diff options
author | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:58:47 +0000 |
---|---|---|
committer | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:58:47 +0000 |
commit | ec2b103c267a06a66e926f62cd96767b280f5cf5 (patch) | |
tree | ce7d964cbb5e39695b71481698f10cb099c23d4a /lib/Sema/SemaOverload.cpp | |
download | src-ec2b103c267a06a66e926f62cd96767b280f5cf5.tar.gz src-ec2b103c267a06a66e926f62cd96767b280f5cf5.zip |
Import Clang, at r72732.vendor/clang/clang-r72732
Notes
Notes:
svn path=/vendor/clang/dist/; revision=193326
svn path=/vendor/clang/clang-r72732/; revision=193327; tag=vendor/clang/clang-r72732
Diffstat (limited to 'lib/Sema/SemaOverload.cpp')
-rw-r--r-- | lib/Sema/SemaOverload.cpp | 4485 |
1 files changed, 4485 insertions, 0 deletions
diff --git a/lib/Sema/SemaOverload.cpp b/lib/Sema/SemaOverload.cpp new file mode 100644 index 000000000000..98ee13af856a --- /dev/null +++ b/lib/Sema/SemaOverload.cpp @@ -0,0 +1,4485 @@ +//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file provides Sema routines for C++ overloading. +// +//===----------------------------------------------------------------------===// + +#include "Sema.h" +#include "SemaInherit.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Lex/Preprocessor.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/TypeOrdering.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Compiler.h" +#include <algorithm> + +namespace clang { + +/// GetConversionCategory - Retrieve the implicit conversion +/// category corresponding to the given implicit conversion kind. +ImplicitConversionCategory +GetConversionCategory(ImplicitConversionKind Kind) { + static const ImplicitConversionCategory + Category[(int)ICK_Num_Conversion_Kinds] = { + ICC_Identity, + ICC_Lvalue_Transformation, + ICC_Lvalue_Transformation, + ICC_Lvalue_Transformation, + ICC_Qualification_Adjustment, + ICC_Promotion, + ICC_Promotion, + ICC_Promotion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion, + ICC_Conversion + }; + return Category[(int)Kind]; +} + +/// GetConversionRank - Retrieve the implicit conversion rank +/// corresponding to the given implicit conversion kind. +ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { + static const ImplicitConversionRank + Rank[(int)ICK_Num_Conversion_Kinds] = { + ICR_Exact_Match, + ICR_Exact_Match, + ICR_Exact_Match, + ICR_Exact_Match, + ICR_Exact_Match, + ICR_Promotion, + ICR_Promotion, + ICR_Promotion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion, + ICR_Conversion + }; + return Rank[(int)Kind]; +} + +/// GetImplicitConversionName - Return the name of this kind of +/// implicit conversion. +const char* GetImplicitConversionName(ImplicitConversionKind Kind) { + static const char* Name[(int)ICK_Num_Conversion_Kinds] = { + "No conversion", + "Lvalue-to-rvalue", + "Array-to-pointer", + "Function-to-pointer", + "Qualification", + "Integral promotion", + "Floating point promotion", + "Complex promotion", + "Integral conversion", + "Floating conversion", + "Complex conversion", + "Floating-integral conversion", + "Complex-real conversion", + "Pointer conversion", + "Pointer-to-member conversion", + "Boolean conversion", + "Compatible-types conversion", + "Derived-to-base conversion" + }; + return Name[Kind]; +} + +/// StandardConversionSequence - Set the standard conversion +/// sequence to the identity conversion. +void StandardConversionSequence::setAsIdentityConversion() { + First = ICK_Identity; + Second = ICK_Identity; + Third = ICK_Identity; + Deprecated = false; + ReferenceBinding = false; + DirectBinding = false; + RRefBinding = false; + CopyConstructor = 0; +} + +/// getRank - Retrieve the rank of this standard conversion sequence +/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the +/// implicit conversions. +ImplicitConversionRank StandardConversionSequence::getRank() const { + ImplicitConversionRank Rank = ICR_Exact_Match; + if (GetConversionRank(First) > Rank) + Rank = GetConversionRank(First); + if (GetConversionRank(Second) > Rank) + Rank = GetConversionRank(Second); + if (GetConversionRank(Third) > Rank) + Rank = GetConversionRank(Third); + return Rank; +} + +/// isPointerConversionToBool - Determines whether this conversion is +/// a conversion of a pointer or pointer-to-member to bool. This is +/// used as part of the ranking of standard conversion sequences +/// (C++ 13.3.3.2p4). +bool StandardConversionSequence::isPointerConversionToBool() const +{ + QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); + QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); + + // Note that FromType has not necessarily been transformed by the + // array-to-pointer or function-to-pointer implicit conversions, so + // check for their presence as well as checking whether FromType is + // a pointer. + if (ToType->isBooleanType() && + (FromType->isPointerType() || FromType->isBlockPointerType() || + First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) + return true; + + return false; +} + +/// isPointerConversionToVoidPointer - Determines whether this +/// conversion is a conversion of a pointer to a void pointer. This is +/// used as part of the ranking of standard conversion sequences (C++ +/// 13.3.3.2p4). +bool +StandardConversionSequence:: +isPointerConversionToVoidPointer(ASTContext& Context) const +{ + QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); + QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); + + // Note that FromType has not necessarily been transformed by the + // array-to-pointer implicit conversion, so check for its presence + // and redo the conversion to get a pointer. + if (First == ICK_Array_To_Pointer) + FromType = Context.getArrayDecayedType(FromType); + + if (Second == ICK_Pointer_Conversion) + if (const PointerType* ToPtrType = ToType->getAsPointerType()) + return ToPtrType->getPointeeType()->isVoidType(); + + return false; +} + +/// DebugPrint - Print this standard conversion sequence to standard +/// error. Useful for debugging overloading issues. +void StandardConversionSequence::DebugPrint() const { + bool PrintedSomething = false; + if (First != ICK_Identity) { + fprintf(stderr, "%s", GetImplicitConversionName(First)); + PrintedSomething = true; + } + + if (Second != ICK_Identity) { + if (PrintedSomething) { + fprintf(stderr, " -> "); + } + fprintf(stderr, "%s", GetImplicitConversionName(Second)); + + if (CopyConstructor) { + fprintf(stderr, " (by copy constructor)"); + } else if (DirectBinding) { + fprintf(stderr, " (direct reference binding)"); + } else if (ReferenceBinding) { + fprintf(stderr, " (reference binding)"); + } + PrintedSomething = true; + } + + if (Third != ICK_Identity) { + if (PrintedSomething) { + fprintf(stderr, " -> "); + } + fprintf(stderr, "%s", GetImplicitConversionName(Third)); + PrintedSomething = true; + } + + if (!PrintedSomething) { + fprintf(stderr, "No conversions required"); + } +} + +/// DebugPrint - Print this user-defined conversion sequence to standard +/// error. Useful for debugging overloading issues. +void UserDefinedConversionSequence::DebugPrint() const { + if (Before.First || Before.Second || Before.Third) { + Before.DebugPrint(); + fprintf(stderr, " -> "); + } + fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); + if (After.First || After.Second || After.Third) { + fprintf(stderr, " -> "); + After.DebugPrint(); + } +} + +/// DebugPrint - Print this implicit conversion sequence to standard +/// error. Useful for debugging overloading issues. +void ImplicitConversionSequence::DebugPrint() const { + switch (ConversionKind) { + case StandardConversion: + fprintf(stderr, "Standard conversion: "); + Standard.DebugPrint(); + break; + case UserDefinedConversion: + fprintf(stderr, "User-defined conversion: "); + UserDefined.DebugPrint(); + break; + case EllipsisConversion: + fprintf(stderr, "Ellipsis conversion"); + break; + case BadConversion: + fprintf(stderr, "Bad conversion"); + break; + } + + fprintf(stderr, "\n"); +} + +// IsOverload - Determine whether the given New declaration is an +// overload of the Old declaration. This routine returns false if New +// and Old cannot be overloaded, e.g., if they are functions with the +// same signature (C++ 1.3.10) or if the Old declaration isn't a +// function (or overload set). When it does return false and Old is an +// OverloadedFunctionDecl, MatchedDecl will be set to point to the +// FunctionDecl that New cannot be overloaded with. +// +// Example: Given the following input: +// +// void f(int, float); // #1 +// void f(int, int); // #2 +// int f(int, int); // #3 +// +// When we process #1, there is no previous declaration of "f", +// so IsOverload will not be used. +// +// When we process #2, Old is a FunctionDecl for #1. By comparing the +// parameter types, we see that #1 and #2 are overloaded (since they +// have different signatures), so this routine returns false; +// MatchedDecl is unchanged. +// +// When we process #3, Old is an OverloadedFunctionDecl containing #1 +// and #2. We compare the signatures of #3 to #1 (they're overloaded, +// so we do nothing) and then #3 to #2. Since the signatures of #3 and +// #2 are identical (return types of functions are not part of the +// signature), IsOverload returns false and MatchedDecl will be set to +// point to the FunctionDecl for #2. +bool +Sema::IsOverload(FunctionDecl *New, Decl* OldD, + OverloadedFunctionDecl::function_iterator& MatchedDecl) +{ + if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { + // Is this new function an overload of every function in the + // overload set? + OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), + FuncEnd = Ovl->function_end(); + for (; Func != FuncEnd; ++Func) { + if (!IsOverload(New, *Func, MatchedDecl)) { + MatchedDecl = Func; + return false; + } + } + + // This function overloads every function in the overload set. + return true; + } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { + // Is the function New an overload of the function Old? + QualType OldQType = Context.getCanonicalType(Old->getType()); + QualType NewQType = Context.getCanonicalType(New->getType()); + + // Compare the signatures (C++ 1.3.10) of the two functions to + // determine whether they are overloads. If we find any mismatch + // in the signature, they are overloads. + + // If either of these functions is a K&R-style function (no + // prototype), then we consider them to have matching signatures. + if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || + isa<FunctionNoProtoType>(NewQType.getTypePtr())) + return false; + + FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr()); + FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr()); + + // The signature of a function includes the types of its + // parameters (C++ 1.3.10), which includes the presence or absence + // of the ellipsis; see C++ DR 357). + if (OldQType != NewQType && + (OldType->getNumArgs() != NewType->getNumArgs() || + OldType->isVariadic() != NewType->isVariadic() || + !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), + NewType->arg_type_begin()))) + return true; + + // If the function is a class member, its signature includes the + // cv-qualifiers (if any) on the function itself. + // + // As part of this, also check whether one of the member functions + // is static, in which case they are not overloads (C++ + // 13.1p2). While not part of the definition of the signature, + // this check is important to determine whether these functions + // can be overloaded. + CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); + CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); + if (OldMethod && NewMethod && + !OldMethod->isStatic() && !NewMethod->isStatic() && + OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) + return true; + + // The signatures match; this is not an overload. + return false; + } else { + // (C++ 13p1): + // Only function declarations can be overloaded; object and type + // declarations cannot be overloaded. + return false; + } +} + +/// TryImplicitConversion - Attempt to perform an implicit conversion +/// from the given expression (Expr) to the given type (ToType). This +/// function returns an implicit conversion sequence that can be used +/// to perform the initialization. Given +/// +/// void f(float f); +/// void g(int i) { f(i); } +/// +/// this routine would produce an implicit conversion sequence to +/// describe the initialization of f from i, which will be a standard +/// conversion sequence containing an lvalue-to-rvalue conversion (C++ +/// 4.1) followed by a floating-integral conversion (C++ 4.9). +// +/// Note that this routine only determines how the conversion can be +/// performed; it does not actually perform the conversion. As such, +/// it will not produce any diagnostics if no conversion is available, +/// but will instead return an implicit conversion sequence of kind +/// "BadConversion". +/// +/// If @p SuppressUserConversions, then user-defined conversions are +/// not permitted. +/// If @p AllowExplicit, then explicit user-defined conversions are +/// permitted. +/// If @p ForceRValue, then overloading is performed as if From was an rvalue, +/// no matter its actual lvalueness. +ImplicitConversionSequence +Sema::TryImplicitConversion(Expr* From, QualType ToType, + bool SuppressUserConversions, + bool AllowExplicit, bool ForceRValue) +{ + ImplicitConversionSequence ICS; + if (IsStandardConversion(From, ToType, ICS.Standard)) + ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; + else if (getLangOptions().CPlusPlus && + IsUserDefinedConversion(From, ToType, ICS.UserDefined, + !SuppressUserConversions, AllowExplicit, + ForceRValue)) { + ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; + // C++ [over.ics.user]p4: + // A conversion of an expression of class type to the same class + // type is given Exact Match rank, and a conversion of an + // expression of class type to a base class of that type is + // given Conversion rank, in spite of the fact that a copy + // constructor (i.e., a user-defined conversion function) is + // called for those cases. + if (CXXConstructorDecl *Constructor + = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { + QualType FromCanon + = Context.getCanonicalType(From->getType().getUnqualifiedType()); + QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); + if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { + // Turn this into a "standard" conversion sequence, so that it + // gets ranked with standard conversion sequences. + ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; + ICS.Standard.setAsIdentityConversion(); + ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); + ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); + ICS.Standard.CopyConstructor = Constructor; + if (ToCanon != FromCanon) + ICS.Standard.Second = ICK_Derived_To_Base; + } + } + + // C++ [over.best.ics]p4: + // However, when considering the argument of a user-defined + // conversion function that is a candidate by 13.3.1.3 when + // invoked for the copying of the temporary in the second step + // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or + // 13.3.1.6 in all cases, only standard conversion sequences and + // ellipsis conversion sequences are allowed. + if (SuppressUserConversions && + ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) + ICS.ConversionKind = ImplicitConversionSequence::BadConversion; + } else + ICS.ConversionKind = ImplicitConversionSequence::BadConversion; + + return ICS; +} + +/// IsStandardConversion - Determines whether there is a standard +/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the +/// expression From to the type ToType. Standard conversion sequences +/// only consider non-class types; for conversions that involve class +/// types, use TryImplicitConversion. If a conversion exists, SCS will +/// contain the standard conversion sequence required to perform this +/// conversion and this routine will return true. Otherwise, this +/// routine will return false and the value of SCS is unspecified. +bool +Sema::IsStandardConversion(Expr* From, QualType ToType, + StandardConversionSequence &SCS) +{ + QualType FromType = From->getType(); + + // Standard conversions (C++ [conv]) + SCS.setAsIdentityConversion(); + SCS.Deprecated = false; + SCS.IncompatibleObjC = false; + SCS.FromTypePtr = FromType.getAsOpaquePtr(); + SCS.CopyConstructor = 0; + + // There are no standard conversions for class types in C++, so + // abort early. When overloading in C, however, we do permit + if (FromType->isRecordType() || ToType->isRecordType()) { + if (getLangOptions().CPlusPlus) + return false; + + // When we're overloading in C, we allow, as standard conversions, + } + + // The first conversion can be an lvalue-to-rvalue conversion, + // array-to-pointer conversion, or function-to-pointer conversion + // (C++ 4p1). + + // Lvalue-to-rvalue conversion (C++ 4.1): + // An lvalue (3.10) of a non-function, non-array type T can be + // converted to an rvalue. + Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); + if (argIsLvalue == Expr::LV_Valid && + !FromType->isFunctionType() && !FromType->isArrayType() && + Context.getCanonicalType(FromType) != Context.OverloadTy) { + SCS.First = ICK_Lvalue_To_Rvalue; + + // If T is a non-class type, the type of the rvalue is the + // cv-unqualified version of T. Otherwise, the type of the rvalue + // is T (C++ 4.1p1). C++ can't get here with class types; in C, we + // just strip the qualifiers because they don't matter. + + // FIXME: Doesn't see through to qualifiers behind a typedef! + FromType = FromType.getUnqualifiedType(); + } + // Array-to-pointer conversion (C++ 4.2) + else if (FromType->isArrayType()) { + SCS.First = ICK_Array_To_Pointer; + + // An lvalue or rvalue of type "array of N T" or "array of unknown + // bound of T" can be converted to an rvalue of type "pointer to + // T" (C++ 4.2p1). + FromType = Context.getArrayDecayedType(FromType); + + if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { + // This conversion is deprecated. (C++ D.4). + SCS.Deprecated = true; + + // For the purpose of ranking in overload resolution + // (13.3.3.1.1), this conversion is considered an + // array-to-pointer conversion followed by a qualification + // conversion (4.4). (C++ 4.2p2) + SCS.Second = ICK_Identity; + SCS.Third = ICK_Qualification; + SCS.ToTypePtr = ToType.getAsOpaquePtr(); + return true; + } + } + // Function-to-pointer conversion (C++ 4.3). + else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { + SCS.First = ICK_Function_To_Pointer; + + // An lvalue of function type T can be converted to an rvalue of + // type "pointer to T." The result is a pointer to the + // function. (C++ 4.3p1). + FromType = Context.getPointerType(FromType); + } + // Address of overloaded function (C++ [over.over]). + else if (FunctionDecl *Fn + = ResolveAddressOfOverloadedFunction(From, ToType, false)) { + SCS.First = ICK_Function_To_Pointer; + + // We were able to resolve the address of the overloaded function, + // so we can convert to the type of that function. + FromType = Fn->getType(); + if (ToType->isLValueReferenceType()) + FromType = Context.getLValueReferenceType(FromType); + else if (ToType->isRValueReferenceType()) + FromType = Context.getRValueReferenceType(FromType); + else if (ToType->isMemberPointerType()) { + // Resolve address only succeeds if both sides are member pointers, + // but it doesn't have to be the same class. See DR 247. + // Note that this means that the type of &Derived::fn can be + // Ret (Base::*)(Args) if the fn overload actually found is from the + // base class, even if it was brought into the derived class via a + // using declaration. The standard isn't clear on this issue at all. + CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); + FromType = Context.getMemberPointerType(FromType, + Context.getTypeDeclType(M->getParent()).getTypePtr()); + } else + FromType = Context.getPointerType(FromType); + } + // We don't require any conversions for the first step. + else { + SCS.First = ICK_Identity; + } + + // The second conversion can be an integral promotion, floating + // point promotion, integral conversion, floating point conversion, + // floating-integral conversion, pointer conversion, + // pointer-to-member conversion, or boolean conversion (C++ 4p1). + // For overloading in C, this can also be a "compatible-type" + // conversion. + bool IncompatibleObjC = false; + if (Context.hasSameUnqualifiedType(FromType, ToType)) { + // The unqualified versions of the types are the same: there's no + // conversion to do. + SCS.Second = ICK_Identity; + } + // Integral promotion (C++ 4.5). + else if (IsIntegralPromotion(From, FromType, ToType)) { + SCS.Second = ICK_Integral_Promotion; + FromType = ToType.getUnqualifiedType(); + } + // Floating point promotion (C++ 4.6). + else if (IsFloatingPointPromotion(FromType, ToType)) { + SCS.Second = ICK_Floating_Promotion; + FromType = ToType.getUnqualifiedType(); + } + // Complex promotion (Clang extension) + else if (IsComplexPromotion(FromType, ToType)) { + SCS.Second = ICK_Complex_Promotion; + FromType = ToType.getUnqualifiedType(); + } + // Integral conversions (C++ 4.7). + // FIXME: isIntegralType shouldn't be true for enums in C++. + else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && + (ToType->isIntegralType() && !ToType->isEnumeralType())) { + SCS.Second = ICK_Integral_Conversion; + FromType = ToType.getUnqualifiedType(); + } + // Floating point conversions (C++ 4.8). + else if (FromType->isFloatingType() && ToType->isFloatingType()) { + SCS.Second = ICK_Floating_Conversion; + FromType = ToType.getUnqualifiedType(); + } + // Complex conversions (C99 6.3.1.6) + else if (FromType->isComplexType() && ToType->isComplexType()) { + SCS.Second = ICK_Complex_Conversion; + FromType = ToType.getUnqualifiedType(); + } + // Floating-integral conversions (C++ 4.9). + // FIXME: isIntegralType shouldn't be true for enums in C++. + else if ((FromType->isFloatingType() && + ToType->isIntegralType() && !ToType->isBooleanType() && + !ToType->isEnumeralType()) || + ((FromType->isIntegralType() || FromType->isEnumeralType()) && + ToType->isFloatingType())) { + SCS.Second = ICK_Floating_Integral; + FromType = ToType.getUnqualifiedType(); + } + // Complex-real conversions (C99 6.3.1.7) + else if ((FromType->isComplexType() && ToType->isArithmeticType()) || + (ToType->isComplexType() && FromType->isArithmeticType())) { + SCS.Second = ICK_Complex_Real; + FromType = ToType.getUnqualifiedType(); + } + // Pointer conversions (C++ 4.10). + else if (IsPointerConversion(From, FromType, ToType, FromType, + IncompatibleObjC)) { + SCS.Second = ICK_Pointer_Conversion; + SCS.IncompatibleObjC = IncompatibleObjC; + } + // Pointer to member conversions (4.11). + else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) { + SCS.Second = ICK_Pointer_Member; + } + // Boolean conversions (C++ 4.12). + else if (ToType->isBooleanType() && + (FromType->isArithmeticType() || + FromType->isEnumeralType() || + FromType->isPointerType() || + FromType->isBlockPointerType() || + FromType->isMemberPointerType() || + FromType->isNullPtrType())) { + SCS.Second = ICK_Boolean_Conversion; + FromType = Context.BoolTy; + } + // Compatible conversions (Clang extension for C function overloading) + else if (!getLangOptions().CPlusPlus && + Context.typesAreCompatible(ToType, FromType)) { + SCS.Second = ICK_Compatible_Conversion; + } else { + // No second conversion required. + SCS.Second = ICK_Identity; + } + + QualType CanonFrom; + QualType CanonTo; + // The third conversion can be a qualification conversion (C++ 4p1). + if (IsQualificationConversion(FromType, ToType)) { + SCS.Third = ICK_Qualification; + FromType = ToType; + CanonFrom = Context.getCanonicalType(FromType); + CanonTo = Context.getCanonicalType(ToType); + } else { + // No conversion required + SCS.Third = ICK_Identity; + + // C++ [over.best.ics]p6: + // [...] Any difference in top-level cv-qualification is + // subsumed by the initialization itself and does not constitute + // a conversion. [...] + CanonFrom = Context.getCanonicalType(FromType); + CanonTo = Context.getCanonicalType(ToType); + if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && + CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { + FromType = ToType; + CanonFrom = CanonTo; + } + } + + // If we have not converted the argument type to the parameter type, + // this is a bad conversion sequence. + if (CanonFrom != CanonTo) + return false; + + SCS.ToTypePtr = FromType.getAsOpaquePtr(); + return true; +} + +/// IsIntegralPromotion - Determines whether the conversion from the +/// expression From (whose potentially-adjusted type is FromType) to +/// ToType is an integral promotion (C++ 4.5). If so, returns true and +/// sets PromotedType to the promoted type. +bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) +{ + const BuiltinType *To = ToType->getAsBuiltinType(); + // All integers are built-in. + if (!To) { + return false; + } + + // An rvalue of type char, signed char, unsigned char, short int, or + // unsigned short int can be converted to an rvalue of type int if + // int can represent all the values of the source type; otherwise, + // the source rvalue can be converted to an rvalue of type unsigned + // int (C++ 4.5p1). + if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { + if (// We can promote any signed, promotable integer type to an int + (FromType->isSignedIntegerType() || + // We can promote any unsigned integer type whose size is + // less than int to an int. + (!FromType->isSignedIntegerType() && + Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { + return To->getKind() == BuiltinType::Int; + } + + return To->getKind() == BuiltinType::UInt; + } + + // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) + // can be converted to an rvalue of the first of the following types + // that can represent all the values of its underlying type: int, + // unsigned int, long, or unsigned long (C++ 4.5p2). + if ((FromType->isEnumeralType() || FromType->isWideCharType()) + && ToType->isIntegerType()) { + // Determine whether the type we're converting from is signed or + // unsigned. + bool FromIsSigned; + uint64_t FromSize = Context.getTypeSize(FromType); + if (const EnumType *FromEnumType = FromType->getAsEnumType()) { + QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); + FromIsSigned = UnderlyingType->isSignedIntegerType(); + } else { + // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. + FromIsSigned = true; + } + + // The types we'll try to promote to, in the appropriate + // order. Try each of these types. + QualType PromoteTypes[6] = { + Context.IntTy, Context.UnsignedIntTy, + Context.LongTy, Context.UnsignedLongTy , + Context.LongLongTy, Context.UnsignedLongLongTy + }; + for (int Idx = 0; Idx < 6; ++Idx) { + uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); + if (FromSize < ToSize || + (FromSize == ToSize && + FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { + // We found the type that we can promote to. If this is the + // type we wanted, we have a promotion. Otherwise, no + // promotion. + return Context.getCanonicalType(ToType).getUnqualifiedType() + == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); + } + } + } + + // An rvalue for an integral bit-field (9.6) can be converted to an + // rvalue of type int if int can represent all the values of the + // bit-field; otherwise, it can be converted to unsigned int if + // unsigned int can represent all the values of the bit-field. If + // the bit-field is larger yet, no integral promotion applies to + // it. If the bit-field has an enumerated type, it is treated as any + // other value of that type for promotion purposes (C++ 4.5p3). + // FIXME: We should delay checking of bit-fields until we actually perform the + // conversion. + using llvm::APSInt; + if (From) + if (FieldDecl *MemberDecl = From->getBitField()) { + APSInt BitWidth; + if (FromType->isIntegralType() && !FromType->isEnumeralType() && + MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { + APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); + ToSize = Context.getTypeSize(ToType); + + // Are we promoting to an int from a bitfield that fits in an int? + if (BitWidth < ToSize || + (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { + return To->getKind() == BuiltinType::Int; + } + + // Are we promoting to an unsigned int from an unsigned bitfield + // that fits into an unsigned int? + if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { + return To->getKind() == BuiltinType::UInt; + } + + return false; + } + } + + // An rvalue of type bool can be converted to an rvalue of type int, + // with false becoming zero and true becoming one (C++ 4.5p4). + if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { + return true; + } + + return false; +} + +/// IsFloatingPointPromotion - Determines whether the conversion from +/// FromType to ToType is a floating point promotion (C++ 4.6). If so, +/// returns true and sets PromotedType to the promoted type. +bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) +{ + /// An rvalue of type float can be converted to an rvalue of type + /// double. (C++ 4.6p1). + if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType()) + if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) { + if (FromBuiltin->getKind() == BuiltinType::Float && + ToBuiltin->getKind() == BuiltinType::Double) + return true; + + // C99 6.3.1.5p1: + // When a float is promoted to double or long double, or a + // double is promoted to long double [...]. + if (!getLangOptions().CPlusPlus && + (FromBuiltin->getKind() == BuiltinType::Float || + FromBuiltin->getKind() == BuiltinType::Double) && + (ToBuiltin->getKind() == BuiltinType::LongDouble)) + return true; + } + + return false; +} + +/// \brief Determine if a conversion is a complex promotion. +/// +/// A complex promotion is defined as a complex -> complex conversion +/// where the conversion between the underlying real types is a +/// floating-point or integral promotion. +bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { + const ComplexType *FromComplex = FromType->getAsComplexType(); + if (!FromComplex) + return false; + + const ComplexType *ToComplex = ToType->getAsComplexType(); + if (!ToComplex) + return false; + + return IsFloatingPointPromotion(FromComplex->getElementType(), + ToComplex->getElementType()) || + IsIntegralPromotion(0, FromComplex->getElementType(), + ToComplex->getElementType()); +} + +/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from +/// the pointer type FromPtr to a pointer to type ToPointee, with the +/// same type qualifiers as FromPtr has on its pointee type. ToType, +/// if non-empty, will be a pointer to ToType that may or may not have +/// the right set of qualifiers on its pointee. +static QualType +BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, + QualType ToPointee, QualType ToType, + ASTContext &Context) { + QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); + QualType CanonToPointee = Context.getCanonicalType(ToPointee); + unsigned Quals = CanonFromPointee.getCVRQualifiers(); + + // Exact qualifier match -> return the pointer type we're converting to. + if (CanonToPointee.getCVRQualifiers() == Quals) { + // ToType is exactly what we need. Return it. + if (ToType.getTypePtr()) + return ToType; + + // Build a pointer to ToPointee. It has the right qualifiers + // already. + return Context.getPointerType(ToPointee); + } + + // Just build a canonical type that has the right qualifiers. + return Context.getPointerType(CanonToPointee.getQualifiedType(Quals)); +} + +/// IsPointerConversion - Determines whether the conversion of the +/// expression From, which has the (possibly adjusted) type FromType, +/// can be converted to the type ToType via a pointer conversion (C++ +/// 4.10). If so, returns true and places the converted type (that +/// might differ from ToType in its cv-qualifiers at some level) into +/// ConvertedType. +/// +/// This routine also supports conversions to and from block pointers +/// and conversions with Objective-C's 'id', 'id<protocols...>', and +/// pointers to interfaces. FIXME: Once we've determined the +/// appropriate overloading rules for Objective-C, we may want to +/// split the Objective-C checks into a different routine; however, +/// GCC seems to consider all of these conversions to be pointer +/// conversions, so for now they live here. IncompatibleObjC will be +/// set if the conversion is an allowed Objective-C conversion that +/// should result in a warning. +bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, + QualType& ConvertedType, + bool &IncompatibleObjC) +{ + IncompatibleObjC = false; + if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) + return true; + + // Conversion from a null pointer constant to any Objective-C pointer type. + if (Context.isObjCObjectPointerType(ToType) && + From->isNullPointerConstant(Context)) { + ConvertedType = ToType; + return true; + } + + // Blocks: Block pointers can be converted to void*. + if (FromType->isBlockPointerType() && ToType->isPointerType() && + ToType->getAsPointerType()->getPointeeType()->isVoidType()) { + ConvertedType = ToType; + return true; + } + // Blocks: A null pointer constant can be converted to a block + // pointer type. + if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) { + ConvertedType = ToType; + return true; + } + + // If the left-hand-side is nullptr_t, the right side can be a null + // pointer constant. + if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) { + ConvertedType = ToType; + return true; + } + + const PointerType* ToTypePtr = ToType->getAsPointerType(); + if (!ToTypePtr) + return false; + + // A null pointer constant can be converted to a pointer type (C++ 4.10p1). + if (From->isNullPointerConstant(Context)) { + ConvertedType = ToType; + return true; + } + + // Beyond this point, both types need to be pointers. + const PointerType *FromTypePtr = FromType->getAsPointerType(); + if (!FromTypePtr) + return false; + + QualType FromPointeeType = FromTypePtr->getPointeeType(); + QualType ToPointeeType = ToTypePtr->getPointeeType(); + + // An rvalue of type "pointer to cv T," where T is an object type, + // can be converted to an rvalue of type "pointer to cv void" (C++ + // 4.10p2). + if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + // When we're overloading in C, we allow a special kind of pointer + // conversion for compatible-but-not-identical pointee types. + if (!getLangOptions().CPlusPlus && + Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + // C++ [conv.ptr]p3: + // + // An rvalue of type "pointer to cv D," where D is a class type, + // can be converted to an rvalue of type "pointer to cv B," where + // B is a base class (clause 10) of D. If B is an inaccessible + // (clause 11) or ambiguous (10.2) base class of D, a program that + // necessitates this conversion is ill-formed. The result of the + // conversion is a pointer to the base class sub-object of the + // derived class object. The null pointer value is converted to + // the null pointer value of the destination type. + // + // Note that we do not check for ambiguity or inaccessibility + // here. That is handled by CheckPointerConversion. + if (getLangOptions().CPlusPlus && + FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && + IsDerivedFrom(FromPointeeType, ToPointeeType)) { + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + return false; +} + +/// isObjCPointerConversion - Determines whether this is an +/// Objective-C pointer conversion. Subroutine of IsPointerConversion, +/// with the same arguments and return values. +bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, + QualType& ConvertedType, + bool &IncompatibleObjC) { + if (!getLangOptions().ObjC1) + return false; + + // Conversions with Objective-C's id<...>. + if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) && + ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) { + ConvertedType = ToType; + return true; + } + + // Beyond this point, both types need to be pointers or block pointers. + QualType ToPointeeType; + const PointerType* ToTypePtr = ToType->getAsPointerType(); + if (ToTypePtr) + ToPointeeType = ToTypePtr->getPointeeType(); + else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType()) + ToPointeeType = ToBlockPtr->getPointeeType(); + else + return false; + + QualType FromPointeeType; + const PointerType *FromTypePtr = FromType->getAsPointerType(); + if (FromTypePtr) + FromPointeeType = FromTypePtr->getPointeeType(); + else if (const BlockPointerType *FromBlockPtr + = FromType->getAsBlockPointerType()) + FromPointeeType = FromBlockPtr->getPointeeType(); + else + return false; + + // Objective C++: We're able to convert from a pointer to an + // interface to a pointer to a different interface. + const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType(); + const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType(); + if (FromIface && ToIface && + Context.canAssignObjCInterfaces(ToIface, FromIface)) { + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + if (FromIface && ToIface && + Context.canAssignObjCInterfaces(FromIface, ToIface)) { + // Okay: this is some kind of implicit downcast of Objective-C + // interfaces, which is permitted. However, we're going to + // complain about it. + IncompatibleObjC = true; + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + // Objective C++: We're able to convert between "id" and a pointer + // to any interface (in both directions). + if ((FromIface && Context.isObjCIdStructType(ToPointeeType)) + || (ToIface && Context.isObjCIdStructType(FromPointeeType))) { + ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, + ToPointeeType, + ToType, Context); + return true; + } + + // Objective C++: Allow conversions between the Objective-C "id" and + // "Class", in either direction. + if ((Context.isObjCIdStructType(FromPointeeType) && + Context.isObjCClassStructType(ToPointeeType)) || + (Context.isObjCClassStructType(FromPointeeType) && + Context.isObjCIdStructType(ToPointeeType))) { + ConvertedType = ToType; + return true; + } + + // If we have pointers to pointers, recursively check whether this + // is an Objective-C conversion. + if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && + isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, + IncompatibleObjC)) { + // We always complain about this conversion. + IncompatibleObjC = true; + ConvertedType = ToType; + return true; + } + + // If we have pointers to functions or blocks, check whether the only + // differences in the argument and result types are in Objective-C + // pointer conversions. If so, we permit the conversion (but + // complain about it). + const FunctionProtoType *FromFunctionType + = FromPointeeType->getAsFunctionProtoType(); + const FunctionProtoType *ToFunctionType + = ToPointeeType->getAsFunctionProtoType(); + if (FromFunctionType && ToFunctionType) { + // If the function types are exactly the same, this isn't an + // Objective-C pointer conversion. + if (Context.getCanonicalType(FromPointeeType) + == Context.getCanonicalType(ToPointeeType)) + return false; + + // Perform the quick checks that will tell us whether these + // function types are obviously different. + if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || + FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || + FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) + return false; + + bool HasObjCConversion = false; + if (Context.getCanonicalType(FromFunctionType->getResultType()) + == Context.getCanonicalType(ToFunctionType->getResultType())) { + // Okay, the types match exactly. Nothing to do. + } else if (isObjCPointerConversion(FromFunctionType->getResultType(), + ToFunctionType->getResultType(), + ConvertedType, IncompatibleObjC)) { + // Okay, we have an Objective-C pointer conversion. + HasObjCConversion = true; + } else { + // Function types are too different. Abort. + return false; + } + + // Check argument types. + for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); + ArgIdx != NumArgs; ++ArgIdx) { + QualType FromArgType = FromFunctionType->getArgType(ArgIdx); + QualType