
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ LHSExp->getSourceRange();
+ ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->getAsPointerType()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
+ RHSExp->getSourceRange();
+ ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->getAsPointerType()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (!ResultType->isDependentType() &&
+ RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
+ BaseExpr->getSourceRange()))
+ return ExprError();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ Base.release();
+ Idx.release();
+ return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
+ ResultType, RLoc));
+}
+
+QualType Sema::
+CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
+ IdentifierInfo &CompName, SourceLocation CompLoc) {
+ const ExtVectorType *vecType = baseType->getAsExtVectorType();
+
+ // The vector accessor can't exceed the number of elements.
+ const char *compStr = CompName.getName();
+
+ // This flag determines whether or not the component is one of the four
+ // special names that indicate a subset of exactly half the elements are
+ // to be selected.
+ bool HalvingSwizzle = false;
+
+ // This flag determines whether or not CompName has an 's' char prefix,
+ // indicating that it is a string of hex values to be used as vector indices.
+ bool HexSwizzle = *compStr == 's';
+
+ // Check that we've found one of the special components, or that the component
+ // names must come from the same set.
+ if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
+ !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
+ HalvingSwizzle = true;
+ } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
+ } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
+ do
+ compStr++;
+ while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
+ }
+
+ if (!HalvingSwizzle && *compStr) {
+ // We didn't get to the end of the string. This means the component names
+ // didn't come from the same set *or* we encountered an illegal name.
+ Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+ << std::string(compStr,compStr+1) << SourceRange(CompLoc);
+ return QualType();
+ }
+
+ // Ensure no component accessor exceeds the width of the vector type it
+ // operates on.
+ if (!HalvingSwizzle) {
+ compStr = CompName.getName();
+
+ if (HexSwizzle)
+ compStr++;
+
+ while (*compStr) {
+ if (!vecType->isAccessorWithinNumElements(*compStr++)) {
+ Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+ << baseType << SourceRange(CompLoc);
+ return QualType();
+ }
+ }
+ }
+
+ // If this is a halving swizzle, verify that the base type has an even
+ // number of elements.
+ if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
+ Diag(OpLoc, diag::err_ext_vector_component_requires_even)
+ << baseType << SourceRange(CompLoc);
+ return QualType();
+ }
+
+ // The component accessor looks fine - now we need to compute the actual type.
+ // The vector type is implied by the component accessor. For example,
+ // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+ // vec4.s0 is a float, vec4.s23 is a vec3, etc.
+ // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
+ unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
+ : CompName.getLength();
+ if (HexSwizzle)
+ CompSize--;
+
+ if (CompSize == 1)
+ return vecType->getElementType();
+
+ QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
+ // Now look up the TypeDefDecl from the vector type. Without this,
+ // diagostics look bad. We want extended vector types to appear built-in.
+ for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
+ if (ExtVectorDecls[i]->getUnderlyingType() == VT)
+ return Context.getTypedefType(ExtVectorDecls[i]);
+ }
+ return VT; // should never get here (a typedef type should always be found).
+}
+
+static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+ IdentifierInfo &Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
+ return PD;
+ if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
+ return OMD;
+
+ for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
+ E = PDecl->protocol_end(); I != E; ++I) {
+ if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
+ Context))
+ return D;
+ }
+ return 0;
+}
+
+static Decl *FindGetterNameDecl(const ObjCQualifiedIdType *QIdTy,
+ IdentifierInfo &Member,
+ const Selector &Sel,
+ ASTContext &Context) {
+ // Check protocols on qualified interfaces.
+ Decl *GDecl = 0;
+ for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
+ GDecl = PD;
+ break;
+ }
+ // Also must look for a getter name which uses property syntax.
+ if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
+ GDecl = OMD;
+ break;
+ }
+ }
+ if (!GDecl) {
+ for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
+ E = QIdTy->qual_end(); I != E; ++I) {
+ // Search in the protocol-qualifier list of current protocol.
+ GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
+ if (GDecl)
+ return GDecl;
+ }
+ }
+ return GDecl;
+}
+
+/// FindMethodInNestedImplementations - Look up a method in current and
+/// all base class implementations.
+///
+ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
+ const ObjCInterfaceDecl *IFace,
+ const Selector &Sel) {
+ ObjCMethodDecl *Method = 0;
+ if (ObjCImplementationDecl *ImpDecl
+ = LookupObjCImplementation(IFace->getIdentifier()))
+ Method = ImpDecl->getInstanceMethod(Context, Sel);
+
+ if (!Method && IFace->getSuperClass())
+ return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
+ return Method;
+}
+
+Action::OwningExprResult
+Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind, SourceLocation MemberLoc,
+ IdentifierInfo &Member,
+ DeclPtrTy ObjCImpDecl) {
+ Expr *BaseExpr = Base.takeAs<Expr>();
+ assert(BaseExpr && "no record expression");
+
+ // Perform default conversions.
+ DefaultFunctionArrayConversion(BaseExpr);
+
+ QualType BaseType = BaseExpr->getType();
+ assert(!BaseType.isNull() && "no type for member expression");
+
+ // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
+ // must have pointer type, and the accessed type is the pointee.
+ if (OpKind == tok::arrow) {
+ if (BaseType->isDependentType())
+ return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
+ BaseExpr, true,
+ OpLoc,
+ DeclarationName(&Member),
+ MemberLoc));
+ else if (const PointerType *PT = BaseType->getAsPointerType())
+ BaseType = PT->getPointeeType();
+ else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
+ return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
+ MemberLoc, Member));
+ else
+ return ExprError(Diag(MemberLoc,
+ diag::err_typecheck_member_reference_arrow)
+ << BaseType << BaseExpr->getSourceRange());
+ } else {
+ if (BaseType->isDependentType()) {
+ // Require that the base type isn't a pointer type
+ // (so we'll report an error for)
+ // T* t;
+ // t.f;
+ //
+ // In Obj-C++, however, the above expression is valid, since it could be
+ // accessing the 'f' property if T is an Obj-C interface. The extra check
+ // allows this, while still reporting an error if T is a struct pointer.
+ const PointerType *PT = BaseType->getAsPointerType();
+
+ if (!PT || (getLangOptions().ObjC1 &&
+ !PT->getPointeeType()->isRecordType()))
+ return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
+ BaseExpr, false,
+ OpLoc,
+ DeclarationName(&Member),
+ MemberLoc));
+ }
+ }
+
+ // Handle field access to simple records. This also handles access to fields
+ // of the ObjC 'id' struct.
+ if (const RecordType *RTy = BaseType->getAsRecordType()) {
+ RecordDecl *RDecl = RTy->getDecl();
+ if (RequireCompleteType(OpLoc, BaseType,
+ diag::err_typecheck_incomplete_tag,
+ BaseExpr->getSourceRange()))
+ return ExprError();
+
+ // The record definition is complete, now make sure the member is valid.
+ // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
+ LookupResult Result
+ = LookupQualifiedName(RDecl, DeclarationName(&Member),
+ LookupMemberName, false);
+
+ if (!Result)
+ return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
+ << &Member << BaseExpr->getSourceRange());
+ if (Result.isAmbiguous()) {
+ DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
+ MemberLoc, BaseExpr->getSourceRange());
+ return ExprError();
+ }
+
+ NamedDecl *MemberDecl = Result;
+
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (MemberDecl->isInvalidDecl())
+ return ExprError();
+
+ // Check the use of this field
+ if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
+ return ExprError();
+
+ if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
+ // We may have found a field within an anonymous union or struct
+ // (C++ [class.union]).
+ if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
+ return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
+ BaseExpr, OpLoc);
+
+ // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+ // FIXME: Handle address space modifiers
+ QualType MemberType = FD->getType();
+ if (const ReferenceType *Ref = MemberType->getAsReferenceType())
+ MemberType = Ref->getPointeeType();
+ else {
+ unsigned combinedQualifiers =
+ MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
+ if (FD->isMutable())
+ combinedQualifiers &= ~QualType::Const;
+ MemberType = MemberType.getQualifiedType(combinedQualifiers);
+ }
+
+ return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
+ MemberLoc, MemberType));
+ }
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl))
+ return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
+ Var, MemberLoc,
+ Var->getType().getNonReferenceType()));
+ if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
+ return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
+ MemberFn, MemberLoc,
+ MemberFn->getType()));
+ if (OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
+ return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
+ MemberLoc, Context.OverloadTy));
+ if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
+ return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
+ Enum, MemberLoc, Enum->getType()));
+ if (isa<TypeDecl>(MemberDecl))
+ return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
+ << DeclarationName(&Member) << int(OpKind == tok::arrow));
+
+ // We found a declaration kind that we didn't expect. This is a
+ // generic error message that tells the user that she can't refer
+ // to this member with '.' or '->'.
+ return ExprError(Diag(MemberLoc,
+ diag::err_typecheck_member_reference_unknown)
+ << DeclarationName(&Member) << int(OpKind == tok::arrow));
+ }
+
+ // Handle access to Objective-C instance variables, such as "Obj->ivar" and
+ // (*Obj).ivar.
+ if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
+ &Member,
+ ClassDeclared)) {
+ // If the decl being referenced had an error, return an error for this
+ // sub-expr without emitting another error, in order to avoid cascading
+ // error cases.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check whether we can reference this field.
