aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaOverload.cpp
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:58:47 +0000
commitec2b103c267a06a66e926f62cd96767b280f5cf5 (patch)
treece7d964cbb5e39695b71481698f10cb099c23d4a /lib/Sema/SemaOverload.cpp
downloadsrc-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz
src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes: svn path=/vendor/clang/dist/; revision=193326 svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/Sema/SemaOverload.cpp')
-rw-r--r--lib/Sema/SemaOverload.cpp4485
1 files changed, 4485 insertions, 0 deletions
diff --git a/lib/Sema/SemaOverload.cpp b/lib/Sema/SemaOverload.cpp
new file mode 100644
index 000000000000..98ee13af856a
--- /dev/null
+++ b/lib/Sema/SemaOverload.cpp
@@ -0,0 +1,4485 @@
+//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Sema routines for C++ overloading.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInherit.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/TypeOrdering.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+
+namespace clang {
+
+/// GetConversionCategory - Retrieve the implicit conversion
+/// category corresponding to the given implicit conversion kind.
+ImplicitConversionCategory
+GetConversionCategory(ImplicitConversionKind Kind) {
+ static const ImplicitConversionCategory
+ Category[(int)ICK_Num_Conversion_Kinds] = {
+ ICC_Identity,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Lvalue_Transformation,
+ ICC_Qualification_Adjustment,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Promotion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion,
+ ICC_Conversion
+ };
+ return Category[(int)Kind];
+}
+
+/// GetConversionRank - Retrieve the implicit conversion rank
+/// corresponding to the given implicit conversion kind.
+ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
+ static const ImplicitConversionRank
+ Rank[(int)ICK_Num_Conversion_Kinds] = {
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Exact_Match,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Promotion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion,
+ ICR_Conversion
+ };
+ return Rank[(int)Kind];
+}
+
+/// GetImplicitConversionName - Return the name of this kind of
+/// implicit conversion.
+const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
+ static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
+ "No conversion",
+ "Lvalue-to-rvalue",
+ "Array-to-pointer",
+ "Function-to-pointer",
+ "Qualification",
+ "Integral promotion",
+ "Floating point promotion",
+ "Complex promotion",
+ "Integral conversion",
+ "Floating conversion",
+ "Complex conversion",
+ "Floating-integral conversion",
+ "Complex-real conversion",
+ "Pointer conversion",
+ "Pointer-to-member conversion",
+ "Boolean conversion",
+ "Compatible-types conversion",
+ "Derived-to-base conversion"
+ };
+ return Name[Kind];
+}
+
+/// StandardConversionSequence - Set the standard conversion
+/// sequence to the identity conversion.
+void StandardConversionSequence::setAsIdentityConversion() {
+ First = ICK_Identity;
+ Second = ICK_Identity;
+ Third = ICK_Identity;
+ Deprecated = false;
+ ReferenceBinding = false;
+ DirectBinding = false;
+ RRefBinding = false;
+ CopyConstructor = 0;
+}
+
+/// getRank - Retrieve the rank of this standard conversion sequence
+/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
+/// implicit conversions.
+ImplicitConversionRank StandardConversionSequence::getRank() const {
+ ImplicitConversionRank Rank = ICR_Exact_Match;
+ if (GetConversionRank(First) > Rank)
+ Rank = GetConversionRank(First);
+ if (GetConversionRank(Second) > Rank)
+ Rank = GetConversionRank(Second);
+ if (GetConversionRank(Third) > Rank)
+ Rank = GetConversionRank(Third);
+ return Rank;
+}
+
+/// isPointerConversionToBool - Determines whether this conversion is
+/// a conversion of a pointer or pointer-to-member to bool. This is
+/// used as part of the ranking of standard conversion sequences
+/// (C++ 13.3.3.2p4).
+bool StandardConversionSequence::isPointerConversionToBool() const
+{
+ QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
+ QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
+
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer or function-to-pointer implicit conversions, so
+ // check for their presence as well as checking whether FromType is
+ // a pointer.
+ if (ToType->isBooleanType() &&
+ (FromType->isPointerType() || FromType->isBlockPointerType() ||
+ First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
+ return true;
+
+ return false;
+}
+
+/// isPointerConversionToVoidPointer - Determines whether this
+/// conversion is a conversion of a pointer to a void pointer. This is
+/// used as part of the ranking of standard conversion sequences (C++
+/// 13.3.3.2p4).
+bool
+StandardConversionSequence::
+isPointerConversionToVoidPointer(ASTContext& Context) const
+{
+ QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
+ QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
+
+ // Note that FromType has not necessarily been transformed by the
+ // array-to-pointer implicit conversion, so check for its presence
+ // and redo the conversion to get a pointer.
+ if (First == ICK_Array_To_Pointer)
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (Second == ICK_Pointer_Conversion)
+ if (const PointerType* ToPtrType = ToType->getAsPointerType())
+ return ToPtrType->getPointeeType()->isVoidType();
+
+ return false;
+}
+
+/// DebugPrint - Print this standard conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void StandardConversionSequence::DebugPrint() const {
+ bool PrintedSomething = false;
+ if (First != ICK_Identity) {
+ fprintf(stderr, "%s", GetImplicitConversionName(First));
+ PrintedSomething = true;
+ }
+
+ if (Second != ICK_Identity) {
+ if (PrintedSomething) {
+ fprintf(stderr, " -> ");
+ }
+ fprintf(stderr, "%s", GetImplicitConversionName(Second));
+
+ if (CopyConstructor) {
+ fprintf(stderr, " (by copy constructor)");
+ } else if (DirectBinding) {
+ fprintf(stderr, " (direct reference binding)");
+ } else if (ReferenceBinding) {
+ fprintf(stderr, " (reference binding)");
+ }
+ PrintedSomething = true;
+ }
+
+ if (Third != ICK_Identity) {
+ if (PrintedSomething) {
+ fprintf(stderr, " -> ");
+ }
+ fprintf(stderr, "%s", GetImplicitConversionName(Third));
+ PrintedSomething = true;
+ }
+
+ if (!PrintedSomething) {
+ fprintf(stderr, "No conversions required");
+ }
+}
+
+/// DebugPrint - Print this user-defined conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void UserDefinedConversionSequence::DebugPrint() const {
+ if (Before.First || Before.Second || Before.Third) {
+ Before.DebugPrint();
+ fprintf(stderr, " -> ");
+ }
+ fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
+ if (After.First || After.Second || After.Third) {
+ fprintf(stderr, " -> ");
+ After.DebugPrint();
+ }
+}
+
+/// DebugPrint - Print this implicit conversion sequence to standard
+/// error. Useful for debugging overloading issues.
+void ImplicitConversionSequence::DebugPrint() const {
+ switch (ConversionKind) {
+ case StandardConversion:
+ fprintf(stderr, "Standard conversion: ");
+ Standard.DebugPrint();
+ break;
+ case UserDefinedConversion:
+ fprintf(stderr, "User-defined conversion: ");
+ UserDefined.DebugPrint();
+ break;
+ case EllipsisConversion:
+ fprintf(stderr, "Ellipsis conversion");
+ break;
+ case BadConversion:
+ fprintf(stderr, "Bad conversion");
+ break;
+ }
+
+ fprintf(stderr, "\n");
+}
+
+// IsOverload - Determine whether the given New declaration is an
+// overload of the Old declaration. This routine returns false if New
+// and Old cannot be overloaded, e.g., if they are functions with the
+// same signature (C++ 1.3.10) or if the Old declaration isn't a
+// function (or overload set). When it does return false and Old is an
+// OverloadedFunctionDecl, MatchedDecl will be set to point to the
+// FunctionDecl that New cannot be overloaded with.
+//
+// Example: Given the following input:
+//
+// void f(int, float); // #1
+// void f(int, int); // #2
+// int f(int, int); // #3
+//
+// When we process #1, there is no previous declaration of "f",
+// so IsOverload will not be used.
+//
+// When we process #2, Old is a FunctionDecl for #1. By comparing the
+// parameter types, we see that #1 and #2 are overloaded (since they
+// have different signatures), so this routine returns false;
+// MatchedDecl is unchanged.
+//
+// When we process #3, Old is an OverloadedFunctionDecl containing #1
+// and #2. We compare the signatures of #3 to #1 (they're overloaded,
+// so we do nothing) and then #3 to #2. Since the signatures of #3 and
+// #2 are identical (return types of functions are not part of the
+// signature), IsOverload returns false and MatchedDecl will be set to
+// point to the FunctionDecl for #2.
+bool
+Sema::IsOverload(FunctionDecl *New, Decl* OldD,
+ OverloadedFunctionDecl::function_iterator& MatchedDecl)
+{
+ if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
+ // Is this new function an overload of every function in the
+ // overload set?
+ OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
+ FuncEnd = Ovl->function_end();
+ for (; Func != FuncEnd; ++Func) {
+ if (!IsOverload(New, *Func, MatchedDecl)) {
+ MatchedDecl = Func;
+ return false;
+ }
+ }
+
+ // This function overloads every function in the overload set.
+ return true;
+ } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
+ // Is the function New an overload of the function Old?
+ QualType OldQType = Context.getCanonicalType(Old->getType());
+ QualType NewQType = Context.getCanonicalType(New->getType());
+
+ // Compare the signatures (C++ 1.3.10) of the two functions to
+ // determine whether they are overloads. If we find any mismatch
+ // in the signature, they are overloads.
+
+ // If either of these functions is a K&R-style function (no
+ // prototype), then we consider them to have matching signatures.
+ if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
+ isa<FunctionNoProtoType>(NewQType.getTypePtr()))
+ return false;
+
+ FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
+ FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
+
+ // The signature of a function includes the types of its
+ // parameters (C++ 1.3.10), which includes the presence or absence
+ // of the ellipsis; see C++ DR 357).
+ if (OldQType != NewQType &&
+ (OldType->getNumArgs() != NewType->getNumArgs() ||
+ OldType->isVariadic() != NewType->isVariadic() ||
+ !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
+ NewType->arg_type_begin())))
+ return true;
+
+ // If the function is a class member, its signature includes the
+ // cv-qualifiers (if any) on the function itself.
+ //
+ // As part of this, also check whether one of the member functions
+ // is static, in which case they are not overloads (C++
+ // 13.1p2). While not part of the definition of the signature,
+ // this check is important to determine whether these functions
+ // can be overloaded.
+ CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+ CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+ if (OldMethod && NewMethod &&
+ !OldMethod->isStatic() && !NewMethod->isStatic() &&
+ OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
+ return true;
+
+ // The signatures match; this is not an overload.
+ return false;
+ } else {
+ // (C++ 13p1):
+ // Only function declarations can be overloaded; object and type
+ // declarations cannot be overloaded.
+ return false;
+ }
+}
+
+/// TryImplicitConversion - Attempt to perform an implicit conversion
+/// from the given expression (Expr) to the given type (ToType). This
+/// function returns an implicit conversion sequence that can be used
+/// to perform the initialization. Given
+///
+/// void f(float f);
+/// void g(int i) { f(i); }
+///
+/// this routine would produce an implicit conversion sequence to
+/// describe the initialization of f from i, which will be a standard
+/// conversion sequence containing an lvalue-to-rvalue conversion (C++
+/// 4.1) followed by a floating-integral conversion (C++ 4.9).
+//
+/// Note that this routine only determines how the conversion can be
+/// performed; it does not actually perform the conversion. As such,
+/// it will not produce any diagnostics if no conversion is available,
+/// but will instead return an implicit conversion sequence of kind
+/// "BadConversion".
+///
+/// If @p SuppressUserConversions, then user-defined conversions are
+/// not permitted.
+/// If @p AllowExplicit, then explicit user-defined conversions are
+/// permitted.
+/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
+/// no matter its actual lvalueness.
+ImplicitConversionSequence
+Sema::TryImplicitConversion(Expr* From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit, bool ForceRValue)
+{
+ ImplicitConversionSequence ICS;
+ if (IsStandardConversion(From, ToType, ICS.Standard))
+ ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
+ else if (getLangOptions().CPlusPlus &&
+ IsUserDefinedConversion(From, ToType, ICS.UserDefined,
+ !SuppressUserConversions, AllowExplicit,
+ ForceRValue)) {
+ ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
+ QualType FromCanon
+ = Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
+ // Turn this into a "standard" conversion sequence, so that it
+ // gets ranked with standard conversion sequences.
+ ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
+ ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
+ ICS.Standard.CopyConstructor = Constructor;
+ if (ToCanon != FromCanon)
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ }
+ }
+
+ // C++ [over.best.ics]p4:
+ // However, when considering the argument of a user-defined
+ // conversion function that is a candidate by 13.3.1.3 when
+ // invoked for the copying of the temporary in the second step
+ // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
+ // 13.3.1.6 in all cases, only standard conversion sequences and
+ // ellipsis conversion sequences are allowed.
+ if (SuppressUserConversions &&
+ ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
+ ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+ } else
+ ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+
+ return ICS;
+}
+
+/// IsStandardConversion - Determines whether there is a standard
+/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
+/// expression From to the type ToType. Standard conversion sequences
+/// only consider non-class types; for conversions that involve class
+/// types, use TryImplicitConversion. If a conversion exists, SCS will
+/// contain the standard conversion sequence required to perform this
+/// conversion and this routine will return true. Otherwise, this
+/// routine will return false and the value of SCS is unspecified.
+bool
+Sema::IsStandardConversion(Expr* From, QualType ToType,
+ StandardConversionSequence &SCS)
+{
+ QualType FromType = From->getType();
+
+ // Standard conversions (C++ [conv])
+ SCS.setAsIdentityConversion();
+ SCS.Deprecated = false;
+ SCS.IncompatibleObjC = false;
+ SCS.FromTypePtr = FromType.getAsOpaquePtr();
+ SCS.CopyConstructor = 0;
+
+ // There are no standard conversions for class types in C++, so
+ // abort early. When overloading in C, however, we do permit
+ if (FromType->isRecordType() || ToType->isRecordType()) {
+ if (getLangOptions().CPlusPlus)
+ return false;
+
+ // When we're overloading in C, we allow, as standard conversions,
+ }
+
+ // The first conversion can be an lvalue-to-rvalue conversion,
+ // array-to-pointer conversion, or function-to-pointer conversion
+ // (C++ 4p1).
+
+ // Lvalue-to-rvalue conversion (C++ 4.1):
+ // An lvalue (3.10) of a non-function, non-array type T can be
+ // converted to an rvalue.
+ Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
+ if (argIsLvalue == Expr::LV_Valid &&
+ !FromType->isFunctionType() && !FromType->isArrayType() &&
+ Context.getCanonicalType(FromType) != Context.OverloadTy) {
+ SCS.First = ICK_Lvalue_To_Rvalue;
+
+ // If T is a non-class type, the type of the rvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the rvalue
+ // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
+ // just strip the qualifiers because they don't matter.
+
+ // FIXME: Doesn't see through to qualifiers behind a typedef!
+ FromType = FromType.getUnqualifiedType();
+ }
+ // Array-to-pointer conversion (C++ 4.2)
+ else if (FromType->isArrayType()) {
+ SCS.First = ICK_Array_To_Pointer;
+
+ // An lvalue or rvalue of type "array of N T" or "array of unknown
+ // bound of T" can be converted to an rvalue of type "pointer to
+ // T" (C++ 4.2p1).
+ FromType = Context.getArrayDecayedType(FromType);
+
+ if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
+ // This conversion is deprecated. (C++ D.4).
+ SCS.Deprecated = true;
+
+ // For the purpose of ranking in overload resolution
+ // (13.3.3.1.1), this conversion is considered an
+ // array-to-pointer conversion followed by a qualification
+ // conversion (4.4). (C++ 4.2p2)
+ SCS.Second = ICK_Identity;
+ SCS.Third = ICK_Qualification;
+ SCS.ToTypePtr = ToType.getAsOpaquePtr();
+ return true;
+ }
+ }
+ // Function-to-pointer conversion (C++ 4.3).
+ else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
+ SCS.First = ICK_Function_To_Pointer;
+
+ // An lvalue of function type T can be converted to an rvalue of
+ // type "pointer to T." The result is a pointer to the
+ // function. (C++ 4.3p1).
