aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/Reassociate.cpp
diff options
context:
space:
mode:
authorRoman Divacky <rdivacky@FreeBSD.org>2010-01-01 10:31:22 +0000
committerRoman Divacky <rdivacky@FreeBSD.org>2010-01-01 10:31:22 +0000
commit1e7804dbd25b8dbf534c850355d70ad215206f4b (patch)
treedba00119388b84f9f44e6ec5e9129f807fd79ca3 /lib/Transforms/Scalar/Reassociate.cpp
parent571945e6affd20b19264ec22495da418d0fbdbb4 (diff)
downloadsrc-1e7804dbd25b8dbf534c850355d70ad215206f4b.tar.gz
src-1e7804dbd25b8dbf534c850355d70ad215206f4b.zip
Update LLVM to 92395.
Notes
Notes: svn path=/vendor/llvm/dist/; revision=201360
Diffstat (limited to 'lib/Transforms/Scalar/Reassociate.cpp')
-rw-r--r--lib/Transforms/Scalar/Reassociate.cpp604
1 files changed, 371 insertions, 233 deletions
diff --git a/lib/Transforms/Scalar/Reassociate.cpp b/lib/Transforms/Scalar/Reassociate.cpp
index 8466918a01ec..827b47d3feeb 100644
--- a/lib/Transforms/Scalar/Reassociate.cpp
+++ b/lib/Transforms/Scalar/Reassociate.cpp
@@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
-// to promote better constant propagation, GCSE, LICM, PRE...
+// to promote better constant propagation, GCSE, LICM, PRE, etc.
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
@@ -35,8 +35,8 @@
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/DenseMap.h"
#include <algorithm>
-#include <map>
using namespace llvm;
STATISTIC(NumLinear , "Number of insts linearized");
@@ -58,21 +58,22 @@ namespace {
#ifndef NDEBUG
/// PrintOps - Print out the expression identified in the Ops list.
///
-static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
+static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
- << *Ops[0].Op->getType();
+ << *Ops[0].Op->getType() << '\t';
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
- errs() << "," << Ops[i].Rank;
+ errs() << "[ ";
+ WriteAsOperand(errs(), Ops[i].Op, false, M);
+ errs() << ", #" << Ops[i].Rank << "] ";
}
}
#endif
namespace {
class Reassociate : public FunctionPass {
- std::map<BasicBlock*, unsigned> RankMap;
- std::map<AssertingVH<>, unsigned> ValueRankMap;
+ DenseMap<BasicBlock*, unsigned> RankMap;
+ DenseMap<AssertingVH<>, unsigned> ValueRankMap;
bool MadeChange;
public:
static char ID; // Pass identification, replacement for typeid
@@ -86,11 +87,13 @@ namespace {
private:
void BuildRankMap(Function &F);
unsigned getRank(Value *V);
- void ReassociateExpression(BinaryOperator *I);
- void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
+ Value *ReassociateExpression(BinaryOperator *I);
+ void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
unsigned Idx = 0);
- Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
- void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
+ Value *OptimizeExpression(BinaryOperator *I,
+ SmallVectorImpl<ValueEntry> &Ops);
+ Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
+ void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void ReassociateBB(BasicBlock *BB);
@@ -107,10 +110,13 @@ FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
void Reassociate::RemoveDeadBinaryOp(Value *V) {
Instruction *Op = dyn_cast<Instruction>(V);
- if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
+ if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
return;
Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
+
+ ValueRankMap.erase(Op);
+ Op->eraseFromParent();
RemoveDeadBinaryOp(LHS);
RemoveDeadBinaryOp(RHS);
}
@@ -156,13 +162,14 @@ void Reassociate::BuildRankMap(Function &F) {
}
unsigned Reassociate::getRank(Value *V) {
- if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
-
Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
+ if (I == 0) {
+ if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
+ return 0; // Otherwise it's a global or constant, rank 0.
+ }
- unsigned &CachedRank = ValueRankMap[I];
- if (CachedRank) return CachedRank; // Rank already known?
+ if (unsigned Rank = ValueRankMap[I])
+ return Rank; // Rank already known?