+ if (DiagnoseUseOfDecl(IV, MemberLoc))
+ return ExprError();
+ if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+ IV->getAccessControl() != ObjCIvarDecl::Package) {
+ ObjCInterfaceDecl *ClassOfMethodDecl = 0;
+ if (ObjCMethodDecl *MD = getCurMethodDecl())
+ ClassOfMethodDecl = MD->getClassInterface();
+ else if (ObjCImpDecl && getCurFunctionDecl()) {
+ // Case of a c-function declared inside an objc implementation.
+ // FIXME: For a c-style function nested inside an objc implementation
+ // class, there is no implementation context available, so we pass
+ // down the context as argument to this routine. Ideally, this context
+ // need be passed down in the AST node and somehow calculated from the
+ // AST for a function decl.
+ Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
+ if (ObjCImplementationDecl *IMPD =
+ dyn_cast<ObjCImplementationDecl>(ImplDecl))
+ ClassOfMethodDecl = IMPD->getClassInterface();
+ else if (ObjCCategoryImplDecl* CatImplClass =
+ dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
+ ClassOfMethodDecl = CatImplClass->getClassInterface();
+ }
+
+ if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+ if (ClassDeclared != IFTy->getDecl() ||
+ ClassOfMethodDecl != ClassDeclared)
+ Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
+ }
+ // @protected
+ else if (!IFTy->getDecl()->isSuperClassOf(ClassOfMethodDecl))
+ Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
+ }
+
+ return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
+ MemberLoc, BaseExpr,
+ OpKind == tok::arrow));
+ }
+ return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+ << IFTy->getDecl()->getDeclName() << &Member
+ << BaseExpr->getSourceRange());
+ }
+
+ // Handle Objective-C property access, which is "Obj.property" where Obj is a
+ // pointer to a (potentially qualified) interface type.
+ const PointerType *PTy;
+ const ObjCInterfaceType *IFTy;
+ if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
+ (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
+ ObjCInterfaceDecl *IFace = IFTy->getDecl();
+
+ // Search for a declared property first.
+ if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
+ &Member)) {
+ // Check whether we can reference this property.
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+ QualType ResTy = PD->getType();
+ Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
+ ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
+ if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
+ ResTy = Getter->getResultType();
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
+ MemberLoc, BaseExpr));
+ }
+
+ // Check protocols on qualified interfaces.
+ for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
+ E = IFTy->qual_end(); I != E; ++I)
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
+ &Member)) {
+ // Check whether we can reference this property.
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
+ MemberLoc, BaseExpr));
+ }
+
+ // If that failed, look for an "implicit" property by seeing if the nullary
+ // selector is implemented.
+
+ // FIXME: The logic for looking up nullary and unary selectors should be
+ // shared with the code in ActOnInstanceMessage.
+
+ Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
+ ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
+
+ // If this reference is in an @implementation, check for 'private' methods.
+ if (!Getter)
+ Getter = FindMethodInNestedImplementations(IFace, Sel);
+
+ // Look through local category implementations associated with the class.
+ if (!Getter) {
+ for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
+ if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
+ Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
+ }
+ }
+ if (Getter) {
+ // Check if we can reference this property.
+ if (DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ }
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), &Member);
+ ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = FindMethodInNestedImplementations(IFace, SetterSel);
+ }
+ // Look through local category implementations associated with the class.
+ if (!Setter) {
+ for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
+ if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
+ Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
+ }
+ }
+
+ if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ QualType PType;
+
+ if (Getter)
+ PType = Getter->getResultType();
+ else {
+ for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
+ E = Setter->param_end(); PI != E; ++PI)
+ PType = (*PI)->getType();
+ }
+ // FIXME: we must check that the setter has property type.
+ return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
+ Setter, MemberLoc, BaseExpr));
+ }
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << &Member << BaseType);
+ }
+ // Handle properties on qualified "id" protocols.
+ const ObjCQualifiedIdType *QIdTy;
+ if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
+ // Check protocols on qualified interfaces.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
+ if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
+ if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+ // Check the use of this declaration
+ if (DiagnoseUseOfDecl(PD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
+ MemberLoc, BaseExpr));
+ }
+ if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(OMD, MemberLoc))
+ return ExprError();
+
+ return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
+ OMD->getResultType(),
+ OMD, OpLoc, MemberLoc,
+ NULL, 0));
+ }
+ }
+
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << &Member << BaseType);
+ }
+ // Handle properties on ObjC 'Class' types.
+ if (OpKind == tok::period && (BaseType == Context.getObjCClassType())) {
+ // Also must look for a getter name which uses property syntax.
+ Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
+ if (ObjCMethodDecl *MD = getCurMethodDecl()) {
+ ObjCInterfaceDecl *IFace = MD->getClassInterface();
+ ObjCMethodDecl *Getter;
+ // FIXME: need to also look locally in the implementation.
+ if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
+ // Check the use of this method.
+ if (DiagnoseUseOfDecl(Getter, MemberLoc))
+ return ExprError();
+ }
+ // If we found a getter then this may be a valid dot-reference, we
+ // will look for the matching setter, in case it is needed.
+ Selector SetterSel =
+ SelectorTable::constructSetterName(PP.getIdentifierTable(),
+ PP.getSelectorTable(), &Member);
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
+ if (!Setter) {
+ // If this reference is in an @implementation, also check for 'private'
+ // methods.
+ Setter = FindMethodInNestedImplementations(IFace, SetterSel);
+ }
+ // Look through local category implementations associated with the class.
+ if (!Setter) {
+ for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
+ if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
+ Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
+ }
+ }
+
+ if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+ return ExprError();
+
+ if (Getter || Setter) {
+ QualType PType;
+
+ if (Getter)
+ PType = Getter->getResultType();
+ else {
+ for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
+ E = Setter->param_end(); PI != E; ++PI)
+ PType = (*PI)->getType();
+ }
+ // FIXME: we must check that the setter has property type.
+ return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
+ Setter, MemberLoc, BaseExpr));
+ }
+ return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+ << &Member << BaseType);
+ }
+ }
+
+ // Handle 'field access' to vectors, such as 'V.xx'.
+ if (BaseType->isExtVectorType()) {
+ QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
+ if (ret.isNull())
+ return ExprError();
+ return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
+ MemberLoc));
+ }
+
+ Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
+ << BaseType << BaseExpr->getSourceRange();
+
+ // If the user is trying to apply -> or . to a function or function
+ // pointer, it's probably because they forgot parentheses to call
+ // the function. Suggest the addition of those parentheses.
+ if (BaseType == Context.OverloadTy ||
+ BaseType->isFunctionType() ||
+ (BaseType->isPointerType() &&
+ BaseType->getAsPointerType()->isFunctionType())) {
+ SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
+ Diag(Loc, diag::note_member_reference_needs_call)
+ << CodeModificationHint::CreateInsertion(Loc, "()");
+ }
+
+ return ExprError();
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RParenLoc) {
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+ bool Invalid = false;
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (NumArgs < NumArgsInProto) {
+ if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
+ return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
+ << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
+ // Use default arguments for missing arguments
+ NumArgsToCheck = NumArgsInProto;
+ Call->setNumArgs(Context, NumArgsInProto);
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (NumArgs > NumArgsInProto) {
+ if (!Proto->isVariadic()) {
+ Diag(Args[NumArgsInProto]->getLocStart(),
+ diag::err_typecheck_call_too_many_args)
+ << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
+ << SourceRange(Args[NumArgsInProto]->getLocStart(),
+ Args[NumArgs-1]->getLocEnd());
+ // This deletes the extra arguments.
+ Call->setNumArgs(Context, NumArgsInProto);
+ Invalid = true;
+ }
+ NumArgsToCheck = NumArgsInProto;
+ }
+
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = 0; i != NumArgsToCheck; i++) {
+ QualType ProtoArgType = Proto->getArgType(i);
+
+ Expr *Arg;
+ if (i < NumArgs) {
+ Arg = Args[i];
+
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ ProtoArgType,
+ diag::err_call_incomplete_argument,
+ Arg->getSourceRange()))
+ return true;
+
+ // Pass the argument.
+ if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
+ return true;
+ } else
+ // We already type-checked the argument, so we know it works.
+ Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
+ QualType ArgType = Arg->getType();
+
+ Call->setArg(i, Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ VariadicCallType CallType = VariadicFunction;
+ if (Fn->getType()->isBlockPointerType())
+ CallType = VariadicBlock; // Block
+ else if (isa<MemberExpr>(Fn))
+ CallType = VariadicMethod;
+
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
+ Call->setArg(i, Arg);
+ }
+ }
+
+ return Invalid;
+}
+
+/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+Action::OwningExprResult
+Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
+ MultiExprArg args,
+ SourceLocation *CommaLocs, SourceLocation RParenLoc) {
+ unsigned NumArgs = args.size();
+ Expr *Fn = fn.takeAs<Expr>();
+ Expr **Args = reinterpret_cast<Expr**>(args.release());
+ assert(Fn && "no function call expression");
+ FunctionDecl *FDecl = NULL;
+ NamedDecl *NDecl = NULL;
+ DeclarationName UnqualifiedName;
+
+ if (getLangOptions().CPlusPlus) {
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ // FIXME: Will need to cache the results of name lookup (including ADL) in
+ // Fn.
+ bool Dependent = false;
+ if (Fn->isTypeDependent())
+ Dependent = true;
+ else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
+ Dependent = true;
+
+ if (Dependent)
+ return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
+ Context.DependentTy, RParenLoc));
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc));
+
+ // Determine whether this is a call to a member function.
+ if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
+ if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
+ isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
+ return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
+ CommaLocs, RParenLoc));
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+ DeclRefExpr *DRExpr = NULL;
+ Expr *FnExpr = Fn;
+ bool ADL = true;
+ while (true) {
+ if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
+ FnExpr = IcExpr->getSubExpr();
+ else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
+ // Parentheses around a function disable ADL
+ // (C++0x [basic.lookup.argdep]p1).