ToArgType = ToFunctionType->getArgType(ArgIdx); + if (Context.getCanonicalType(FromArgType) + == Context.getCanonicalType(ToArgType)) { + // Okay, the types match exactly. Nothing to do. + } else if (isObjCPointerConversion(FromArgType, ToArgType, + ConvertedType, IncompatibleObjC)) { + // Okay, we have an Objective-C pointer conversion. + HasObjCConversion = true; + } else { + // Argument types are too different. Abort. + return false; + } + } + + if (HasObjCConversion) { + // We had an Objective-C conversion. Allow this pointer + // conversion, but complain about it. + ConvertedType = ToType; + IncompatibleObjC = true; + return true; + } + } + + return false; +} + +/// CheckPointerConversion - Check the pointer conversion from the +/// expression From to the type ToType. This routine checks for +/// ambiguous (FIXME: or inaccessible) derived-to-base pointer +/// conversions for which IsPointerConversion has already returned +/// true. It returns true and produces a diagnostic if there was an +/// error, or returns false otherwise. +bool Sema::CheckPointerConversion(Expr *From, QualType ToType) { + QualType FromType = From->getType(); + + if (const PointerType *FromPtrType = FromType->getAsPointerType()) + if (const PointerType *ToPtrType = ToType->getAsPointerType()) { + QualType FromPointeeType = FromPtrType->getPointeeType(), + ToPointeeType = ToPtrType->getPointeeType(); + + // Objective-C++ conversions are always okay. + // FIXME: We should have a different class of conversions for the + // Objective-C++ implicit conversions. + if (Context.isObjCIdStructType(FromPointeeType) || + Context.isObjCIdStructType(ToPointeeType) || + Context.isObjCClassStructType(FromPointeeType) || + Context.isObjCClassStructType(ToPointeeType)) + return false; + + if (FromPointeeType->isRecordType() && + ToPointeeType->isRecordType()) { + // We must have a derived-to-base conversion. Check an + // ambiguous or inaccessible conversion. + return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, + From->getExprLoc(), + From->getSourceRange()); + } + } + + return false; +} + +/// IsMemberPointerConversion - Determines whether the conversion of the +/// expression From, which has the (possibly adjusted) type FromType, can be +/// converted to the type ToType via a member pointer conversion (C++ 4.11). +/// If so, returns true and places the converted type (that might differ from +/// ToType in its cv-qualifiers at some level) into ConvertedType. +bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, + QualType ToType, QualType &ConvertedType) +{ + const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType(); + if (!ToTypePtr) + return false; + + // A null pointer constant can be converted to a member pointer (C++ 4.11p1) + if (From->isNullPointerConstant(Context)) { + ConvertedType = ToType; + return true; + } + + // Otherwise, both types have to be member pointers. + const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType(); + if (!FromTypePtr) + return false; + + // A pointer to member of B can be converted to a pointer to member of D, + // where D is derived from B (C++ 4.11p2). + QualType FromClass(FromTypePtr->getClass(), 0); + QualType ToClass(ToTypePtr->getClass(), 0); + // FIXME: What happens when these are dependent? Is this function even called? + + if (IsDerivedFrom(ToClass, FromClass)) { + ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), + ToClass.getTypePtr()); + return true; + } + + return false; +} + +/// CheckMemberPointerConversion - Check the member pointer conversion from the +/// expression From to the type ToType. This routine checks for ambiguous or +/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions +/// for which IsMemberPointerConversion has already returned true. It returns +/// true and produces a diagnostic if there was an error, or returns false +/// otherwise. +bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) { + QualType FromType = From->getType(); + const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType(); + if (!FromPtrType) + return false; + + const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType(); + assert(ToPtrType && "No member pointer cast has a target type " + "that is not a member pointer."); + + QualType FromClass = QualType(FromPtrType->getClass(), 0); + QualType ToClass = QualType(ToPtrType->getClass(), 0); + + // FIXME: What about dependent types? + assert(FromClass->isRecordType() && "Pointer into non-class."); + assert(ToClass->isRecordType() && "Pointer into non-class."); + + BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, + /*DetectVirtual=*/true); + bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); + assert(DerivationOkay && + "Should not have been called if derivation isn't OK."); + (void)DerivationOkay; + + if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). + getUnqualifiedType())) { + // Derivation is ambiguous. Redo the check to find the exact paths. + Paths.clear(); + Paths.setRecordingPaths(true); + bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); + assert(StillOkay && "Derivation changed due to quantum fluctuation."); + (void)StillOkay; + + std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); + Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) + << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); + return true; + } + + if (const RecordType *VBase = Paths.getDetectedVirtual()) { + Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) + << FromClass << ToClass << QualType(VBase, 0) + << From->getSourceRange(); + return true; + } + + return false; +} + +/// IsQualificationConversion - Determines whether the conversion from +/// an rvalue of type FromType to ToType is a qualification conversion +/// (C++ 4.4). +bool +Sema::IsQualificationConversion(QualType FromType, QualType ToType) +{ + FromType = Context.getCanonicalType(FromType); + ToType = Context.getCanonicalType(ToType); + + // If FromType and ToType are the same type, this is not a + // qualification conversion. + if (FromType == ToType) + return false; + + // (C++ 4.4p4): + // A conversion can add cv-qualifiers at levels other than the first + // in multi-level pointers, subject to the following rules: [...] + bool PreviousToQualsIncludeConst = true; + bool UnwrappedAnyPointer = false; + while (UnwrapSimilarPointerTypes(FromType, ToType)) { + // Within each iteration of the loop, we check the qualifiers to + // determine if this still looks like a qualification + // conversion. Then, if all is well, we unwrap one more level of + // pointers or pointers-to-members and do it all again + // until there are no more pointers or pointers-to-members left to + // unwrap. + UnwrappedAnyPointer = true; + + // -- for every j > 0, if const is in cv 1,j then const is in cv + // 2,j, and similarly for volatile. + if (!ToType.isAtLeastAsQualifiedAs(FromType)) + return false; + + // -- if the cv 1,j and cv 2,j are different, then const is in + // every cv for 0 < k < j. + if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() + && !PreviousToQualsIncludeConst) + return false; + + // Keep track of whether all prior cv-qualifiers in the "to" type + // include const. + PreviousToQualsIncludeConst + = PreviousToQualsIncludeConst && ToType.isConstQualified(); + } + + // We are left with FromType and ToType being the pointee types + // after unwrapping the original FromType and ToType the same number + // of types. If we unwrapped any pointers, and if FromType and + // ToType have the same unqualified type (since we checked + // qualifiers above), then this is a qualification conversion. + return UnwrappedAnyPointer && + FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); +} + +/// Determines whether there is a user-defined conversion sequence +/// (C++ [over.ics.user]) that converts expression From to the type +/// ToType. If such a conversion exists, User will contain the +/// user-defined conversion sequence that performs such a conversion +/// and this routine will return true. Otherwise, this routine returns +/// false and User is unspecified. +/// +/// \param AllowConversionFunctions true if the conversion should +/// consider conversion functions at all. If false, only constructors +/// will be considered. +/// +/// \param AllowExplicit true if the conversion should consider C++0x +/// "explicit" conversion functions as well as non-explicit conversion +/// functions (C++0x [class.conv.fct]p2). +/// +/// \param ForceRValue true if the expression should be treated as an rvalue +/// for overload resolution. +bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType, + UserDefinedConversionSequence& User, + bool AllowConversionFunctions, + bool AllowExplicit, bool ForceRValue) +{ + OverloadCandidateSet CandidateSet; + if (const RecordType *ToRecordType = ToType->getAsRecordType()) { + if (CXXRecordDecl *ToRecordDecl + = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { + // C++ [over.match.ctor]p1: + // When objects of class type are direct-initialized (8.5), or + // copy-initialized from an expression of the same or a + // derived class type (8.5), overload resolution selects the + // constructor. [...] For copy-initialization, the candidate + // functions are all the converting constructors (12.3.1) of + // that class. The argument list is the expression-list within + // the parentheses of the initializer. + DeclarationName ConstructorName + = Context.DeclarationNames.getCXXConstructorName( + Context.getCanonicalType(ToType).getUnqualifiedType()); + DeclContext::lookup_iterator Con, ConEnd; + for (llvm::tie(Con, ConEnd) + = ToRecordDecl->lookup(Context, ConstructorName); + Con != ConEnd; ++Con) { + CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); + if (Constructor->isConvertingConstructor()) + AddOverloadCandidate(Constructor, &From, 1, CandidateSet, + /*SuppressUserConversions=*/true, ForceRValue); + } + } + } + + if (!AllowConversionFunctions) { + // Don't allow any conversion functions to enter the overload set. + } else if (const RecordType *FromRecordType + = From->getType()->getAsRecordType()) { + if (CXXRecordDecl *FromRecordDecl + = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { + // Add all of the conversion functions as candidates. + // FIXME: Look for conversions in base classes! + OverloadedFunctionDecl *Conversions + = FromRecordDecl->getConversionFunctions(); + for (OverloadedFunctionDecl::function_iterator Func + = Conversions->function_begin(); + Func != Conversions->function_end(); ++Func) { + CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); + if (AllowExplicit || !Conv->isExplicit()) + AddConversionCandidate(Conv, From, ToType, CandidateSet); + } + } + } + + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: + // Record the standard conversion we used and the conversion function. + if (CXXConstructorDecl *Constructor + = dyn_cast<CXXConstructorDecl>(Best->Function)) { + // C++ [over.ics.user]p1: + // If the user-defined conversion is specified by a + // constructor (12.3.1), the initial standard conversion + // sequence converts the source type to the type required by + // the argument of the constructor. + // + // FIXME: What about ellipsis conversions? + QualType ThisType = Constructor->getThisType(Context); + User.Before = Best->Conversions[0].Standard; + User.ConversionFunction = Constructor; + User.After.setAsIdentityConversion(); + User.After.FromTypePtr + = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr(); + User.After.ToTypePtr = ToType.getAsOpaquePtr(); + return true; + } else if (CXXConversionDecl *Conversion + = dyn_cast<CXXConversionDecl>(Best->Function)) { + // C++ [over.ics.user]p1: + // + // [...] If the user-defined conversion is specified by a + // conversion function (12.3.2), the initial standard + // conversion sequence converts the source type to the + // implicit object parameter of the conversion function. + User.Before = Best->Conversions[0].Standard; + User.ConversionFunction = Conversion; + + // C++ [over.ics.user]p2: + // The second standard conversion sequence converts the + // result of the user-defined conversion to the target type + // for the sequence. Since an implicit conversion sequence + // is an initialization, the special rules for + // initialization by user-defined conversion apply when + // selecting the best user-defined conversion for a + // user-defined conversion sequence (see 13.3.3 and + // 13.3.3.1). + User.After = Best->FinalConversion; + return true; + } else { + assert(false && "Not a constructor or conversion function?"); + return false; + } + + case OR_No_Viable_Function: + case OR_Deleted: + // No conversion here! We're done. + return false; + + case OR_Ambiguous: + // FIXME: See C++ [over.best.ics]p10 for the handling of + // ambiguous conversion sequences. + return false; + } + + return false; +} + +/// CompareImplicitConversionSequences - Compare two implicit +/// conversion sequences to determine whether one is better than the +/// other or if they are indistinguishable (C++ 13.3.3.2). +ImplicitConversionSequence::CompareKind +Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, + const ImplicitConversionSequence& ICS2) +{ + // (C++ 13.3.3.2p2): When comparing the basic forms of implicit + // conversion sequences (as defined in 13.3.3.1) + // -- a standard conversion sequence (13.3.3.1.1) is a better + // conversion sequence than a user-defined conversion sequence or + // an ellipsis conversion sequence, and + // -- a user-defined conversion sequence (13.3.3.1.2) is a better + // conversion sequence than an ellipsis conversion sequence + // (13.3.3.1.3). + // + if (ICS1.ConversionKind < ICS2.ConversionKind) + return ImplicitConversionSequence::Better; + else if (ICS2.ConversionKind < ICS1.ConversionKind) + return ImplicitConversionSequence::Worse; + + // Two implicit conversion sequences of the same form are + // indistinguishable conversion sequences unless one of the + // following rules apply: (C++ 13.3.3.2p3): + if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) + return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); + else if (ICS1.ConversionKind == + ImplicitConversionSequence::UserDefinedConversion) { + // User-defined conversion sequence U1 is a better conversion + // sequence than another user-defined conversion sequence U2 if + // they contain the same user-defined conversion function or + // constructor and if the second standard conversion sequence of + // U1 is better than the second standard conversion sequence of + // U2 (C++ 13.3.3.2p3). + if (ICS1.UserDefined.ConversionFunction == + ICS2.UserDefined.ConversionFunction) + return CompareStandardConversionSequences(ICS1.UserDefined.After, + ICS2.UserDefined.After); + } + + return ImplicitConversionSequence::Indistinguishable; +} + +/// CompareStandardConversionSequences - Compare two standard +/// conversion sequences to determine whether one is better than the +/// other or if they are indistinguishable (C++ 13.3.3.2p3). +ImplicitConversionSequence::CompareKind +Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, + const StandardConversionSequence& SCS2) +{ + // Standard conversion sequence S1 is a better conversion sequence + // than standard conversion sequence S2 if (C++ 13.3.3.2p3): + + // -- S1 is a proper subsequence of S2 (comparing the conversion + // sequences in the canonical form defined by 13.3.3.1.1, + // excluding any Lvalue Transformation; the identity conversion + // sequence is considered to be a subsequence of any + // non-identity conversion sequence) or, if not that, + if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) + // Neither is a proper subsequence of the other. Do nothing. + ; + else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || + (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || + (SCS1.Second == ICK_Identity && + SCS1.Third == ICK_Identity)) + // SCS1 is a proper subsequence of SCS2. + return ImplicitConversionSequence::Better; + else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || + (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || + (SCS2.Second == ICK_Identity && + SCS2.Third == ICK_Identity)) + // SCS2 is a proper subsequence of SCS1. + return ImplicitConversionSequence::Worse; + + // -- the rank of S1 is better than the rank of S2 (by the rules + // defined below), or, if not that, + ImplicitConversionRank Rank1 = SCS1.getRank(); + ImplicitConversionRank Rank2 = SCS2.getRank(); + if (Rank1 < Rank2) + return ImplicitConversionSequence::Better; + else if (Rank2 < Rank1) + return ImplicitConversionSequence::Worse; + + // (C++ 13.3.3.2p4): Two conversion sequences with the same rank + // are indistinguishable unless one of the following rules + // applies: + + // A conversion that is not a conversion of a pointer, or + // pointer to member, to bool is better than another conversion + // that is such a conversion. + if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) + return SCS2.isPointerConversionToBool() + ? ImplicitConversionSequence::Better + : ImplicitConversionSequence::Worse; + + // C++ [over.ics.rank]p4b2: + // + // If class B is derived directly or indirectly from class A, + // conversion of B* to A* is better than conversion of B* to + // void*, and conversion of A* to void* is better than conversion + // of B* to void*. + bool SCS1ConvertsToVoid + = SCS1.isPointerConversionToVoidPointer(Context); + bool SCS2ConvertsToVoid + = SCS2.isPointerConversionToVoidPointer(Context); + if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { + // Exactly one of the conversion sequences is a conversion to + // a void pointer; it's the worse conversion. + return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better + : ImplicitConversionSequence::Worse; + } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { + // Neither conversion sequence converts to a void pointer; compare + // their derived-to-base conversions. + if (ImplicitConversionSequence::CompareKind DerivedCK + = CompareDerivedToBaseConversions(SCS1, SCS2)) + return DerivedCK; + } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { + // Both conversion sequences are conversions to void + // pointers. Compare the source types to determine if there's an + // inheritance relationship in their sources. + QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); + QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); + + // Adjust the types we're converting from via the array-to-pointer + // conversion, if we need to. + if (SCS1.First == ICK_Array_To_Pointer) + FromType1 = Context.getArrayDecayedType(FromType1); + if (SCS2.First == ICK_Array_To_Pointer) + FromType2 = Context.getArrayDecayedType(FromType2); + + QualType FromPointee1 + = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); + QualType FromPointee2 + = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); + + if (IsDerivedFrom(FromPointee2, FromPointee1)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(FromPointee1, FromPointee2)) + return ImplicitConversionSequence::Worse; + + // Objective-C++: If one interface is more specific than the + // other, it is the better one. + const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); + const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); + if (FromIface1 && FromIface1) { + if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) + return ImplicitConversionSequence::Better; + else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) + return ImplicitConversionSequence::Worse; + } + } + + // Compare based on qualification conversions (C++ 13.3.3.2p3, + // bullet 3). + if (ImplicitConversionSequence::CompareKind QualCK + = CompareQualificationConversions(SCS1, SCS2)) + return QualCK; + + if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { + // C++0x [over.ics.rank]p3b4: + // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an + // implicit object parameter of a non-static member function declared + // without a ref-qualifier, and S1 binds an rvalue reference to an + // rvalue and S2 binds an lvalue reference. + // FIXME: We don't know if we're dealing with the implicit object parameter, + // or if the member