+ FromType = Context.getPointerType(FromType);
+ }
+ // Address of overloaded function (C++ [over.over]).
+ else if (FunctionDecl *Fn
+ = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
+ SCS.First = ICK_Function_To_Pointer;
+
+ // We were able to resolve the address of the overloaded function,
+ // so we can convert to the type of that function.
+ FromType = Fn->getType();
+ if (ToType->isLValueReferenceType())
+ FromType = Context.getLValueReferenceType(FromType);
+ else if (ToType->isRValueReferenceType())
+ FromType = Context.getRValueReferenceType(FromType);
+ else if (ToType->isMemberPointerType()) {
+ // Resolve address only succeeds if both sides are member pointers,
+ // but it doesn't have to be the same class. See DR 247.
+ // Note that this means that the type of &Derived::fn can be
+ // Ret (Base::*)(Args) if the fn overload actually found is from the
+ // base class, even if it was brought into the derived class via a
+ // using declaration. The standard isn't clear on this issue at all.
+ CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
+ FromType = Context.getMemberPointerType(FromType,
+ Context.getTypeDeclType(M->getParent()).getTypePtr());
+ } else
+ FromType = Context.getPointerType(FromType);
+ }
+ // We don't require any conversions for the first step.
+ else {
+ SCS.First = ICK_Identity;
+ }
+
+ // The second conversion can be an integral promotion, floating
+ // point promotion, integral conversion, floating point conversion,
+ // floating-integral conversion, pointer conversion,
+ // pointer-to-member conversion, or boolean conversion (C++ 4p1).
+ // For overloading in C, this can also be a "compatible-type"
+ // conversion.
+ bool IncompatibleObjC = false;
+ if (Context.hasSameUnqualifiedType(FromType, ToType)) {
+ // The unqualified versions of the types are the same: there's no
+ // conversion to do.
+ SCS.Second = ICK_Identity;
+ }
+ // Integral promotion (C++ 4.5).
+ else if (IsIntegralPromotion(From, FromType, ToType)) {
+ SCS.Second = ICK_Integral_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Floating point promotion (C++ 4.6).
+ else if (IsFloatingPointPromotion(FromType, ToType)) {
+ SCS.Second = ICK_Floating_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Complex promotion (Clang extension)
+ else if (IsComplexPromotion(FromType, ToType)) {
+ SCS.Second = ICK_Complex_Promotion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Integral conversions (C++ 4.7).
+ // FIXME: isIntegralType shouldn't be true for enums in C++.
+ else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
+ (ToType->isIntegralType() && !ToType->isEnumeralType())) {
+ SCS.Second = ICK_Integral_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Floating point conversions (C++ 4.8).
+ else if (FromType->isFloatingType() && ToType->isFloatingType()) {
+ SCS.Second = ICK_Floating_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Complex conversions (C99 6.3.1.6)
+ else if (FromType->isComplexType() && ToType->isComplexType()) {
+ SCS.Second = ICK_Complex_Conversion;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Floating-integral conversions (C++ 4.9).
+ // FIXME: isIntegralType shouldn't be true for enums in C++.
+ else if ((FromType->isFloatingType() &&
+ ToType->isIntegralType() && !ToType->isBooleanType() &&
+ !ToType->isEnumeralType()) ||
+ ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
+ ToType->isFloatingType())) {
+ SCS.Second = ICK_Floating_Integral;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Complex-real conversions (C99 6.3.1.7)
+ else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
+ (ToType->isComplexType() && FromType->isArithmeticType())) {
+ SCS.Second = ICK_Complex_Real;
+ FromType = ToType.getUnqualifiedType();
+ }
+ // Pointer conversions (C++ 4.10).
+ else if (IsPointerConversion(From, FromType, ToType, FromType,
+ IncompatibleObjC)) {
+ SCS.Second = ICK_Pointer_Conversion;
+ SCS.IncompatibleObjC = IncompatibleObjC;
+ }
+ // Pointer to member conversions (4.11).
+ else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
+ SCS.Second = ICK_Pointer_Member;
+ }
+ // Boolean conversions (C++ 4.12).
+ else if (ToType->isBooleanType() &&
+ (FromType->isArithmeticType() ||
+ FromType->isEnumeralType() ||
+ FromType->isPointerType() ||
+ FromType->isBlockPointerType() ||
+ FromType->isMemberPointerType() ||
+ FromType->isNullPtrType())) {
+ SCS.Second = ICK_Boolean_Conversion;
+ FromType = Context.BoolTy;
+ }
+ // Compatible conversions (Clang extension for C function overloading)
+ else if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(ToType, FromType)) {
+ SCS.Second = ICK_Compatible_Conversion;
+ } else {
+ // No second conversion required.
+ SCS.Second = ICK_Identity;
+ }
+
+ QualType CanonFrom;
+ QualType CanonTo;
+ // The third conversion can be a qualification conversion (C++ 4p1).
+ if (IsQualificationConversion(FromType, ToType)) {
+ SCS.Third = ICK_Qualification;
+ FromType = ToType;
+ CanonFrom = Context.getCanonicalType(FromType);
+ CanonTo = Context.getCanonicalType(ToType);
+ } else {
+ // No conversion required
+ SCS.Third = ICK_Identity;
+
+ // C++ [over.best.ics]p6:
+ // [...] Any difference in top-level cv-qualification is
+ // subsumed by the initialization itself and does not constitute
+ // a conversion. [...]
+ CanonFrom = Context.getCanonicalType(FromType);
+ CanonTo = Context.getCanonicalType(ToType);
+ if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
+ CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
+ FromType = ToType;
+ CanonFrom = CanonTo;
+ }
+ }
+
+ // If we have not converted the argument type to the parameter type,
+ // this is a bad conversion sequence.
+ if (CanonFrom != CanonTo)
+ return false;
+
+ SCS.ToTypePtr = FromType.getAsOpaquePtr();
+ return true;
+}
+
+/// IsIntegralPromotion - Determines whether the conversion from the
+/// expression From (whose potentially-adjusted type is FromType) to
+/// ToType is an integral promotion (C++ 4.5). If so, returns true and
+/// sets PromotedType to the promoted type.
+bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
+{
+ const BuiltinType *To = ToType->getAsBuiltinType();
+ // All integers are built-in.
+ if (!To) {
+ return false;
+ }
+
+ // An rvalue of type char, signed char, unsigned char, short int, or
+ // unsigned short int can be converted to an rvalue of type int if
+ // int can represent all the values of the source type; otherwise,
+ // the source rvalue can be converted to an rvalue of type unsigned
+ // int (C++ 4.5p1).
+ if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
+ if (// We can promote any signed, promotable integer type to an int
+ (FromType->isSignedIntegerType() ||
+ // We can promote any unsigned integer type whose size is
+ // less than int to an int.
+ (!FromType->isSignedIntegerType() &&
+ Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
+ // can be converted to an rvalue of the first of the following types
+ // that can represent all the values of its underlying type: int,
+ // unsigned int, long, or unsigned long (C++ 4.5p2).
+ if ((FromType->isEnumeralType() || FromType->isWideCharType())
+ && ToType->isIntegerType()) {
+ // Determine whether the type we're converting from is signed or
+ // unsigned.
+ bool FromIsSigned;
+ uint64_t FromSize = Context.getTypeSize(FromType);
+ if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
+ QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
+ FromIsSigned = UnderlyingType->isSignedIntegerType();
+ } else {
+ // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
+ FromIsSigned = true;
+ }
+
+ // The types we'll try to promote to, in the appropriate
+ // order. Try each of these types.
+ QualType PromoteTypes[6] = {
+ Context.IntTy, Context.UnsignedIntTy,
+ Context.LongTy, Context.UnsignedLongTy ,
+ Context.LongLongTy, Context.UnsignedLongLongTy
+ };
+ for (int Idx = 0; Idx < 6; ++Idx) {
+ uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
+ if (FromSize < ToSize ||
+ (FromSize == ToSize &&
+ FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
+ // We found the type that we can promote to. If this is the
+ // type we wanted, we have a promotion. Otherwise, no
+ // promotion.
+ return Context.getCanonicalType(ToType).getUnqualifiedType()
+ == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
+ }
+ }
+ }
+
+ // An rvalue for an integral bit-field (9.6) can be converted to an
+ // rvalue of type int if int can represent all the values of the
+ // bit-field; otherwise, it can be converted to unsigned int if
+ // unsigned int can represent all the values of the bit-field. If
+ // the bit-field is larger yet, no integral promotion applies to
+ // it. If the bit-field has an enumerated type, it is treated as any
+ // other value of that type for promotion purposes (C++ 4.5p3).
+ // FIXME: We should delay checking of bit-fields until we actually perform the
+ // conversion.
+ using llvm::APSInt;
+ if (From)
+ if (FieldDecl *MemberDecl = From->getBitField()) {
+ APSInt BitWidth;
+ if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
+ MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
+ APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
+ ToSize = Context.getTypeSize(ToType);
+
+ // Are we promoting to an int from a bitfield that fits in an int?
+ if (BitWidth < ToSize ||
+ (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
+ return To->getKind() == BuiltinType::Int;
+ }
+
+ // Are we promoting to an unsigned int from an unsigned bitfield
+ // that fits into an unsigned int?
+ if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
+ return To->getKind() == BuiltinType::UInt;
+ }
+
+ return false;
+ }
+ }
+
+ // An rvalue of type bool can be converted to an rvalue of type int,
+ // with false becoming zero and true becoming one (C++ 4.5p4).
+ if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
+ return true;
+ }
+
+ return false;
+}
+
+/// IsFloatingPointPromotion - Determines whether the conversion from
+/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
+/// returns true and sets PromotedType to the promoted type.
+bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
+{
+ /// An rvalue of type float can be converted to an rvalue of type
+ /// double. (C++ 4.6p1).
+ if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
+ if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
+ if (FromBuiltin->getKind() == BuiltinType::Float &&
+ ToBuiltin->getKind() == BuiltinType::Double)
+ return true;
+
+ // C99 6.3.1.5p1:
+ // When a float is promoted to double or long double, or a
+ // double is promoted to long double [...].
+ if (!getLangOptions().CPlusPlus &&
+ (FromBuiltin->getKind() == BuiltinType::Float ||
+ FromBuiltin->getKind() == BuiltinType::Double) &&
+ (ToBuiltin->getKind() == BuiltinType::LongDouble))
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Determine if a conversion is a complex promotion.
+///
+/// A complex promotion is defined as a complex -> complex conversion
+/// where the conversion between the underlying real types is a
+/// floating-point or integral promotion.
+bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
+ const ComplexType *FromComplex = FromType->getAsComplexType();
+ if (!FromComplex)
+ return false;
+
+ const ComplexType *ToComplex = ToType->getAsComplexType();
+ if (!ToComplex)
+ return false;
+
+ return IsFloatingPointPromotion(FromComplex->getElementType(),
+ ToComplex->getElementType()) ||
+ IsIntegralPromotion(0, FromComplex->getElementType(),
+ ToComplex->getElementType());
+}
+
+/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
+/// the pointer type FromPtr to a pointer to type ToPointee, with the
+/// same type qualifiers as FromPtr has on its pointee type. ToType,
+/// if non-empty, will be a pointer to ToType that may or may not have
+/// the right set of qualifiers on its pointee.
+static QualType
+BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
+ QualType ToPointee, QualType ToType,
+ ASTContext &Context) {
+ QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
+ QualType CanonToPointee = Context.getCanonicalType(ToPointee);
+ unsigned Quals = CanonFromPointee.getCVRQualifiers();
+
+ // Exact qualifier match -> return the pointer type we're converting to.
+ if (CanonToPointee.getCVRQualifiers() == Quals) {
+ // ToType is exactly what we need. Return it.
+ if (ToType.getTypePtr())
+ return ToType;
+
+ // Build a pointer to ToPointee. It has the right qualifiers
+ // already.
+ return Context.getPointerType(ToPointee);
+ }
+
+ // Just build a canonical type that has the right qualifiers.
+ return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
+}
+
+/// IsPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType,
+/// can be converted to the type ToType via a pointer conversion (C++
+/// 4.10). If so, returns true and places the converted type (that
+/// might differ from ToType in its cv-qualifiers at some level) into
+/// ConvertedType.
+///
+/// This routine also supports conversions to and from block pointers
+/// and conversions with Objective-C's 'id', 'id<protocols...>', and
+/// pointers to interfaces. FIXME: Once we've determined the
+/// appropriate overloading rules for Objective-C, we may want to
+/// split the Objective-C checks into a different routine; however,
+/// GCC seems to consider all of these conversions to be pointer
+/// conversions, so for now they live here. IncompatibleObjC will be
+/// set if the conversion is an allowed Objective-C conversion that
+/// should result in a warning.
+bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC)
+{
+ IncompatibleObjC = false;
+ if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
+ return true;
+
+ // Conversion from a null pointer constant to any Objective-C pointer type.
+ if (Context.isObjCObjectPointerType(ToType) &&
+ From->isNullPointerConstant(Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Blocks: Block pointers can be converted to void*.
+ if (FromType->isBlockPointerType() && ToType->isPointerType() &&
+ ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
+ ConvertedType = ToType;
+ return true;
+ }
+ // Blocks: A null pointer constant can be converted to a block
+ // pointer type.
+ if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If the left-hand-side is nullptr_t, the right side can be a null
+ // pointer constant.
+ if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ const PointerType* ToTypePtr = ToType->getAsPointerType();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
+ if (From->isNullPointerConstant(Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Beyond this point, both types need to be pointers.
+ const PointerType *FromTypePtr = FromType->getAsPointerType();
+ if (!FromTypePtr)
+ return false;
+
+ QualType FromPointeeType = FromTypePtr->getPointeeType();
+ QualType ToPointeeType = ToTypePtr->getPointeeType();
+
+ // An rvalue of type "pointer to cv T," where T is an object type,
+ // can be converted to an rvalue of type "pointer to cv void" (C++
+ // 4.10p2).
+ if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // When we're overloading in C, we allow a special kind of pointer
+ // conversion for compatible-but-not-identical pointee types.
+ if (!getLangOptions().CPlusPlus &&
+ Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // C++ [conv.ptr]p3:
+ //
+ // An rvalue of type "pointer to cv D," where D is a class type,
+ // can be converted to an rvalue of type "pointer to cv B," where
+ // B is a base class (clause 10) of D. If B is an inaccessible
+ // (clause 11) or ambiguous (10.2) base class of D, a program that
+ // necessitates this conversion is ill-formed. The result of the
+ // conversion is a pointer to the base class sub-object of the
+ // derived class object. The null pointer value is converted to
+ // the null pointer value of the destination type.
+ //
+ // Note that we do not check for ambiguity or inaccessibility
+ // here. That is handled by CheckPointerConversion.
+ if (getLangOptions().CPlusPlus &&
+ FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
+ IsDerivedFrom(FromPointeeType, ToPointeeType)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ return false;
+}
+
+/// isObjCPointerConversion - Determines whether this is an
+/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
+/// with the same arguments and return values.
+bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
+ QualType& ConvertedType,
+ bool &IncompatibleObjC) {
+ if (!getLangOptions().ObjC1)
+ return false;
+
+ // Conversions with Objective-C's id<...>.
+ if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
+ ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Beyond this point, both types need to be pointers or block pointers.
+ QualType ToPointeeType;
+ const PointerType* ToTypePtr = ToType->getAsPointerType();
+ if (ToTypePtr)
+ ToPointeeType = ToTypePtr->getPointeeType();
+ else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
+ ToPointeeType = ToBlockPtr->getPointeeType();
+ else
+ return false;
+
+ QualType FromPointeeType;
+ const PointerType *FromTypePtr = FromType->getAsPointerType();
+ if (FromTypePtr)
+ FromPointeeType = FromTypePtr->getPointeeType();
+ else if (const BlockPointerType *FromBlockPtr
+ = FromType->getAsBlockPointerType())
+ FromPointeeType = FromBlockPtr->getPointeeType();
+ else
+ return false;
+
+ // Objective C++: We're able to convert from a pointer to an
+ // interface to a pointer to a different interface.