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
// we can reassociate expressions for code motion! Since we do not recurse
@@ -182,7 +189,7 @@ unsigned Reassociate::getRank(Value *V) {
//DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
// << Rank << "\n");
- return CachedRank = Rank;
+ return ValueRankMap[I] = Rank;
}
/// isReassociableOp - Return true if V is an instruction of the specified
@@ -197,7 +204,7 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static Instruction *LowerNegateToMultiply(Instruction *Neg,
- std::map<AssertingVH<>, unsigned> &ValueRankMap) {
+ DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
@@ -250,7 +257,7 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
/// caller MUST use something like RewriteExprTree to put the values back in.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I,
- std::vector<ValueEntry> &Ops) {
+ SmallVectorImpl<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
unsigned Opcode = I->getOpcode();
@@ -282,15 +289,15 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
I->setOperand(0, UndefValue::get(I->getType()));
I->setOperand(1, UndefValue::get(I->getType()));
return;
- } else {
- // Turn X+(Y+Z) -> (Y+Z)+X
- std::swap(LHSBO, RHSBO);
- std::swap(LHS, RHS);
- bool Success = !I->swapOperands();
- assert(Success && "swapOperands failed");
- Success = false;
- MadeChange = true;
}
+
+ // Turn X+(Y+Z) -> (Y+Z)+X
+ std::swap(LHSBO, RHSBO);
+ std::swap(LHS, RHS);
+ bool Success = !I->swapOperands();
+ assert(Success && "swapOperands failed");
+ Success = false;
+ MadeChange = true;
} else if (RHSBO) {
// Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
// part of the expression tree.
@@ -322,7 +329,7 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
// linearized and optimized, emit them in-order. This function is written to be
// tail recursive.
void Reassociate::RewriteExprTree(BinaryOperator *I,
- std::vector<ValueEntry> &Ops,
+ SmallVectorImpl<ValueEntry> &Ops,
unsigned i) {
if (i+2 == Ops.size()) {
if (I->getOperand(0) != Ops[i].Op ||
@@ -369,6 +376,9 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, Instruction *BI) {
+ if (Constant *C = dyn_cast<Constant>(V))
+ return ConstantExpr::getNeg(C);
+
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
@@ -376,7 +386,7 @@ static Value *NegateValue(Value *V, Instruction *BI) {
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
- // we introduce tons of unnecessary negation instructions...
+ // we introduce tons of unnecessary negation instructions.
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
@@ -393,10 +403,36 @@ static Value *NegateValue(Value *V, Instruction *BI) {
I->setName(I->getName()+".neg");
return I;
}
+
+ // Okay, we need to materialize a negated version of V with an instruction.
+ // Scan the use lists of V to see if we have one already.
+ for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+ if (!BinaryOperator::isNeg(*UI)) continue;
+
+ // We found one! Now we have to make sure that the definition dominates
+ // this use. We do this by moving it to the entry block (if it is a
+ // non-instruction value) or right after the definition. These negates will
+ // be zapped by reassociate later, so we don't need much finesse here.
+ BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
+
+ BasicBlock::iterator InsertPt;
+ if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
+ if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
+ InsertPt = II->getNormalDest()->begin();
+ } else {
+ InsertPt = InstInput;
+ ++InsertPt;
+ }
+ while (isa<PHINode>(InsertPt)) ++InsertPt;
+ } else {
+ InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
+ }
+ TheNeg->moveBefore(InsertPt);
+ return TheNeg;
+ }
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
- //
return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
}
@@ -427,12 +463,12 @@ static bool ShouldBreakUpSubtract(Instruction *Sub) {
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static Instruction *BreakUpSubtract(Instruction *Sub,
- std::map<AssertingVH<>, unsigned> &ValueRankMap) {
- // Convert a subtract into an add and a neg instruction... so that sub
- // instructions can be commuted with other add instructions...
+ DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
+ // Convert a subtract into an add and a neg instruction. This allows sub
+ // instructions to be commuted with other add instructions.
//
- // Calculate the negative value of Operand 1 of the sub instruction...
- // and set it as the RHS of the add instruction we just made...
+ // Calculate the negative value of Operand 1 of the sub instruction,
+ // and set it as the RHS of the add instruction we just made.
//
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Instruction *New =
@@ -452,7 +488,7 @@ static Instruction *BreakUpSubtract(Instruction *Sub,
/// by one, change this into a multiply by a constant to assist with further
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl,
- std::map<AssertingVH<>, unsigned> &ValueRankMap) {
+ DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
@@ -460,11 +496,10 @@ static Instruction *ConvertShiftToMul(Instruction *Shl,
(isReassociableOp(Shl->use_back(), Instruction::Mul) ||
isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
- MulCst =
- ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
+ MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
- Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
- "", Shl);
+ Instruction *Mul =
+ BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
ValueRankMap.erase(Shl);
Mul->takeName(Shl);
Shl->replaceAllUsesWith(Mul);
@@ -475,15 +510,16 @@ static Instruction *ConvertShiftToMul(Instruction *Shl,
}
// Scan backwards and forwards among values with the same rank as element i to
-// see if X exists. If X does not exist, return i.