+ ADL = false;
+ FnExpr = PExpr->getSubExpr();
+ } else if (isa<UnaryOperator>(FnExpr) &&
+ cast<UnaryOperator>(FnExpr)->getOpcode()
+ == UnaryOperator::AddrOf) {
+ FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
+ } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
+ // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
+ ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
+ break;
+ } else if (UnresolvedFunctionNameExpr *DepName
+ = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
+ UnqualifiedName = DepName->getName();
+ break;
+ } else {
+ // Any kind of name that does not refer to a declaration (or
+ // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
+ ADL = false;
+ break;
+ }
+ }
+
+ OverloadedFunctionDecl *Ovl = 0;
+ if (DRExpr) {
+ FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
+ Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
+ NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
+ }
+
+ if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
+ // We don't perform ADL for implicit declarations of builtins.
+ if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
+ ADL = false;
+
+ // We don't perform ADL in C.
+ if (!getLangOptions().CPlusPlus)
+ ADL = false;
+
+ if (Ovl || ADL) {
+ FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
+ UnqualifiedName, LParenLoc, Args,
+ NumArgs, CommaLocs, RParenLoc, ADL);
+ if (!FDecl)
+ return ExprError();
+
+ // Update Fn to refer to the actual function selected.
+ Expr *NewFn = 0;
+ if (QualifiedDeclRefExpr *QDRExpr
+ = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
+ NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
+ QDRExpr->getLocation(),
+ false, false,
+ QDRExpr->getQualifierRange(),
+ QDRExpr->getQualifier());
+ else
+ NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
+ Fn->getSourceRange().getBegin());
+ Fn->Destroy(Context);
+ Fn = NewFn;
+ }
+ }
+
+ // Promote the function operand.
+ UsualUnaryConversions(Fn);
+
+ // Make the call expr early, before semantic checks. This guarantees cleanup
+ // of arguments and function on error.
+ ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
+ Args, NumArgs,
+ Context.BoolTy,
+ RParenLoc));
+
+ const FunctionType *FuncT;
+ if (!Fn->getType()->isBlockPointerType()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ const PointerType *PT = Fn->getType()->getAsPointerType();
+ if (PT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ FuncT = PT->getPointeeType()->getAsFunctionType();
+ } else { // This is a block call.
+ FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
+ getAsFunctionType();
+ }
+ if (FuncT == 0)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+
+ // Check for a valid return type
+ if (!FuncT->getResultType()->isVoidType() &&
+ RequireCompleteType(Fn->getSourceRange().getBegin(),
+ FuncT->getResultType(),
+ diag::err_call_incomplete_return,
+ TheCall->getSourceRange()))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getResultType().getNonReferenceType());
+
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
+ if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
+ RParenLoc))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = 0;
+ if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
+ const FunctionProtoType *Proto =
+ Def->getType()->getAsFunctionProtoType();
+ if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+ }
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ DefaultArgumentPromotion(Arg);
+ if (RequireCompleteType(Arg->getSourceRange().getBegin(),
+ Arg->getType(),
+ diag::err_call_incomplete_argument,
+ Arg->getSourceRange()))
+ return ExprError();
+ TheCall->setArg(i, Arg);
+ }
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
+ // Do special checking on direct calls to functions.
+ if (FDecl)
+ return CheckFunctionCall(FDecl, TheCall.take());
+ if (NDecl)
+ return CheckBlockCall(NDecl, TheCall.take());
+
+ return Owned(TheCall.take());
+}
+
+Action::OwningExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprArg InitExpr) {
+ assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
+ QualType literalType = QualType::getFromOpaquePtr(Ty);
+ // FIXME: put back this assert when initializers are worked out.
+ //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
+ Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
+
+ if (literalType->isArrayType()) {
+ if (literalType->isVariableArrayType())
+ return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
+ << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ diag::err_typecheck_decl_incomplete_type,
+ SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
+ DeclarationName(), /*FIXME:DirectInit=*/false))
+ return ExprError();
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == 0;
+ if (isFileScope) { // 6.5.2.5p3
+ if (CheckForConstantInitializer(literalExpr, literalType))
+ return ExprError();
+ }
+ InitExpr.release();
+ return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
+ literalExpr, isFileScope));
+}
+
+Action::OwningExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
+ SourceLocation RBraceLoc) {
+ unsigned NumInit = initlist.size();
+ Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
+
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being intialized.
+
+ InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
+ RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return Owned(E);
+}
+
+/// CheckCastTypes - Check type constraints for casting between types.
+bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
+ UsualUnaryConversions(castExpr);
+
+ // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
+ // type needs to be scalar.
+ if (castType->isVoidType()) {
+ // Cast to void allows any expr type.
+ } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
+ // We can't check any more until template instantiation time.
+ } else if (!castType->isScalarType() && !castType->isVectorType()) {
+ if (Context.getCanonicalType(castType).getUnqualifiedType() ==
+ Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
+ (castType->isStructureType() || castType->isUnionType())) {
+ // GCC struct/union extension: allow cast to self.
+ // FIXME: Check that the cast destination type is complete.
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
+ << castType << castExpr->getSourceRange();
+ } else if (castType->isUnionType()) {
+ // GCC cast to union extension
+ RecordDecl *RD = castType->getAsRecordType()->getDecl();
+ RecordDecl::field_iterator Field, FieldEnd;
+ for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
+ Field != FieldEnd; ++Field) {
+ if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
+ Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
+ Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
+ << castExpr->getSourceRange();
+ break;
+ }
+ }
+ if (Field == FieldEnd)
+ return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
+ << castExpr->getType() << castExpr->getSourceRange();
+ } else {
+ // Reject any other conversions to non-scalar types.
+ return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
+ << castType << castExpr->getSourceRange();
+ }
+ } else if (!castExpr->getType()->isScalarType() &&
+ !castExpr->getType()->isVectorType()) {
+ return Diag(castExpr->getLocStart(),
+ diag::err_typecheck_expect_scalar_operand)
+ << castExpr->getType() << castExpr->getSourceRange();
+ } else if (castExpr->getType()->isVectorType()) {
+ if (CheckVectorCast(TyR, castExpr->getType(), castType))
+ return true;
+ } else if (castType->isVectorType()) {
+ if (CheckVectorCast(TyR, castType, castExpr->getType()))
+ return true;
+ } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
+ return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
+ } else if (!castType->isArithmeticType()) {
+ QualType castExprType = castExpr->getType();
+ if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
+ return Diag(castExpr->getLocStart(),
+ diag::err_cast_pointer_from_non_pointer_int)
+ << castExprType << castExpr->getSourceRange();
+ } else if (!castExpr->getType()->isArithmeticType()) {
+ if (!castType->isIntegralType() && castType->isArithmeticType())
+ return Diag(castExpr->getLocStart(),
+ diag::err_cast_pointer_to_non_pointer_int)
+ << castType << castExpr->getSourceRange();
+ }
+ if (isa<ObjCSelectorExpr>(castExpr))
+ return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
+ return false;
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegerType()) {
+ if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ return false;
+}
+
+Action::OwningExprResult
+Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
+ SourceLocation RParenLoc, ExprArg Op) {
+ assert((Ty != 0) && (Op.get() != 0) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ Expr *castExpr = Op.takeAs<Expr>();
+ QualType castType = QualType::getFromOpaquePtr(Ty);
+
+ if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
+ return ExprError();
+ return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
+ LParenLoc, RParenLoc));
+}
+
+/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, lhs = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOptions().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
+
+ UsualUnaryConversions(Cond);
+ UsualUnaryConversions(LHS);
+ UsualUnaryConversions(RHS);
+ QualType CondTy = Cond->getType();
+ QualType LHSTy = LHS->getType();
+ QualType RHSTy = RHS->getType();
+
+ // first, check the condition.
+ if (!CondTy->isScalarType()) { // C99 6.5.15p2
+ Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return QualType();
+ }
+
+ // Now check the two expressions.
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ return LHS->getType();
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAsRecordType()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAsRecordType())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ if (!LHSTy->isVoidType())
+ Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHS->getSourceRange();
+ if (!RHSTy->isVoidType())
+ Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHS->getSourceRange();
+ ImpCastExprToType(LHS, Context.VoidTy);
+ ImpCastExprToType(RHS, Context.VoidTy);
+ return Context.VoidTy;
+ }
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
+ Context.isObjCObjectPointerType(LHSTy)) &&
+ RHS->isNullPointerConstant(Context)) {
+ ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
+ return LHSTy;
+ }
+ if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
+ Context.isObjCObjectPointerType(RHSTy)) &&
+ LHS->isNullPointerConstant(Context)) {
+ ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
+ return RHSTy;
+ }
+
+ const PointerType *LHSPT = LHSTy->getAsPointerType();
+ const PointerType *RHSPT = RHSTy->getAsPointerType();
+ const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
+ const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
+
+ // Handle the case where both operands are pointers before we handle null
+ // pointer constants in case both operands are null pointer constants.
+ if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
+ // get the "pointed to" types
+ QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
+ : LHSBPT->getPointeeType());
+ QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
+ : RHSBPT->getPointeeType());
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType()
+ && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ ImpCastExprToType(LHS, destType); // add qualifiers if necessary
+ ImpCastExprToType(RHS, destType); // promote to void*
+ return destType;
+ }
+ if (rhptee->isVoidType()
+ && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
+ QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ ImpCastExprToType(LHS, destType); // add qualifiers if necessary
+ ImpCastExprToType(RHS, destType); // promote to void*
+ return destType;
+ }
+
+ bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
+ if (sameKind
+ && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical pointer types are always compatible.