function in this case has a ref qualifier. + // (Of course, we don't have ref qualifiers yet.) + if (SCS1.RRefBinding != SCS2.RRefBinding) + return SCS1.RRefBinding ? ImplicitConversionSequence::Better + : ImplicitConversionSequence::Worse; + + // C++ [over.ics.rank]p3b4: + // -- S1 and S2 are reference bindings (8.5.3), and the types to + // which the references refer are the same type except for + // top-level cv-qualifiers, and the type to which the reference + // initialized by S2 refers is more cv-qualified than the type + // to which the reference initialized by S1 refers. + QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); + QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); + T1 = Context.getCanonicalType(T1); + T2 = Context.getCanonicalType(T2); + if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { + if (T2.isMoreQualifiedThan(T1)) + return ImplicitConversionSequence::Better; + else if (T1.isMoreQualifiedThan(T2)) + return ImplicitConversionSequence::Worse; + } + } + + return ImplicitConversionSequence::Indistinguishable; +} + +/// CompareQualificationConversions - Compares two standard conversion +/// sequences to determine whether they can be ranked based on their +/// qualification conversions (C++ 13.3.3.2p3 bullet 3). +ImplicitConversionSequence::CompareKind +Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, + const StandardConversionSequence& SCS2) +{ + // C++ 13.3.3.2p3: + // -- S1 and S2 differ only in their qualification conversion and + // yield similar types T1 and T2 (C++ 4.4), respectively, and the + // cv-qualification signature of type T1 is a proper subset of + // the cv-qualification signature of type T2, and S1 is not the + // deprecated string literal array-to-pointer conversion (4.2). + if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || + SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) + return ImplicitConversionSequence::Indistinguishable; + + // FIXME: the example in the standard doesn't use a qualification + // conversion (!) + QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); + QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); + T1 = Context.getCanonicalType(T1); + T2 = Context.getCanonicalType(T2); + + // If the types are the same, we won't learn anything by unwrapped + // them. + if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) + return ImplicitConversionSequence::Indistinguishable; + + ImplicitConversionSequence::CompareKind Result + = ImplicitConversionSequence::Indistinguishable; + while (UnwrapSimilarPointerTypes(T1, T2)) { + // Within each iteration of the loop, we check the qualifiers to + // determine if this still looks like a qualification + // conversion. Then, if all is well, we unwrap one more level of + // pointers or pointers-to-members and do it all again + // until there are no more pointers or pointers-to-members left + // to unwrap. This essentially mimics what + // IsQualificationConversion does, but here we're checking for a + // strict subset of qualifiers. + if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) + // The qualifiers are the same, so this doesn't tell us anything + // about how the sequences rank. + ; + else if (T2.isMoreQualifiedThan(T1)) { + // T1 has fewer qualifiers, so it could be the better sequence. + if (Result == ImplicitConversionSequence::Worse) + // Neither has qualifiers that are a subset of the other's + // qualifiers. + return ImplicitConversionSequence::Indistinguishable; + + Result = ImplicitConversionSequence::Better; + } else if (T1.isMoreQualifiedThan(T2)) { + // T2 has fewer qualifiers, so it could be the better sequence. + if (Result == ImplicitConversionSequence::Better) + // Neither has qualifiers that are a subset of the other's + // qualifiers. + return ImplicitConversionSequence::Indistinguishable; + + Result = ImplicitConversionSequence::Worse; + } else { + // Qualifiers are disjoint. + return ImplicitConversionSequence::Indistinguishable; + } + + // If the types after this point are equivalent, we're done. + if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) + break; + } + + // Check that the winning standard conversion sequence isn't using + // the deprecated string literal array to pointer conversion. + switch (Result) { + case ImplicitConversionSequence::Better: + if (SCS1.Deprecated) + Result = ImplicitConversionSequence::Indistinguishable; + break; + + case ImplicitConversionSequence::Indistinguishable: + break; + + case ImplicitConversionSequence::Worse: + if (SCS2.Deprecated) + Result = ImplicitConversionSequence::Indistinguishable; + break; + } + + return Result; +} + +/// CompareDerivedToBaseConversions - Compares two standard conversion +/// sequences to determine whether they can be ranked based on their +/// various kinds of derived-to-base conversions (C++ +/// [over.ics.rank]p4b3). As part of these checks, we also look at +/// conversions between Objective-C interface types. +ImplicitConversionSequence::CompareKind +Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, + const StandardConversionSequence& SCS2) { + QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); + QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); + QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); + QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); + + // Adjust the types we're converting from via the array-to-pointer + // conversion, if we need to. + if (SCS1.First == ICK_Array_To_Pointer) + FromType1 = Context.getArrayDecayedType(FromType1); + if (SCS2.First == ICK_Array_To_Pointer) + FromType2 = Context.getArrayDecayedType(FromType2); + + // Canonicalize all of the types. + FromType1 = Context.getCanonicalType(FromType1); + ToType1 = Context.getCanonicalType(ToType1); + FromType2 = Context.getCanonicalType(FromType2); + ToType2 = Context.getCanonicalType(ToType2); + + // C++ [over.ics.rank]p4b3: + // + // If class B is derived directly or indirectly from class A and + // class C is derived directly or indirectly from B, + // + // For Objective-C, we let A, B, and C also be Objective-C + // interfaces. + + // Compare based on pointer conversions. + if (SCS1.Second == ICK_Pointer_Conversion && + SCS2.Second == ICK_Pointer_Conversion && + /*FIXME: Remove if Objective-C id conversions get their own rank*/ + FromType1->isPointerType() && FromType2->isPointerType() && + ToType1->isPointerType() && ToType2->isPointerType()) { + QualType FromPointee1 + = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); + QualType ToPointee1 + = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType(); + QualType FromPointee2 + = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); + QualType ToPointee2 + = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType(); + + const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType(); + const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType(); + const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType(); + const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType(); + + // -- conversion of C* to B* is better than conversion of C* to A*, + if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { + if (IsDerivedFrom(ToPointee1, ToPointee2)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(ToPointee2, ToPointee1)) + return ImplicitConversionSequence::Worse; + + if (ToIface1 && ToIface2) { + if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) + return ImplicitConversionSequence::Better; + else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) + return ImplicitConversionSequence::Worse; + } + } + + // -- conversion of B* to A* is better than conversion of C* to A*, + if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { + if (IsDerivedFrom(FromPointee2, FromPointee1)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(FromPointee1, FromPointee2)) + return ImplicitConversionSequence::Worse; + + if (FromIface1 && FromIface2) { + if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) + return ImplicitConversionSequence::Better; + else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) + return ImplicitConversionSequence::Worse; + } + } + } + + // Compare based on reference bindings. + if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && + SCS1.Second == ICK_Derived_To_Base) { + // -- binding of an expression of type C to a reference of type + // B& is better than binding an expression of type C to a + // reference of type A&, + if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && + ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { + if (IsDerivedFrom(ToType1, ToType2)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(ToType2, ToType1)) + return ImplicitConversionSequence::Worse; + } + + // -- binding of an expression of type B to a reference of type + // A& is better than binding an expression of type C to a + // reference of type A&, + if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && + ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { + if (IsDerivedFrom(FromType2, FromType1)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(FromType1, FromType2)) + return ImplicitConversionSequence::Worse; + } + } + + + // FIXME: conversion of A::* to B::* is better than conversion of + // A::* to C::*, + + // FIXME: conversion of B::* to C::* is better than conversion of + // A::* to C::*, and + + if (SCS1.CopyConstructor && SCS2.CopyConstructor && + SCS1.Second == ICK_Derived_To_Base) { + // -- conversion of C to B is better than conversion of C to A, + if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && + ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { + if (IsDerivedFrom(ToType1, ToType2)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(ToType2, ToType1)) + return ImplicitConversionSequence::Worse; + } + + // -- conversion of B to A is better than conversion of C to A. + if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && + ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { + if (IsDerivedFrom(FromType2, FromType1)) + return ImplicitConversionSequence::Better; + else if (IsDerivedFrom(FromType1, FromType2)) + return ImplicitConversionSequence::Worse; + } + } + + return ImplicitConversionSequence::Indistinguishable; +} + +/// TryCopyInitialization - Try to copy-initialize a value of type +/// ToType from the expression From. Return the implicit conversion +/// sequence required to pass this argument, which may be a bad +/// conversion sequence (meaning that the argument cannot be passed to +/// a parameter of this type). If @p SuppressUserConversions, then we +/// do not permit any user-defined conversion sequences. If @p ForceRValue, +/// then we treat @p From as an rvalue, even if it is an lvalue. +ImplicitConversionSequence +Sema::TryCopyInitialization(Expr *From, QualType ToType, + bool SuppressUserConversions, bool ForceRValue) { + if (ToType->isReferenceType()) { + ImplicitConversionSequence ICS; + CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions, + /*AllowExplicit=*/false, ForceRValue); + return ICS; + } else { + return TryImplicitConversion(From, ToType, SuppressUserConversions, + ForceRValue); + } +} + +/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with +/// the expression @p From. Returns true (and emits a diagnostic) if there was +/// an error, returns false if the initialization succeeded. Elidable should +/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works +/// differently in C++0x for this case. +bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, + const char* Flavor, bool Elidable) { + if (!getLangOptions().CPlusPlus) { + // In C, argument passing is the same as performing an assignment. + QualType FromType = From->getType(); + + AssignConvertType ConvTy = + CheckSingleAssignmentConstraints(ToType, From); + if (ConvTy != Compatible && + CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) + ConvTy = Compatible; + + return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, + FromType, From, Flavor); + } + + if (ToType->isReferenceType()) + return CheckReferenceInit(From, ToType); + + if (!PerformImplicitConversion(From, ToType, Flavor, + /*AllowExplicit=*/false, Elidable)) + return false; + + return Diag(From->getSourceRange().getBegin(), + diag::err_typecheck_convert_incompatible) + << ToType << From->getType() << Flavor << From->getSourceRange(); +} + +/// TryObjectArgumentInitialization - Try to initialize the object +/// parameter of the given member function (@c Method) from the +/// expression @p From. +ImplicitConversionSequence +Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { + QualType ClassType = Context.getTypeDeclType(Method->getParent()); + unsigned MethodQuals = Method->getTypeQualifiers(); + QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals); + + // Set up the conversion sequence as a "bad" conversion, to allow us + // to exit early. + ImplicitConversionSequence ICS; + ICS.Standard.setAsIdentityConversion(); + ICS.ConversionKind = ImplicitConversionSequence::BadConversion; + + // We need to have an object of class type. + QualType FromType = From->getType(); + if (const PointerType *PT = FromType->getAsPointerType()) + FromType = PT->getPointeeType(); + + assert(FromType->isRecordType()); + + // The implicit object parmeter is has the type "reference to cv X", + // where X is the class of which the function is a member + // (C++ [over.match.funcs]p4). However, when finding an implicit + // conversion sequence for the argument, we are not allowed to + // create temporaries or perform user-defined conversions + // (C++ [over.match.funcs]p5). We perform a simplified version of + // reference binding here, that allows class rvalues to bind to + // non-constant references. + + // First check the qualifiers. We don't care about lvalue-vs-rvalue + // with the implicit object parameter (C++ [over.match.funcs]p5). + QualType FromTypeCanon = Context.getCanonicalType(FromType); + if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && + !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) + return ICS; + + // Check that we have either the same type or a derived type. It + // affects the conversion rank. + QualType ClassTypeCanon = Context.getCanonicalType(ClassType); + if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) + ICS.Standard.Second = ICK_Identity; + else if (IsDerivedFrom(FromType, ClassType)) + ICS.Standard.Second = ICK_Derived_To_Base; + else + return ICS; + + // Success. Mark this as a reference binding. + ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; + ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); + ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); + ICS.Standard.ReferenceBinding = true; + ICS.Standard.DirectBinding = true; + ICS.Standard.RRefBinding = false; + return ICS; +} + +/// PerformObjectArgumentInitialization - Perform initialization of +/// the implicit object parameter for the given Method with the given +/// expression. +bool +Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { + QualType FromRecordType, DestType; + QualType ImplicitParamRecordType = + Method->getThisType(Context)->getAsPointerType()->getPointeeType(); + + if (const PointerType *PT = From->getType()->getAsPointerType()) { + FromRecordType = PT->getPointeeType(); + DestType = Method->getThisType(Context); + } else { + FromRecordType = From->getType(); + DestType = ImplicitParamRecordType; + } + + ImplicitConversionSequence ICS + = TryObjectArgumentInitialization(From, Method); + if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) + return Diag(From->getSourceRange().getBegin(), + diag::err_implicit_object_parameter_init) + << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); + + if (ICS.Standard.Second == ICK_Derived_To_Base && + CheckDerivedToBaseConversion(FromRecordType, + ImplicitParamRecordType, + From->getSourceRange().getBegin(), + From->getSourceRange())) + return true; + + ImpCastExprToType(From, DestType, /*isLvalue=*/true); + return false; +} + +/// TryContextuallyConvertToBool - Attempt to contextually convert the +/// expression From to bool (C++0x [conv]p3). +ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { + return TryImplicitConversion(From, Context.BoolTy, false, true); +} + +/// PerformContextuallyConvertToBool - Perform a contextual conversion +/// of the expression From to bool (C++0x [conv]p3). +bool Sema::PerformContextuallyConvertToBool(Expr *&From) { + ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); + if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) + return false; + + return Diag(From->getSourceRange().getBegin(), + diag::err_typecheck_bool_condition) + << From->getType() << From->getSourceRange(); +} + +/// AddOverloadCandidate - Adds the given function to the set of +/// candidate functions, using the given function call arguments. If +/// @p SuppressUserConversions, then don't allow user-defined +/// conversions via constructors or conversion operators. +/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly +/// hacky way to implement the overloading rules for elidable copy +/// initialization in C++0x (C++0x 12.8p15). +void +Sema::AddOverloadCandidate(FunctionDecl *Function, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + bool SuppressUserConversions, + bool ForceRValue) +{ + const FunctionProtoType* Proto + = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType()); + assert(Proto && "Functions without a prototype cannot be overloaded"); + assert(!isa<CXXConversionDecl>(Function) && + "Use AddConversionCandidate for conversion functions"); + + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { + if (!isa<CXXConstructorDecl>(Method)) { + // If we get here, it's because we're calling a member function + // that is named without a member access expression (e.g., + // "this->f") that was either written explicitly or created + // implicitly. This can happen with a qualified call to a member + // function, e.g., X::f(). We use a NULL object as the implied + // object argument (C++ [over.call.func]p3). + AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, + SuppressUserConversions, ForceRValue); + return; + } + // We treat a constructor like a non-member function, since its object + // argument doesn't participate in overload resolution. + } + + + // Add this candidate + CandidateSet.push_back(OverloadCandidate()); + OverloadCandidate& Candidate = CandidateSet.back(); + Candidate.Function = Function; + Candidate.Viable = true; + Candidate.IsSurrogate = false; + Candidate.IgnoreObjectArgument = false; + + unsigned NumArgsInProto = Proto->getNumArgs(); + + // (C++ 13.3.2p2): A candidate function having fewer than m + // parameters is viable only if it has an ellipsis in its parameter + // list (8.3.5). + if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { + Candidate.Viable = false; + return; + } + + // (C++ 13.3.2p2): A candidate function having more than m parameters + // is viable only if the (m+1)st parameter has a default argument + // (8.3.6). For the purposes of overload resolution, the + // parameter list is truncated on the right, so that there are + // exactly m parameters. + unsigned MinRequiredArgs = Function->getMinRequiredArguments(); + if (NumArgs < MinRequiredArgs) { + // Not enough arguments. + Candidate.Viable = false; + return; + } + + // Determine the implicit conversion sequences for each of the + // arguments. + Candidate.Conversions.resize(NumArgs); + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { + if (ArgIdx < NumArgsInProto) { + // (C++ 13.3.2p3): for F to be a viable function, there shall + // exist for each argument an implicit conversion sequence + // (13.3.3.1) that converts that argument to the corresponding + // parameter of F. + QualType ParamType = Proto->getArgType(ArgIdx); + Candidate.Conversions[ArgIdx] + = TryCopyInitialization(Args[ArgIdx], ParamType, + SuppressUserConversions, ForceRValue); + if (Candidate.Conversions[ArgIdx].