+ const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
+ const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
+ if (FromIface && ToIface &&
+ Context.canAssignObjCInterfaces(ToIface, FromIface)) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ if (FromIface && ToIface &&
+ Context.canAssignObjCInterfaces(FromIface, ToIface)) {
+ // Okay: this is some kind of implicit downcast of Objective-C
+ // interfaces, which is permitted. However, we're going to
+ // complain about it.
+ IncompatibleObjC = true;
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // Objective C++: We're able to convert between "id" and a pointer
+ // to any interface (in both directions).
+ if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
+ || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
+ ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
+ ToPointeeType,
+ ToType, Context);
+ return true;
+ }
+
+ // Objective C++: Allow conversions between the Objective-C "id" and
+ // "Class", in either direction.
+ if ((Context.isObjCIdStructType(FromPointeeType) &&
+ Context.isObjCClassStructType(ToPointeeType)) ||
+ (Context.isObjCClassStructType(FromPointeeType) &&
+ Context.isObjCIdStructType(ToPointeeType))) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If we have pointers to pointers, recursively check whether this
+ // is an Objective-C conversion.
+ if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
+ isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
+ IncompatibleObjC)) {
+ // We always complain about this conversion.
+ IncompatibleObjC = true;
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // If we have pointers to functions or blocks, check whether the only
+ // differences in the argument and result types are in Objective-C
+ // pointer conversions. If so, we permit the conversion (but
+ // complain about it).
+ const FunctionProtoType *FromFunctionType
+ = FromPointeeType->getAsFunctionProtoType();
+ const FunctionProtoType *ToFunctionType
+ = ToPointeeType->getAsFunctionProtoType();
+ if (FromFunctionType && ToFunctionType) {
+ // If the function types are exactly the same, this isn't an
+ // Objective-C pointer conversion.
+ if (Context.getCanonicalType(FromPointeeType)
+ == Context.getCanonicalType(ToPointeeType))
+ return false;
+
+ // Perform the quick checks that will tell us whether these
+ // function types are obviously different.
+ if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
+ FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
+ FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
+ return false;
+
+ bool HasObjCConversion = false;
+ if (Context.getCanonicalType(FromFunctionType->getResultType())
+ == Context.getCanonicalType(ToFunctionType->getResultType())) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
+ ToFunctionType->getResultType(),
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Function types are too different. Abort.
+ return false;
+ }
+
+ // Check argument types.
+ for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
+ ArgIdx != NumArgs; ++ArgIdx) {
+ QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
+ QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
+ if (Context.getCanonicalType(FromArgType)
+ == Context.getCanonicalType(ToArgType)) {
+ // Okay, the types match exactly. Nothing to do.
+ } else if (isObjCPointerConversion(FromArgType, ToArgType,
+ ConvertedType, IncompatibleObjC)) {
+ // Okay, we have an Objective-C pointer conversion.
+ HasObjCConversion = true;
+ } else {
+ // Argument types are too different. Abort.
+ return false;
+ }
+ }
+
+ if (HasObjCConversion) {
+ // We had an Objective-C conversion. Allow this pointer
+ // conversion, but complain about it.
+ ConvertedType = ToType;
+ IncompatibleObjC = true;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// CheckPointerConversion - Check the pointer conversion from the
+/// expression From to the type ToType. This routine checks for
+/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
+/// conversions for which IsPointerConversion has already returned
+/// true. It returns true and produces a diagnostic if there was an
+/// error, or returns false otherwise.
+bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
+ QualType FromType = From->getType();
+
+ if (const PointerType *FromPtrType = FromType->getAsPointerType())
+ if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
+ QualType FromPointeeType = FromPtrType->getPointeeType(),
+ ToPointeeType = ToPtrType->getPointeeType();
+
+ // Objective-C++ conversions are always okay.
+ // FIXME: We should have a different class of conversions for the
+ // Objective-C++ implicit conversions.
+ if (Context.isObjCIdStructType(FromPointeeType) ||
+ Context.isObjCIdStructType(ToPointeeType) ||
+ Context.isObjCClassStructType(FromPointeeType) ||
+ Context.isObjCClassStructType(ToPointeeType))
+ return false;
+
+ if (FromPointeeType->isRecordType() &&
+ ToPointeeType->isRecordType()) {
+ // We must have a derived-to-base conversion. Check an
+ // ambiguous or inaccessible conversion.
+ return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
+ From->getExprLoc(),
+ From->getSourceRange());
+ }
+ }
+
+ return false;
+}
+
+/// IsMemberPointerConversion - Determines whether the conversion of the
+/// expression From, which has the (possibly adjusted) type FromType, can be
+/// converted to the type ToType via a member pointer conversion (C++ 4.11).
+/// If so, returns true and places the converted type (that might differ from
+/// ToType in its cv-qualifiers at some level) into ConvertedType.
+bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
+ QualType ToType, QualType &ConvertedType)
+{
+ const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
+ if (!ToTypePtr)
+ return false;
+
+ // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
+ if (From->isNullPointerConstant(Context)) {
+ ConvertedType = ToType;
+ return true;
+ }
+
+ // Otherwise, both types have to be member pointers.
+ const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
+ if (!FromTypePtr)
+ return false;
+
+ // A pointer to member of B can be converted to a pointer to member of D,
+ // where D is derived from B (C++ 4.11p2).
+ QualType FromClass(FromTypePtr->getClass(), 0);
+ QualType ToClass(ToTypePtr->getClass(), 0);
+ // FIXME: What happens when these are dependent? Is this function even called?
+
+ if (IsDerivedFrom(ToClass, FromClass)) {
+ ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
+ ToClass.getTypePtr());
+ return true;
+ }
+
+ return false;
+}
+
+/// CheckMemberPointerConversion - Check the member pointer conversion from the
+/// expression From to the type ToType. This routine checks for ambiguous or
+/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
+/// for which IsMemberPointerConversion has already returned true. It returns
+/// true and produces a diagnostic if there was an error, or returns false
+/// otherwise.
+bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
+ QualType FromType = From->getType();
+ const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
+ if (!FromPtrType)
+ return false;
+
+ const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
+ assert(ToPtrType && "No member pointer cast has a target type "
+ "that is not a member pointer.");
+
+ QualType FromClass = QualType(FromPtrType->getClass(), 0);
+ QualType ToClass = QualType(ToPtrType->getClass(), 0);
+
+ // FIXME: What about dependent types?
+ assert(FromClass->isRecordType() && "Pointer into non-class.");
+ assert(ToClass->isRecordType() && "Pointer into non-class.");
+
+ BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
+ /*DetectVirtual=*/true);
+ bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
+ assert(DerivationOkay &&
+ "Should not have been called if derivation isn't OK.");
+ (void)DerivationOkay;
+
+ if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
+ getUnqualifiedType())) {
+ // Derivation is ambiguous. Redo the check to find the exact paths.
+ Paths.clear();
+ Paths.setRecordingPaths(true);
+ bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
+ assert(StillOkay && "Derivation changed due to quantum fluctuation.");
+ (void)StillOkay;
+
+ std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
+ Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
+ << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
+ return true;
+ }
+
+ if (const RecordType *VBase = Paths.getDetectedVirtual()) {
+ Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
+ << FromClass << ToClass << QualType(VBase, 0)
+ << From->getSourceRange();
+ return true;
+ }
+
+ return false;
+}
+
+/// IsQualificationConversion - Determines whether the conversion from
+/// an rvalue of type FromType to ToType is a qualification conversion
+/// (C++ 4.4).
+bool
+Sema::IsQualificationConversion(QualType FromType, QualType ToType)
+{
+ FromType = Context.getCanonicalType(FromType);
+ ToType = Context.getCanonicalType(ToType);
+
+ // If FromType and ToType are the same type, this is not a
+ // qualification conversion.
+ if (FromType == ToType)
+ return false;
+
+ // (C++ 4.4p4):
+ // A conversion can add cv-qualifiers at levels other than the first
+ // in multi-level pointers, subject to the following rules: [...]
+ bool PreviousToQualsIncludeConst = true;
+ bool UnwrappedAnyPointer = false;
+ while (UnwrapSimilarPointerTypes(FromType, ToType)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left to
+ // unwrap.
+ UnwrappedAnyPointer = true;
+
+ // -- for every j > 0, if const is in cv 1,j then const is in cv
+ // 2,j, and similarly for volatile.
+ if (!ToType.isAtLeastAsQualifiedAs(FromType))
+ return false;
+
+ // -- if the cv 1,j and cv 2,j are different, then const is in
+ // every cv for 0 < k < j.
+ if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
+ && !PreviousToQualsIncludeConst)
+ return false;
+
+ // Keep track of whether all prior cv-qualifiers in the "to" type
+ // include const.
+ PreviousToQualsIncludeConst
+ = PreviousToQualsIncludeConst && ToType.isConstQualified();
+ }
+
+ // We are left with FromType and ToType being the pointee types
+ // after unwrapping the original FromType and ToType the same number
+ // of types. If we unwrapped any pointers, and if FromType and
+ // ToType have the same unqualified type (since we checked
+ // qualifiers above), then this is a qualification conversion.
+ return UnwrappedAnyPointer &&
+ FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
+}
+
+/// Determines whether there is a user-defined conversion sequence
+/// (C++ [over.ics.user]) that converts expression From to the type
+/// ToType. If such a conversion exists, User will contain the
+/// user-defined conversion sequence that performs such a conversion
+/// and this routine will return true. Otherwise, this routine returns
+/// false and User is unspecified.
+///
+/// \param AllowConversionFunctions true if the conversion should
+/// consider conversion functions at all. If false, only constructors
+/// will be considered.
+///
+/// \param AllowExplicit true if the conversion should consider C++0x
+/// "explicit" conversion functions as well as non-explicit conversion
+/// functions (C++0x [class.conv.fct]p2).
+///
+/// \param ForceRValue true if the expression should be treated as an rvalue
+/// for overload resolution.
+bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
+ UserDefinedConversionSequence& User,
+ bool AllowConversionFunctions,
+ bool AllowExplicit, bool ForceRValue)
+{
+ OverloadCandidateSet CandidateSet;
+ if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
+ if (CXXRecordDecl *ToRecordDecl
+ = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
+ // C++ [over.match.ctor]p1:
+ // When objects of class type are direct-initialized (8.5), or
+ // copy-initialized from an expression of the same or a
+ // derived class type (8.5), overload resolution selects the
+ // constructor. [...] For copy-initialization, the candidate
+ // functions are all the converting constructors (12.3.1) of
+ // that class. The argument list is the expression-list within
+ // the parentheses of the initializer.
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ToType).getUnqualifiedType());
+ DeclContext::lookup_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd)
+ = ToRecordDecl->lookup(Context, ConstructorName);
+ Con != ConEnd; ++Con) {
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isConvertingConstructor())
+ AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
+ /*SuppressUserConversions=*/true, ForceRValue);
+ }
+ }
+ }
+
+ if (!AllowConversionFunctions) {
+ // Don't allow any conversion functions to enter the overload set.
+ } else if (const RecordType *FromRecordType
+ = From->getType()->getAsRecordType()) {
+ if (CXXRecordDecl *FromRecordDecl
+ = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
+ // Add all of the conversion functions as candidates.
+ // FIXME: Look for conversions in base classes!
+ OverloadedFunctionDecl *Conversions
+ = FromRecordDecl->getConversionFunctions();
+ for (OverloadedFunctionDecl::function_iterator Func
+ = Conversions->function_begin();
+ Func != Conversions->function_end(); ++Func) {
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
+ if (AllowExplicit || !Conv->isExplicit())
+ AddConversionCandidate(Conv, From, ToType, CandidateSet);
+ }
+ }
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ // Record the standard conversion we used and the conversion function.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ // If the user-defined conversion is specified by a
+ // constructor (12.3.1), the initial standard conversion
+ // sequence converts the source type to the type required by
+ // the argument of the constructor.
+ //
+ // FIXME: What about ellipsis conversions?
+ QualType ThisType = Constructor->getThisType(Context);
+ User.Before = Best->Conversions[0].Standard;
+ User.ConversionFunction = Constructor;
+ User.After.setAsIdentityConversion();
+ User.After.FromTypePtr
+ = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
+ User.After.ToTypePtr = ToType.getAsOpaquePtr();
+ return true;
+ } else if (CXXConversionDecl *Conversion
+ = dyn_cast<CXXConversionDecl>(Best->Function)) {
+ // C++ [over.ics.user]p1:
+ //
+ // [...] If the user-defined conversion is specified by a
+ // conversion function (12.3.2), the initial standard
+ // conversion sequence converts the source type to the
+ // implicit object parameter of the conversion function.
+ User.Before = Best->Conversions[0].Standard;
+ User.ConversionFunction = Conversion;
+
+ // C++ [over.ics.user]p2:
+ // The second standard conversion sequence converts the
+ // result of the user-defined conversion to the target type
+ // for the sequence. Since an implicit conversion sequence
+ // is an initialization, the special rules for
+ // initialization by user-defined conversion apply when
+ // selecting the best user-defined conversion for a
+ // user-defined conversion sequence (see 13.3.3 and
+ // 13.3.3.1).
+ User.After = Best->FinalConversion;
+ return true;
+ } else {
+ assert(false && "Not a constructor or conversion function?");
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ case OR_Deleted:
+ // No conversion here! We're done.
+ return false;
+
+ case OR_Ambiguous:
+ // FIXME: See C++ [over.best.ics]p10 for the handling of
+ // ambiguous conversion sequences.
+ return false;
+ }
+
+ return false;
+}
+
+/// CompareImplicitConversionSequences - Compare two implicit
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2).
+ImplicitConversionSequence::CompareKind
+Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
+ const ImplicitConversionSequence& ICS2)
+{
+ // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
+ // conversion sequences (as defined in 13.3.3.1)
+ // -- a standard conversion sequence (13.3.3.1.1) is a better
+ // conversion sequence than a user-defined conversion sequence or
+ // an ellipsis conversion sequence, and
+ // -- a user-defined conversion sequence (13.3.3.1.2) is a better
+ // conversion sequence than an ellipsis conversion sequence
+ // (13.3.3.1.3).
+ //
+ if (ICS1.ConversionKind < ICS2.ConversionKind)
+ return ImplicitConversionSequence::Better;
+ else if (ICS2.ConversionKind < ICS1.ConversionKind)
+ return ImplicitConversionSequence::Worse;
+
+ // Two implicit conversion sequences of the same form are
+ // indistinguishable conversion sequences unless one of the
+ // following rules apply: (C++ 13.3.3.2p3):
+ if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
+ return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
+ else if (ICS1.ConversionKind ==
+ ImplicitConversionSequence::UserDefinedConversion) {
+ // User-defined conversion sequence U1 is a better conversion
+ // sequence than another user-defined conversion sequence U2 if
+ // they contain the same user-defined conversion function or
+ // constructor and if the second standard conversion sequence of
+ // U1 is better than the second standard conversion sequence of
+ // U2 (C++ 13.3.3.2p3).
+ if (ICS1.UserDefined.ConversionFunction ==
+ ICS2.UserDefined.ConversionFunction)
+ return CompareStandardConversionSequences(ICS1.UserDefined.After,
+ ICS2.UserDefined.After);
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareStandardConversionSequences - Compare two standard
+/// conversion sequences to determine whether one is better than the
+/// other or if they are indistinguishable (C++ 13.3.3.2p3).
+ImplicitConversionSequence::CompareKind
+Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2)
+{
+ // Standard conversion sequence S1 is a better conversion sequence
+ // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
+
+ // -- S1 is a proper subsequence of S2 (comparing the conversion
+ // sequences in the canonical form defined by 13.3.3.1.1,
+ // excluding any Lvalue Transformation; the identity conversion
+ // sequence is considered to be a subsequence of any
+ // non-identity conversion sequence) or, if not that,
+ if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
+ // Neither is a proper subsequence of the other. Do nothing.
+ ;
+ else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
+ (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
+ (SCS1.Second == ICK_Identity &&
+ SCS1.Third == ICK_Identity))
+ // SCS1 is a proper subsequence of SCS2.