+ return LHSTy;
+ }
+
+ QualType compositeType = LHSTy;
+
+ // If either type is an Objective-C object type then check
+ // compatibility according to Objective-C.
+ if (Context.isObjCObjectPointerType(LHSTy) ||
+ Context.isObjCObjectPointerType(RHSTy)) {
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
+ const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
+ if (LHSIface && RHSIface &&
+ Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
+ compositeType = LHSTy;
+ } else if (LHSIface && RHSIface &&
+ Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
+ compositeType = RHSTy;
+ } else if (Context.isObjCIdStructType(lhptee) ||
+ Context.isObjCIdStructType(rhptee)) {
+ compositeType = Context.getObjCIdType();
+ } else if (LHSBPT || RHSBPT) {
+ if (!sameKind
+ || !Context.typesAreBlockCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType()))
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ } else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ ImpCastExprToType(LHS, incompatTy);
+ ImpCastExprToType(RHS, incompatTy);
+ return incompatTy;
+ }
+ } else if (!sameKind
+ || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, incompatTy);
+ ImpCastExprToType(RHS, incompatTy);
+ return incompatTy;
+ }
+ // The pointer types are compatible.
+ // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the *composite*
+ // type.
+ // FIXME: Need to calculate the composite type.
+ // FIXME: Need to add qualifiers
+ ImpCastExprToType(LHS, compositeType);
+ ImpCastExprToType(RHS, compositeType);
+ return compositeType;
+ }
+
+ // GCC compatibility: soften pointer/integer mismatch.
+ if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
+ return RHSTy;
+ }
+ if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
+ return LHSTy;
+ }
+
+ // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
+ // evaluates to "struct objc_object *" (and is handled above when comparing
+ // id with statically typed objects).
+ if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
+ (LHSTy->isObjCQualifiedIdType() &&
+ Context.isObjCObjectPointerType(RHSTy)) ||
+ (RHSTy->isObjCQualifiedIdType() &&
+ Context.isObjCObjectPointerType(LHSTy))) {
+ // FIXME: This is not the correct composite type. This only happens to
+ // work because id can more or less be used anywhere, however this may
+ // change the type of method sends.
+
+ // FIXME: gcc adds some type-checking of the arguments and emits
+ // (confusing) incompatible comparison warnings in some
+ // cases. Investigate.
+ QualType compositeType = Context.getObjCIdType();
+ ImpCastExprToType(LHS, compositeType);
+ ImpCastExprToType(RHS, compositeType);
+ return compositeType;
+ }
+ }
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ ExprArg Cond, ExprArg LHS,
+ ExprArg RHS) {
+ Expr *CondExpr = (Expr *) Cond.get();
+ Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
+
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ bool isLHSNull = LHSExpr == 0;
+ if (isLHSNull)
+ LHSExpr = CondExpr;
+
+ QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
+ RHSExpr, QuestionLoc);
+ if (result.isNull())
+ return ExprError();
+
+ Cond.release();
+ LHS.release();
+ RHS.release();
+ return Owned(new (Context) ConditionalOperator(CondExpr,
+ isLHSNull ? 0 : LHSExpr,
+ RHSExpr, result));
+}
+
+
+// CheckPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+Sema::AssignConvertType
+Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = lhsType->getAsPointerType()->getPointeeType();
+ rhptee = rhsType->getAsPointerType()->getPointeeType();
+
+ // make sure we operate on the canonical type
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+
+ AssignConvertType ConvTy = Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+ // FIXME: Handle ExtQualType
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
+ ConvTy = CompatiblePointerDiscardsQualifiers;
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return FunctionVoidPointer;
+ }
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ lhptee = lhptee.getUnqualifiedType();
+ rhptee = rhptee.getUnqualifiedType();
+ if (!Context.typesAreCompatible(lhptee, rhptee)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType()) {
+ lhptee = Context.UnsignedCharTy;
+ } else if (lhptee->isSignedIntegerType()) {
+ lhptee = Context.getCorrespondingUnsignedType(lhptee);
+ }
+ if (rhptee->isCharType()) {
+ rhptee = Context.UnsignedCharTy;
+ } else if (rhptee->isSignedIntegerType()) {
+ rhptee = Context.getCorrespondingUnsignedType(rhptee);
+ }
+ if (lhptee == rhptee) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Compatible)
+ return ConvTy;
+ return IncompatiblePointerSign;
+ }
+ // General pointer incompatibility takes priority over qualifiers.
+ return IncompatiblePointer;
+ }
+ return ConvTy;
+}
+
+/// CheckBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+Sema::AssignConvertType
+Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
+ QualType rhsType) {
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
+ rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
+
+ // make sure we operate on the canonical type
+ lhptee = Context.getCanonicalType(lhptee);
+ rhptee = Context.getCanonicalType(rhptee);
+
+ AssignConvertType ConvTy = Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
+ ConvTy = CompatiblePointerDiscardsQualifiers;
+
+ if (!Context.typesAreBlockCompatible(lhptee, rhptee))
+ return IncompatibleBlockPointer;
+ return ConvTy;
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
+ rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
+
+ if (lhsType == rhsType)
+ return Compatible; // Common case: fast path an exact match.
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // lhsType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
+ if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
+ return Compatible;
+ return Incompatible;
+ }
+
+ if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
+ if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
+ return Compatible;
+ // Relax integer conversions like we do for pointers below.
+ if (rhsType->isIntegerType())
+ return IntToPointer;
+ if (lhsType->isIntegerType())
+ return PointerToInt;
+ return IncompatibleObjCQualifiedId;
+ }
+
+ if (lhsType->isVectorType() || rhsType->isVectorType()) {
+ // For ExtVector, allow vector splats; float -> <n x float>
+ if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
+ if (LV->getElementType() == rhsType)
+ return Compatible;
+
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (getLangOptions().LaxVectorConversions &&
+ lhsType->isVectorType() && rhsType->isVectorType()) {
+ if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
+ return IncompatibleVectors;
+ }
+ return Incompatible;
+ }
+
+ if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
+ return Compatible;
+
+ if (isa<PointerType>(lhsType)) {
+ if (rhsType->isIntegerType())
+ return IntToPointer;
+
+ if (isa<PointerType>(rhsType))
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+
+ if (rhsType->getAsBlockPointerType()) {
+ if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
+ return Compatible;
+
+ // Treat block pointers as objects.
+ if (getLangOptions().ObjC1 &&
+ lhsType == Context.getCanonicalType(Context.getObjCIdType()))
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ if (isa<BlockPointerType>(lhsType)) {
+ if (rhsType->isIntegerType())
+ return IntToBlockPointer;
+
+ // Treat block pointers as objects.
+ if (getLangOptions().ObjC1 &&
+ rhsType == Context.getCanonicalType(Context.getObjCIdType()))
+ return Compatible;
+
+ if (rhsType->isBlockPointerType())
+ return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
+
+ if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
+ if (RHSPT->getPointeeType()->isVoidType())
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ if (isa<PointerType>(rhsType)) {
+ // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
+ if (lhsType == Context.BoolTy)
+ return Compatible;
+
+ if (lhsType->isIntegerType())
+ return PointerToInt;
+
+ if (isa<PointerType>(lhsType))
+ return CheckPointerTypesForAssignment(lhsType, rhsType);
+
+ if (isa<BlockPointerType>(lhsType) &&
+ rhsType->getAsPointerType()->getPointeeType()->isVoidType())
+ return Compatible;
+ return Incompatible;
+ }
+
+ if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
+ if (Context.typesAreCompatible(lhsType, rhsType))
+ return Compatible;
+ }
+ return Incompatible;
+}
+
+/// \brief Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
+ QualType UnionType, FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
+ &E, 1,
+ SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
+ false);
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
+ QualType FromType = rExpr->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = 0;
+ // It's compatible if the expression matches any of the fields.
+ for (RecordDecl::field_iterator it = UD->field_begin(Context),
+ itend = UD->field_end(Context);
+ it != itend; ++it) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (FromType->isPointerType())
+ if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
+ ImpCastExprToType(rExpr, it->getType());
+ InitField = *it;
+ break;
+ }
+
+ if (rExpr->isNullPointerConstant(Context)) {
+ ImpCastExprToType(rExpr, it->getType());
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
+ == Compatible) {
+ InitField = *it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
+ if (getLangOptions().CPlusPlus) {
+ if (!lhsType->isRecordType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
+ "assigning"))
+ return Incompatible;
+ return Compatible;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((lhsType->isPointerType() ||
+ lhsType->isObjCQualifiedIdType() ||
+ lhsType->isBlockPointerType())
+ && rExpr->isNullPointerConstant(Context)) {
+ ImpCastExprToType(rExpr, lhsType);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
+ // expressions that surpress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!lhsType->isReferenceType())
+ DefaultFunctionArrayConversion(rExpr);
+
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(lhsType, rExpr->getType());
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && rExpr->getType() != lhsType)
+ ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
+ return result;
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+}
+
+inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
+ Expr *&rex) {
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType lhsType =
+ Context.getCanonicalType(lex->getType()).getUnqualifiedType();
+ QualType rhsType =
+ Context.getCanonicalType(rex->getType()).getUnqualifiedType();
+
+ // If the vector types are identical, return.