-static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
+// see if X exists. If X does not exist, return i. This is useful when
+// scanning for 'x' when we see '-x' because they both get the same rank.
+static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Value *X) {
unsigned XRank = Ops[i].Rank;
unsigned e = Ops.size();
for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
if (Ops[j].Op == X)
return j;
- // Scan backwards
+ // Scan backwards.
for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
if (Ops[j].Op == X)
return j;
@@ -492,7 +528,7 @@ static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
-static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
+static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.back();
@@ -508,32 +544,57 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
if (!BO) return 0;
- std::vector<ValueEntry> Factors;
+ SmallVector<ValueEntry, 8> Factors;
LinearizeExprTree(BO, Factors);
bool FoundFactor = false;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i)
+ bool NeedsNegate = false;
+ for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
if (Factors[i].Op == Factor) {
FoundFactor = true;
Factors.erase(Factors.begin()+i);
break;
}
+
+ // If this is a negative version of this factor, remove it.
+ if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
+ if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
+ if (FC1->getValue() == -FC2->getValue()) {
+ FoundFactor = NeedsNegate = true;
+ Factors.erase(Factors.begin()+i);
+ break;
+ }
+ }
+
if (!FoundFactor) {
// Make sure to restore the operands to the expression tree.
RewriteExprTree(BO, Factors);
return 0;
}
- if (Factors.size() == 1) return Factors[0].Op;
+ BasicBlock::iterator InsertPt = BO; ++InsertPt;
+
+ // If this was just a single multiply, remove the multiply and return the only
+ // remaining operand.
+ if (Factors.size() == 1) {
+ ValueRankMap.erase(BO);
+ BO->eraseFromParent();
+ V = Factors[0].Op;
+ } else {
+ RewriteExprTree(BO, Factors);
+ V = BO;
+ }
- RewriteExprTree(BO, Factors);
- return BO;
+ if (NeedsNegate)
+ V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
+
+ return V;
}
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
/// add its operands as factors, otherwise add V to the list of factors.
static void FindSingleUseMultiplyFactors(Value *V,
- std::vector<Value*> &Factors) {
+ SmallVectorImpl<Value*> &Factors) {
BinaryOperator *BO;
if ((!V->hasOneUse() && !V->use_empty()) ||
!(BO = dyn_cast<BinaryOperator>(V)) ||
@@ -547,10 +608,228 @@ static void FindSingleUseMultiplyFactors(Value *V,
FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
}
+/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
+/// instruction. This optimizes based on identities. If it can be reduced to
+/// a single Value, it is returned, otherwise the Ops list is mutated as
+/// necessary.
+static Value *OptimizeAndOrXor(unsigned Opcode,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
+ // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ // First, check for X and ~X in the operand list.
+ assert(i < Ops.size());
+ if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
+ Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
+ unsigned FoundX = FindInOperandList(Ops, i, X);
+ if (FoundX != i) {
+ if (Opcode == Instruction::And) // ...&X&~X = 0
+ return Constant::getNullValue(X->getType());
+
+ if (Opcode == Instruction::Or) // ...|X|~X = -1
+ return Constant::getAllOnesValue(X->getType());
+ }
+ }
+
+ // Next, check for duplicate pairs of values, which we assume are next to
+ // each other, due to our sorting criteria.
+ assert(i < Ops.size());
+ if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
+ if (Opcode == Instruction::And || Opcode == Instruction::Or) {
+ // Drop duplicate values for And and Or.
+ Ops.erase(Ops.begin()+i);
+ --i; --e;
+ ++NumAnnihil;
+ continue;
+ }
+
+ // Drop pairs of values for Xor.
+ assert(Opcode == Instruction::Xor);
+ if (e == 2)
+ return Constant::getNullValue(Ops[0].Op->getType());
+
+ // Y ^ X^X -> Y
+ Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
+ i -= 1; e -= 2;
+ ++NumAnnihil;
+ }
+ }
+ return 0;
+}
+/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
+/// optimizes based on identities. If it can be reduced to a single Value, it
+/// is returned, otherwise the Ops list is mutated as necessary.