+ return ImplicitConversionSequence::Better;
+ else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
+ (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
+ (SCS2.Second == ICK_Identity &&
+ SCS2.Third == ICK_Identity))
+ // SCS2 is a proper subsequence of SCS1.
+ return ImplicitConversionSequence::Worse;
+
+ // -- the rank of S1 is better than the rank of S2 (by the rules
+ // defined below), or, if not that,
+ ImplicitConversionRank Rank1 = SCS1.getRank();
+ ImplicitConversionRank Rank2 = SCS2.getRank();
+ if (Rank1 < Rank2)
+ return ImplicitConversionSequence::Better;
+ else if (Rank2 < Rank1)
+ return ImplicitConversionSequence::Worse;
+
+ // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
+ // are indistinguishable unless one of the following rules
+ // applies:
+
+ // A conversion that is not a conversion of a pointer, or
+ // pointer to member, to bool is better than another conversion
+ // that is such a conversion.
+ if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
+ return SCS2.isPointerConversionToBool()
+ ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p4b2:
+ //
+ // If class B is derived directly or indirectly from class A,
+ // conversion of B* to A* is better than conversion of B* to
+ // void*, and conversion of A* to void* is better than conversion
+ // of B* to void*.
+ bool SCS1ConvertsToVoid
+ = SCS1.isPointerConversionToVoidPointer(Context);
+ bool SCS2ConvertsToVoid
+ = SCS2.isPointerConversionToVoidPointer(Context);
+ if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
+ // Exactly one of the conversion sequences is a conversion to
+ // a void pointer; it's the worse conversion.
+ return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+ } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
+ // Neither conversion sequence converts to a void pointer; compare
+ // their derived-to-base conversions.
+ if (ImplicitConversionSequence::CompareKind DerivedCK
+ = CompareDerivedToBaseConversions(SCS1, SCS2))
+ return DerivedCK;
+ } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
+ // Both conversion sequences are conversions to void
+ // pointers. Compare the source types to determine if there's an
+ // inheritance relationship in their sources.
+ QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
+ QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = Context.getArrayDecayedType(FromType2);
+
+ QualType FromPointee1
+ = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
+
+ if (IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ // Objective-C++: If one interface is more specific than the
+ // other, it is the better one.
+ const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
+ const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
+ if (FromIface1 && FromIface1) {
+ if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // Compare based on qualification conversions (C++ 13.3.3.2p3,
+ // bullet 3).
+ if (ImplicitConversionSequence::CompareKind QualCK
+ = CompareQualificationConversions(SCS1, SCS2))
+ return QualCK;
+
+ if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
+ // C++0x [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
+ // implicit object parameter of a non-static member function declared
+ // without a ref-qualifier, and S1 binds an rvalue reference to an
+ // rvalue and S2 binds an lvalue reference.
+ // FIXME: We don't know if we're dealing with the implicit object parameter,
+ // or if the member function in this case has a ref qualifier.
+ // (Of course, we don't have ref qualifiers yet.)
+ if (SCS1.RRefBinding != SCS2.RRefBinding)
+ return SCS1.RRefBinding ? ImplicitConversionSequence::Better
+ : ImplicitConversionSequence::Worse;
+
+ // C++ [over.ics.rank]p3b4:
+ // -- S1 and S2 are reference bindings (8.5.3), and the types to
+ // which the references refer are the same type except for
+ // top-level cv-qualifiers, and the type to which the reference
+ // initialized by S2 refers is more cv-qualified than the type
+ // to which the reference initialized by S1 refers.
+ QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
+ QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
+ T1 = Context.getCanonicalType(T1);
+ T2 = Context.getCanonicalType(T2);
+ if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
+ if (T2.isMoreQualifiedThan(T1))
+ return ImplicitConversionSequence::Better;
+ else if (T1.isMoreQualifiedThan(T2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// CompareQualificationConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
+ImplicitConversionSequence::CompareKind
+Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2)
+{
+ // C++ 13.3.3.2p3:
+ // -- S1 and S2 differ only in their qualification conversion and
+ // yield similar types T1 and T2 (C++ 4.4), respectively, and the
+ // cv-qualification signature of type T1 is a proper subset of
+ // the cv-qualification signature of type T2, and S1 is not the
+ // deprecated string literal array-to-pointer conversion (4.2).
+ if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
+ SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // FIXME: the example in the standard doesn't use a qualification
+ // conversion (!)
+ QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
+ QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
+ T1 = Context.getCanonicalType(T1);
+ T2 = Context.getCanonicalType(T2);
+
+ // If the types are the same, we won't learn anything by unwrapped
+ // them.
+ if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
+ return ImplicitConversionSequence::Indistinguishable;
+
+ ImplicitConversionSequence::CompareKind Result
+ = ImplicitConversionSequence::Indistinguishable;
+ while (UnwrapSimilarPointerTypes(T1, T2)) {
+ // Within each iteration of the loop, we check the qualifiers to
+ // determine if this still looks like a qualification
+ // conversion. Then, if all is well, we unwrap one more level of
+ // pointers or pointers-to-members and do it all again
+ // until there are no more pointers or pointers-to-members left
+ // to unwrap. This essentially mimics what
+ // IsQualificationConversion does, but here we're checking for a
+ // strict subset of qualifiers.
+ if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
+ // The qualifiers are the same, so this doesn't tell us anything
+ // about how the sequences rank.
+ ;
+ else if (T2.isMoreQualifiedThan(T1)) {
+ // T1 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Worse)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Better;
+ } else if (T1.isMoreQualifiedThan(T2)) {
+ // T2 has fewer qualifiers, so it could be the better sequence.
+ if (Result == ImplicitConversionSequence::Better)
+ // Neither has qualifiers that are a subset of the other's
+ // qualifiers.
+ return ImplicitConversionSequence::Indistinguishable;
+
+ Result = ImplicitConversionSequence::Worse;
+ } else {
+ // Qualifiers are disjoint.
+ return ImplicitConversionSequence::Indistinguishable;
+ }
+
+ // If the types after this point are equivalent, we're done.
+ if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
+ break;
+ }
+
+ // Check that the winning standard conversion sequence isn't using
+ // the deprecated string literal array to pointer conversion.
+ switch (Result) {
+ case ImplicitConversionSequence::Better:
+ if (SCS1.Deprecated)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ if (SCS2.Deprecated)
+ Result = ImplicitConversionSequence::Indistinguishable;
+ break;
+ }
+
+ return Result;
+}
+
+/// CompareDerivedToBaseConversions - Compares two standard conversion
+/// sequences to determine whether they can be ranked based on their
+/// various kinds of derived-to-base conversions (C++
+/// [over.ics.rank]p4b3). As part of these checks, we also look at
+/// conversions between Objective-C interface types.
+ImplicitConversionSequence::CompareKind
+Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
+ const StandardConversionSequence& SCS2) {
+ QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
+ QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
+ QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
+ QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
+
+ // Adjust the types we're converting from via the array-to-pointer
+ // conversion, if we need to.
+ if (SCS1.First == ICK_Array_To_Pointer)
+ FromType1 = Context.getArrayDecayedType(FromType1);
+ if (SCS2.First == ICK_Array_To_Pointer)
+ FromType2 = Context.getArrayDecayedType(FromType2);
+
+ // Canonicalize all of the types.
+ FromType1 = Context.getCanonicalType(FromType1);
+ ToType1 = Context.getCanonicalType(ToType1);
+ FromType2 = Context.getCanonicalType(FromType2);
+ ToType2 = Context.getCanonicalType(ToType2);
+
+ // C++ [over.ics.rank]p4b3:
+ //
+ // If class B is derived directly or indirectly from class A and
+ // class C is derived directly or indirectly from B,
+ //
+ // For Objective-C, we let A, B, and C also be Objective-C
+ // interfaces.
+
+ // Compare based on pointer conversions.
+ if (SCS1.Second == ICK_Pointer_Conversion &&
+ SCS2.Second == ICK_Pointer_Conversion &&
+ /*FIXME: Remove if Objective-C id conversions get their own rank*/
+ FromType1->isPointerType() && FromType2->isPointerType() &&
+ ToType1->isPointerType() && ToType2->isPointerType()) {
+ QualType FromPointee1
+ = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee1
+ = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
+ QualType FromPointee2
+ = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
+ QualType ToPointee2
+ = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
+
+ const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
+ const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
+ const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
+ const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
+
+ // -- conversion of C* to B* is better than conversion of C* to A*,
+ if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
+ if (IsDerivedFrom(ToPointee1, ToPointee2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(ToPointee2, ToPointee1))
+ return ImplicitConversionSequence::Worse;
+
+ if (ToIface1 && ToIface2) {
+ if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ // -- conversion of B* to A* is better than conversion of C* to A*,
+ if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
+ if (IsDerivedFrom(FromPointee2, FromPointee1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromPointee1, FromPointee2))
+ return ImplicitConversionSequence::Worse;
+
+ if (FromIface1 && FromIface2) {
+ if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
+ return ImplicitConversionSequence::Better;
+ else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+ }
+
+ // Compare based on reference bindings.
+ if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
+ SCS1.Second == ICK_Derived_To_Base) {
+ // -- binding of an expression of type C to a reference of type
+ // B& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
+ ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
+ if (IsDerivedFrom(ToType1, ToType2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(ToType2, ToType1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- binding of an expression of type B to a reference of type
+ // A& is better than binding an expression of type C to a
+ // reference of type A&,
+ if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
+ ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
+ if (IsDerivedFrom(FromType2, FromType1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromType1, FromType2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+
+ // FIXME: conversion of A::* to B::* is better than conversion of
+ // A::* to C::*,
+
+ // FIXME: conversion of B::* to C::* is better than conversion of
+ // A::* to C::*, and
+
+ if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
+ SCS1.Second == ICK_Derived_To_Base) {
+ // -- conversion of C to B is better than conversion of C to A,
+ if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
+ ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
+ if (IsDerivedFrom(ToType1, ToType2))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(ToType2, ToType1))
+ return ImplicitConversionSequence::Worse;
+ }
+
+ // -- conversion of B to A is better than conversion of C to A.
+ if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
+ ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
+ if (IsDerivedFrom(FromType2, FromType1))
+ return ImplicitConversionSequence::Better;
+ else if (IsDerivedFrom(FromType1, FromType2))
+ return ImplicitConversionSequence::Worse;
+ }
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
+/// TryCopyInitialization - Try to copy-initialize a value of type
+/// ToType from the expression From. Return the implicit conversion
+/// sequence required to pass this argument, which may be a bad
+/// conversion sequence (meaning that the argument cannot be passed to
+/// a parameter of this type). If @p SuppressUserConversions, then we
+/// do not permit any user-defined conversion sequences. If @p ForceRValue,
+/// then we treat @p From as an rvalue, even if it is an lvalue.
+ImplicitConversionSequence
+Sema::TryCopyInitialization(Expr *From, QualType ToType,
+ bool SuppressUserConversions, bool ForceRValue) {
+ if (ToType->isReferenceType()) {
+ ImplicitConversionSequence ICS;
+ CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
+ /*AllowExplicit=*/false, ForceRValue);
+ return ICS;
+ } else {
+ return TryImplicitConversion(From, ToType, SuppressUserConversions,
+ ForceRValue);
+ }
+}
+
+/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
+/// the expression @p From. Returns true (and emits a diagnostic) if there was
+/// an error, returns false if the initialization succeeded. Elidable should
+/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
+/// differently in C++0x for this case.
+bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
+ const char* Flavor, bool Elidable) {
+ if (!getLangOptions().CPlusPlus) {
+ // In C, argument passing is the same as performing an assignment.
+ QualType FromType = From->getType();
+
+ AssignConvertType ConvTy =
+ CheckSingleAssignmentConstraints(ToType, From);
+ if (ConvTy != Compatible &&
+ CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
+ ConvTy = Compatible;
+
+ return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
+ FromType, From, Flavor);
+ }
+
+ if (ToType->isReferenceType())
+ return CheckReferenceInit(From, ToType);
+
+ if (!PerformImplicitConversion(From, ToType, Flavor,
+ /*AllowExplicit=*/false, Elidable))
+ return false;
+
+ return Diag(From->getSourceRange().getBegin(),
+ diag::err_typecheck_convert_incompatible)
+ << ToType << From->getType() << Flavor << From->getSourceRange();
+}
+
+/// TryObjectArgumentInitialization - Try to initialize the object
+/// parameter of the given member function (@c Method) from the
+/// expression @p From.
+ImplicitConversionSequence
+Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
+ QualType ClassType = Context.getTypeDeclType(Method->getParent());
+ unsigned MethodQuals = Method->getTypeQualifiers();
+ QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
+
+ // Set up the conversion sequence as a "bad" conversion, to allow us
+ // to exit early.
+ ImplicitConversionSequence ICS;
+ ICS.Standard.setAsIdentityConversion();
+ ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
+
+ // We need to have an object of class type.
+ QualType FromType = From->getType();
+ if (const PointerType *PT = FromType->getAsPointerType())
+ FromType = PT->getPointeeType();
+
+ assert(FromType->isRecordType());
+
+ // The implicit object parmeter is has the type "reference to cv X",
+ // where X is the class of which the function is a member
+ // (C++ [over.match.funcs]p4). However, when finding an implicit
+ // conversion sequence for the argument, we are not allowed to
+ // create temporaries or perform user-defined conversions
+ // (C++ [over.match.funcs]p5). We perform a simplified version of
+ // reference binding here, that allows class rvalues to bind to
+ // non-constant references.
+
+ // First check the qualifiers. We don't care about lvalue-vs-rvalue
+ // with the implicit object parameter (C++ [over.match.funcs]p5).
+ QualType FromTypeCanon = Context.getCanonicalType(FromType);
+ if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
+ !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
+ return ICS;
+
+ // Check that we have either the same type or a derived type. It
+ // affects the conversion rank.
+ QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
+ if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
+ ICS.Standard.Second = ICK_Identity;
+ else if (IsDerivedFrom(FromType, ClassType))
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ else
+ return ICS;
+
+ // Success. Mark this as a reference binding.
+ ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
+ ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
+ ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
+ ICS.Standard.ReferenceBinding = true;
+ ICS.Standard.DirectBinding = true;
+ ICS.Standard.RRefBinding = false;
+ return ICS;
+}
+
+/// PerformObjectArgumentInitialization - Perform initialization of
+/// the implicit object parameter for the given Method with the given
+/// expression.
+bool
+Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
+ QualType FromRecordType, DestType;
+ QualType ImplicitParamRecordType =
+ Method->getThisType(Context)->getAsPointerType()->getPointeeType();
+
+ if (const PointerType *PT = From->getType()->getAsPointerType()) {
+ FromRecordType = PT->getPointeeType();
+ DestType = Method->getThisType(Context);
+ } else {
+ FromRecordType = From->getType();
+ DestType = ImplicitParamRecordType;
+ }
+
+ ImplicitConversionSequence ICS
+ = TryObjectArgumentInitialization(From, Method);
+ if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
+ return Diag(From->getSourceRange().getBegin(),
+ diag::err_implicit_object_parameter_init)
+ << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
+
+ if (ICS.Standard.Second == ICK_Derived_To_Base &&
+ CheckDerivedToBaseConversion(FromRecordType,
+ ImplicitParamRecordType,
+ From->getSourceRange().getBegin(),
+ From->getSourceRange()))
+ return true;
+
+ ImpCastExprToType(From, DestType, /*isLvalue=*/true);
+ return false;
+}
+
+/// TryContextuallyConvertToBool - Attempt to contextually convert the
+/// expression From to bool (C++0x [conv]p3).
+ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
+ return TryImplicitConversion(From, Context.BoolTy, false, true);
+}
+
+/// PerformContextuallyConvertToBool - Perform a contextual conversion
+/// of the expression From to bool (C++0x [conv]p3).
+bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
+ ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
+ if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
+ return false;
+
+ return Diag(From->getSourceRange().getBegin(),
+ diag::err_typecheck_bool_condition)
+ << From->getType() << From->getSourceRange();
+}
+
+/// AddOverloadCandidate - Adds the given function to the set of
+/// candidate functions, using the given function call arguments. If
+/// @p SuppressUserConversions, then don't allow user-defined
+/// conversions via constructors or conversion operators.