+ if (lhsType == rhsType)
+ return lhsType;
+
+ // Handle the case of a vector & extvector type of the same size and element
+ // type. It would be nice if we only had one vector type someday.
+ if (getLangOptions().LaxVectorConversions) {
+ // FIXME: Should we warn here?
+ if (const VectorType *LV = lhsType->getAsVectorType()) {
+ if (const VectorType *RV = rhsType->getAsVectorType())
+ if (LV->getElementType() == RV->getElementType() &&
+ LV->getNumElements() == RV->getNumElements()) {
+ return lhsType->isExtVectorType() ? lhsType : rhsType;
+ }
+ }
+ }
+
+ // If the lhs is an extended vector and the rhs is a scalar of the same type
+ // or a literal, promote the rhs to the vector type.
+ if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
+ QualType eltType = V->getElementType();
+
+ if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
+ (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
+ (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
+ ImpCastExprToType(rex, lhsType);
+ return lhsType;
+ }
+ }
+
+ // If the rhs is an extended vector and the lhs is a scalar of the same type,
+ // promote the lhs to the vector type.
+ if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
+ QualType eltType = V->getElementType();
+
+ if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
+ (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
+ (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
+ ImpCastExprToType(lex, rhsType);
+ return rhsType;
+ }
+ }
+
+ // You cannot convert between vector values of different size.
+ Diag(Loc, diag::err_typecheck_vector_not_convertable)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+}
+
+inline QualType Sema::CheckMultiplyDivideOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ return compType;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+inline QualType Sema::CheckRemainderOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return CheckVectorOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, lex, rex);
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return compType;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
+ Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+
+ // handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType() &&
+ rex->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Put any potential pointer into PExp
+ Expr* PExp = lex, *IExp = rex;
+ if (IExp->getType()->isPointerType())
+ std::swap(PExp, IExp);
+
+ if (const PointerType *PTy = PExp->getType()->getAsPointerType()) {
+ if (IExp->getType()->isIntegerType()) {
+ QualType PointeeTy = PTy->getPointeeType();
+ // Check for arithmetic on pointers to incomplete types.
+ if (PointeeTy->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to void
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ } else if (PointeeTy->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex->getType() << lex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << lex->getType() << lex->getSourceRange();
+ } else if (!PTy->isDependentType() &&
+ RequireCompleteType(Loc, PointeeTy,
+ diag::err_typecheck_arithmetic_incomplete_type,
+ PExp->getSourceRange(), SourceRange(),
+ PExp->getType()))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << PExp->getSourceRange();
+ return QualType();
+ }
+
+ if (CompLHSTy) {
+ QualType LHSTy = lex->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.IntTy;
+ else {
+ QualType T = isPromotableBitField(lex, Context);
+ if (!T.isNull())
+ LHSTy = T;
+ }
+
+ *CompLHSTy = LHSTy;
+ }
+ return PExp->getType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
+ SourceLocation Loc, QualType* CompLHSTy) {
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(Loc, lex, rex);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (lex->getType()->isArithmeticType()
+ && rex->getType()->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
+ QualType lpointee = LHSPTy->getPointeeType();
+
+ // The LHS must be an completely-defined object type.
+
+ bool ComplainAboutVoid = false;
+ Expr *ComplainAboutFunc = 0;
+ if (lpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to void
+ ComplainAboutVoid = true;
+ } else if (lpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << lex->getType() << lex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU C extension: arithmetic on pointer to function
+ ComplainAboutFunc = lex;
+ } else if (!lpointee->isDependentType() &&
+ RequireCompleteType(Loc, lpointee,
+ diag::err_typecheck_sub_ptr_object,
+ lex->getSourceRange(),
+ SourceRange(),
+ lex->getType()))
+ return QualType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
+ Diag(Loc, diag::err_arithmetic_nonfragile_interface)
+ << lpointee << lex->getSourceRange();
+ return QualType();
+ }
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (rex->getType()->isIntegerType()) {
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex->getType();
+ return lex->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ // RHS must be a completely-type object type.
+ // Handle the GNU void* extension.
+ if (rpointee->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ ComplainAboutVoid = true;
+ } else if (rpointee->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
+ << rex->getType() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // GNU extension: arithmetic on pointer to function
+ if (!ComplainAboutFunc)
+ ComplainAboutFunc = rex;
+ } else if (!rpointee->isDependentType() &&
+ RequireCompleteType(Loc, rpointee,
+ diag::err_typecheck_sub_ptr_object,
+ rex->getSourceRange(),
+ SourceRange(),
+ rex->getType()))
+ return QualType();
+
+ if (getLangOptions().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << lex->getType() << rex->getType()
+ << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+ }
+
+ if (ComplainAboutVoid)
+ Diag(Loc, diag::ext_gnu_void_ptr)
+ << lex->getSourceRange() << rex->getSourceRange();
+ if (ComplainAboutFunc)
+ Diag(Loc, diag::ext_gnu_ptr_func_arith)
+ << ComplainAboutFunc->getType()
+ << ComplainAboutFunc->getSourceRange();
+
+ if (CompLHSTy) *CompLHSTy = lex->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, lex, rex);
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
+ bool isCompAssign) {
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
+ return InvalidOperands(Loc, lex, rex);
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+ QualType LHSTy;
+ if (lex->getType()->isPromotableIntegerType())
+ LHSTy = Context.IntTy;
+ else {
+ LHSTy = isPromotableBitField(lex, Context);
+ if (LHSTy.isNull())
+ LHSTy = lex->getType();
+ }
+ if (!isCompAssign)
+ ImpCastExprToType(lex, LHSTy);
+
+ UsualUnaryConversions(rex);
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSTy;
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
+ unsigned OpaqueOpc, bool isRelational) {
+ BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
+
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
+ UsualArithmeticConversions(lex, rex);
+ else {
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+ }
+ QualType lType = lex->getType();
+ QualType rType = rex->getType();
+
+ if (!lType->isFloatingType()
+ && !(lType->isBlockPointerType() && isRelational)) {
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ // NOTE: Don't warn about comparisons of enum constants. These can arise
+ // from macro expansions, and are usually quite deliberate.
+ Expr *LHSStripped = lex->IgnoreParens();
+ Expr *RHSStripped = rex->IgnoreParens();
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
+ if (DRL->getDecl() == DRR->getDecl() &&
+ !isa<EnumConstantDecl>(DRL->getDecl()))
+ Diag(Loc, diag::warn_selfcomparison);
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null), the user probably wants strcmp.
+ Expr *literalString = 0;
+ Expr *literalStringStripped = 0;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(Context)) {
+ literalString = lex;
+ literalStringStripped = LHSStripped;
+ }
+ else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(Context)) {
+ literalString = rex;
+ literalStringStripped = RHSStripped;
+ }
+
+ if (literalString) {
+ std::string resultComparison;
+ switch (Opc) {
+ case BinaryOperator::LT: resultComparison = ") < 0"; break;
+ case BinaryOperator::GT: resultComparison = ") > 0"; break;
+ case BinaryOperator::LE: resultComparison = ") <= 0"; break;
+ case BinaryOperator::GE: resultComparison = ") >= 0"; break;
+ case BinaryOperator::EQ: resultComparison = ") == 0"; break;
+ case BinaryOperator::NE: resultComparison = ") != 0"; break;
+ default: assert(false && "Invalid comparison operator");
+ }
+ Diag(Loc, diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(literalStringStripped)
+ << literalString->getSourceRange()
+ << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
+ << CodeModificationHint::CreateInsertion(lex->getLocStart(),
+ "strcmp(")
+ << CodeModificationHint::CreateInsertion(
+ PP.getLocForEndOfToken(rex->getLocEnd()),
+ resultComparison);
+ }
+ }
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
+
+ if (isRelational) {
+ if (lType->isRealType() && rType->isRealType())
+ return ResultTy;
+ } else {
+ // Check for comparisons of floating point operands using != and ==.
+ if (lType->isFloatingType()) {
+ assert(rType->isFloatingType());
+ CheckFloatComparison(Loc,lex,rex);
+ }
+
+ if (lType->isArithmeticType() && rType->isArithmeticType())
+ return ResultTy;
+ }
+
+ bool LHSIsNull = lex->isNullPointerConstant(Context);
+ bool RHSIsNull = rex->isNullPointerConstant(Context);
+
+ // All of the following pointer related warnings are GCC extensions, except
+ // when handling null pointer constants. One day, we can consider making them
+ // errors (when -pedantic-errors is enabled).
+ if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
+ QualType LCanPointeeTy =
+ Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
+ QualType RCanPointeeTy =
+ Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
+
+ // Simple check: if the pointee types are identical, we're done.
+ if (LCanPointeeTy == RCanPointeeTy)
+ return ResultTy;
+
+ if (getLangOptions().CPlusPlus) {
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p2 uses the same notion for (in)equality
+ // comparisons of pointers.
+ QualType T = FindCompositePointerType(lex, rex);
+ if (T.isNull()) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ ImpCastExprToType(lex, T);
+ ImpCastExprToType(rex, T);
+ return ResultTy;
+ }
+
+ if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
+ !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
+ !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType()) &&
+ !Context.areComparableObjCPointerTypes(lType, rType)) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType); // promote the pointer to pointer
+ return ResultTy;
+ }
+ // C++ allows comparison of pointers with null pointer constants.
+ if (getLangOptions().CPlusPlus) {
+ if (lType->isPointerType() && RHSIsNull) {
+ ImpCastExprToType(rex, lType);
+ return ResultTy;
+ }
+ if (rType->isPointerType() && LHSIsNull) {
+ ImpCastExprToType(lex, rType);
+ return ResultTy;
+ }
+ // And comparison of nullptr_t with itself.