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + break; + } + } else { + // (C++ 13.3.2p2): For the purposes of overload resolution, any + // argument for which there is no corresponding parameter is + // considered to ""match the ellipsis" (C+ 13.3.3.1.3). + Candidate.Conversions[ArgIdx].ConversionKind + = ImplicitConversionSequence::EllipsisConversion; + } + } +} + +/// \brief Add all of the function declarations in the given function set to +/// the overload canddiate set. +void Sema::AddFunctionCandidates(const FunctionSet &Functions, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + bool SuppressUserConversions) { + for (FunctionSet::const_iterator F = Functions.begin(), + FEnd = Functions.end(); + F != FEnd; ++F) + AddOverloadCandidate(*F, Args, NumArgs, CandidateSet, + SuppressUserConversions); +} + +/// AddMethodCandidate - Adds the given C++ member function to the set +/// of candidate functions, using the given function call arguments +/// and the object argument (@c Object). For example, in a call +/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain +/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't +/// allow user-defined conversions via constructors or conversion +/// operators. If @p ForceRValue, treat all arguments as rvalues. This is +/// a slightly hacky way to implement the overloading rules for elidable copy +/// initialization in C++0x (C++0x 12.8p15). +void +Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + bool SuppressUserConversions, bool ForceRValue) +{ + const FunctionProtoType* Proto + = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType()); + assert(Proto && "Methods without a prototype cannot be overloaded"); + assert(!isa<CXXConversionDecl>(Method) && + "Use AddConversionCandidate for conversion functions"); + assert(!isa<CXXConstructorDecl>(Method) && + "Use AddOverloadCandidate for constructors"); + + // Add this candidate + CandidateSet.push_back(OverloadCandidate()); + OverloadCandidate& Candidate = CandidateSet.back(); + Candidate.Function = Method; + Candidate.IsSurrogate = false; + Candidate.IgnoreObjectArgument = false; + + unsigned NumArgsInProto = Proto->getNumArgs(); + + // (C++ 13.3.2p2): A candidate function having fewer than m + // parameters is viable only if it has an ellipsis in its parameter + // list (8.3.5). + if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { + Candidate.Viable = false; + return; + } + + // (C++ 13.3.2p2): A candidate function having more than m parameters + // is viable only if the (m+1)st parameter has a default argument + // (8.3.6). For the purposes of overload resolution, the + // parameter list is truncated on the right, so that there are + // exactly m parameters. + unsigned MinRequiredArgs = Method->getMinRequiredArguments(); + if (NumArgs < MinRequiredArgs) { + // Not enough arguments. + Candidate.Viable = false; + return; + } + + Candidate.Viable = true; + Candidate.Conversions.resize(NumArgs + 1); + + if (Method->isStatic() || !Object) + // The implicit object argument is ignored. + Candidate.IgnoreObjectArgument = true; + else { + // Determine the implicit conversion sequence for the object + // parameter. + Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); + if (Candidate.Conversions[0].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + return; + } + } + + // Determine the implicit conversion sequences for each of the + // arguments. + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { + if (ArgIdx < NumArgsInProto) { + // (C++ 13.3.2p3): for F to be a viable function, there shall + // exist for each argument an implicit conversion sequence + // (13.3.3.1) that converts that argument to the corresponding + // parameter of F. + QualType ParamType = Proto->getArgType(ArgIdx); + Candidate.Conversions[ArgIdx + 1] + = TryCopyInitialization(Args[ArgIdx], ParamType, + SuppressUserConversions, ForceRValue); + if (Candidate.Conversions[ArgIdx + 1].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + break; + } + } else { + // (C++ 13.3.2p2): For the purposes of overload resolution, any + // argument for which there is no corresponding parameter is + // considered to ""match the ellipsis" (C+ 13.3.3.1.3). + Candidate.Conversions[ArgIdx + 1].ConversionKind + = ImplicitConversionSequence::EllipsisConversion; + } + } +} + +/// AddConversionCandidate - Add a C++ conversion function as a +/// candidate in the candidate set (C++ [over.match.conv], +/// C++ [over.match.copy]). From is the expression we're converting from, +/// and ToType is the type that we're eventually trying to convert to +/// (which may or may not be the same type as the type that the +/// conversion function produces). +void +Sema::AddConversionCandidate(CXXConversionDecl *Conversion, + Expr *From, QualType ToType, + OverloadCandidateSet& CandidateSet) { + // Add this candidate + CandidateSet.push_back(OverloadCandidate()); + OverloadCandidate& Candidate = CandidateSet.back(); + Candidate.Function = Conversion; + Candidate.IsSurrogate = false; + Candidate.IgnoreObjectArgument = false; + Candidate.FinalConversion.setAsIdentityConversion(); + Candidate.FinalConversion.FromTypePtr + = Conversion->getConversionType().getAsOpaquePtr(); + Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); + + // Determine the implicit conversion sequence for the implicit + // object parameter. + Candidate.Viable = true; + Candidate.Conversions.resize(1); + Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); + + if (Candidate.Conversions[0].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + return; + } + + // To determine what the conversion from the result of calling the + // conversion function to the type we're eventually trying to + // convert to (ToType), we need to synthesize a call to the + // conversion function and attempt copy initialization from it. This + // makes sure that we get the right semantics with respect to + // lvalues/rvalues and the type. Fortunately, we can allocate this + // call on the stack and we don't need its arguments to be + // well-formed. + DeclRefExpr ConversionRef(Conversion, Conversion->getType(), + SourceLocation()); + ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), + &ConversionRef, false); + + // Note that it is safe to allocate CallExpr on the stack here because + // there are 0 arguments (i.e., nothing is allocated using ASTContext's + // allocator). + CallExpr Call(Context, &ConversionFn, 0, 0, + Conversion->getConversionType().getNonReferenceType(), + SourceLocation()); + ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true); + switch (ICS.ConversionKind) { + case ImplicitConversionSequence::StandardConversion: + Candidate.FinalConversion = ICS.Standard; + break; + + case ImplicitConversionSequence::BadConversion: + Candidate.Viable = false; + break; + + default: + assert(false && + "Can only end up with a standard conversion sequence or failure"); + } +} + +/// AddSurrogateCandidate - Adds a "surrogate" candidate function that +/// converts the given @c Object to a function pointer via the +/// conversion function @c Conversion, and then attempts to call it +/// with the given arguments (C++ [over.call.object]p2-4). Proto is +/// the type of function that we'll eventually be calling. +void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, + const FunctionProtoType *Proto, + Expr *Object, Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet) { + CandidateSet.push_back(OverloadCandidate()); + OverloadCandidate& Candidate = CandidateSet.back(); + Candidate.Function = 0; + Candidate.Surrogate = Conversion; + Candidate.Viable = true; + Candidate.IsSurrogate = true; + Candidate.IgnoreObjectArgument = false; + Candidate.Conversions.resize(NumArgs + 1); + + // Determine the implicit conversion sequence for the implicit + // object parameter. + ImplicitConversionSequence ObjectInit + = TryObjectArgumentInitialization(Object, Conversion); + if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + return; + } + + // The first conversion is actually a user-defined conversion whose + // first conversion is ObjectInit's standard conversion (which is + // effectively a reference binding). Record it as such. + Candidate.Conversions[0].ConversionKind + = ImplicitConversionSequence::UserDefinedConversion; + Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; + Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; + Candidate.Conversions[0].UserDefined.After + = Candidate.Conversions[0].UserDefined.Before; + Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); + + // Find the + unsigned NumArgsInProto = Proto->getNumArgs(); + + // (C++ 13.3.2p2): A candidate function having fewer than m + // parameters is viable only if it has an ellipsis in its parameter + // list (8.3.5). + if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { + Candidate.Viable = false; + return; + } + + // Function types don't have any default arguments, so just check if + // we have enough arguments. + if (NumArgs < NumArgsInProto) { + // Not enough arguments. + Candidate.Viable = false; + return; + } + + // Determine the implicit conversion sequences for each of the + // arguments. + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { + if (ArgIdx < NumArgsInProto) { + // (C++ 13.3.2p3): for F to be a viable function, there shall + // exist for each argument an implicit conversion sequence + // (13.3.3.1) that converts that argument to the corresponding + // parameter of F. + QualType ParamType = Proto->getArgType(ArgIdx); + Candidate.Conversions[ArgIdx + 1] + = TryCopyInitialization(Args[ArgIdx], ParamType, + /*SuppressUserConversions=*/false); + if (Candidate.Conversions[ArgIdx + 1].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + break; + } + } else { + // (C++ 13.3.2p2): For the purposes of overload resolution, any + // argument for which there is no corresponding parameter is + // considered to ""match the ellipsis" (C+ 13.3.3.1.3). + Candidate.Conversions[ArgIdx + 1].ConversionKind + = ImplicitConversionSequence::EllipsisConversion; + } + } +} + +// FIXME: This will eventually be removed, once we've migrated all of the +// operator overloading logic over to the scheme used by binary operators, which +// works for template instantiation. +void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, + SourceLocation OpLoc, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + SourceRange OpRange) { + + FunctionSet Functions; + + QualType T1 = Args[0]->getType(); + QualType T2; + if (NumArgs > 1) + T2 = Args[1]->getType(); + + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); + if (S) + LookupOverloadedOperatorName(Op, S, T1, T2, Functions); + ArgumentDependentLookup(OpName, Args, NumArgs, Functions); + AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); + AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); + AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); +} + +/// \brief Add overload candidates for overloaded operators that are +/// member functions. +/// +/// Add the overloaded operator candidates that are member functions +/// for the operator Op that was used in an operator expression such +/// as "x Op y". , Args/NumArgs provides the operator arguments, and +/// CandidateSet will store the added overload candidates. (C++ +/// [over.match.oper]). +void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, + SourceLocation OpLoc, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + SourceRange OpRange) { + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); + + // C++ [over.match.oper]p3: + // For a unary operator @ with an operand of a type whose + // cv-unqualified version is T1, and for a binary operator @ with + // a left operand of a type whose cv-unqualified version is T1 and + // a right operand of a type whose cv-unqualified version is T2, + // three sets of candidate functions, designated member + // candidates, non-member candidates and built-in candidates, are + // constructed as follows: + QualType T1 = Args[0]->getType(); + QualType T2; + if (NumArgs > 1) + T2 = Args[1]->getType(); + + // -- If T1 is a class type, the set of member candidates is the + // result of the qualified lookup of T1::operator@ + // (13.3.1.1.1); otherwise, the set of member candidates is + // empty. + // FIXME: Lookup in base classes, too! + if (const RecordType *T1Rec = T1->getAsRecordType()) { + DeclContext::lookup_const_iterator Oper, OperEnd; + for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName); + Oper != OperEnd; ++Oper) + AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0], + Args+1, NumArgs - 1, CandidateSet, + /*SuppressUserConversions=*/false); + } +} + +/// AddBuiltinCandidate - Add a candidate for a built-in +/// operator. ResultTy and ParamTys are the result and parameter types +/// of the built-in candidate, respectively. Args and NumArgs are the +/// arguments being passed to the candidate. IsAssignmentOperator +/// should be true when this built-in candidate is an assignment +/// operator. NumContextualBoolArguments is the number of arguments +/// (at the beginning of the argument list) that will be contextually +/// converted to bool. +void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet, + bool IsAssignmentOperator, + unsigned NumContextualBoolArguments) { + // Add this candidate + CandidateSet.push_back(OverloadCandidate()); + OverloadCandidate& Candidate = CandidateSet.back(); + Candidate.Function = 0; + Candidate.IsSurrogate = false; + Candidate.IgnoreObjectArgument = false; + Candidate.BuiltinTypes.ResultTy = ResultTy; + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) + Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; + + // Determine the implicit conversion sequences for each of the + // arguments. + Candidate.Viable = true; + Candidate.Conversions.resize(NumArgs); + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { + // C++ [over.match.oper]p4: + // For the built-in assignment operators, conversions of the + // left operand are restricted as follows: + // -- no temporaries are introduced to hold the left operand, and + // -- no user-defined conversions are applied to the left + // operand to achieve a type match with the left-most + // parameter of a built-in candidate. + // + // We block these conversions by turning off user-defined + // conversions, since that is the only way that initialization of + // a reference to a non-class type can occur from something that + // is not of the same type. + if (ArgIdx < NumContextualBoolArguments) { + assert(ParamTys[ArgIdx] == Context.BoolTy && + "Contextual conversion to bool requires bool type"); + Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); + } else { + Candidate.Conversions[ArgIdx] + = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], + ArgIdx == 0 && IsAssignmentOperator); + } + if (Candidate.Conversions[ArgIdx].ConversionKind + == ImplicitConversionSequence::BadConversion) { + Candidate.Viable = false; + break; + } + } +} + +/// BuiltinCandidateTypeSet - A set of types that will be used for the +/// candidate operator functions for built-in operators (C++ +/// [over.built]). The types are separated into pointer types and +/// enumeration types. +class BuiltinCandidateTypeSet { + /// TypeSet - A set of types. + typedef llvm::SmallPtrSet<QualType, 8> TypeSet; + + /// PointerTypes - The set of pointer types that will be used in the + /// built-in candidates. + TypeSet PointerTypes; + + /// MemberPointerTypes - The set of member pointer types that will be + /// used in the built-in candidates. + TypeSet MemberPointerTypes; + + /// EnumerationTypes - The set of enumeration types that will be + /// used in the built-in candidates. + TypeSet EnumerationTypes; + + /// Context - The AST context in which we will build the type sets. + ASTContext &Context; + + bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty); + bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); + +public: + /// iterator - Iterates through the types that are part of the set. + typedef TypeSet::iterator iterator; + + BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { } + + void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, + bool AllowExplicitConversions); + + /// pointer_begin - First pointer type found; + iterator pointer_begin() { return PointerTypes.begin(); } + + /// pointer_end - Past the last pointer type found; + iterator pointer_end() { return PointerTypes.end(); } + + /// member_pointer_begin - First member pointer type found; + iterator member_pointer_begin() { return MemberPointerTypes.begin(); } + + /// member_pointer_end - Past the last member pointer type found; + iterator member_pointer_end() { return MemberPointerTypes.end(); } + + /// enumeration_begin - First enumeration type found; + iterator enumeration_begin() { return EnumerationTypes.begin(); } + + /// enumeration_end - Past the last enumeration type found; + iterator enumeration_end() { return EnumerationTypes.end(); } +}; + +/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to +/// the set of pointer types along with any more-qualified variants of +/// that type. For example, if @p Ty is "int const *", this routine +/// will add "int const *", "int const volatile *", "int const +/// restrict *", and "int const volatile restrict *" to the set of +/// pointer types. Returns true if the add of @p Ty itself succeeded, +/// false otherwise. +bool +BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) { + // Insert this type. + if (!PointerTypes.insert(Ty)) + return false; + + if (const PointerType *PointerTy = Ty->getAsPointerType()) { + QualType PointeeTy = PointerTy->getPointeeType(); + // FIXME: Optimize this so that we don't keep trying to add the same types. + + // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all + // pointer conversions that don't cast away constness? + if (!PointeeTy.isConstQualified()) + AddPointerWithMoreQualifiedTypeVariants + (Context.getPointerType(PointeeTy.withConst())); + if (!PointeeTy.isVolatileQualified()) + AddPointerWithMoreQualifiedTypeVariants + (Context.getPointerType(PointeeTy.withVolatile())); + if (!PointeeTy.isRestrictQualified()) + AddPointerWithMoreQualifiedTypeVariants + (Context.getPointerType(PointeeTy.withRestrict())); + } + + return true; +} + +/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty +/// to the set of pointer types along with any more-qualified variants of +/// that type. For example, if @p Ty is "int const *", this routine +/// will add "int const *", "int const volatile *", "int const +/// restrict *", and "int const volatile restrict *" to the set of +/// pointer types. Returns true if the add of @p Ty itself succeeded, +/// false otherwise. +bool +BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( + QualType Ty) { + // Insert this type. + if (!MemberPointerTypes.insert(Ty)) + return false; + + if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) { + QualType PointeeTy = PointerTy->getPointeeType(); + const Type *ClassTy = PointerTy->getClass(); + // FIXME: Optimize this so that we don't keep trying to add the same types. + + if (!PointeeTy.isConstQualified()) + AddMemberPointerWithMoreQualifiedTypeVariants + (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy)); + if (!PointeeTy.isVolatileQualified()) + AddMemberPointerWithMoreQualifiedTypeVariants + (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy)); + if (!PointeeTy.isRestrictQualified()) + AddMemberPointerWithMoreQualifiedTypeVariants + (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy)); + } + + return true; +} + +/// AddTypesConvertedFrom - Add each of the types to which the type @p +/// Ty can be implicit converted to the given set of @p Types. We're +/// primarily interested in pointer types and enumeration types. We also +/// take member pointer types, for the conditional operator. +/// AllowUserConversions is true if we should look at the conversion +/// functions of a class type, and AllowExplicitConversions if we +/// should also include the explicit conversion functions of a class +/// type. +void +BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, + bool AllowUserConversions, + bool AllowExplicitConversions) { + // Only deal with canonical types. + Ty = Context.getCanonicalType(Ty); + + // Look through reference types; they aren't part of the type of an + // expression for the purposes of conversions. + if (const ReferenceType *RefTy = Ty->getAsReferenceType()) + Ty = RefTy->getPointeeType(); + + // We don't care about qualifiers on the type. + Ty = Ty.getUnqualifiedType(); + + if (const PointerType *PointerTy = Ty->getAsPointerType()) { + QualType PointeeTy = PointerTy->getPointeeType(); + + // Insert our type, and its more-qualified variants, into the set + // of types. + if (!AddPointerWithMoreQualifiedTypeVariants(Ty)) + return; + + // Add 'cv void*' to our set of types. + if (!Ty->isVoidType()) { + QualType QualVoid + = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers()); + AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid)); + } + + // If this is a pointer to a class type, add pointers to its bases + // (with the same level of cv-qualification as the original + // derived class, of course). + if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) { + CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl()); + for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); + Base != ClassDecl->bases_end(); ++Base) { + QualType BaseTy = Context.getCanonicalType(Base->getType()); + BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers()); + + // Add the pointer type, recursively, so that we get all of + // the indirect base classes, too. + AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false); + } + } + } else if (Ty->isMemberPointerType()) { + // Member pointers are far easier, since the pointee can't be converted. + if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) + return; + } else if (Ty->isEnumeralType()) { + EnumerationTypes.insert(Ty); + } else if (AllowUserConversions) { + if (const RecordType *TyRec = Ty->getAsRecordType()) { + CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); + // FIXME: Visit conversion functions in the base classes, too. + OverloadedFunctionDecl *Conversions + = ClassDecl->getConversionFunctions(); + for (OverloadedFunctionDecl::function_iterator Func + = Conversions->function_begin(); + Func != Conversions->function_end(); ++Func) { + CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); + if (AllowExplicitConversions || !Conv->isExplicit()) + AddTypesConvertedFrom(Conv->getConversionType(), false, false); + } + } + } +} + +/// AddBuiltinOperatorCandidates - Add the appropriate built-in +/// operator overloads to the candidate set (C++ [over.built]), based +/// on the operator @p Op and the arguments given. For example, if the +/// operator is a binary '+', this routine might add "int +/// operator+(int, int)" to cover integer addition. +void +Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet) { + // The set of "promoted arithmetic types", which are the arithmetic + // types are that preserved by promotion (C++ [over.built]p2). Note + // that the first few of these types are the promoted integral + // types; these types need to be first. + // FIXME: What about complex? + const unsigned FirstIntegralType = 0; + const unsigned LastIntegralType = 13; + const unsigned FirstPromotedIntegralType = 7, + LastPromotedIntegralType = 13; + const unsigned FirstPromotedArithmeticType = 7, + LastPromotedArithmeticType = 16; + const unsigned NumArithmeticTypes = 16; + QualType ArithmeticTypes[NumArithmeticTypes] = { + Context.BoolTy, Context.CharTy, Context.WCharTy, + Context.SignedCharTy, Context.ShortTy, + Context.UnsignedCharTy, Context.UnsignedShortTy, + Context.IntTy, Context.LongTy, Context.LongLongTy, + Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, + Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy + }; + + // Find all of the types that the arguments can convert to, but only + // if the operator we're looking at has built-in operator candidates + // that make use of these types. + BuiltinCandidateTypeSet CandidateTypes(Context); + if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || + Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || + Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || + Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || + Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || + (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) + CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), + true, + (Op == OO_Exclaim || + Op == OO_AmpAmp || + Op == OO_PipePipe)); + } + + bool isComparison = false; + switch (Op) { + case OO_None: + case NUM_OVERLOADED_OPERATORS: + assert(false && "Expected an overloaded operator"); + break; + + case OO_Star: // '*' is either unary or binary + if (NumArgs == 1) + goto UnaryStar; + else + goto BinaryStar; + break; + + case OO_Plus: // '+' is either unary or binary + if (NumArgs == 1) + goto UnaryPlus; + else + goto BinaryPlus; + break; + + case OO_Minus: // '-' is either unary or binary + if (NumArgs == 1) + goto UnaryMinus; + else + goto BinaryMinus; + break; + + case OO_Amp: // '&' is either unary or binary + if (NumArgs == 1) + goto UnaryAmp; + else + goto BinaryAmp; + + case OO_PlusPlus: + case OO_MinusMinus: + // C++ [over.built]p3: + // + // For every pair (T, VQ), where T is an arithmetic type, and VQ + // is either volatile or empty, there exist candidate operator + // functions of the form + // + // VQ T& operator++(VQ T&); + // T operator++(VQ T&, int); + // + // C++ [over.built]p4: + // + // For every pair (T, VQ), where T is an arithmetic type other + // than bool, and VQ is either volatile or empty, there exist + // candidate operator functions of the form + // + // VQ T& operator--(VQ T&); + // T operator--(VQ T&, int); + for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); + Arith < NumArithmeticTypes; ++Arith) { + QualType ArithTy = ArithmeticTypes[Arith]; + QualType ParamTypes[2] + = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; + + // Non-volatile version. + if (NumArgs == 1) + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); + else + AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); + + // Volatile version + ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile()); + if (NumArgs == 1) + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); + else + AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); + } + + // C++ [over.built]p5: + // + // For every pair (T, VQ), where T is a cv-qualified or + // cv-unqualified object type, and VQ is either volatile or + // empty, there exist candidate operator functions of the form + // + // T*VQ& operator++(T*VQ&); + // T*VQ& operator--(T*VQ&); + // T* operator++(T*VQ&, int); + // T* operator--(T*VQ&, int); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + // Skip pointer types that aren't pointers to object types. + if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType()) + continue; + + QualType ParamTypes[2] = { + Context.getLValueReferenceType(*Ptr), Context.IntTy + }; + + // Without volatile + if (NumArgs == 1) + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); + else + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + + if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { + // With volatile + ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); + if (NumArgs == 1) + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); + else + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + } + } + break; + + UnaryStar: + // C++ [over.built]p6: + // For every cv-qualified or cv-unqualified object type T, there + // exist candidate operator functions of the form + // + // T& operator*(T*); + // + // C++ [over.built]p7: + // For every function type T, there exist candidate operator + // functions of the form + // T& operator*(T*); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTy = *Ptr; + QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType(); + AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), + &ParamTy, Args, 1, CandidateSet); + } + break; + + UnaryPlus: + // C++ [over.built]p8: + // For every type T, there exist candidate operator functions of + // the form + // + // T* operator+(T*); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTy = *Ptr; + AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); + } + + // Fall through + + UnaryMinus: + // C++ [over.built]p9: + // For every promoted arithmetic type T, there exist candidate + // operator functions of the form + // + // T operator+(T); + // T operator-(T); + for (unsigned Arith = FirstPromotedArithmeticType; + Arith < LastPromotedArithmeticType; ++Arith) { + QualType ArithTy = ArithmeticTypes[Arith]; + AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); + } + break; + + case OO_Tilde: + // C++ [over.built]p10: + // For every promoted integral type T, there exist candidate + // operator functions of the form + // + // T operator~(T); + for (unsigned Int = FirstPromotedIntegralType; + Int < LastPromotedIntegralType; ++Int) { + QualType IntTy = ArithmeticTypes[Int]; + AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); + } + break; + + case OO_New: + case OO_Delete: + case OO_Array_New: + case OO_Array_Delete: + case OO_Call: + assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); + break; + + case OO_Comma: + UnaryAmp: + case OO_Arrow: + // C++ [over.match.oper]p3: + // -- For the operator ',', the unary operator '&', or the + // operator '->', the built-in candidates set is empty. + break; + + case OO_Less: + case OO_Greater: + case OO_LessEqual: + case OO_GreaterEqual: + case OO_EqualEqual: + case OO_ExclaimEqual: + // C++ [over.built]p15: + // + // For every pointer or enumeration type T, there exist + // candidate operator functions of the form + // + // bool operator<(T, T); + // bool operator>(T, T); + // bool operator<=(T, T); + // bool operator>=(T, T); + // bool operator==(T, T); + // bool operator!=(T, T); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTypes[2] = { *Ptr, *Ptr }; + AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); + } + for (BuiltinCandidateTypeSet::iterator Enum + = CandidateTypes.enumeration_begin(); + Enum != CandidateTypes.enumeration_end(); ++Enum) { + QualType ParamTypes[2] = { *Enum, *Enum }; + AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); + } + + // Fall through. + isComparison = true; + + BinaryPlus: + BinaryMinus: + if (!isComparison) { + // We didn't fall through, so we must have OO_Plus or OO_Minus. + + // C++ [over.built]p13: + // + // For every cv-qualified or cv-unqualified object type T + // there exist candidate operator functions of the form + // + // T* operator+(T*, ptrdiff_t); + // T& operator[](T*, ptrdiff_t); [BELOW] + // T* operator-(T*, ptrdiff_t); + // T* operator+(ptrdiff_t, T*); + // T& operator[](ptrdiff_t, T*); [BELOW] + // + // C++ [over.built]p14: + // + // For every T, where T is a pointer to object type, there + // exist candidate operator functions of the form + // + // ptrdiff_t operator-(T, T); + for (BuiltinCandidateTypeSet::iterator Ptr + = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; + + // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + + if (Op == OO_Plus) { + // T* operator+(ptrdiff_t, T*); + ParamTypes[0] = ParamTypes[1]; + ParamTypes[1] = *Ptr; + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + } else { + // ptrdiff_t operator-(T, T); + ParamTypes[1] = *Ptr; + AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, + Args, 2, CandidateSet); + } + } + } + // Fall through + + case OO_Slash: + BinaryStar: + Conditional: + // C++ [over.built]p12: + // + // For every pair of promoted arithmetic types L and R, there + // exist candidate operator functions of the form + // + // LR operator*(L, R); + // LR operator/(L, R); + // LR operator+(L, R); + // LR operator-(L, R); + // bool operator<(L, R); + // bool operator>(L, R); + // bool operator<=(L, R); + // bool operator>=(L, R); + // bool operator==(L, R); + // bool operator!=(L, R); + // + // where LR is the result of the usual arithmetic conversions + // between types L and R. + // + // C++ [over.built]p24: + // + // For every pair of promoted arithmetic types L and R, there exist + // candidate operator functions of the form + // + // LR operator?(bool, L, R); + // + // where LR is the result of the usual arithmetic conversions + // between types L and R. + // Our candidates ignore the first parameter. + for (unsigned Left = FirstPromotedArithmeticType; + Left < LastPromotedArithmeticType; ++Left) { + for (unsigned Right = FirstPromotedArithmeticType; + Right < LastPromotedArithmeticType; ++Right) { + QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; + QualType Result + = isComparison? Context.BoolTy + : UsualArithmeticConversionsType(LandR[0], LandR[1]); + AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); + } + } + break; + + case OO_Percent: + BinaryAmp: + case OO_Caret: + case OO_Pipe: + case OO_LessLess: + case OO_GreaterGreater: + // C++ [over.built]p17: + // + // For every pair of promoted integral types L and R, there + // exist candidate operator functions of the form + // + // LR operator%(L, R); + // LR operator&(L, R); + // LR operator^(L, R); + // LR operator|(L, R); + // L operator<<(L, R); + // L operator>>(L, R); + // + // where LR is the result of the usual arithmetic conversions + // between types L and R. + for (unsigned Left = FirstPromotedIntegralType; + Left < LastPromotedIntegralType; ++Left) { + for (unsigned Right = FirstPromotedIntegralType; + Right < LastPromotedIntegralType; ++Right) { + QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; + QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) + ? LandR[0] + : UsualArithmeticConversionsType(LandR[0], LandR[1]); + AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); + } + } + break; + + case OO_Equal: + // C++ [over.built]p20: + // + // For every pair (T, VQ), where T is an enumeration or + // (FIXME:) pointer to member type and VQ is either volatile or + // empty, there exist candidate operator functions of the form + // + // VQ T& operator=(VQ T&, T); + for (BuiltinCandidateTypeSet::iterator Enum + = CandidateTypes.enumeration_begin(); + Enum != CandidateTypes.enumeration_end(); ++Enum) { + QualType ParamTypes[2]; + + // T& operator=(T&, T) + ParamTypes[0] = Context.getLValueReferenceType(*Enum); + ParamTypes[1] = *Enum; + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssignmentOperator=*/false); + + if (!Context.getCanonicalType(*Enum).isVolatileQualified()) { + // volatile T& operator=(volatile T&, T) + ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile()); + ParamTypes[1] = *Enum; + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssignmentOperator=*/false); + } + } + // Fall through. + + case OO_PlusEqual: + case OO_MinusEqual: + // C++ [over.built]p19: + // + // For every pair (T, VQ), where T is any type and VQ is either + // volatile or empty, there exist candidate operator functions + // of the form + // + // T*VQ& operator=(T*VQ&, T*); + // + // C++ [over.built]p21: + // + // For every pair (T, VQ), where T is a cv-qualified or + // cv-unqualified object type and VQ is either volatile or + // empty, there exist candidate operator functions of the form + // + // T*VQ& operator+=(T*VQ&, ptrdiff_t); + // T*VQ& operator-=(T*VQ&, ptrdiff_t); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTypes[2]; + ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); + + // non-volatile version + ParamTypes[0] = Context.getLValueReferenceType(*Ptr); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssigmentOperator=*/Op == OO_Equal); + + if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { + // volatile version + ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile()); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssigmentOperator=*/Op == OO_Equal); + } + } + // Fall through. + + case OO_StarEqual: + case OO_SlashEqual: + // C++ [over.built]p18: + // + // For every triple (L, VQ, R), where L is an arithmetic type, + // VQ is either volatile or empty, and R is a promoted + // arithmetic type, there exist candidate operator functions of + // the form + // + // VQ L& operator=(VQ L&, R); + // VQ L& operator*=(VQ L&, R); + // VQ L& operator/=(VQ L&, R); + // VQ L& operator+=(VQ L&, R); + // VQ L& operator-=(VQ L&, R); + for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { + for (unsigned Right = FirstPromotedArithmeticType; + Right < LastPromotedArithmeticType; ++Right) { + QualType ParamTypes[2]; + ParamTypes[1] = ArithmeticTypes[Right]; + + // Add this built-in operator as a candidate (VQ is empty). + ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssigmentOperator=*/Op == OO_Equal); + + // Add this built-in operator as a candidate (VQ is 'volatile'). + ParamTypes[0] = ArithmeticTypes[Left].withVolatile(); + ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, + /*IsAssigmentOperator=*/Op == OO_Equal); + } + } + break; + + case OO_PercentEqual: + case OO_LessLessEqual: + case OO_GreaterGreaterEqual: + case OO_AmpEqual: + case OO_CaretEqual: + case OO_PipeEqual: + // C++ [over.built]p22: + // + // For every triple (L, VQ, R), where L is an integral type, VQ + // is either volatile or empty, and R is a promoted integral + // type, there exist candidate operator functions of the form + // + // VQ L& operator%=(VQ L&, R); + // VQ L& operator<<=(VQ L&, R); + // VQ L& operator>>=(VQ L&, R); + // VQ L& operator&=(VQ L&, R); + // VQ L& operator^=(VQ L&, R); + // VQ L& operator|=(VQ L&, R); + for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { + for (unsigned Right = FirstPromotedIntegralType; + Right < LastPromotedIntegralType; ++Right) { + QualType ParamTypes[2]; + ParamTypes[1] = ArithmeticTypes[Right]; + + // Add this built-in operator as a candidate (VQ is empty). + ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); + + // Add this built-in operator as a candidate (VQ is 'volatile'). + ParamTypes[0] = ArithmeticTypes[Left]; + ParamTypes[0].addVolatile(); + ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); + AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); + } + } + break; + + case OO_Exclaim: { + // C++ [over.operator]p23: + // + // There also exist candidate operator functions of the form + // + // bool operator!(bool); + // bool operator&&(bool, bool); [BELOW] + // bool operator||(bool, bool); [BELOW] + QualType ParamTy = Context.BoolTy; + AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, + /*IsAssignmentOperator=*/false, + /*NumContextualBoolArguments=*/1); + break; + } + + case OO_AmpAmp: + case OO_PipePipe: { + // C++ [over.operator]p23: + // + // There also exist candidate operator functions of the form + // + // bool operator!(bool); [ABOVE] + // bool operator&&(bool, bool); + // bool operator||(bool, bool); + QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; + AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, + /*IsAssignmentOperator=*/false, + /*NumContextualBoolArguments=*/2); + break; + } + + case OO_Subscript: + // C++ [over.built]p13: + // + // For every cv-qualified or cv-unqualified object type T there + // exist candidate operator functions of the form + // + // T* operator+(T*, ptrdiff_t); [ABOVE] + // T& operator[](T*, ptrdiff_t); + // T* operator-(T*, ptrdiff_t); [ABOVE] + // T* operator+(ptrdiff_t, T*); [ABOVE] + // T& operator[](ptrdiff_t, T*); + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); + Ptr != CandidateTypes.pointer_end(); ++Ptr) { + QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; + QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType(); + QualType ResultTy = Context.getLValueReferenceType(PointeeType); + + // T& operator[](T*, ptrdiff_t) + AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); + + // T& operator[](ptrdiff_t, T*); + ParamTypes[0] = ParamTypes[1]; + ParamTypes[1] = *Ptr; + AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); + } + break; + + case OO_ArrowStar: + // FIXME: No support for pointer-to-members yet. + break; + + case OO_Conditional: + // Note that we don't consider the first argument, since it has been + // contextually converted to bool long ago. The candidates below are + // therefore added as binary. + // + // C++ [over.built]p24: + // For every type T, where T is a pointer or pointer-to-member type, + // there exist candidate operator functions of the form + // + // T operator?