+/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
+/// hacky way to implement the overloading rules for elidable copy
+/// initialization in C++0x (C++0x 12.8p15).
+void
+Sema::AddOverloadCandidate(FunctionDecl *Function,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions,
+ bool ForceRValue)
+{
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
+ assert(Proto && "Functions without a prototype cannot be overloaded");
+ assert(!isa<CXXConversionDecl>(Function) &&
+ "Use AddConversionCandidate for conversion functions");
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ if (!isa<CXXConstructorDecl>(Method)) {
+ // If we get here, it's because we're calling a member function
+ // that is named without a member access expression (e.g.,
+ // "this->f") that was either written explicitly or created
+ // implicitly. This can happen with a qualified call to a member
+ // function, e.g., X::f(). We use a NULL object as the implied
+ // object argument (C++ [over.call.func]p3).
+ AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
+ SuppressUserConversions, ForceRValue);
+ return;
+ }
+ // We treat a constructor like a non-member function, since its object
+ // argument doesn't participate in overload resolution.
+ }
+
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.Function = Function;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Function->getMinRequiredArguments();
+ if (NumArgs < MinRequiredArgs) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Conversions.resize(NumArgs);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(Args[ArgIdx], ParamType,
+ SuppressUserConversions, ForceRValue);
+ if (Candidate.Conversions[ArgIdx].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx].ConversionKind
+ = ImplicitConversionSequence::EllipsisConversion;
+ }
+ }
+}
+
+/// \brief Add all of the function declarations in the given function set to
+/// the overload canddiate set.
+void Sema::AddFunctionCandidates(const FunctionSet &Functions,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions) {
+ for (FunctionSet::const_iterator F = Functions.begin(),
+ FEnd = Functions.end();
+ F != FEnd; ++F)
+ AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
+ SuppressUserConversions);
+}
+
+/// AddMethodCandidate - Adds the given C++ member function to the set
+/// of candidate functions, using the given function call arguments
+/// and the object argument (@c Object). For example, in a call
+/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
+/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
+/// allow user-defined conversions via constructors or conversion
+/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
+/// a slightly hacky way to implement the overloading rules for elidable copy
+/// initialization in C++0x (C++0x 12.8p15).
+void
+Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool SuppressUserConversions, bool ForceRValue)
+{
+ const FunctionProtoType* Proto
+ = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
+ assert(Proto && "Methods without a prototype cannot be overloaded");
+ assert(!isa<CXXConversionDecl>(Method) &&
+ "Use AddConversionCandidate for conversion functions");
+ assert(!isa<CXXConstructorDecl>(Method) &&
+ "Use AddOverloadCandidate for constructors");
+
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.Function = Method;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ return;
+ }
+
+ // (C++ 13.3.2p2): A candidate function having more than m parameters
+ // is viable only if the (m+1)st parameter has a default argument
+ // (8.3.6). For the purposes of overload resolution, the
+ // parameter list is truncated on the right, so that there are
+ // exactly m parameters.
+ unsigned MinRequiredArgs = Method->getMinRequiredArguments();
+ if (NumArgs < MinRequiredArgs) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ return;
+ }
+
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(NumArgs + 1);
+
+ if (Method->isStatic() || !Object)
+ // The implicit object argument is ignored.
+ Candidate.IgnoreObjectArgument = true;
+ else {
+ // Determine the implicit conversion sequence for the object
+ // parameter.
+ Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
+ if (Candidate.Conversions[0].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ return;
+ }
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(Args[ArgIdx], ParamType,
+ SuppressUserConversions, ForceRValue);
+ if (Candidate.Conversions[ArgIdx + 1].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].ConversionKind
+ = ImplicitConversionSequence::EllipsisConversion;
+ }
+ }
+}
+
+/// AddConversionCandidate - Add a C++ conversion function as a
+/// candidate in the candidate set (C++ [over.match.conv],
+/// C++ [over.match.copy]). From is the expression we're converting from,
+/// and ToType is the type that we're eventually trying to convert to
+/// (which may or may not be the same type as the type that the
+/// conversion function produces).
+void
+Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
+ Expr *From, QualType ToType,
+ OverloadCandidateSet& CandidateSet) {
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.Function = Conversion;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.FinalConversion.setAsIdentityConversion();
+ Candidate.FinalConversion.FromTypePtr
+ = Conversion->getConversionType().getAsOpaquePtr();
+ Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(1);
+ Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
+
+ if (Candidate.Conversions[0].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ return;
+ }
+
+ // To determine what the conversion from the result of calling the
+ // conversion function to the type we're eventually trying to
+ // convert to (ToType), we need to synthesize a call to the
+ // conversion function and attempt copy initialization from it. This
+ // makes sure that we get the right semantics with respect to
+ // lvalues/rvalues and the type. Fortunately, we can allocate this
+ // call on the stack and we don't need its arguments to be
+ // well-formed.
+ DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
+ SourceLocation());
+ ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
+ &ConversionRef, false);
+
+ // Note that it is safe to allocate CallExpr on the stack here because
+ // there are 0 arguments (i.e., nothing is allocated using ASTContext's
+ // allocator).
+ CallExpr Call(Context, &ConversionFn, 0, 0,
+ Conversion->getConversionType().getNonReferenceType(),
+ SourceLocation());
+ ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
+ switch (ICS.ConversionKind) {
+ case ImplicitConversionSequence::StandardConversion:
+ Candidate.FinalConversion = ICS.Standard;
+ break;
+
+ case ImplicitConversionSequence::BadConversion:
+ Candidate.Viable = false;
+ break;
+
+ default:
+ assert(false &&
+ "Can only end up with a standard conversion sequence or failure");
+ }
+}
+
+/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
+/// converts the given @c Object to a function pointer via the
+/// conversion function @c Conversion, and then attempts to call it
+/// with the given arguments (C++ [over.call.object]p2-4). Proto is
+/// the type of function that we'll eventually be calling.
+void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
+ const FunctionProtoType *Proto,
+ Expr *Object, Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.Function = 0;
+ Candidate.Surrogate = Conversion;
+ Candidate.Viable = true;
+ Candidate.IsSurrogate = true;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.Conversions.resize(NumArgs + 1);
+
+ // Determine the implicit conversion sequence for the implicit
+ // object parameter.
+ ImplicitConversionSequence ObjectInit
+ = TryObjectArgumentInitialization(Object, Conversion);
+ if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ return;
+ }
+
+ // The first conversion is actually a user-defined conversion whose
+ // first conversion is ObjectInit's standard conversion (which is
+ // effectively a reference binding). Record it as such.
+ Candidate.Conversions[0].ConversionKind
+ = ImplicitConversionSequence::UserDefinedConversion;
+ Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
+ Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
+ Candidate.Conversions[0].UserDefined.After
+ = Candidate.Conversions[0].UserDefined.Before;
+ Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
+
+ // Find the
+ unsigned NumArgsInProto = Proto->getNumArgs();
+
+ // (C++ 13.3.2p2): A candidate function having fewer than m
+ // parameters is viable only if it has an ellipsis in its parameter
+ // list (8.3.5).
+ if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ Candidate.Viable = false;
+ return;
+ }
+
+ // Function types don't have any default arguments, so just check if
+ // we have enough arguments.
+ if (NumArgs < NumArgsInProto) {
+ // Not enough arguments.
+ Candidate.Viable = false;
+ return;
+ }
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ if (ArgIdx < NumArgsInProto) {
+ // (C++ 13.3.2p3): for F to be a viable function, there shall
+ // exist for each argument an implicit conversion sequence
+ // (13.3.3.1) that converts that argument to the corresponding
+ // parameter of F.
+ QualType ParamType = Proto->getArgType(ArgIdx);
+ Candidate.Conversions[ArgIdx + 1]
+ = TryCopyInitialization(Args[ArgIdx], ParamType,
+ /*SuppressUserConversions=*/false);
+ if (Candidate.Conversions[ArgIdx + 1].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ break;
+ }
+ } else {
+ // (C++ 13.3.2p2): For the purposes of overload resolution, any
+ // argument for which there is no corresponding parameter is
+ // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
+ Candidate.Conversions[ArgIdx + 1].ConversionKind
+ = ImplicitConversionSequence::EllipsisConversion;
+ }
+ }
+}
+
+// FIXME: This will eventually be removed, once we've migrated all of the
+// operator overloading logic over to the scheme used by binary operators, which
+// works for template instantiation.
+void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ SourceRange OpRange) {
+
+ FunctionSet Functions;
+
+ QualType T1 = Args[0]->getType();
+ QualType T2;
+ if (NumArgs > 1)
+ T2 = Args[1]->getType();
+
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ if (S)
+ LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
+ ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
+ AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
+ AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
+ AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
+}
+
+/// \brief Add overload candidates for overloaded operators that are
+/// member functions.
+///
+/// Add the overloaded operator candidates that are member functions
+/// for the operator Op that was used in an operator expression such
+/// as "x Op y". , Args/NumArgs provides the operator arguments, and
+/// CandidateSet will store the added overload candidates. (C++
+/// [over.match.oper]).
+void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
+ SourceLocation OpLoc,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ SourceRange OpRange) {
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // C++ [over.match.oper]p3:
+ // For a unary operator @ with an operand of a type whose
+ // cv-unqualified version is T1, and for a binary operator @ with
+ // a left operand of a type whose cv-unqualified version is T1 and
+ // a right operand of a type whose cv-unqualified version is T2,
+ // three sets of candidate functions, designated member
+ // candidates, non-member candidates and built-in candidates, are
+ // constructed as follows:
+ QualType T1 = Args[0]->getType();
+ QualType T2;
+ if (NumArgs > 1)
+ T2 = Args[1]->getType();
+
+ // -- If T1 is a class type, the set of member candidates is the
+ // result of the qualified lookup of T1::operator@
+ // (13.3.1.1.1); otherwise, the set of member candidates is
+ // empty.
+ // FIXME: Lookup in base classes, too!
+ if (const RecordType *T1Rec = T1->getAsRecordType()) {
+ DeclContext::lookup_const_iterator Oper, OperEnd;
+ for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
+ Oper != OperEnd; ++Oper)
+ AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
+ Args+1, NumArgs - 1, CandidateSet,
+ /*SuppressUserConversions=*/false);
+ }
+}
+
+/// AddBuiltinCandidate - Add a candidate for a built-in
+/// operator. ResultTy and ParamTys are the result and parameter types
+/// of the built-in candidate, respectively. Args and NumArgs are the
+/// arguments being passed to the candidate. IsAssignmentOperator
+/// should be true when this built-in candidate is an assignment
+/// operator. NumContextualBoolArguments is the number of arguments
+/// (at the beginning of the argument list) that will be contextually
+/// converted to bool.
+void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet,
+ bool IsAssignmentOperator,
+ unsigned NumContextualBoolArguments) {
+ // Add this candidate
+ CandidateSet.push_back(OverloadCandidate());
+ OverloadCandidate& Candidate = CandidateSet.back();
+ Candidate.Function = 0;
+ Candidate.IsSurrogate = false;
+ Candidate.IgnoreObjectArgument = false;
+ Candidate.BuiltinTypes.ResultTy = ResultTy;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
+
+ // Determine the implicit conversion sequences for each of the
+ // arguments.
+ Candidate.Viable = true;
+ Candidate.Conversions.resize(NumArgs);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ // C++ [over.match.oper]p4:
+ // For the built-in assignment operators, conversions of the
+ // left operand are restricted as follows:
+ // -- no temporaries are introduced to hold the left operand, and
+ // -- no user-defined conversions are applied to the left
+ // operand to achieve a type match with the left-most
+ // parameter of a built-in candidate.
+ //
+ // We block these conversions by turning off user-defined
+ // conversions, since that is the only way that initialization of
+ // a reference to a non-class type can occur from something that
+ // is not of the same type.
+ if (ArgIdx < NumContextualBoolArguments) {
+ assert(ParamTys[ArgIdx] == Context.BoolTy &&
+ "Contextual conversion to bool requires bool type");
+ Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
+ } else {
+ Candidate.Conversions[ArgIdx]
+ = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
+ ArgIdx == 0 && IsAssignmentOperator);
+ }
+ if (Candidate.Conversions[ArgIdx].ConversionKind
+ == ImplicitConversionSequence::BadConversion) {
+ Candidate.Viable = false;
+ break;
+ }
+ }
+}
+
+/// BuiltinCandidateTypeSet - A set of types that will be used for the
+/// candidate operator functions for built-in operators (C++
+/// [over.built]). The types are separated into pointer types and
+/// enumeration types.
+class BuiltinCandidateTypeSet {
+ /// TypeSet - A set of types.
+ typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
+
+ /// PointerTypes - The set of pointer types that will be used in the
+ /// built-in candidates.
+ TypeSet PointerTypes;
+
+ /// MemberPointerTypes - The set of member pointer types that will be
+ /// used in the built-in candidates.
+ TypeSet MemberPointerTypes;
+
+ /// EnumerationTypes - The set of enumeration types that will be
+ /// used in the built-in candidates.
+ TypeSet EnumerationTypes;
+
+ /// Context - The AST context in which we will build the type sets.
+ ASTContext &Context;
+
+ bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
+ bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
+
+public:
+ /// iterator - Iterates through the types that are part of the set.
+ typedef TypeSet::iterator iterator;
+
+ BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
+
+ void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
+ bool AllowExplicitConversions);
+
+ /// pointer_begin - First pointer type found;
+ iterator pointer_begin() { return PointerTypes.begin(); }
+
+ /// pointer_end - Past the last pointer type found;
+ iterator pointer_end() { return PointerTypes.end(); }
+
+ /// member_pointer_begin - First member pointer type found;
+ iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
+
+ /// member_pointer_end - Past the last member pointer type found;
+ iterator member_pointer_end() { return MemberPointerTypes.end(); }
+
+ /// enumeration_begin - First enumeration type found;
+ iterator enumeration_begin() { return EnumerationTypes.begin(); }
+
+ /// enumeration_end - Past the last enumeration type found;
+ iterator enumeration_end() { return EnumerationTypes.end(); }
+};
+
+/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
+/// the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+bool
+BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
+ // Insert this type.
+ if (!PointerTypes.insert(Ty))
+ return false;
+
+ if (const PointerType *PointerTy = Ty->getAsPointerType()) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+ // FIXME: Optimize this so that we don't keep trying to add the same types.
+
+ // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
+ // pointer conversions that don't cast away constness?
+ if (!PointeeTy.isConstQualified())
+ AddPointerWithMoreQualifiedTypeVariants
+ (Context.getPointerType(PointeeTy.withConst()));
+ if (!PointeeTy.isVolatileQualified())
+ AddPointerWithMoreQualifiedTypeVariants
+ (Context.getPointerType(PointeeTy.withVolatile()));
+ if (!PointeeTy.isRestrictQualified())
+ AddPointerWithMoreQualifiedTypeVariants
+ (Context.getPointerType(PointeeTy.withRestrict()));
+ }
+
+ return true;
+}
+
+/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
+/// to the set of pointer types along with any more-qualified variants of
+/// that type. For example, if @p Ty is "int const *", this routine
+/// will add "int const *", "int const volatile *", "int const
+/// restrict *", and "int const volatile restrict *" to the set of
+/// pointer types. Returns true if the add of @p Ty itself succeeded,
+/// false otherwise.
+bool
+BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
+ QualType Ty) {
+ // Insert this type.
+ if (!MemberPointerTypes.insert(Ty))
+ return false;
+
+ if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+ const Type *ClassTy = PointerTy->getClass();
+ // FIXME: Optimize this so that we don't keep trying to add the same types.
+
+ if (!PointeeTy.isConstQualified())
+ AddMemberPointerWithMoreQualifiedTypeVariants
+ (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
+ if (!PointeeTy.isVolatileQualified())
+ AddMemberPointerWithMoreQualifiedTypeVariants
+ (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
+ if (!PointeeTy.isRestrictQualified())
+ AddMemberPointerWithMoreQualifiedTypeVariants
+ (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
+ }
+
+ return true;
+}
+
+/// AddTypesConvertedFrom - Add each of the types to which the type @p
+/// Ty can be implicit converted to the given set of @p Types. We're
+/// primarily interested in pointer types and enumeration types. We also
+/// take member pointer types, for the conditional operator.