+ if (lType->isNullPtrType() && rType->isNullPtrType())
+ return ResultTy;
+ }
+ // Handle block pointer types.
+ if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
+ QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
+ QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreBlockCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType); // promote the pointer to pointer
+ return ResultTy;
+ }
+ // Allow block pointers to be compared with null pointer constants.
+ if (!isRelational
+ && ((lType->isBlockPointerType() && rType->isPointerType())
+ || (lType->isPointerType() && rType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((rType->isPointerType() && rType->getAsPointerType()
+ ->getPointeeType()->isVoidType())
+ || (lType->isPointerType() && lType->getAsPointerType()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ ImpCastExprToType(rex, lType); // promote the pointer to pointer
+ return ResultTy;
+ }
+
+ if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
+ if (lType->isPointerType() || rType->isPointerType()) {
+ const PointerType *LPT = lType->getAsPointerType();
+ const PointerType *RPT = rType->getAsPointerType();
+ bool LPtrToVoid = LPT ?
+ Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
+ bool RPtrToVoid = RPT ?
+ Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(lType, rType)) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(rex, lType);
+ return ResultTy;
+ }
+ ImpCastExprToType(rex, lType);
+ return ResultTy;
+ }
+ if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
+ ImpCastExprToType(rex, lType);
+ return ResultTy;
+ } else {
+ if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
+ Diag(Loc, diag::warn_incompatible_qualified_id_operands)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(rex, lType);
+ return ResultTy;
+ }
+ }
+ }
+ if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
+ rType->isIntegerType()) {
+ if (!RHSIsNull)
+ Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(rex, lType); // promote the integer to pointer
+ return ResultTy;
+ }
+ if (lType->isIntegerType() &&
+ (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
+ if (!LHSIsNull)
+ Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ ImpCastExprToType(lex, rType); // promote the integer to pointer
+ return ResultTy;
+ }
+ // Handle block pointers.
+ if (!isRelational && RHSIsNull
+ && lType->isBlockPointerType() && rType->isIntegerType()) {
+ ImpCastExprToType(rex, lType); // promote the integer to pointer
+ return ResultTy;
+ }
+ if (!isRelational && LHSIsNull
+ && lType->isIntegerType() && rType->isBlockPointerType()) {
+ ImpCastExprToType(lex, rType); // promote the integer to pointer
+ return ResultTy;
+ }
+ return InvalidOperands(Loc, lex, rex);
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
+ SourceLocation Loc,
+ bool isRelational) {
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(Loc, lex, rex);
+ if (vType.isNull())
+ return vType;
+
+ QualType lType = lex->getType();
+ QualType rType = rex->getType();
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ if (!lType->isFloatingType()) {
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
+ if (DRL->getDecl() == DRR->getDecl())
+ Diag(Loc, diag::warn_selfcomparison);
+ }
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (!isRelational && lType->isFloatingType()) {
+ assert (rType->isFloatingType());
+ CheckFloatComparison(Loc,lex,rex);
+ }
+
+ // FIXME: Vector compare support in the LLVM backend is not fully reliable,
+ // just reject all vector comparisons for now.
+ if (1) {
+ Diag(Loc, diag::err_typecheck_vector_comparison)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ return QualType();
+ }
+
+ // Return the type for the comparison, which is the same as vector type for
+ // integer vectors, or an integer type of identical size and number of
+ // elements for floating point vectors.
+ if (lType->isIntegerType())
+ return lType;
+
+ const VectorType *VTy = lType->getAsVectorType();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+ if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+}
+
+inline QualType Sema::CheckBitwiseOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
+{
+ if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
+ return CheckVectorOperands(Loc, lex, rex);
+
+ QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
+
+ if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
+ return compType;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
+ Expr *&lex, Expr *&rex, SourceLocation Loc)
+{
+ UsualUnaryConversions(lex);
+ UsualUnaryConversions(rex);
+
+ if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
+ return Context.IntTy;
+ return InvalidOperands(Loc, lex, rex);
+}
+
+/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
+/// is a read-only property; return true if so. A readonly property expression
+/// depends on various declarations and thus must be treated specially.
+///
+static bool IsReadonlyProperty(Expr *E, Sema &S)
+{
+ if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
+ const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
+ if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
+ QualType BaseType = PropExpr->getBase()->getType();
+ if (const PointerType *PTy = BaseType->getAsPointerType())
+ if (const ObjCInterfaceType *IFTy =
+ PTy->getPointeeType()->getAsObjCInterfaceType())
+ if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
+ if (S.isPropertyReadonly(PDecl, IFace))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
+ IsLV = Expr::MLV_ReadonlyProperty;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned Diag = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ default: assert(0 && "Unknown result from isModifiableLvalue!");
+ case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
+ case Expr::MLV_ArrayType:
+ Diag = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ Diag = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_InvalidExpression:
+ Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
+ E->getSourceRange());
+ case Expr::MLV_DuplicateVectorComponents:
+ Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_NotBlockQualified:
+ Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_ReadonlyProperty:
+ Diag = diag::error_readonly_property_assignment;
+ break;
+ case Expr::MLV_NoSetterProperty:
+ Diag = diag::error_nosetter_property_assignment;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
+ return true;
+}
+
+
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHS, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHS->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
+
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ // Simple assignment "x = y".
+ ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ Context.isObjCObjectPointerType(RHSType)) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ Context.isObjCObjectPointerType(LHSType))))
+ ConvTy = Compatible;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ Expr *RHSCheck = RHS;
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UnaryOperator::Plus ||
+ UO->getOpcode() == UnaryOperator::Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ UO->getSubExpr()->getLocStart().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS, "assigning"))
+ return QualType();
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return LHSType.getUnqualifiedType();
+}
+
+// C99 6.5.17
+QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
+ // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
+ DefaultFunctionArrayConversion(RHS);
+
+ // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
+ // incomplete in C++).
+
+ return RHS->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
+ bool isInc) {
+ if (Op->isTypeDependent())
+ return Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!isInc) {
+ Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (const PointerType *PT = ResType->getAsPointerType()) {
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (PT->getPointeeType()->isVoidType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
+ << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Pointer to void is a GNU extension in C.
+ Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
+ } else if (PT->getPointeeType()->isFunctionType()) {
+ if (getLangOptions().CPlusPlus) {
+ Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
+ << Op->getType() << Op->getSourceRange();
+ return QualType();
+ }
+
+ Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
+ << ResType << Op->getSourceRange();
+ } else if (RequireCompleteType(OpLoc, PT->getPointeeType(),
+ diag::err_typecheck_arithmetic_incomplete_type,
+ Op->getSourceRange(), SourceRange(),
+ ResType))
+ return QualType();
+ } else if (ResType->isComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else {
+ Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, *this))
+ return QualType();
+ return ResType;
+}
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+static NamedDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ case Stmt::QualifiedDeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return 0;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return 0;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ case UnaryOperator::Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return 0;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ default:
+ return 0;
+ }
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
+ // Make sure to ignore parentheses in subsequent checks
+ op = op->IgnoreParens();
+
+ if (op->isTypeDependent())
+ return Context.DependentTy;
+
+ if (getLangOptions().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UnaryOperator::Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ NamedDecl *dcl = getPrimaryDecl(op);
+ Expr::isLvalueResult lval = op->isLvalue(Context);
+
+ if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // FIXME: emit more specific diag...
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getSourceRange();
+ return QualType();
+ }
+ } else if (op->getBitField()) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "bit-field" << op->getSourceRange();
+ return QualType();
+ } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
+ cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
+ // The operand cannot be an element of a vector
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "vector element" << op->getSourceRange();
+ return QualType();
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ if (vd->getStorageClass() == VarDecl::Register) {
+ Diag(OpLoc, diag::err_typecheck_address_of)
+ << "register variable" << op->getSourceRange();
+ return QualType();
+ }
+ } else if (isa<OverloadedFunctionDecl>(dcl)) {
+ return Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<QualifiedDeclRefExpr>(op)) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord())
+ return Context.getMemberPointerType(op->getType(),
+ Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ }
+ } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
+ // Okay: we can take the address of a function.
+ // As above.
+ if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
+ return Context.getMemberPointerType(op->getType(),
+ Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ } else if (!isa<FunctionDecl>(dcl))
+ assert(0 && "Unknown/unexpected decl type");
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ return Context.getPointerType(op->getType());
+}
+
+QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return Context.DependentTy;
+
+ UsualUnaryConversions(Op);
+ QualType Ty = Op->getType();
+
+ // Note that per both C89 and C99, this is always legal, even if ptype is an
+ // incomplete type or void. It would be possible to warn about dereferencing
+ // a void pointer, but it's completely well-defined, and such a warning is
+ // unlikely to catch any mistakes.