+Value *Reassociate::OptimizeAdd(Instruction *I,
+ SmallVectorImpl<ValueEntry> &Ops) {
+ // Scan the operand lists looking for X and -X pairs. If we find any, we
+ // can simplify the expression. X+-X == 0. While we're at it, scan for any
+ // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
+ //
+ // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
+ //
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ Value *TheOp = Ops[i].Op;
+ // Check to see if we've seen this operand before. If so, we factor all
+ // instances of the operand together. Due to our sorting criteria, we know
+ // that these need to be next to each other in the vector.
+ if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
+ // Rescan the list, remove all instances of this operand from the expr.
+ unsigned NumFound = 0;
+ do {
+ Ops.erase(Ops.begin()+i);
+ ++NumFound;
+ } while (i != Ops.size() && Ops[i].Op == TheOp);
+
+ DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
+ ++NumFactor;
+
+ // Insert a new multiply.
+ Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
+ Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
+
+ // Now that we have inserted a multiply, optimize it. This allows us to
+ // handle cases that require multiple factoring steps, such as this:
+ // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
+ Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
+
+ // If every add operand was a duplicate, return the multiply.
+ if (Ops.empty())
+ return Mul;
+
+ // Otherwise, we had some input that didn't have the dupe, such as
+ // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
+ // things being added by this operation.
+ Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
+
+ --i;
+ e = Ops.size();
+ continue;
+ }
+
+ // Check for X and -X in the operand list.
+ if (!BinaryOperator::isNeg(TheOp))
+ continue;
+
+ Value *X = BinaryOperator::getNegArgument(TheOp);
+ unsigned FoundX = FindInOperandList(Ops, i, X);
+ if (FoundX == i)
+ continue;
+
+ // Remove X and -X from the operand list.
+ if (Ops.size() == 2)
+ return Constant::getNullValue(X->getType());
+
+ Ops.erase(Ops.begin()+i);
+ if (i < FoundX)
+ --FoundX;
+ else
+ --i; // Need to back up an extra one.
+ Ops.erase(Ops.begin()+FoundX);
+ ++NumAnnihil;
+ --i; // Revisit element.
+ e -= 2; // Removed two elements.
+ }
+
+ // Scan the operand list, checking to see if there are any common factors
+ // between operands. Consider something like A*A+A*B*C+D. We would like to
+ // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
+ // To efficiently find this, we count the number of times a factor occurs
+ // for any ADD operands that are MULs.
+ DenseMap<Value*, unsigned> FactorOccurrences;
+
+ // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
+ // where they are actually the same multiply.
+ unsigned MaxOcc = 0;
+ Value *MaxOccVal = 0;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
+ if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
+ continue;
+
+ // Compute all of the factors of this added value.
+ SmallVector<Value*, 8> Factors;
+ FindSingleUseMultiplyFactors(BOp, Factors);
+ assert(Factors.size() > 1 && "Bad linearize!");
+
+ // Add one to FactorOccurrences for each unique factor in this op.
+ SmallPtrSet<Value*, 8> Duplicates;
+ for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
+ Value *Factor = Factors[i];
+ if (!Duplicates.insert(Factor)) continue;
+
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+
+ // If Factor is a negative constant, add the negated value as a factor
+ // because we can percolate the negate out. Watch for minint, which
+ // cannot be positivified.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
+ if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
+ Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
+ assert(!Duplicates.count(Factor) &&
+ "Shouldn't have two constant factors, missed a canonicalize");
+
+ unsigned Occ = ++FactorOccurrences[Factor];
+ if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
+ }
+ }
+ }
+
+ // If any factor occurred more than one time, we can pull it out.
+ if (MaxOcc > 1) {
+ DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
+ ++NumFactor;
+
+ // Create a new instruction that uses the MaxOccVal twice. If we don't do
+ // this, we could otherwise run into situations where removing a factor
+ // from an expression will drop a use of maxocc, and this can cause
+ // RemoveFactorFromExpression on successive values to behave differently.
+ Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
+ SmallVector<Value*, 4> NewMulOps;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
+ NewMulOps.push_back(V);
+ Ops.erase(Ops.begin()+i);
+ --i; --e;
+ }
+ }
+
+ // No need for extra uses anymore.
+ delete DummyInst;
+
+ unsigned NumAddedValues = NewMulOps.size();
+ Value *V = EmitAddTreeOfValues(I, NewMulOps);
+
+ // Now that we have inserted the add tree, optimize it. This allows us to
+ // handle cases that require multiple factoring steps, such as this:
+ // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
+ assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
+ V = ReassociateExpression(cast<BinaryOperator>(V));
+
+ // Create the multiply.
+ Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
+
+ // Rerun associate on the multiply in case the inner expression turned into
+ // a multiply. We want to make sure that we keep things in canonical form.
+ V2 = ReassociateExpression(cast<BinaryOperator>(V2));
+
+ // If every add operand included the factor (e.g. "A*B + A*C"), then the
+ // entire result expression is just the multiply "A*(B+C)".
+ if (Ops.empty())
+ return V2;
+
+ // Otherwise, we had some input that didn't have the factor, such as
+ // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
+ // things being added by this operation.
+ Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
+ }
+
+ return 0;
+}
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
- std::vector<ValueEntry> &Ops) {
+ SmallVectorImpl<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
bool IterateOptimization = false;
@@ -570,198 +849,53 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
switch (Opcode) {
default: break;
case Instruction::And:
- if (CstVal->isZero()) { // ... & 0 -> 0
- ++NumAnnihil;
+ if (CstVal->isZero()) // X & 0 -> 0
return CstVal;
- } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
+ if (CstVal->isAllOnesValue()) // X & -1 -> X
Ops.pop_back();
- }
break;
case Instruction::Mul:
- if (CstVal->isZero()) { // ... * 0 -> 0
+ if (CstVal->isZero()) { // X * 0 -> 0
++NumAnnihil;
return CstVal;
- } else if (cast<ConstantInt>(CstVal)->isOne()) {
- Ops.pop_back(); // ... * 1 -> ...
}
+
+ if (cast<ConstantInt>(CstVal)->isOne())
+ Ops.pop_back(); // X * 1 -> X
break;
case Instruction::Or:
- if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
- ++NumAnnihil;
+ if (CstVal->isAllOnesValue()) // X | -1 -> -1
return CstVal;
- }
// FALLTHROUGH!
case Instruction::Add:
case Instruction::Xor:
- if (CstVal->isZero()) // ... [|^+] 0 -> ...
+ if (CstVal->isZero()) // X [|^+] 0 -> X
Ops.pop_back();
break;
}
if (Ops.size() == 1) return Ops[0].Op;
- // Handle destructive annihilation do to identities between elements in the
+ // Handle destructive annihilation due to identities between elements in the
// argument list here.
switch (Opcode) {
default: break;
case Instruction::And:
case Instruction::Or:
- case Instruction::Xor:
- // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
- // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- // First, check for X and ~X in the operand list.
- assert(i < Ops.size());
- if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
- Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX != i) {
- if (Opcode == Instruction::And) { // ...&X&~X = 0
- ++NumAnnihil;
- return Constant::getNullValue(X->getType());
- } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
- ++NumAnnihil;
- return Constant::getAllOnesValue(X->getType());
- }
- }
- }
-
- // Next, check for duplicate pairs of values, which we assume are next to
- // each other, due to our sorting criteria.
- assert(i < Ops.size());
- if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
- if (Opcode == Instruction::And || Opcode == Instruction::Or) {
- // Drop duplicate values.
- Ops.erase(Ops.begin()+i);
- --i; --e;
- IterateOptimization = true;
- ++NumAnnihil;
- } else {
- assert(Opcode == Instruction::Xor);
- if (e == 2) {
- ++NumAnnihil;
- return Constant::getNullValue(Ops[0].Op->getType());
- }
- // ... X^X -> ...
- Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
- i -= 1; e -= 2;
- IterateOptimization = true;
- ++NumAnnihil;
- }
- }
- }
+ case Instruction::Xor: {
+ unsigned NumOps = Ops.size();
+ if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
+ return Result;
+ IterateOptimization |= Ops.size() != NumOps;
break;
+ }
- case Instruction::Add:
- // Scan the operand lists looking for X and -X pairs. If we find any, we
- // can simplify the expression. X+-X == 0.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- assert(i < Ops.size());
- // Check for X and -X in the operand list.
- if (BinaryOperator::isNeg(Ops[i].Op)) {
- Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX != i) {
- // Remove X and -X from the operand list.
- if (Ops.size() == 2) {
- ++NumAnnihil;
- return Constant::getNullValue(X->getType());
- } else {
- Ops.erase(Ops.begin()+i);
- if (i < FoundX)
- --FoundX;
- else
- --i; // Need to back up an extra one.
- Ops.erase(Ops.begin()+FoundX);
- IterateOptimization = true;
- ++NumAnnihil;
- --i; // Revisit element.
- e -= 2; // Removed two elements.