+/// AllowUserConversions is true if we should look at the conversion
+/// functions of a class type, and AllowExplicitConversions if we
+/// should also include the explicit conversion functions of a class
+/// type.
+void
+BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
+ bool AllowUserConversions,
+ bool AllowExplicitConversions) {
+ // Only deal with canonical types.
+ Ty = Context.getCanonicalType(Ty);
+
+ // Look through reference types; they aren't part of the type of an
+ // expression for the purposes of conversions.
+ if (const ReferenceType *RefTy = Ty->getAsReferenceType())
+ Ty = RefTy->getPointeeType();
+
+ // We don't care about qualifiers on the type.
+ Ty = Ty.getUnqualifiedType();
+
+ if (const PointerType *PointerTy = Ty->getAsPointerType()) {
+ QualType PointeeTy = PointerTy->getPointeeType();
+
+ // Insert our type, and its more-qualified variants, into the set
+ // of types.
+ if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
+ return;
+
+ // Add 'cv void*' to our set of types.
+ if (!Ty->isVoidType()) {
+ QualType QualVoid
+ = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
+ AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
+ }
+
+ // If this is a pointer to a class type, add pointers to its bases
+ // (with the same level of cv-qualification as the original
+ // derived class, of course).
+ if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
+ for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
+ Base != ClassDecl->bases_end(); ++Base) {
+ QualType BaseTy = Context.getCanonicalType(Base->getType());
+ BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
+
+ // Add the pointer type, recursively, so that we get all of
+ // the indirect base classes, too.
+ AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
+ }
+ }
+ } else if (Ty->isMemberPointerType()) {
+ // Member pointers are far easier, since the pointee can't be converted.
+ if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
+ return;
+ } else if (Ty->isEnumeralType()) {
+ EnumerationTypes.insert(Ty);
+ } else if (AllowUserConversions) {
+ if (const RecordType *TyRec = Ty->getAsRecordType()) {
+ CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
+ // FIXME: Visit conversion functions in the base classes, too.
+ OverloadedFunctionDecl *Conversions
+ = ClassDecl->getConversionFunctions();
+ for (OverloadedFunctionDecl::function_iterator Func
+ = Conversions->function_begin();
+ Func != Conversions->function_end(); ++Func) {
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
+ if (AllowExplicitConversions || !Conv->isExplicit())
+ AddTypesConvertedFrom(Conv->getConversionType(), false, false);
+ }
+ }
+ }
+}
+
+/// AddBuiltinOperatorCandidates - Add the appropriate built-in
+/// operator overloads to the candidate set (C++ [over.built]), based
+/// on the operator @p Op and the arguments given. For example, if the
+/// operator is a binary '+', this routine might add "int
+/// operator+(int, int)" to cover integer addition.
+void
+Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ // The set of "promoted arithmetic types", which are the arithmetic
+ // types are that preserved by promotion (C++ [over.built]p2). Note
+ // that the first few of these types are the promoted integral
+ // types; these types need to be first.
+ // FIXME: What about complex?
+ const unsigned FirstIntegralType = 0;
+ const unsigned LastIntegralType = 13;
+ const unsigned FirstPromotedIntegralType = 7,
+ LastPromotedIntegralType = 13;
+ const unsigned FirstPromotedArithmeticType = 7,
+ LastPromotedArithmeticType = 16;
+ const unsigned NumArithmeticTypes = 16;
+ QualType ArithmeticTypes[NumArithmeticTypes] = {
+ Context.BoolTy, Context.CharTy, Context.WCharTy,
+ Context.SignedCharTy, Context.ShortTy,
+ Context.UnsignedCharTy, Context.UnsignedShortTy,
+ Context.IntTy, Context.LongTy, Context.LongLongTy,
+ Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
+ Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
+ };
+
+ // Find all of the types that the arguments can convert to, but only
+ // if the operator we're looking at has built-in operator candidates
+ // that make use of these types.
+ BuiltinCandidateTypeSet CandidateTypes(Context);
+ if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
+ Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
+ Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
+ Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
+ Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
+ (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
+ true,
+ (Op == OO_Exclaim ||
+ Op == OO_AmpAmp ||
+ Op == OO_PipePipe));
+ }
+
+ bool isComparison = false;
+ switch (Op) {
+ case OO_None:
+ case NUM_OVERLOADED_OPERATORS:
+ assert(false && "Expected an overloaded operator");
+ break;
+
+ case OO_Star: // '*' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryStar;
+ else
+ goto BinaryStar;
+ break;
+
+ case OO_Plus: // '+' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryPlus;
+ else
+ goto BinaryPlus;
+ break;
+
+ case OO_Minus: // '-' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryMinus;
+ else
+ goto BinaryMinus;
+ break;
+
+ case OO_Amp: // '&' is either unary or binary
+ if (NumArgs == 1)
+ goto UnaryAmp;
+ else
+ goto BinaryAmp;
+
+ case OO_PlusPlus:
+ case OO_MinusMinus:
+ // C++ [over.built]p3:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type, and VQ
+ // is either volatile or empty, there exist candidate operator
+ // functions of the form
+ //
+ // VQ T& operator++(VQ T&);
+ // T operator++(VQ T&, int);
+ //
+ // C++ [over.built]p4:
+ //
+ // For every pair (T, VQ), where T is an arithmetic type other
+ // than bool, and VQ is either volatile or empty, there exist
+ // candidate operator functions of the form
+ //
+ // VQ T& operator--(VQ T&);
+ // T operator--(VQ T&, int);
+ for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
+ Arith < NumArithmeticTypes; ++Arith) {
+ QualType ArithTy = ArithmeticTypes[Arith];
+ QualType ParamTypes[2]
+ = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
+
+ // Non-volatile version.
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
+
+ // Volatile version
+ ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ // C++ [over.built]p5:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type, and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator++(T*VQ&);
+ // T*VQ& operator--(T*VQ&);
+ // T* operator++(T*VQ&, int);
+ // T* operator--(T*VQ&, int);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ // Skip pointer types that aren't pointers to object types.
+ if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
+ continue;
+
+ QualType ParamTypes[2] = {
+ Context.getLValueReferenceType(*Ptr), Context.IntTy
+ };
+
+ // Without volatile
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+
+ if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
+ // With volatile
+ ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
+ if (NumArgs == 1)
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
+ else
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ UnaryStar:
+ // C++ [over.built]p6:
+ // For every cv-qualified or cv-unqualified object type T, there
+ // exist candidate operator functions of the form
+ //
+ // T& operator*(T*);
+ //
+ // C++ [over.built]p7:
+ // For every function type T, there exist candidate operator
+ // functions of the form
+ // T& operator*(T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTy = *Ptr;
+ QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
+ AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
+ &ParamTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ UnaryPlus:
+ // C++ [over.built]p8:
+ // For every type T, there exist candidate operator functions of
+ // the form
+ //
+ // T* operator+(T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTy = *Ptr;
+ AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
+ }
+
+ // Fall through
+
+ UnaryMinus:
+ // C++ [over.built]p9:
+ // For every promoted arithmetic type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator+(T);
+ // T operator-(T);
+ for (unsigned Arith = FirstPromotedArithmeticType;
+ Arith < LastPromotedArithmeticType; ++Arith) {
+ QualType ArithTy = ArithmeticTypes[Arith];
+ AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ case OO_Tilde:
+ // C++ [over.built]p10:
+ // For every promoted integral type T, there exist candidate
+ // operator functions of the form
+ //
+ // T operator~(T);
+ for (unsigned Int = FirstPromotedIntegralType;
+ Int < LastPromotedIntegralType; ++Int) {
+ QualType IntTy = ArithmeticTypes[Int];
+ AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
+ }
+ break;
+
+ case OO_New:
+ case OO_Delete:
+ case OO_Array_New:
+ case OO_Array_Delete:
+ case OO_Call:
+ assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
+ break;
+
+ case OO_Comma:
+ UnaryAmp:
+ case OO_Arrow:
+ // C++ [over.match.oper]p3:
+ // -- For the operator ',', the unary operator '&', or the
+ // operator '->', the built-in candidates set is empty.
+ break;
+
+ case OO_Less:
+ case OO_Greater:
+ case OO_LessEqual:
+ case OO_GreaterEqual:
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ // C++ [over.built]p15:
+ //
+ // For every pointer or enumeration type T, there exist
+ // candidate operator functions of the form
+ //
+ // bool operator<(T, T);
+ // bool operator>(T, T);
+ // bool operator<=(T, T);
+ // bool operator>=(T, T);
+ // bool operator==(T, T);
+ // bool operator!=(T, T);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator Enum
+ = CandidateTypes.enumeration_begin();
+ Enum != CandidateTypes.enumeration_end(); ++Enum) {
+ QualType ParamTypes[2] = { *Enum, *Enum };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
+ }
+
+ // Fall through.
+ isComparison = true;
+
+ BinaryPlus:
+ BinaryMinus:
+ if (!isComparison) {
+ // We didn't fall through, so we must have OO_Plus or OO_Minus.
+
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T
+ // there exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t);
+ // T& operator[](T*, ptrdiff_t); [BELOW]
+ // T* operator-(T*, ptrdiff_t);
+ // T* operator+(ptrdiff_t, T*);
+ // T& operator[](ptrdiff_t, T*); [BELOW]
+ //
+ // C++ [over.built]p14:
+ //
+ // For every T, where T is a pointer to object type, there
+ // exist candidate operator functions of the form
+ //
+ // ptrdiff_t operator-(T, T);
+ for (BuiltinCandidateTypeSet::iterator Ptr
+ = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
+
+ // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+
+ if (Op == OO_Plus) {
+ // T* operator+(ptrdiff_t, T*);
+ ParamTypes[0] = ParamTypes[1];
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ } else {
+ // ptrdiff_t operator-(T, T);
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
+ Args, 2, CandidateSet);
+ }
+ }
+ }
+ // Fall through
+
+ case OO_Slash:
+ BinaryStar:
+ Conditional:
+ // C++ [over.built]p12:
+ //
+ // For every pair of promoted arithmetic types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator*(L, R);
+ // LR operator/(L, R);
+ // LR operator+(L, R);
+ // LR operator-(L, R);
+ // bool operator<(L, R);
+ // bool operator>(L, R);
+ // bool operator<=(L, R);
+ // bool operator>=(L, R);
+ // bool operator==(L, R);
+ // bool operator!=(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ //
+ // C++ [over.built]p24:
+ //
+ // For every pair of promoted arithmetic types L and R, there exist
+ // candidate operator functions of the form
+ //
+ // LR operator?(bool, L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ // Our candidates ignore the first parameter.
+ for (unsigned Left = FirstPromotedArithmeticType;
+ Left < LastPromotedArithmeticType; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
+ QualType Result
+ = isComparison? Context.BoolTy
+ : UsualArithmeticConversionsType(LandR[0], LandR[1]);
+ AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ case OO_Percent:
+ BinaryAmp:
+ case OO_Caret:
+ case OO_Pipe:
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ // C++ [over.built]p17:
+ //
+ // For every pair of promoted integral types L and R, there
+ // exist candidate operator functions of the form
+ //
+ // LR operator%(L, R);
+ // LR operator&(L, R);
+ // LR operator^(L, R);
+ // LR operator|(L, R);
+ // L operator<<(L, R);
+ // L operator>>(L, R);
+ //
+ // where LR is the result of the usual arithmetic conversions
+ // between types L and R.
+ for (unsigned Left = FirstPromotedIntegralType;
+ Left < LastPromotedIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
+ QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
+ ? LandR[0]
+ : UsualArithmeticConversionsType(LandR[0], LandR[1]);
+ AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ case OO_Equal:
+ // C++ [over.built]p20:
+ //
+ // For every pair (T, VQ), where T is an enumeration or
+ // (FIXME:) pointer to member type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // VQ T& operator=(VQ T&, T);
+ for (BuiltinCandidateTypeSet::iterator Enum
+ = CandidateTypes.enumeration_begin();
+ Enum != CandidateTypes.enumeration_end(); ++Enum) {
+ QualType ParamTypes[2];
+
+ // T& operator=(T&, T)
+ ParamTypes[0] = Context.getLValueReferenceType(*Enum);
+ ParamTypes[1] = *Enum;
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/false);
+
+ if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
+ // volatile T& operator=(volatile T&, T)
+ ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
+ ParamTypes[1] = *Enum;
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/false);
+ }
+ }
+ // Fall through.
+
+ case OO_PlusEqual:
+ case OO_MinusEqual:
+ // C++ [over.built]p19:
+ //
+ // For every pair (T, VQ), where T is any type and VQ is either
+ // volatile or empty, there exist candidate operator functions
+ // of the form
+ //
+ // T*VQ& operator=(T*VQ&, T*);
+ //
+ // C++ [over.built]p21:
+ //
+ // For every pair (T, VQ), where T is a cv-qualified or
+ // cv-unqualified object type and VQ is either volatile or
+ // empty, there exist candidate operator functions of the form
+ //
+ // T*VQ& operator+=(T*VQ&, ptrdiff_t);
+ // T*VQ& operator-=(T*VQ&, ptrdiff_t);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
+
+ // non-volatile version
+ ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+
+ if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
+ // volatile version
+ ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+ }
+ }
+ // Fall through.
+
+ case OO_StarEqual:
+ case OO_SlashEqual:
+ // C++ [over.built]p18:
+ //
+ // For every triple (L, VQ, R), where L is an arithmetic type,
+ // VQ is either volatile or empty, and R is a promoted
+ // arithmetic type, there exist candidate operator functions of
+ // the form
+ //
+ // VQ L& operator=(VQ L&, R);
+ // VQ L& operator*=(VQ L&, R);
+ // VQ L& operator/=(VQ L&, R);
+ // VQ L& operator+=(VQ L&, R);
+ // VQ L& operator-=(VQ L&, R);
+ for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
+ for (unsigned Right = FirstPromotedArithmeticType;
+ Right < LastPromotedArithmeticType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = ArithmeticTypes[Right];
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
+ ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
+ /*IsAssigmentOperator=*/Op == OO_Equal);
+ }
+ }
+ break;
+
+ case OO_PercentEqual:
+ case OO_LessLessEqual:
+ case OO_GreaterGreaterEqual:
+ case OO_AmpEqual:
+ case OO_CaretEqual:
+ case OO_PipeEqual:
+ // C++ [over.built]p22:
+ //
+ // For every triple (L, VQ, R), where L is an integral type, VQ
+ // is either volatile or empty, and R is a promoted integral
+ // type, there exist candidate operator functions of the form
+ //
+ // VQ L& operator%=(VQ L&, R);
+ // VQ L& operator<<=(VQ L&, R);
+ // VQ L& operator>>=(VQ L&, R);
+ // VQ L& operator&=(VQ L&, R);
+ // VQ L& operator^=(VQ L&, R);
+ // VQ L& operator|=(VQ L&, R);
+ for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
+ for (unsigned Right = FirstPromotedIntegralType;
+ Right < LastPromotedIntegralType; ++Right) {
+ QualType ParamTypes[2];
+ ParamTypes[1] = ArithmeticTypes[Right];
+
+ // Add this built-in operator as a candidate (VQ is empty).
+ ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
+
+ // Add this built-in operator as a candidate (VQ is 'volatile').