+ if (const PointerType *PT = Ty->getAsPointerType())
+ return PT->getPointeeType();
+
+ Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << Ty << Op->getSourceRange();
+ return QualType();
+}
+
+static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
+ tok::TokenKind Kind) {
+ BinaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown binop!");
+ case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
+ case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
+ case tok::star: Opc = BinaryOperator::Mul; break;
+ case tok::slash: Opc = BinaryOperator::Div; break;
+ case tok::percent: Opc = BinaryOperator::Rem; break;
+ case tok::plus: Opc = BinaryOperator::Add; break;
+ case tok::minus: Opc = BinaryOperator::Sub; break;
+ case tok::lessless: Opc = BinaryOperator::Shl; break;
+ case tok::greatergreater: Opc = BinaryOperator::Shr; break;
+ case tok::lessequal: Opc = BinaryOperator::LE; break;
+ case tok::less: Opc = BinaryOperator::LT; break;
+ case tok::greaterequal: Opc = BinaryOperator::GE; break;
+ case tok::greater: Opc = BinaryOperator::GT; break;
+ case tok::exclaimequal: Opc = BinaryOperator::NE; break;
+ case tok::equalequal: Opc = BinaryOperator::EQ; break;
+ case tok::amp: Opc = BinaryOperator::And; break;
+ case tok::caret: Opc = BinaryOperator::Xor; break;
+ case tok::pipe: Opc = BinaryOperator::Or; break;
+ case tok::ampamp: Opc = BinaryOperator::LAnd; break;
+ case tok::pipepipe: Opc = BinaryOperator::LOr; break;
+ case tok::equal: Opc = BinaryOperator::Assign; break;
+ case tok::starequal: Opc = BinaryOperator::MulAssign; break;
+ case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
+ case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
+ case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
+ case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
+ case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
+ case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
+ case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
+ case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
+ case tok::comma: Opc = BinaryOperator::Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperator::Opcode Opc;
+ switch (Kind) {
+ default: assert(0 && "Unknown unary op!");
+ case tok::plusplus: Opc = UnaryOperator::PreInc; break;
+ case tok::minusminus: Opc = UnaryOperator::PreDec; break;
+ case tok::amp: Opc = UnaryOperator::AddrOf; break;
+ case tok::star: Opc = UnaryOperator::Deref; break;
+ case tok::plus: Opc = UnaryOperator::Plus; break;
+ case tok::minus: Opc = UnaryOperator::Minus; break;
+ case tok::tilde: Opc = UnaryOperator::Not; break;
+ case tok::exclaim: Opc = UnaryOperator::LNot; break;
+ case tok::kw___real: Opc = UnaryOperator::Real; break;
+ case tok::kw___imag: Opc = UnaryOperator::Imag; break;
+ case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
+ }
+ return Opc;
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ unsigned Op,
+ Expr *lhs, Expr *rhs) {
+ QualType ResultTy; // Result type of the binary operator.
+ BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+
+ switch (Opc) {
+ case BinaryOperator::Assign:
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
+ break;
+ case BinaryOperator::PtrMemD:
+ case BinaryOperator::PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
+ Opc == BinaryOperator::PtrMemI);
+ break;
+ case BinaryOperator::Mul:
+ case BinaryOperator::Div:
+ ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Rem:
+ ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Add:
+ ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Sub:
+ ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::Shl:
+ case BinaryOperator::Shr:
+ ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::LE:
+ case BinaryOperator::LT:
+ case BinaryOperator::GE:
+ case BinaryOperator::GT:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
+ break;
+ case BinaryOperator::EQ:
+ case BinaryOperator::NE:
+ ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
+ break;
+ case BinaryOperator::And:
+ case BinaryOperator::Xor:
+ case BinaryOperator::Or:
+ ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::LAnd:
+ case BinaryOperator::LOr:
+ ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
+ break;
+ case BinaryOperator::MulAssign:
+ case BinaryOperator::DivAssign:
+ CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::RemAssign:
+ CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::AddAssign:
+ CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::SubAssign:
+ CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::ShlAssign:
+ case BinaryOperator::ShrAssign:
+ CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::AndAssign:
+ case BinaryOperator::XorAssign:
+ case BinaryOperator::OrAssign:
+ CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull())
+ ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
+ break;
+ case BinaryOperator::Comma:
+ ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
+ break;
+ }
+ if (ResultTy.isNull())
+ return ExprError();
+ if (CompResultTy.isNull())
+ return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
+ else
+ return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
+ CompLHSTy, CompResultTy,
+ OpLoc));
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ ExprArg LHS, ExprArg RHS) {
+ BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
+
+ assert((lhs != 0) && "ActOnBinOp(): missing left expression");
+ assert((rhs != 0) && "ActOnBinOp(): missing right expression");
+
+ if (getLangOptions().CPlusPlus &&
+ (lhs->getType()->isOverloadableType() ||
+ rhs->getType()->isOverloadableType())) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ FunctionSet Functions;
+ OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
+ if (OverOp != OO_None) {
+ LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
+ Functions);
+ Expr *Args[2] = { lhs, rhs };
+ DeclarationName OpName
+ = Context.DeclarationNames.getCXXOperatorName(OverOp);
+ ArgumentDependentLookup(OpName, Args, 2, Functions);
+ }
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
+}
+
+Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ ExprArg InputArg) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+
+ // FIXME: Input is modified below, but InputArg is not updated appropriately.
+ Expr *Input = (Expr *)InputArg.get();
+ QualType resultType;
+ switch (Opc) {
+ case UnaryOperator::PostInc:
+ case UnaryOperator::PostDec:
+ case UnaryOperator::OffsetOf:
+ assert(false && "Invalid unary operator");
+ break;
+
+ case UnaryOperator::PreInc:
+ case UnaryOperator::PreDec:
+ resultType = CheckIncrementDecrementOperand(Input, OpLoc,
+ Opc == UnaryOperator::PreInc);
+ break;
+ case UnaryOperator::AddrOf:
+ resultType = CheckAddressOfOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Deref:
+ DefaultFunctionArrayConversion(Input);
+ resultType = CheckIndirectionOperand(Input, OpLoc);
+ break;
+ case UnaryOperator::Plus:
+ case UnaryOperator::Minus:
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType()) // C99 6.5.3.3p1
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
+ resultType->isEnumeralType())
+ break;
+ else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UnaryOperator::Plus &&
+ resultType->isPointerType())
+ break;
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ case UnaryOperator::Not: // bitwise complement
+ UsualUnaryConversions(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input->getSourceRange();
+ else if (!resultType->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ break;
+ case UnaryOperator::LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ DefaultFunctionArrayConversion(Input);
+ resultType = Input->getType();
+ if (resultType->isDependentType())
+ break;
+ if (!resultType->isScalarType()) // C99 6.5.3.3p1
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input->getSourceRange());
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
+ break;
+ case UnaryOperator::Real:
+ case UnaryOperator::Imag:
+ resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
+ break;
+ case UnaryOperator::Extension:
+ resultType = Input->getType();
+ break;
+ }
+ if (resultType.isNull())
+ return ExprError();
+
+ InputArg.release();
+ return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, ExprArg input) {
+ Expr *Input = (Expr*)input.get();
+ UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
+
+ if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
+ // Find all of the overloaded operators visible from this
+ // point. We perform both an operator-name lookup from the local
+ // scope and an argument-dependent lookup based on the types of
+ // the arguments.
+ FunctionSet Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (OverOp != OO_None) {
+ LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
+ Functions);
+ DeclarationName OpName
+ = Context.DeclarationNames.getCXXOperatorName(OverOp);
+ ArgumentDependentLookup(OpName, &Input, 1, Functions);
+ }
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
+ SourceLocation LabLoc,
+ IdentifierInfo *LabelII) {
+ // Look up the record for this label identifier.
+ LabelStmt *&LabelDecl = getLabelMap()[LabelII];
+
+ // If we haven't seen this label yet, create a forward reference. It
+ // will be validated and/or cleaned up in ActOnFinishFunctionBody.
+ if (LabelDecl == 0)
+ LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
+
+ // Create the AST node. The address of a label always has type 'void*'.
+ return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
+ Context.getPointerType(Context.VoidTy)));
+}
+
+Sema::OwningExprResult
+Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
+ SourceLocation RPLoc) { // "({..})"
+ Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ bool isFileScope = getCurFunctionOrMethodDecl() == 0;
+ if (isFileScope)
+ return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+
+ if (!Compound->body_empty()) {
+ Stmt *LastStmt = Compound->body_back();
+ // If LastStmt is a label, skip down through into the body.
+ while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
+ LastStmt = Label->getSubStmt();
+
+ if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
+ Ty = LastExpr->getType();
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+
+ substmt.release();
+ return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ TypeTy *argty,
+ OffsetOfComponent *CompPtr,
+ unsigned NumComponents,
+ SourceLocation RPLoc) {
+ // FIXME: This function leaks all expressions in the offset components on
+ // error.
+ QualType ArgTy = QualType::getFromOpaquePtr(argty);
+ assert(!ArgTy.isNull() && "Missing type argument!");
+
+ bool Dependent = ArgTy->isDependentType();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
+
+ // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be illegal.
+
+ // Otherwise, create a null pointer as the base, and iteratively process
+ // the offsetof designators.
+ QualType ArgTyPtr = Context.getPointerType(ArgTy);
+ Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
+ Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
+ ArgTy, SourceLocation());
+
+ // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
+ // GCC extension, diagnose them.
+ // FIXME: This diagnostic isn't actually visible because the location is in
+ // a system header!
+ if (NumComponents != 1)
+ Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
+ << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
+
+ if (!Dependent) {
+ bool DidWarnAboutNonPOD = false;
+
+ // FIXME: Dependent case loses a lot of information here. And probably
+ // leaks like a sieve.
+ for (unsigned i = 0; i != NumComponents; ++i) {
+ const OffsetOfComponent &OC = CompPtr[i];
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ const ArrayType *AT = Context.getAsArrayType(Res->getType());
+ if (!AT) {
+ Res->Destroy(Context);
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << Res->getType());
+ }
+
+ // FIXME: C++: Verify that operator[] isn't overloaded.
+
+ // Promote the array so it looks more like a normal array subscript
+ // expression.