- }
- }
- }
- }
-
-
- // Scan the operand list, checking to see if there are any common factors
- // between operands. Consider something like A*A+A*B*C+D. We would like to
- // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
- // To efficiently find this, we count the number of times a factor occurs
- // for any ADD operands that are MULs.
- std::map<Value*, unsigned> FactorOccurrences;
- unsigned MaxOcc = 0;
- Value *MaxOccVal = 0;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
- if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
- // Compute all of the factors of this added value.
- std::vector<Value*> Factors;
- FindSingleUseMultiplyFactors(BOp, Factors);
- assert(Factors.size() > 1 && "Bad linearize!");
-
- // Add one to FactorOccurrences for each unique factor in this op.
- if (Factors.size() == 2) {
- unsigned Occ = ++FactorOccurrences[Factors[0]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
- if (Factors[0] != Factors[1]) { // Don't double count A*A.
- Occ = ++FactorOccurrences[Factors[1]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
- }
- } else {
- std::set<Value*> Duplicates;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
- if (Duplicates.insert(Factors[i]).second) {
- unsigned Occ = ++FactorOccurrences[Factors[i]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
- }
- }
- }
- }
- }
- }
-
- // If any factor occurred more than one time, we can pull it out.
- if (MaxOcc > 1) {
- DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
-
- // Create a new instruction that uses the MaxOccVal twice. If we don't do
- // this, we could otherwise run into situations where removing a factor
- // from an expression will drop a use of maxocc, and this can cause
- // RemoveFactorFromExpression on successive values to behave differently.
- Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
- std::vector<Value*> NewMulOps;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
- NewMulOps.push_back(V);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- }
-
- // No need for extra uses anymore.
- delete DummyInst;
-
- unsigned NumAddedValues = NewMulOps.size();
- Value *V = EmitAddTreeOfValues(I, NewMulOps);
- Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
-
- // Now that we have inserted V and its sole use, optimize it. This allows
- // us to handle cases that require multiple factoring steps, such as this:
- // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
- if (NumAddedValues > 1)
- ReassociateExpression(cast<BinaryOperator>(V));
-
- ++NumFactor;
-
- if (Ops.empty())
- return V2;
+ case Instruction::Add: {
+ unsigned NumOps = Ops.size();
+ if (Value *Result = OptimizeAdd(I, Ops))
+ return Result;
+ IterateOptimization |= Ops.size() != NumOps;
+ }
- // Add the new value to the list of things being added.
- Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
-
- // Rewrite the tree so that there is now a use of V.
- RewriteExprTree(I, Ops);
- return OptimizeExpression(I, Ops);
- }
break;
//case Instruction::Mul:
}
@@ -826,13 +960,14 @@ void Reassociate::ReassociateBB(BasicBlock *BB) {
}
}
-void Reassociate::ReassociateExpression(BinaryOperator *I) {
+Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
- // First, walk the expression tree, linearizing the tree, collecting
- std::vector<ValueEntry> Ops;
+ // First, walk the expression tree, linearizing the tree, collecting the
+ // operand information.
+ SmallVector<ValueEntry, 8> Ops;
LinearizeExprTree(I, Ops);
- DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
+ DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
@@ -847,10 +982,11 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
- DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
+ DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
I->replaceAllUsesWith(V);
RemoveDeadBinaryOp(I);
- return;
+ ++NumAnnihil;
+ return V;
}
// We want to sink immediates as deeply as possible except in the case where
@@ -861,22 +997,24 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
isa<ConstantInt>(Ops.back().Op) &&
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
- Ops.insert(Ops.begin(), Ops.back());
- Ops.pop_back();
+ ValueEntry Tmp = Ops.pop_back_val();
+ Ops.insert(Ops.begin(), Tmp);
}
- DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
+ DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
I->replaceAllUsesWith(Ops[0].Op);
RemoveDeadBinaryOp(I);
- } else {
- // Now that we ordered and optimized the expressions, splat them back into
- // the expression tree, removing any unneeded nodes.
- RewriteExprTree(I, Ops);
+ return Ops[0].Op;
}
+
+ // Now that we ordered and optimized the expressions, splat them back into
+ // the expression tree, removing any unneeded nodes.
+ RewriteExprTree(I, Ops);
+ return I;
}
@@ -888,7 +1026,7 @@ bool Reassociate::runOnFunction(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
ReassociateBB(FI);
- // We are done with the rank map...
+ // We are done with the rank map.
RankMap.clear();
ValueRankMap.clear();
return MadeChange;