+ ParamTypes[0] = ArithmeticTypes[Left];
+ ParamTypes[0].addVolatile();
+ ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
+ AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
+ }
+ }
+ break;
+
+ case OO_Exclaim: {
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool);
+ // bool operator&&(bool, bool); [BELOW]
+ // bool operator||(bool, bool); [BELOW]
+ QualType ParamTy = Context.BoolTy;
+ AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/1);
+ break;
+ }
+
+ case OO_AmpAmp:
+ case OO_PipePipe: {
+ // C++ [over.operator]p23:
+ //
+ // There also exist candidate operator functions of the form
+ //
+ // bool operator!(bool); [ABOVE]
+ // bool operator&&(bool, bool);
+ // bool operator||(bool, bool);
+ QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
+ AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
+ /*IsAssignmentOperator=*/false,
+ /*NumContextualBoolArguments=*/2);
+ break;
+ }
+
+ case OO_Subscript:
+ // C++ [over.built]p13:
+ //
+ // For every cv-qualified or cv-unqualified object type T there
+ // exist candidate operator functions of the form
+ //
+ // T* operator+(T*, ptrdiff_t); [ABOVE]
+ // T& operator[](T*, ptrdiff_t);
+ // T* operator-(T*, ptrdiff_t); [ABOVE]
+ // T* operator+(ptrdiff_t, T*); [ABOVE]
+ // T& operator[](ptrdiff_t, T*);
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
+ Ptr != CandidateTypes.pointer_end(); ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
+ QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
+ QualType ResultTy = Context.getLValueReferenceType(PointeeType);
+
+ // T& operator[](T*, ptrdiff_t)
+ AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+
+ // T& operator[](ptrdiff_t, T*);
+ ParamTypes[0] = ParamTypes[1];
+ ParamTypes[1] = *Ptr;
+ AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
+ }
+ break;
+
+ case OO_ArrowStar:
+ // FIXME: No support for pointer-to-members yet.
+ break;
+
+ case OO_Conditional:
+ // Note that we don't consider the first argument, since it has been
+ // contextually converted to bool long ago. The candidates below are
+ // therefore added as binary.
+ //
+ // C++ [over.built]p24:
+ // For every type T, where T is a pointer or pointer-to-member type,
+ // there exist candidate operator functions of the form
+ //
+ // T operator?(bool, T, T);
+ //
+ for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
+ E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ for (BuiltinCandidateTypeSet::iterator Ptr =
+ CandidateTypes.member_pointer_begin(),
+ E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
+ QualType ParamTypes[2] = { *Ptr, *Ptr };
+ AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
+ }
+ goto Conditional;
+ }
+}
+
+/// \brief Add function candidates found via argument-dependent lookup
+/// to the set of overloading candidates.
+///
+/// This routine performs argument-dependent name lookup based on the
+/// given function name (which may also be an operator name) and adds
+/// all of the overload candidates found by ADL to the overload
+/// candidate set (C++ [basic.lookup.argdep]).
+void
+Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
+ Expr **Args, unsigned NumArgs,
+ OverloadCandidateSet& CandidateSet) {
+ FunctionSet Functions;
+
+ // Record all of the function candidates that we've already
+ // added to the overload set, so that we don't add those same
+ // candidates a second time.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand)
+ if (Cand->Function)
+ Functions.insert(Cand->Function);
+
+ ArgumentDependentLookup(Name, Args, NumArgs, Functions);
+
+ // Erase all of the candidates we already knew about.
+ // FIXME: This is suboptimal. Is there a better way?
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand)
+ if (Cand->Function)
+ Functions.erase(Cand->Function);
+
+ // For each of the ADL candidates we found, add it to the overload
+ // set.
+ for (FunctionSet::iterator Func = Functions.begin(),
+ FuncEnd = Functions.end();
+ Func != FuncEnd; ++Func)
+ AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
+}
+
+/// isBetterOverloadCandidate - Determines whether the first overload
+/// candidate is a better candidate than the second (C++ 13.3.3p1).
+bool
+Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
+ const OverloadCandidate& Cand2)
+{
+ // Define viable functions to be better candidates than non-viable
+ // functions.
+ if (!Cand2.Viable)
+ return Cand1.Viable;
+ else if (!Cand1.Viable)
+ return false;
+
+ // C++ [over.match.best]p1:
+ //
+ // -- if F is a static member function, ICS1(F) is defined such
+ // that ICS1(F) is neither better nor worse than ICS1(G) for
+ // any function G, and, symmetrically, ICS1(G) is neither
+ // better nor worse than ICS1(F).
+ unsigned StartArg = 0;
+ if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
+ StartArg = 1;
+
+ // (C++ 13.3.3p1): a viable function F1 is defined to be a better
+ // function than another viable function F2 if for all arguments i,
+ // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
+ // then...
+ unsigned NumArgs = Cand1.Conversions.size();
+ assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
+ bool HasBetterConversion = false;
+ for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
+ switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
+ Cand2.Conversions[ArgIdx])) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ HasBetterConversion = true;
+ break;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing.
+ break;
+ }
+ }
+
+ if (HasBetterConversion)
+ return true;
+
+ // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
+ // implemented, but they require template support.
+
+ // C++ [over.match.best]p1b4:
+ //
+ // -- the context is an initialization by user-defined conversion
+ // (see 8.5, 13.3.1.5) and the standard conversion sequence
+ // from the return type of F1 to the destination type (i.e.,
+ // the type of the entity being initialized) is a better
+ // conversion sequence than the standard conversion sequence
+ // from the return type of F2 to the destination type.
+ if (Cand1.Function && Cand2.Function &&
+ isa<CXXConversionDecl>(Cand1.Function) &&
+ isa<CXXConversionDecl>(Cand2.Function)) {
+ switch (CompareStandardConversionSequences(Cand1.FinalConversion,
+ Cand2.FinalConversion)) {
+ case ImplicitConversionSequence::Better:
+ // Cand1 has a better conversion sequence.
+ return true;
+
+ case ImplicitConversionSequence::Worse:
+ // Cand1 can't be better than Cand2.
+ return false;
+
+ case ImplicitConversionSequence::Indistinguishable:
+ // Do nothing
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
+/// within an overload candidate set. If overloading is successful,
+/// the result will be OR_Success and Best will be set to point to the
+/// best viable function within the candidate set. Otherwise, one of
+/// several kinds of errors will be returned; see
+/// Sema::OverloadingResult.
+Sema::OverloadingResult
+Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
+ OverloadCandidateSet::iterator& Best)
+{
+ // Find the best viable function.
+ Best = CandidateSet.end();
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand) {
+ if (Cand->Viable) {
+ if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
+ Best = Cand;
+ }
+ }
+
+ // If we didn't find any viable functions, abort.
+ if (Best == CandidateSet.end())
+ return OR_No_Viable_Function;
+
+ // Make sure that this function is better than every other viable
+ // function. If not, we have an ambiguity.
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
+ Cand != CandidateSet.end(); ++Cand) {
+ if (Cand->Viable &&
+ Cand != Best &&
+ !isBetterOverloadCandidate(*Best, *Cand)) {
+ Best = CandidateSet.end();
+ return OR_Ambiguous;
+ }
+ }
+
+ // Best is the best viable function.
+ if (Best->Function &&
+ (Best->Function->isDeleted() ||
+ Best->Function->getAttr<UnavailableAttr>()))
+ return OR_Deleted;
+
+ // If Best refers to a function that is either deleted (C++0x) or
+ // unavailable (Clang extension) report an error.
+
+ return OR_Success;
+}
+
+/// PrintOverloadCandidates - When overload resolution fails, prints
+/// diagnostic messages containing the candidates in the candidate
+/// set. If OnlyViable is true, only viable candidates will be printed.
+void
+Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
+ bool OnlyViable)
+{
+ OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ LastCand = CandidateSet.end();
+ for (; Cand != LastCand; ++Cand) {
+ if (Cand->Viable || !OnlyViable) {
+ if (Cand->Function) {
+ if (Cand->Function->isDeleted() ||
+ Cand->Function->getAttr<UnavailableAttr>()) {
+ // Deleted or "unavailable" function.
+ Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
+ << Cand->Function->isDeleted();
+ } else {
+ // Normal function
+ // FIXME: Give a better reason!
+ Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
+ }
+ } else if (Cand->IsSurrogate) {
+ // Desugar the type of the surrogate down to a function type,
+ // retaining as many typedefs as possible while still showing
+ // the function type (and, therefore, its parameter types).
+ QualType FnType = Cand->Surrogate->getConversionType();
+ bool isLValueReference = false;
+ bool isRValueReference = false;
+ bool isPointer = false;
+ if (const LValueReferenceType *FnTypeRef =
+ FnType->getAsLValueReferenceType()) {
+ FnType = FnTypeRef->getPointeeType();
+ isLValueReference = true;
+ } else if (const RValueReferenceType *FnTypeRef =
+ FnType->getAsRValueReferenceType()) {
+ FnType = FnTypeRef->getPointeeType();
+ isRValueReference = true;
+ }
+ if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
+ FnType = FnTypePtr->getPointeeType();
+ isPointer = true;
+ }
+ // Desugar down to a function type.
+ FnType = QualType(FnType->getAsFunctionType(), 0);
+ // Reconstruct the pointer/reference as appropriate.
+ if (isPointer) FnType = Context.getPointerType(FnType);
+ if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
+ if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
+
+ Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
+ << FnType;
+ } else {
+ // FIXME: We need to get the identifier in here
+ // FIXME: Do we want the error message to point at the operator?
+ // (built-ins won't have a location)
+ QualType FnType
+ = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
+ Cand->BuiltinTypes.ParamTypes,
+ Cand->Conversions.size(),
+ false, 0);
+
+ Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
+ }
+ }
+ }
+}
+
+/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
+/// an overloaded function (C++ [over.over]), where @p From is an
+/// expression with overloaded function type and @p ToType is the type
+/// we're trying to resolve to. For example:
+///
+/// @code
+/// int f(double);
+/// int f(int);
+///
+/// int (*pfd)(double) = f; // selects f(double)
+/// @endcode
+///
+/// This routine returns the resulting FunctionDecl if it could be
+/// resolved, and NULL otherwise. When @p Complain is true, this
+/// routine will emit diagnostics if there is an error.
+FunctionDecl *
+Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
+ bool Complain) {
+ QualType FunctionType = ToType;
+ bool IsMember = false;
+ if (const PointerType *ToTypePtr = ToType->getAsPointerType())
+ FunctionType = ToTypePtr->getPointeeType();
+ else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
+ FunctionType = ToTypeRef->getPointeeType();
+ else if (const MemberPointerType *MemTypePtr =
+ ToType->getAsMemberPointerType()) {
+ FunctionType = MemTypePtr->getPointeeType();
+ IsMember = true;
+ }
+
+ // We only look at pointers or references to functions.
+ if (!FunctionType->isFunctionType())
+ return 0;
+
+ // Find the actual overloaded function declaration.
+ OverloadedFunctionDecl *Ovl = 0;
+
+ // C++ [over.over]p1:
+ // [...] [Note: any redundant set of parentheses surrounding the
+ // overloaded function name is ignored (5.1). ]
+ Expr *OvlExpr = From->IgnoreParens();
+
+ // C++ [over.over]p1:
+ // [...] The overloaded function name can be preceded by the &
+ // operator.
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
+ if (UnOp->getOpcode() == UnaryOperator::AddrOf)
+ OvlExpr = UnOp->getSubExpr()->IgnoreParens();
+ }
+
+ // Try to dig out the overloaded function.
+ if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
+ Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
+
+ // If there's no overloaded function declaration, we're done.
+ if (!Ovl)
+ return 0;
+
+ // Look through all of the overloaded functions, searching for one
+ // whose type matches exactly.
+ // FIXME: When templates or using declarations come along, we'll actually
+ // have to deal with duplicates, partial ordering, etc. For now, we
+ // can just do a simple search.
+ FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
+ for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
+ Fun != Ovl->function_end(); ++Fun) {
+ // C++ [over.over]p3:
+ // Non-member functions and static member functions match
+ // targets of type "pointer-to-function" or "reference-to-function."
+ // Nonstatic member functions match targets of
+ // type "pointer-to-member-function."
+ // Note that according to DR 247, the containing class does not matter.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
+ // Skip non-static functions when converting to pointer, and static
+ // when converting to member pointer.
+ if (Method->isStatic() == IsMember)
+ continue;
+ } else if (IsMember)
+ continue;
+
+ if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
+ return *Fun;
+ }
+
+ return 0;
+}
+
+/// ResolveOverloadedCallFn - Given the call expression that calls Fn
+/// (which eventually refers to the declaration Func) and the call
+/// arguments Args/NumArgs, attempt to resolve the function call down
+/// to a specific function. If overload resolution succeeds, returns
+/// the function declaration produced by overload
+/// resolution. Otherwise, emits diagnostics, deletes all of the
+/// arguments and Fn, and returns NULL.
+FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
+ DeclarationName UnqualifiedName,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc,
+ bool &ArgumentDependentLookup) {
+ OverloadCandidateSet CandidateSet;
+
+ // Add the functions denoted by Callee to the set of candidate
+ // functions. While we're doing so, track whether argument-dependent
+ // lookup still applies, per:
+ //
+ // C++0x [basic.lookup.argdep]p3:
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains
+ //
+ // -- a declaration of a class member, or
+ //
+ // -- a block-scope function declaration that is not a
+ // using-declaration, or
+ //
+ // -- a declaration that is neither a function or a function
+ // template
+ //
+ // then Y is empty.
+ if (OverloadedFunctionDecl *Ovl
+ = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
+ for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
+ FuncEnd = Ovl->function_end();
+ Func != FuncEnd; ++Func) {
+ AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
+
+ if ((*Func)->getDeclContext()->isRecord() ||
+ (*Func)->getDeclContext()->isFunctionOrMethod())
+ ArgumentDependentLookup = false;
+ }
+ } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
+ AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
+
+ if (Func->getDeclContext()->isRecord() ||
+ Func->getDeclContext()->isFunctionOrMethod())
+ ArgumentDependentLookup = false;
+ }
+
+ if (Callee)
+ UnqualifiedName = Callee->getDeclName();
+
+ if (ArgumentDependentLookup)
+ AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
+ CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ return Best->Function;
+
+ case OR_No_Viable_Function:
+ Diag(Fn->getSourceRange().getBegin(),
+ diag::err_ovl_no_viable_function_in_call)
+ << UnqualifiedName << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ break;
+
+ case OR_Ambiguous:
+ Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
+ << UnqualifiedName << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ break;
+
+ case OR_Deleted:
+ Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << UnqualifiedName
+ << Fn->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ break;
+ }
+
+ // Overload resolution failed. Destroy all of the subexpressions and
+ // return NULL.
+ Fn->Destroy(Context);
+ for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
+ Args[Arg]->Destroy(Context);
+ return 0;
+}
+
+/// \brief Create a unary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '*').
+///
+/// \param OpcIn The UnaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedUnaryOp().
+///
+/// \param input The input argument.
+Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ FunctionSet &Functions,
+ ExprArg input) {
+ UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
+ Expr *Input = (Expr *)input.get();
+
+ OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
+ assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ Expr *Args[2] = { Input, 0 };
+ unsigned NumArgs = 1;
+
+ // For post-increment and post-decrement, add the implicit '0' as
+ // the second argument, so that we know this is a post-increment or
+ // post-decrement.
+ if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
+ llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
+ Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
+ SourceLocation());
+ NumArgs = 2;
+ }
+
+ if (Input->isTypeDependent()) {
+ OverloadedFunctionDecl *Overloads
+ = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
+ for (FunctionSet::iterator Func = Functions.begin(),
+ FuncEnd = Functions.end();
+ Func != FuncEnd; ++Func)
+ Overloads->addOverload(*Func);
+
+ DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
+ OpLoc, false, false);
+
+ input.release();
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ &Args[0], NumArgs,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet;
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (PerformObjectArgumentInitialization(Input, Method))
+ return ExprError();
+ } else {
+ // Convert the arguments.
+ if (PerformCopyInitialization(Input,
+ FnDecl->getParamDecl(0)->getType(),
+ "passing"))
+ return ExprError();
+ }
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAsFunctionType()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ input.release();
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
+ &Input, 1, ResultTy,
+ OpLoc));
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], "passing"))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << UnaryOperator::getOpcodeStr(Opc)
+ << Input->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, fall through to trying to
+ // build a built-in operation.
+ input.release();
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
+}
+
+/// \brief Create a binary operation that may resolve to an overloaded
+/// operator.
+///
+/// \param OpLoc The location of the operator itself (e.g., '+').
+///
+/// \param OpcIn The BinaryOperator::Opcode that describes this
+/// operator.
+///
+/// \param Functions The set of non-member functions that will be
+/// considered by overload resolution. The caller needs to build this
+/// set based on the context using, e.g.,
+/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
+/// set should not contain any member functions; those will be added
+/// by CreateOverloadedBinOp().