(bool, T, T); + // + for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), + E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { + QualType ParamTypes[2] = { *Ptr, *Ptr }; + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + } + for (BuiltinCandidateTypeSet::iterator Ptr = + CandidateTypes.member_pointer_begin(), + E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { + QualType ParamTypes[2] = { *Ptr, *Ptr }; + AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); + } + goto Conditional; + } +} + +/// \brief Add function candidates found via argument-dependent lookup +/// to the set of overloading candidates. +/// +/// This routine performs argument-dependent name lookup based on the +/// given function name (which may also be an operator name) and adds +/// all of the overload candidates found by ADL to the overload +/// candidate set (C++ [basic.lookup.argdep]). +void +Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, + Expr **Args, unsigned NumArgs, + OverloadCandidateSet& CandidateSet) { + FunctionSet Functions; + + // Record all of the function candidates that we've already + // added to the overload set, so that we don't add those same + // candidates a second time. + for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), + CandEnd = CandidateSet.end(); + Cand != CandEnd; ++Cand) + if (Cand->Function) + Functions.insert(Cand->Function); + + ArgumentDependentLookup(Name, Args, NumArgs, Functions); + + // Erase all of the candidates we already knew about. + // FIXME: This is suboptimal. Is there a better way? + for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), + CandEnd = CandidateSet.end(); + Cand != CandEnd; ++Cand) + if (Cand->Function) + Functions.erase(Cand->Function); + + // For each of the ADL candidates we found, add it to the overload + // set. + for (FunctionSet::iterator Func = Functions.begin(), + FuncEnd = Functions.end(); + Func != FuncEnd; ++Func) + AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet); +} + +/// isBetterOverloadCandidate - Determines whether the first overload +/// candidate is a better candidate than the second (C++ 13.3.3p1). +bool +Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, + const OverloadCandidate& Cand2) +{ + // Define viable functions to be better candidates than non-viable + // functions. + if (!Cand2.Viable) + return Cand1.Viable; + else if (!Cand1.Viable) + return false; + + // C++ [over.match.best]p1: + // + // -- if F is a static member function, ICS1(F) is defined such + // that ICS1(F) is neither better nor worse than ICS1(G) for + // any function G, and, symmetrically, ICS1(G) is neither + // better nor worse than ICS1(F). + unsigned StartArg = 0; + if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) + StartArg = 1; + + // (C++ 13.3.3p1): a viable function F1 is defined to be a better + // function than another viable function F2 if for all arguments i, + // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and + // then... + unsigned NumArgs = Cand1.Conversions.size(); + assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); + bool HasBetterConversion = false; + for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { + switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], + Cand2.Conversions[ArgIdx])) { + case ImplicitConversionSequence::Better: + // Cand1 has a better conversion sequence. + HasBetterConversion = true; + break; + + case ImplicitConversionSequence::Worse: + // Cand1 can't be better than Cand2. + return false; + + case ImplicitConversionSequence::Indistinguishable: + // Do nothing. + break; + } + } + + if (HasBetterConversion) + return true; + + // FIXME: Several other bullets in (C++ 13.3.3p1) need to be + // implemented, but they require template support. + + // C++ [over.match.best]p1b4: + // + // -- the context is an initialization by user-defined conversion + // (see 8.5, 13.3.1.5) and the standard conversion sequence + // from the return type of F1 to the destination type (i.e., + // the type of the entity being initialized) is a better + // conversion sequence than the standard conversion sequence + // from the return type of F2 to the destination type. + if (Cand1.Function && Cand2.Function && + isa<CXXConversionDecl>(Cand1.Function) && + isa<CXXConversionDecl>(Cand2.Function)) { + switch (CompareStandardConversionSequences(Cand1.FinalConversion, + Cand2.FinalConversion)) { + case ImplicitConversionSequence::Better: + // Cand1 has a better conversion sequence. + return true; + + case ImplicitConversionSequence::Worse: + // Cand1 can't be better than Cand2. + return false; + + case ImplicitConversionSequence::Indistinguishable: + // Do nothing + break; + } + } + + return false; +} + +/// BestViableFunction - Computes the best viable function (C++ 13.3.3) +/// within an overload candidate set. If overloading is successful, +/// the result will be OR_Success and Best will be set to point to the +/// best viable function within the candidate set. Otherwise, one of +/// several kinds of errors will be returned; see +/// Sema::OverloadingResult. +Sema::OverloadingResult +Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, + OverloadCandidateSet::iterator& Best) +{ + // Find the best viable function. + Best = CandidateSet.end(); + for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); + Cand != CandidateSet.end(); ++Cand) { + if (Cand->Viable) { + if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) + Best = Cand; + } + } + + // If we didn't find any viable functions, abort. + if (Best == CandidateSet.end()) + return OR_No_Viable_Function; + + // Make sure that this function is better than every other viable + // function. If not, we have an ambiguity. + for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); + Cand != CandidateSet.end(); ++Cand) { + if (Cand->Viable && + Cand != Best && + !isBetterOverloadCandidate(*Best, *Cand)) { + Best = CandidateSet.end(); + return OR_Ambiguous; + } + } + + // Best is the best viable function. + if (Best->Function && + (Best->Function->isDeleted() || + Best->Function->getAttr<UnavailableAttr>())) + return OR_Deleted; + + // If Best refers to a function that is either deleted (C++0x) or + // unavailable (Clang extension) report an error. + + return OR_Success; +} + +/// PrintOverloadCandidates - When overload resolution fails, prints +/// diagnostic messages containing the candidates in the candidate +/// set. If OnlyViable is true, only viable candidates will be printed. +void +Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, + bool OnlyViable) +{ + OverloadCandidateSet::iterator Cand = CandidateSet.begin(), + LastCand = CandidateSet.end(); + for (; Cand != LastCand; ++Cand) { + if (Cand->Viable || !OnlyViable) { + if (Cand->Function) { + if (Cand->Function->isDeleted() || + Cand->Function->getAttr<UnavailableAttr>()) { + // Deleted or "unavailable" function. + Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) + << Cand->Function->isDeleted(); + } else { + // Normal function + // FIXME: Give a better reason! + Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); + } + } else if (Cand->IsSurrogate) { + // Desugar the type of the surrogate down to a function type, + // retaining as many typedefs as possible while still showing + // the function type (and, therefore, its parameter types). + QualType FnType = Cand->Surrogate->getConversionType(); + bool isLValueReference = false; + bool isRValueReference = false; + bool isPointer = false; + if (const LValueReferenceType *FnTypeRef = + FnType->getAsLValueReferenceType()) { + FnType = FnTypeRef->getPointeeType(); + isLValueReference = true; + } else if (const RValueReferenceType *FnTypeRef = + FnType->getAsRValueReferenceType()) { + FnType = FnTypeRef->getPointeeType(); + isRValueReference = true; + } + if (const PointerType *FnTypePtr = FnType->getAsPointerType()) { + FnType = FnTypePtr->getPointeeType(); + isPointer = true; + } + // Desugar down to a function type. + FnType = QualType(FnType->getAsFunctionType(), 0); + // Reconstruct the pointer/reference as appropriate. + if (isPointer) FnType = Context.getPointerType(FnType); + if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); + if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); + + Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) + << FnType; + } else { + // FIXME: We need to get the identifier in here + // FIXME: Do we want the error message to point at the operator? + // (built-ins won't have a location) + QualType FnType + = Context.getFunctionType(Cand->BuiltinTypes.ResultTy, + Cand->BuiltinTypes.ParamTypes, + Cand->Conversions.size(), + false, 0); + + Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType; + } + } + } +} + +/// ResolveAddressOfOverloadedFunction - Try to resolve the address of +/// an overloaded function (C++ [over.over]), where @p From is an +/// expression with overloaded function type and @p ToType is the type +/// we're trying to resolve to. For example: +/// +/// @code +/// int f(double); +/// int f(int); +/// +/// int (*pfd)(double) = f; // selects f(double) +/// @endcode +/// +/// This routine returns the resulting FunctionDecl if it could be +/// resolved, and NULL otherwise. When @p Complain is true, this +/// routine will emit diagnostics if there is an error. +FunctionDecl * +Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, + bool Complain) { + QualType FunctionType = ToType; + bool IsMember = false; + if (const PointerType *ToTypePtr = ToType->getAsPointerType()) + FunctionType = ToTypePtr->getPointeeType(); + else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType()) + FunctionType = ToTypeRef->getPointeeType(); + else if (const MemberPointerType *MemTypePtr = + ToType->getAsMemberPointerType()) { + FunctionType = MemTypePtr->getPointeeType(); + IsMember = true; + } + + // We only look at pointers or references to functions. + if (!FunctionType->isFunctionType()) + return 0; + + // Find the actual overloaded function declaration. + OverloadedFunctionDecl *Ovl = 0; + + // C++ [over.over]p1: + // [...] [Note: any redundant set of parentheses surrounding the + // overloaded function name is ignored (5.1). ] + Expr *OvlExpr = From->IgnoreParens(); + + // C++ [over.over]p1: + // [...] The overloaded function name can be preceded by the & + // operator. + if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { + if (UnOp->getOpcode() == UnaryOperator::AddrOf) + OvlExpr = UnOp->getSubExpr()->IgnoreParens(); + } + + // Try to dig out the overloaded function. + if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) + Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); + + // If there's no overloaded function declaration, we're done. + if (!Ovl) + return 0; + + // Look through all of the overloaded functions, searching for one + // whose type matches exactly. + // FIXME: When templates or using declarations come along, we'll actually + // have to deal with duplicates, partial ordering, etc. For now, we + // can just do a simple search. + FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType()); + for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin(); + Fun != Ovl->function_end(); ++Fun) { + // C++ [over.over]p3: + // Non-member functions and static member functions match + // targets of type "pointer-to-function" or "reference-to-function." + // Nonstatic member functions match targets of + // type "pointer-to-member-function." + // Note that according to DR 247, the containing class does not matter. + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { + // Skip non-static functions when converting to pointer, and static + // when converting to member pointer. + if (Method->isStatic() == IsMember) + continue; + } else if (IsMember) + continue; + + if (FunctionType == Context.getCanonicalType((*Fun)->getType())) + return *Fun; + } + + return 0; +} + +/// ResolveOverloadedCallFn - Given the call expression that calls Fn +/// (which eventually refers to the declaration Func) and the call +/// arguments Args/NumArgs, attempt to resolve the function call down +/// to a specific function. If overload resolution succeeds, returns +/// the function declaration produced by overload +/// resolution. Otherwise, emits diagnostics, deletes all of the +/// arguments and Fn, and returns NULL. +FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, + DeclarationName UnqualifiedName, + SourceLocation LParenLoc, + Expr **Args, unsigned NumArgs, + SourceLocation *CommaLocs, + SourceLocation RParenLoc, + bool &ArgumentDependentLookup) { + OverloadCandidateSet CandidateSet; + + // Add the functions denoted by Callee to the set of candidate + // functions. While we're doing so, track whether argument-dependent + // lookup still applies, per: + // + // C++0x [basic.lookup.argdep]p3: + // Let X be the lookup set produced by unqualified lookup (3.4.1) + // and let Y be the lookup set produced by argument dependent + // lookup (defined as follows). If X contains + // + // -- a declaration of a class member, or + // + // -- a block-scope function declaration that is not a + // using-declaration, or + // + // -- a declaration that is neither a function or a function + // template + // + // then Y is empty. + if (OverloadedFunctionDecl *Ovl + = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) { + for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), + FuncEnd = Ovl->function_end(); + Func != FuncEnd; ++Func) { + AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet); + + if ((*Func)->getDeclContext()->isRecord() || + (*Func)->getDeclContext()->isFunctionOrMethod()) + ArgumentDependentLookup = false; + } + } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) { + AddOverloadCandidate(Func, Args, NumArgs, CandidateSet); + + if (Func->getDeclContext()->isRecord() || + Func->getDeclContext()->isFunctionOrMethod()) + ArgumentDependentLookup = false; + } + + if (Callee) + UnqualifiedName = Callee->getDeclName(); + + if (ArgumentDependentLookup) + AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, + CandidateSet); + + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: + return Best->Function; + + case OR_No_Viable_Function: + Diag(Fn->getSourceRange().getBegin(), + diag::err_ovl_no_viable_function_in_call) + << UnqualifiedName << Fn->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + break; + + case OR_Ambiguous: + Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) + << UnqualifiedName << Fn->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + break; + + case OR_Deleted: + Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) + << Best->Function->isDeleted() + << UnqualifiedName + << Fn->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + break; + } + + // Overload resolution failed. Destroy all of the subexpressions and + // return NULL. + Fn->Destroy(Context); + for (unsigned Arg = 0; Arg < NumArgs; ++Arg) + Args[Arg]->Destroy(Context); + return 0; +} + +/// \brief Create a unary operation that may resolve to an overloaded +/// operator. +/// +/// \param OpLoc The location of the operator itself (e.g., '*'). +/// +/// \param OpcIn The UnaryOperator::Opcode that describes this +/// operator. +/// +/// \param Functions The set of non-member functions that will be +/// considered by overload resolution. The caller needs to build this +/// set based on the context using, e.g., +/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This +/// set should not contain any member functions; those will be added +/// by CreateOverloadedUnaryOp(). +/// +/// \param input The input argument. +Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, + unsigned OpcIn, + FunctionSet &Functions, + ExprArg input) { + UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); + Expr *Input = (Expr *)input.get(); + + OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); + assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); + + Expr *Args[2] = { Input, 0 }; + unsigned NumArgs = 1; + + // For post-increment and post-decrement, add the implicit '0' as + // the second argument, so that we know this is a post-increment or + // post-decrement. + if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { + llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); + Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, + SourceLocation()); + NumArgs = 2; + } + + if (Input->isTypeDependent()) { + OverloadedFunctionDecl *Overloads + = OverloadedFunctionDecl::Create(Context, CurContext, OpName); + for (FunctionSet::iterator Func = Functions.begin(), + FuncEnd = Functions.end(); + Func != FuncEnd; ++Func) + Overloads->addOverload(*Func); + + DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, + OpLoc, false, false); + + input.release(); + return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, + &Args[0], NumArgs, + Context.DependentTy, + OpLoc)); + } + + // Build an empty overload set. + OverloadCandidateSet CandidateSet; + + // Add the candidates from the given function set. + AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); + + // Add operator candidates that are member functions. + AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); + + // Add builtin operator candidates. + AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet); + + // Perform overload resolution. + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: { + // We found a built-in operator or an overloaded operator. + FunctionDecl *FnDecl = Best->Function; + + if (FnDecl) { + // We matched an overloaded operator. Build a call to that + // operator. + + // Convert the arguments. + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { + if (PerformObjectArgumentInitialization(Input, Method)) + return ExprError(); + } else { + // Convert the arguments. + if (PerformCopyInitialization(Input, + FnDecl->getParamDecl(0)->getType(), + "passing")) + return ExprError(); + } + + // Determine the result type + QualType ResultTy + = FnDecl->getType()->getAsFunctionType()->getResultType(); + ResultTy = ResultTy.getNonReferenceType(); + + // Build the actual expression node. + Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), + SourceLocation()); + UsualUnaryConversions(FnExpr); + + input.release(); + return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, + &Input, 1, ResultTy, + OpLoc)); + } else { + // We matched a built-in operator. Convert the arguments, then + // break out so that we will build the appropriate built-in + // operator node. + if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], + Best->Conversions[0], "passing")) + return ExprError(); + + break; + } + } + + case OR_No_Viable_Function: + // No viable function; fall through to handling this as a + // built-in operator, which will produce an error message for us. + break; + + case OR_Ambiguous: + Diag(OpLoc, diag::err_ovl_ambiguous_oper) + << UnaryOperator::getOpcodeStr(Opc) + << Input->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return ExprError(); + + case OR_Deleted: + Diag(OpLoc, diag::err_ovl_deleted_oper) + << Best->Function->isDeleted() + << UnaryOperator::getOpcodeStr(Opc) + << Input->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return ExprError(); + } + + // Either we found no viable overloaded operator or we matched a + // built-in operator. In either case, fall through to trying to + // build a built-in operation. + input.release(); + return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); +} + +/// \brief Create a binary operation that may resolve to an overloaded +/// operator. +/// +/// \param OpLoc The location of the operator itself (e.g., '+'). +/// +/// \param OpcIn The BinaryOperator::Opcode that describes this +/// operator. +/// +/// \param Functions The set of non-member functions that will be +/// considered by overload resolution. The caller needs to build this +/// set based on the context using, e.g., +/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This +/// set should not contain any member functions; those will be added +/// by CreateOverloadedBinOp(). +/// +/// \param LHS Left-hand argument. +/// \param RHS Right-hand argument. +Sema::OwningExprResult +Sema::CreateOverloadedBinOp(SourceLocation OpLoc, + unsigned OpcIn, + FunctionSet &Functions, + Expr *LHS, Expr *RHS) { + Expr *Args[2] = { LHS, RHS }; + + BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); + OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); + + // If either side is type-dependent, create an appropriate dependent + // expression. + if (LHS->isTypeDependent() || RHS->isTypeDependent()) { + // .