+ DefaultFunctionArrayConversion(Res);
+
+ // C99 6.5.2.1p1
+ Expr *Idx = static_cast<Expr*>(OC.U.E);
+ // FIXME: Leaks Res
+ if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
+ return ExprError(Diag(Idx->getLocStart(),
+ diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
+ OC.LocEnd);
+ continue;
+ }
+
+ const RecordType *RC = Res->getType()->getAsRecordType();
+ if (!RC) {
+ Res->Destroy(Context);
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << Res->getType());
+ }
+
+ // Get the decl corresponding to this.
+ RecordDecl *RD = RC->getDecl();
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
+ ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
+ << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
+ << Res->getType());
+ DidWarnAboutNonPOD = true;
+ }
+ }
+
+ FieldDecl *MemberDecl
+ = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
+ LookupMemberName)
+ .getAsDecl());
+ // FIXME: Leaks Res
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
+ << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
+
+ // FIXME: C++: Verify that MemberDecl isn't a static field.
+ // FIXME: Verify that MemberDecl isn't a bitfield.
+ if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
+ Res = BuildAnonymousStructUnionMemberReference(
+ SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
+ } else {
+ // MemberDecl->getType() doesn't get the right qualifiers, but it
+ // doesn't matter here.
+ Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
+ MemberDecl->getType().getNonReferenceType());
+ }
+ }
+ }
+
+ return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
+ Context.getSizeType(), BuiltinLoc));
+}
+
+
+Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
+ TypeTy *arg1,TypeTy *arg2,
+ SourceLocation RPLoc) {
+ QualType argT1 = QualType::getFromOpaquePtr(arg1);
+ QualType argT2 = QualType::getFromOpaquePtr(arg2);
+
+ assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
+
+ if (getLangOptions().CPlusPlus) {
+ Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
+ << SourceRange(BuiltinLoc, RPLoc);
+ return ExprError();
+ }
+
+ return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
+ argT1, argT2, RPLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ ExprArg cond,
+ ExprArg expr1, ExprArg expr2,
+ SourceLocation RPLoc) {
+ Expr *CondExpr = static_cast<Expr*>(cond.get());
+ Expr *LHSExpr = static_cast<Expr*>(expr1.get());
+ Expr *RHSExpr = static_cast<Expr*>(expr2.get());
+
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ QualType resType;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ SourceLocation ExpLoc;
+ if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
+ return ExprError(Diag(ExpLoc,
+ diag::err_typecheck_choose_expr_requires_constant)
+ << CondExpr->getSourceRange());
+
+ // If the condition is > zero, then the AST type is the same as the LSHExpr.
+ resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
+ }
+
+ cond.release(); expr1.release(); expr2.release();
+ return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
+ resType, RPLoc));
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
+ // Analyze block parameters.
+ BlockSemaInfo *BSI = new BlockSemaInfo();
+
+ // Add BSI to CurBlock.
+ BSI->PrevBlockInfo = CurBlock;
+ CurBlock = BSI;
+
+ BSI->ReturnType = 0;
+ BSI->TheScope = BlockScope;
+ BSI->hasBlockDeclRefExprs = false;
+ BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
+ CurFunctionNeedsScopeChecking = false;
+
+ BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
+ PushDeclContext(BlockScope, BSI->TheDecl);
+}
+
+void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
+ assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
+
+ if (ParamInfo.getNumTypeObjects() == 0
+ || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
+ ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
+ QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
+
+ if (T->isArrayType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_block_returns_array);
+ return;
+ }
+
+ // The parameter list is optional, if there was none, assume ().
+ if (!T->isFunctionType())
+ T = Context.getFunctionType(T, NULL, 0, 0, 0);
+
+ CurBlock->hasPrototype = true;
+ CurBlock->isVariadic = false;
+ // Check for a valid sentinel attribute on this block.
+ if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
+ Diag(ParamInfo.getAttributes()->getLoc(),
+ diag::warn_attribute_sentinel_not_variadic) << 1;
+ // FIXME: remove the attribute.
+ }
+ QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
+
+ // Do not allow returning a objc interface by-value.
+ if (RetTy->isObjCInterfaceType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ return;
+ }
+ return;
+ }
+
+ // Analyze arguments to block.
+ assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+ "Not a function declarator!");
+ DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
+
+ CurBlock->hasPrototype = FTI.hasPrototype;
+ CurBlock->isVariadic = true;
+
+ // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
+ // no arguments, not a function that takes a single void argument.
+ if (FTI.hasPrototype &&
+ FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+ (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
+ FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
+ // empty arg list, don't push any params.
+ CurBlock->isVariadic = false;
+ } else if (FTI.hasPrototype) {
+ for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
+ CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
+ CurBlock->isVariadic = FTI.isVariadic;
+ }
+ CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
+ CurBlock->Params.size());
+ CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
+ ProcessDeclAttributes(CurBlock->TheDecl, ParamInfo);
+ for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
+ E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
+ // If this has an identifier, add it to the scope stack.
+ if ((*AI)->getIdentifier())
+ PushOnScopeChains(*AI, CurBlock->TheScope);
+
+ // Check for a valid sentinel attribute on this block.
+ if (!CurBlock->isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
+ Diag(ParamInfo.getAttributes()->getLoc(),
+ diag::warn_attribute_sentinel_not_variadic) << 1;
+ // FIXME: remove the attribute.
+ }
+
+ // Analyze the return type.
+ QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType RetTy = T->getAsFunctionType()->getResultType();
+
+ // Do not allow returning a objc interface by-value.
+ if (RetTy->isObjCInterfaceType()) {
+ Diag(ParamInfo.getSourceRange().getBegin(),
+ diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
+ } else if (!RetTy->isDependentType())
+ CurBlock->ReturnType = RetTy.getTypePtr();
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Ensure that CurBlock is deleted.
+ llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
+
+ CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
+
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ CurBlock = CurBlock->PrevBlockInfo;
+ // FIXME: Delete the ParmVarDecl objects as well???
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ StmtArg body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable);
+
+ // Ensure that CurBlock is deleted.
+ llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
+
+ PopDeclContext();
+
+ // Pop off CurBlock, handle nested blocks.
+ CurBlock = CurBlock->PrevBlockInfo;
+
+ QualType RetTy = Context.VoidTy;
+ if (BSI->ReturnType)
+ RetTy = QualType(BSI->ReturnType, 0);
+
+ llvm::SmallVector<QualType, 8> ArgTypes;
+ for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
+ ArgTypes.push_back(BSI->Params[i]->getType());
+
+ QualType BlockTy;
+ if (!BSI->hasPrototype)
+ BlockTy = Context.getFunctionNoProtoType(RetTy);
+ else
+ BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
+ BSI->isVariadic, 0);
+
+ // FIXME: Check that return/parameter types are complete/non-abstract
+
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (CurFunctionNeedsScopeChecking)
+ DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
+ CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
+
+ BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
+ return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
+ BSI->hasBlockDeclRefExprs));
+}
+
+Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
+ ExprArg expr, TypeTy *type,
+ SourceLocation RPLoc) {
+ QualType T = QualType::getFromOpaquePtr(type);
+ Expr *E = static_cast<Expr*>(expr.get());
+ Expr *OrigExpr = E;
+
+ InitBuiltinVaListType();
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ UsualUnaryConversions(E);
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+
+ if (!E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType())) {
+ return ExprError(Diag(E->getLocStart(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+ }
+
+ // FIXME: Check that type is complete/non-abstract
+ // FIXME: Warn if a non-POD type is passed in.
+
+ expr.release();
+ return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
+ RPLoc));
+}
+
+Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
+ Ty = Context.IntTy;
+ else
+ Ty = Context.LongTy;
+
+ return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, const char *Flavor) {
+ // Decode the result (notice that AST's are still created for extensions).
+ bool isInvalid = false;
+ unsigned DiagKind;
+ switch (ConvTy) {
+ default: assert(0 && "Unknown conversion type");
+ case Compatible: return false;
+ case PointerToInt:
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ break;
+ case IntToPointer:
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ break;
+ case IncompatiblePointer:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ break;
+ case IncompatiblePointerSign:
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ break;
+ case FunctionVoidPointer:
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ break;
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // CheckPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix CheckPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOptions().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ break;
+ case IncompatibleObjCQualifiedId:
+ // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
+ // it can give a more specific diagnostic.
+ DiagKind = diag::warn_incompatible_qualified_id;
+ break;
+ case IncompatibleVectors:
+ DiagKind = diag::warn_incompatible_vectors;
+ break;
+ case Incompatible:
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ isInvalid = true;
+ break;
+ }
+
+ Diag(Loc, DiagKind) << DstType << SrcType << Flavor
+ << SrcExpr->getSourceRange();
+ return isInvalid;
+}
+
+bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
+ llvm::APSInt ICEResult;
+ if (E->isIntegerConstantExpr(ICEResult, Context)) {
+ if (Result)
+ *Result = ICEResult;
+ return false;
+ }
+
+ Expr::EvalResult EvalResult;
+
+ if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
+ EvalResult.HasSideEffects) {
+ Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
+
+ if (EvalResult.Diag) {
+ // We only show the note if it's not the usual "invalid subexpression"
+ // or if it's actually in a subexpression.
+ if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
+ E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+ }
+
+ return true;
+ }
+
+ Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
+ E->getSourceRange();
+
+ if (EvalResult.Diag &&
+ Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
+ Diag(EvalResult.DiagLoc, EvalResult.Diag);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return false;
+}