+///
+/// \param LHS Left-hand argument.
+/// \param RHS Right-hand argument.
+Sema::OwningExprResult
+Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
+ unsigned OpcIn,
+ FunctionSet &Functions,
+ Expr *LHS, Expr *RHS) {
+ Expr *Args[2] = { LHS, RHS };
+
+ BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
+ OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+
+ // If either side is type-dependent, create an appropriate dependent
+ // expression.
+ if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
+ // .* cannot be overloaded.
+ if (Opc == BinaryOperator::PtrMemD)
+ return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
+ Context.DependentTy, OpLoc));
+
+ OverloadedFunctionDecl *Overloads
+ = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
+ for (FunctionSet::iterator Func = Functions.begin(),
+ FuncEnd = Functions.end();
+ Func != FuncEnd; ++Func)
+ Overloads->addOverload(*Func);
+
+ DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
+ OpLoc, false, false);
+
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
+ Args, 2,
+ Context.DependentTy,
+ OpLoc));
+ }
+
+ // If this is the .* operator, which is not overloadable, just
+ // create a built-in binary operator.
+ if (Opc == BinaryOperator::PtrMemD)
+ return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
+
+ // If this is one of the assignment operators, we only perform
+ // overload resolution if the left-hand side is a class or
+ // enumeration type (C++ [expr.ass]p3).
+ if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
+ !LHS->getType()->isOverloadableType())
+ return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
+
+ // Build an empty overload set.
+ OverloadCandidateSet CandidateSet;
+
+ // Add the candidates from the given function set.
+ AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
+
+ // Add operator candidates that are member functions.
+ AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
+
+ // Add builtin operator candidates.
+ AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success: {
+ // We found a built-in operator or an overloaded operator.
+ FunctionDecl *FnDecl = Best->Function;
+
+ if (FnDecl) {
+ // We matched an overloaded operator. Build a call to that
+ // operator.
+
+ // Convert the arguments.
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
+ if (PerformObjectArgumentInitialization(LHS, Method) ||
+ PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
+ "passing"))
+ return ExprError();
+ } else {
+ // Convert the arguments.
+ if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
+ "passing") ||
+ PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
+ "passing"))
+ return ExprError();
+ }
+
+ // Determine the result type
+ QualType ResultTy
+ = FnDecl->getType()->getAsFunctionType()->getResultType();
+ ResultTy = ResultTy.getNonReferenceType();
+
+ // Build the actual expression node.
+ Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+
+ return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
+ Args, 2, ResultTy,
+ OpLoc));
+ } else {
+ // We matched a built-in operator. Convert the arguments, then
+ // break out so that we will build the appropriate built-in
+ // operator node.
+ if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], "passing") ||
+ PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], "passing"))
+ return ExprError();
+
+ break;
+ }
+ }
+
+ case OR_No_Viable_Function:
+ // For class as left operand for assignment or compound assigment operator
+ // do not fall through to handling in built-in, but report that no overloaded
+ // assignment operator found
+ if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return ExprError();
+ }
+ // No viable function; fall through to handling this as a
+ // built-in operator, which will produce an error message for us.
+ break;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << BinaryOperator::getOpcodeStr(Opc)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return ExprError();
+ }
+
+ // Either we found no viable overloaded operator or we matched a
+ // built-in operator. In either case, try to build a built-in
+ // operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
+}
+
+/// BuildCallToMemberFunction - Build a call to a member
+/// function. MemExpr is the expression that refers to the member
+/// function (and includes the object parameter), Args/NumArgs are the
+/// arguments to the function call (not including the object
+/// parameter). The caller needs to validate that the member
+/// expression refers to a member function or an overloaded member
+/// function.
+Sema::ExprResult
+Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
+ SourceLocation LParenLoc, Expr **Args,
+ unsigned NumArgs, SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ // Dig out the member expression. This holds both the object
+ // argument and the member function we're referring to.
+ MemberExpr *MemExpr = 0;
+ if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
+ MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
+ else
+ MemExpr = dyn_cast<MemberExpr>(MemExprE);
+ assert(MemExpr && "Building member call without member expression");
+
+ // Extract the object argument.
+ Expr *ObjectArg = MemExpr->getBase();
+
+ CXXMethodDecl *Method = 0;
+ if (OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
+ // Add overload candidates
+ OverloadCandidateSet CandidateSet;
+ for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
+ FuncEnd = Ovl->function_end();
+ Func != FuncEnd; ++Func) {
+ assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
+ Method = cast<CXXMethodDecl>(*Func);
+ AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
+ /*SuppressUserConversions=*/false);
+ }
+
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ Method = cast<CXXMethodDecl>(Best->Function);
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(MemExpr->getSourceRange().getBegin(),
+ diag::err_ovl_no_viable_member_function_in_call)
+ << Ovl->getDeclName() << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ // FIXME: Leaking incoming expressions!
+ return true;
+
+ case OR_Ambiguous:
+ Diag(MemExpr->getSourceRange().getBegin(),
+ diag::err_ovl_ambiguous_member_call)
+ << Ovl->getDeclName() << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ // FIXME: Leaking incoming expressions!
+ return true;
+
+ case OR_Deleted:
+ Diag(MemExpr->getSourceRange().getBegin(),
+ diag::err_ovl_deleted_member_call)
+ << Best->Function->isDeleted()
+ << Ovl->getDeclName() << MemExprE->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ // FIXME: Leaking incoming expressions!
+ return true;
+ }
+
+ FixOverloadedFunctionReference(MemExpr, Method);
+ } else {
+ Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
+ }
+
+ assert(Method && "Member call to something that isn't a method?");
+ ExprOwningPtr<CXXMemberCallExpr>
+ TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
+ NumArgs,
+ Method->getResultType().getNonReferenceType(),
+ RParenLoc));
+
+ // Convert the object argument (for a non-static member function call).
+ if (!Method->isStatic() &&
+ PerformObjectArgumentInitialization(ObjectArg, Method))
+ return true;
+ MemExpr->setBase(ObjectArg);
+
+ // Convert the rest of the arguments
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
+ if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
+ RParenLoc))
+ return true;
+
+ return CheckFunctionCall(Method, TheCall.take()).release();
+}
+
+/// BuildCallToObjectOfClassType - Build a call to an object of class
+/// type (C++ [over.call.object]), which can end up invoking an
+/// overloaded function call operator (@c operator()) or performing a
+/// user-defined conversion on the object argument.
+Sema::ExprResult
+Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
+ SourceLocation LParenLoc,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ assert(Object->getType()->isRecordType() && "Requires object type argument");
+ const RecordType *Record = Object->getType()->getAsRecordType();
+
+ // C++ [over.call.object]p1:
+ // If the primary-expression E in the function call syntax
+ // evaluates to a class object of type “cv T”, then the set of
+ // candidate functions includes at least the function call
+ // operators of T. The function call operators of T are obtained by
+ // ordinary lookup of the name operator() in the context of
+ // (E).operator().
+ OverloadCandidateSet CandidateSet;
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclContext::lookup_const_iterator Oper, OperEnd;
+ for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
+ Oper != OperEnd; ++Oper)
+ AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
+ CandidateSet, /*SuppressUserConversions=*/false);
+
+ // C++ [over.call.object]p2:
+ // In addition, for each conversion function declared in T of the
+ // form
+ //
+ // operator conversion-type-id () cv-qualifier;
+ //
+ // where cv-qualifier is the same cv-qualification as, or a
+ // greater cv-qualification than, cv, and where conversion-type-id
+ // denotes the type "pointer to function of (P1,...,Pn) returning
+ // R", or the type "reference to pointer to function of
+ // (P1,...,Pn) returning R", or the type "reference to function
+ // of (P1,...,Pn) returning R", a surrogate call function [...]
+ // is also considered as a candidate function. Similarly,
+ // surrogate call functions are added to the set of candidate
+ // functions for each conversion function declared in an
+ // accessible base class provided the function is not hidden
+ // within T by another intervening declaration.
+ //
+ // FIXME: Look in base classes for more conversion operators!
+ OverloadedFunctionDecl *Conversions
+ = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
+ for (OverloadedFunctionDecl::function_iterator
+ Func = Conversions->function_begin(),
+ FuncEnd = Conversions->function_end();
+ Func != FuncEnd; ++Func) {
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
+
+ // Strip the reference type (if any) and then the pointer type (if
+ // any) to get down to what might be a function type.
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
+ ConvType = ConvPtrType->getPointeeType();
+
+ if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
+ AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
+ }
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the appropriate call
+ // below.
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_no_viable_object_call)
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ break;
+
+ case OR_Ambiguous:
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_ambiguous_object_call)
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ break;
+
+ case OR_Deleted:
+ Diag(Object->getSourceRange().getBegin(),
+ diag::err_ovl_deleted_object_call)
+ << Best->Function->isDeleted()
+ << Object->getType() << Object->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ break;
+ }
+
+ if (Best == CandidateSet.end()) {
+ // We had an error; delete all of the subexpressions and return
+ // the error.
+ Object->Destroy(Context);
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ Args[ArgIdx]->Destroy(Context);
+ return true;
+ }
+
+ if (Best->Function == 0) {
+ // Since there is no function declaration, this is one of the
+ // surrogate candidates. Dig out the conversion function.
+ CXXConversionDecl *Conv
+ = cast<CXXConversionDecl>(
+ Best->Conversions[0].UserDefined.ConversionFunction);
+
+ // We selected one of the surrogate functions that converts the
+ // object parameter to a function pointer. Perform the conversion
+ // on the object argument, then let ActOnCallExpr finish the job.
+ // FIXME: Represent the user-defined conversion in the AST!
+ ImpCastExprToType(Object,
+ Conv->getConversionType().getNonReferenceType(),
+ Conv->getConversionType()->isLValueReferenceType());
+ return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
+ MultiExprArg(*this, (ExprTy**)Args, NumArgs),
+ CommaLocs, RParenLoc).release();
+ }
+
+ // We found an overloaded operator(). Build a CXXOperatorCallExpr
+ // that calls this method, using Object for the implicit object
+ // parameter and passing along the remaining arguments.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
+
+ unsigned NumArgsInProto = Proto->getNumArgs();
+ unsigned NumArgsToCheck = NumArgs;
+
+ // Build the full argument list for the method call (the
+ // implicit object parameter is placed at the beginning of the
+ // list).
+ Expr **MethodArgs;
+ if (NumArgs < NumArgsInProto) {
+ NumArgsToCheck = NumArgsInProto;
+ MethodArgs = new Expr*[NumArgsInProto + 1];
+ } else {
+ MethodArgs = new Expr*[NumArgs + 1];
+ }
+ MethodArgs[0] = Object;
+ for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
+ MethodArgs[ArgIdx + 1] = Args[ArgIdx];
+
+ Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
+ SourceLocation());
+ UsualUnaryConversions(NewFn);
+
+ // Once we've built TheCall, all of the expressions are properly
+ // owned.
+ QualType ResultTy = Method->getResultType().getNonReferenceType();
+ ExprOwningPtr<CXXOperatorCallExpr>
+ TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
+ MethodArgs, NumArgs + 1,
+ ResultTy, RParenLoc));
+ delete [] MethodArgs;
+
+ // We may have default arguments. If so, we need to allocate more
+ // slots in the call for them.
+ if (NumArgs < NumArgsInProto)
+ TheCall->setNumArgs(Context, NumArgsInProto + 1);
+ else if (NumArgs > NumArgsInProto)
+ NumArgsToCheck = NumArgsInProto;
+
+ bool IsError = false;
+
+ // Initialize the implicit object parameter.
+ IsError |= PerformObjectArgumentInitialization(Object, Method);
+ TheCall->setArg(0, Object);
+
+
+ // Check the argument types.
+ for (unsigned i = 0; i != NumArgsToCheck; i++) {
+ Expr *Arg;
+ if (i < NumArgs) {
+ Arg = Args[i];
+
+ // Pass the argument.
+ QualType ProtoArgType = Proto->getArgType(i);
+ IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
+ } else {
+ Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
+ }
+
+ TheCall->setArg(i + 1, Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (Proto->isVariadic()) {
+ // Promote the arguments (C99 6.5.2.2p7).
+ for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
+ Expr *Arg = Args[i];
+ IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
+ TheCall->setArg(i + 1, Arg);
+ }
+ }
+
+ if (IsError) return true;
+
+ return CheckFunctionCall(Method, TheCall.take()).release();
+}
+
+/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
+/// (if one exists), where @c Base is an expression of class type and
+/// @c Member is the name of the member we're trying to find.
+Action::ExprResult
+Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
+ SourceLocation MemberLoc,
+ IdentifierInfo &Member) {
+ assert(Base->getType()->isRecordType() && "left-hand side must have class type");
+
+ // C++ [over.ref]p1:
+ //
+ // [...] An expression x->m is interpreted as (x.operator->())->m
+ // for a class object x of type T if T::operator->() exists and if
+ // the operator is selected as the best match function by the
+ // overload resolution mechanism (13.3).
+ // FIXME: look in base classes.
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
+ OverloadCandidateSet CandidateSet;
+ const RecordType *BaseRecord = Base->getType()->getAsRecordType();
+
+ DeclContext::lookup_const_iterator Oper, OperEnd;
+ for (llvm::tie(Oper, OperEnd)
+ = BaseRecord->getDecl()->lookup(Context, OpName);
+ Oper != OperEnd; ++Oper)
+ AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
+ /*SuppressUserConversions=*/false);
+
+ ExprOwningPtr<Expr> BasePtr(this, Base);
+
+ // Perform overload resolution.
+ OverloadCandidateSet::iterator Best;
+ switch (BestViableFunction(CandidateSet, Best)) {
+ case OR_Success:
+ // Overload resolution succeeded; we'll build the call below.
+ break;
+
+ case OR_No_Viable_Function:
+ if (CandidateSet.empty())
+ Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
+ << BasePtr->getType() << BasePtr->getSourceRange();
+ else
+ Diag(OpLoc, diag::err_ovl_no_viable_oper)
+ << "operator->" << BasePtr->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
+ return true;
+
+ case OR_Ambiguous:
+ Diag(OpLoc, diag::err_ovl_ambiguous_oper)
+ << "operator->" << BasePtr->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return true;
+
+ case OR_Deleted:
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << "operator->" << BasePtr->getSourceRange();
+ PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
+ return true;
+ }
+
+ // Convert the object parameter.
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ if (PerformObjectArgumentInitialization(Base, Method))
+ return true;
+
+ // No concerns about early exits now.
+ BasePtr.take();
+
+ // Build the operator call.
+ Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
+ SourceLocation());
+ UsualUnaryConversions(FnExpr);
+ Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
+ Method->getResultType().getNonReferenceType(),
+ OpLoc);
+ return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
+ MemberLoc, Member, DeclPtrTy()).release();
+}
+
+/// FixOverloadedFunctionReference - E is an expression that refers to
+/// a C++ overloaded function (possibly with some parentheses and
+/// perhaps a '&' around it). We have resolved the overloaded function
+/// to the function declaration Fn, so patch up the expression E to
+/// refer (possibly indirectly) to Fn.
+void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
+ if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
+ FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
+ E->setType(PE->getSubExpr()->getType());
+ } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
+ assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
+ "Can only take the address of an overloaded function");
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
+ if (Method->isStatic()) {
+ // Do nothing: static member functions aren't any different
+ // from non-member functions.
+ }
+ else if (QualifiedDeclRefExpr *DRE
+ = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
+ // We have taken the address of a pointer to member
+ // function. Perform the computation here so that we get the
+ // appropriate pointer to member type.
+ DRE->setDecl(Fn);
+ DRE->setType(Fn->getType());
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
+ E->setType(Context.getMemberPointerType(Fn->getType(),
+ ClassType.getTypePtr()));
+ return;
+ }
+ }
+ FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
+ E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
+ } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
+ assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
+ "Expected overloaded function");
+ DR->setDecl(Fn);
+ E->setType(Fn->getType());
+ } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
+ MemExpr->setMemberDecl(Fn);
+ E->setType(Fn->getType());
+ } else {
+ assert(false && "Invalid reference to overloaded function");
+ }
+}
+
+} // end namespace clang