* cannot be overloaded. + if (Opc == BinaryOperator::PtrMemD) + return Owned(new (Context) BinaryOperator(LHS, RHS, Opc, + Context.DependentTy, OpLoc)); + + OverloadedFunctionDecl *Overloads + = OverloadedFunctionDecl::Create(Context, CurContext, OpName); + for (FunctionSet::iterator Func = Functions.begin(), + FuncEnd = Functions.end(); + Func != FuncEnd; ++Func) + Overloads->addOverload(*Func); + + DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, + OpLoc, false, false); + + return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, + Args, 2, + Context.DependentTy, + OpLoc)); + } + + // If this is the .* operator, which is not overloadable, just + // create a built-in binary operator. + if (Opc == BinaryOperator::PtrMemD) + return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); + + // If this is one of the assignment operators, we only perform + // overload resolution if the left-hand side is a class or + // enumeration type (C++ [expr.ass]p3). + if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && + !LHS->getType()->isOverloadableType()) + return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); + + // Build an empty overload set. + OverloadCandidateSet CandidateSet; + + // Add the candidates from the given function set. + AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); + + // Add operator candidates that are member functions. + AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); + + // Add builtin operator candidates. + AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet); + + // Perform overload resolution. + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: { + // We found a built-in operator or an overloaded operator. + FunctionDecl *FnDecl = Best->Function; + + if (FnDecl) { + // We matched an overloaded operator. Build a call to that + // operator. + + // Convert the arguments. + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { + if (PerformObjectArgumentInitialization(LHS, Method) || + PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(), + "passing")) + return ExprError(); + } else { + // Convert the arguments. + if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(), + "passing") || + PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(), + "passing")) + return ExprError(); + } + + // Determine the result type + QualType ResultTy + = FnDecl->getType()->getAsFunctionType()->getResultType(); + ResultTy = ResultTy.getNonReferenceType(); + + // Build the actual expression node. + Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), + SourceLocation()); + UsualUnaryConversions(FnExpr); + + return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, + Args, 2, ResultTy, + OpLoc)); + } else { + // We matched a built-in operator. Convert the arguments, then + // break out so that we will build the appropriate built-in + // operator node. + if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], + Best->Conversions[0], "passing") || + PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], + Best->Conversions[1], "passing")) + return ExprError(); + + break; + } + } + + case OR_No_Viable_Function: + // For class as left operand for assignment or compound assigment operator + // do not fall through to handling in built-in, but report that no overloaded + // assignment operator found + if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { + Diag(OpLoc, diag::err_ovl_no_viable_oper) + << BinaryOperator::getOpcodeStr(Opc) + << LHS->getSourceRange() << RHS->getSourceRange(); + return ExprError(); + } + // No viable function; fall through to handling this as a + // built-in operator, which will produce an error message for us. + break; + + case OR_Ambiguous: + Diag(OpLoc, diag::err_ovl_ambiguous_oper) + << BinaryOperator::getOpcodeStr(Opc) + << LHS->getSourceRange() << RHS->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return ExprError(); + + case OR_Deleted: + Diag(OpLoc, diag::err_ovl_deleted_oper) + << Best->Function->isDeleted() + << BinaryOperator::getOpcodeStr(Opc) + << LHS->getSourceRange() << RHS->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return ExprError(); + } + + // Either we found no viable overloaded operator or we matched a + // built-in operator. In either case, try to build a built-in + // operation. + return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS); +} + +/// BuildCallToMemberFunction - Build a call to a member +/// function. MemExpr is the expression that refers to the member +/// function (and includes the object parameter), Args/NumArgs are the +/// arguments to the function call (not including the object +/// parameter). The caller needs to validate that the member +/// expression refers to a member function or an overloaded member +/// function. +Sema::ExprResult +Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, + SourceLocation LParenLoc, Expr **Args, + unsigned NumArgs, SourceLocation *CommaLocs, + SourceLocation RParenLoc) { + // Dig out the member expression. This holds both the object + // argument and the member function we're referring to. + MemberExpr *MemExpr = 0; + if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) + MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); + else + MemExpr = dyn_cast<MemberExpr>(MemExprE); + assert(MemExpr && "Building member call without member expression"); + + // Extract the object argument. + Expr *ObjectArg = MemExpr->getBase(); + + CXXMethodDecl *Method = 0; + if (OverloadedFunctionDecl *Ovl + = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) { + // Add overload candidates + OverloadCandidateSet CandidateSet; + for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), + FuncEnd = Ovl->function_end(); + Func != FuncEnd; ++Func) { + assert(isa<CXXMethodDecl>(*Func) && "Function is not a method"); + Method = cast<CXXMethodDecl>(*Func); + AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, + /*SuppressUserConversions=*/false); + } + + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: + Method = cast<CXXMethodDecl>(Best->Function); + break; + + case OR_No_Viable_Function: + Diag(MemExpr->getSourceRange().getBegin(), + diag::err_ovl_no_viable_member_function_in_call) + << Ovl->getDeclName() << MemExprE->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + // FIXME: Leaking incoming expressions! + return true; + + case OR_Ambiguous: + Diag(MemExpr->getSourceRange().getBegin(), + diag::err_ovl_ambiguous_member_call) + << Ovl->getDeclName() << MemExprE->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + // FIXME: Leaking incoming expressions! + return true; + + case OR_Deleted: + Diag(MemExpr->getSourceRange().getBegin(), + diag::err_ovl_deleted_member_call) + << Best->Function->isDeleted() + << Ovl->getDeclName() << MemExprE->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + // FIXME: Leaking incoming expressions! + return true; + } + + FixOverloadedFunctionReference(MemExpr, Method); + } else { + Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); + } + + assert(Method && "Member call to something that isn't a method?"); + ExprOwningPtr<CXXMemberCallExpr> + TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, + NumArgs, + Method->getResultType().getNonReferenceType(), + RParenLoc)); + + // Convert the object argument (for a non-static member function call). + if (!Method->isStatic() && + PerformObjectArgumentInitialization(ObjectArg, Method)) + return true; + MemExpr->setBase(ObjectArg); + + // Convert the rest of the arguments + const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); + if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, + RParenLoc)) + return true; + + return CheckFunctionCall(Method, TheCall.take()).release(); +} + +/// BuildCallToObjectOfClassType - Build a call to an object of class +/// type (C++ [over.call.object]), which can end up invoking an +/// overloaded function call operator (@c operator()) or performing a +/// user-defined conversion on the object argument. +Sema::ExprResult +Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, + SourceLocation LParenLoc, + Expr **Args, unsigned NumArgs, + SourceLocation *CommaLocs, + SourceLocation RParenLoc) { + assert(Object->getType()->isRecordType() && "Requires object type argument"); + const RecordType *Record = Object->getType()->getAsRecordType(); + + // C++ [over.call.object]p1: + // If the primary-expression E in the function call syntax + // evaluates to a class object of type “cv T”, then the set of + // candidate functions includes at least the function call + // operators of T. The function call operators of T are obtained by + // ordinary lookup of the name operator() in the context of + // (E).operator(). + OverloadCandidateSet CandidateSet; + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); + DeclContext::lookup_const_iterator Oper, OperEnd; + for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName); + Oper != OperEnd; ++Oper) + AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, + CandidateSet, /*SuppressUserConversions=*/false); + + // C++ [over.call.object]p2: + // In addition, for each conversion function declared in T of the + // form + // + // operator conversion-type-id () cv-qualifier; + // + // where cv-qualifier is the same cv-qualification as, or a + // greater cv-qualification than, cv, and where conversion-type-id + // denotes the type "pointer to function of (P1,...,Pn) returning + // R", or the type "reference to pointer to function of + // (P1,...,Pn) returning R", or the type "reference to function + // of (P1,...,Pn) returning R", a surrogate call function [...] + // is also considered as a candidate function. Similarly, + // surrogate call functions are added to the set of candidate + // functions for each conversion function declared in an + // accessible base class provided the function is not hidden + // within T by another intervening declaration. + // + // FIXME: Look in base classes for more conversion operators! + OverloadedFunctionDecl *Conversions + = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); + for (OverloadedFunctionDecl::function_iterator + Func = Conversions->function_begin(), + FuncEnd = Conversions->function_end(); + Func != FuncEnd; ++Func) { + CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); + + // Strip the reference type (if any) and then the pointer type (if + // any) to get down to what might be a function type. + QualType ConvType = Conv->getConversionType().getNonReferenceType(); + if (const PointerType *ConvPtrType = ConvType->getAsPointerType()) + ConvType = ConvPtrType->getPointeeType(); + + if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType()) + AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); + } + + // Perform overload resolution. + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: + // Overload resolution succeeded; we'll build the appropriate call + // below. + break; + + case OR_No_Viable_Function: + Diag(Object->getSourceRange().getBegin(), + diag::err_ovl_no_viable_object_call) + << Object->getType() << Object->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + break; + + case OR_Ambiguous: + Diag(Object->getSourceRange().getBegin(), + diag::err_ovl_ambiguous_object_call) + << Object->getType() << Object->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + break; + + case OR_Deleted: + Diag(Object->getSourceRange().getBegin(), + diag::err_ovl_deleted_object_call) + << Best->Function->isDeleted() + << Object->getType() << Object->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + break; + } + + if (Best == CandidateSet.end()) { + // We had an error; delete all of the subexpressions and return + // the error. + Object->Destroy(Context); + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) + Args[ArgIdx]->Destroy(Context); + return true; + } + + if (Best->Function == 0) { + // Since there is no function declaration, this is one of the + // surrogate candidates. Dig out the conversion function. + CXXConversionDecl *Conv + = cast<CXXConversionDecl>( + Best->Conversions[0].UserDefined.ConversionFunction); + + // We selected one of the surrogate functions that converts the + // object parameter to a function pointer. Perform the conversion + // on the object argument, then let ActOnCallExpr finish the job. + // FIXME: Represent the user-defined conversion in the AST! + ImpCastExprToType(Object, + Conv->getConversionType().getNonReferenceType(), + Conv->getConversionType()->isLValueReferenceType()); + return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc, + MultiExprArg(*this, (ExprTy**)Args, NumArgs), + CommaLocs, RParenLoc).release(); + } + + // We found an overloaded operator(). Build a CXXOperatorCallExpr + // that calls this method, using Object for the implicit object + // parameter and passing along the remaining arguments. + CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); + const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType(); + + unsigned NumArgsInProto = Proto->getNumArgs(); + unsigned NumArgsToCheck = NumArgs; + + // Build the full argument list for the method call (the + // implicit object parameter is placed at the beginning of the + // list). + Expr **MethodArgs; + if (NumArgs < NumArgsInProto) { + NumArgsToCheck = NumArgsInProto; + MethodArgs = new Expr*[NumArgsInProto + 1]; + } else { + MethodArgs = new Expr*[NumArgs + 1]; + } + MethodArgs[0] = Object; + for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) + MethodArgs[ArgIdx + 1] = Args[ArgIdx]; + + Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), + SourceLocation()); + UsualUnaryConversions(NewFn); + + // Once we've built TheCall, all of the expressions are properly + // owned. + QualType ResultTy = Method->getResultType().getNonReferenceType(); + ExprOwningPtr<CXXOperatorCallExpr> + TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, + MethodArgs, NumArgs + 1, + ResultTy, RParenLoc)); + delete [] MethodArgs; + + // We may have default arguments. If so, we need to allocate more + // slots in the call for them. + if (NumArgs < NumArgsInProto) + TheCall->setNumArgs(Context, NumArgsInProto + 1); + else if (NumArgs > NumArgsInProto) + NumArgsToCheck = NumArgsInProto; + + bool IsError = false; + + // Initialize the implicit object parameter. + IsError |= PerformObjectArgumentInitialization(Object, Method); + TheCall->setArg(0, Object); + + + // Check the argument types. + for (unsigned i = 0; i != NumArgsToCheck; i++) { + Expr *Arg; + if (i < NumArgs) { + Arg = Args[i]; + + // Pass the argument. + QualType ProtoArgType = Proto->getArgType(i); + IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); + } else { + Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i)); + } + + TheCall->setArg(i + 1, Arg); + } + + // If this is a variadic call, handle args passed through "...". + if (Proto->isVariadic()) { + // Promote the arguments (C99 6.5.2.2p7). + for (unsigned i = NumArgsInProto; i != NumArgs; i++) { + Expr *Arg = Args[i]; + IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); + TheCall->setArg(i + 1, Arg); + } + } + + if (IsError) return true; + + return CheckFunctionCall(Method, TheCall.take()).release(); +} + +/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> +/// (if one exists), where @c Base is an expression of class type and +/// @c Member is the name of the member we're trying to find. +Action::ExprResult +Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, + SourceLocation MemberLoc, + IdentifierInfo &Member) { + assert(Base->getType()->isRecordType() && "left-hand side must have class type"); + + // C++ [over.ref]p1: + // + // [...] An expression x->m is interpreted as (x.operator->())->m + // for a class object x of type T if T::operator->() exists and if + // the operator is selected as the best match function by the + // overload resolution mechanism (13.3). + // FIXME: look in base classes. + DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); + OverloadCandidateSet CandidateSet; + const RecordType *BaseRecord = Base->getType()->getAsRecordType(); + + DeclContext::lookup_const_iterator Oper, OperEnd; + for (llvm::tie(Oper, OperEnd) + = BaseRecord->getDecl()->lookup(Context, OpName); + Oper != OperEnd; ++Oper) + AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, + /*SuppressUserConversions=*/false); + + ExprOwningPtr<Expr> BasePtr(this, Base); + + // Perform overload resolution. + OverloadCandidateSet::iterator Best; + switch (BestViableFunction(CandidateSet, Best)) { + case OR_Success: + // Overload resolution succeeded; we'll build the call below. + break; + + case OR_No_Viable_Function: + if (CandidateSet.empty()) + Diag(OpLoc, diag::err_typecheck_member_reference_arrow) + << BasePtr->getType() << BasePtr->getSourceRange(); + else + Diag(OpLoc, diag::err_ovl_no_viable_oper) + << "operator->" << BasePtr->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); + return true; + + case OR_Ambiguous: + Diag(OpLoc, diag::err_ovl_ambiguous_oper) + << "operator->" << BasePtr->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return true; + + case OR_Deleted: + Diag(OpLoc, diag::err_ovl_deleted_oper) + << Best->Function->isDeleted() + << "operator->" << BasePtr->getSourceRange(); + PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); + return true; + } + + // Convert the object parameter. + CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); + if (PerformObjectArgumentInitialization(Base, Method)) + return true; + + // No concerns about early exits now. + BasePtr.take(); + + // Build the operator call. + Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), + SourceLocation()); + UsualUnaryConversions(FnExpr); + Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1, + Method->getResultType().getNonReferenceType(), + OpLoc); + return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow, + MemberLoc, Member, DeclPtrTy()).release(); +} + +/// FixOverloadedFunctionReference - E is an expression that refers to +/// a C++ overloaded function (possibly with some parentheses and +/// perhaps a '&' around it). We have resolved the overloaded function +/// to the function declaration Fn, so patch up the expression E to +/// refer (possibly indirectly) to Fn. +void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { + if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { + FixOverloadedFunctionReference(PE->getSubExpr(), Fn); + E->setType(PE->getSubExpr()->getType()); + } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { + assert(UnOp->getOpcode() == UnaryOperator::AddrOf && + "Can only take the address of an overloaded function"); + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { + if (Method->isStatic()) { + // Do nothing: static member functions aren't any different + // from non-member functions. + } + else if (QualifiedDeclRefExpr *DRE + = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) { + // We have taken the address of a pointer to member + // function. Perform the computation here so that we get the + // appropriate pointer to member type. + DRE->setDecl(Fn); + DRE->setType(Fn->getType()); + QualType ClassType + = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); + E->setType(Context.getMemberPointerType(Fn->getType(), + ClassType.getTypePtr())); + return; + } + } + FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); + E->setType(Context.getPointerType(UnOp->getSubExpr()->getType())); + } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { + assert(isa<OverloadedFunctionDecl>(DR->getDecl()) && + "Expected overloaded function"); + DR->setDecl(Fn); + E->setType(Fn->getType()); + } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { + MemExpr->setMemberDecl(Fn); + E->setType(Fn->getType()); + } else { + assert(false && "Invalid reference to overloaded function"); + } +} + +} // end namespace clang |