aboutsummaryrefslogtreecommitdiff
path: root/lib/divdf3.c
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2010-10-21 19:02:02 +0000
committerEd Schouten <ed@FreeBSD.org>2010-10-21 19:02:02 +0000
commit217b614317dad692116a3a06fe94ea8f61a59edb (patch)
tree4cfe2eee875a959effca0881df14c079103447fa /lib/divdf3.c
downloadsrc-217b614317dad692116a3a06fe94ea8f61a59edb.tar.gz
src-217b614317dad692116a3a06fe94ea8f61a59edb.zip
Import compiler-rt r117047.vendor/compiler-rt/compiler-rt-r117047
Notes
Notes: svn path=/vendor/compiler-rt/dist/; revision=214152 svn path=/vendor/compiler-rt/compiler-rt-r117047/; revision=214153; tag=vendor/compiler-rt/compiler-rt-r117047
Diffstat (limited to 'lib/divdf3.c')
-rw-r--r--lib/divdf3.c182
1 files changed, 182 insertions, 0 deletions
diff --git a/lib/divdf3.c b/lib/divdf3.c
new file mode 100644
index 000000000000..21b8f09bacb0
--- /dev/null
+++ b/lib/divdf3.c
@@ -0,0 +1,182 @@
+//===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements double-precision soft-float division
+// with the IEEE-754 default rounding (to nearest, ties to even).
+//
+// For simplicity, this implementation currently flushes denormals to zero.
+// It should be a fairly straightforward exercise to implement gradual
+// underflow with correct rounding.
+//
+//===----------------------------------------------------------------------===//
+
+#define DOUBLE_PRECISION
+#include "fp_lib.h"
+
+fp_t __divdf3(fp_t a, fp_t b) {
+
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN / anything = qNaN
+ if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
+ // anything / NaN = qNaN
+ if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity / infinity = NaN
+ if (bAbs == infRep) return fromRep(qnanRep);
+ // infinity / anything else = +/- infinity
+ else return fromRep(aAbs | quotientSign);
+ }
+
+ // anything else / infinity = +/- 0
+ if (bAbs == infRep) return fromRep(quotientSign);
+
+ if (!aAbs) {
+ // zero / zero = NaN
+ if (!bAbs) return fromRep(qnanRep);
+ // zero / anything else = +/- zero
+ else return fromRep(quotientSign);
+ }
+ // anything else / zero = +/- infinity
+ if (!bAbs) return fromRep(infRep | quotientSign);
+
+ // one or both of a or b is denormal, the other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit) scale += normalize(&aSignificand);
+ if (bAbs < implicitBit) scale -= normalize(&bSignificand);
+ }
+
+ // Or in the implicit significand bit. (If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.)
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+ int quotientExponent = aExponent - bExponent + scale;
+
+ // Align the significand of b as a Q31 fixed-point number in the range
+ // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+ // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
+ // is accurate to about 3.5 binary digits.
+ const uint32_t q31b = bSignificand >> 21;
+ uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
+
+ // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+ //
+ // x1 = x0 * (2 - x0 * b)
+ //
+ // This doubles the number of correct binary digits in the approximation
+ // with each iteration, so after three iterations, we have about 28 binary
+ // digits of accuracy.
+ uint32_t correction32;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+ correction32 = -((uint64_t)recip32 * q31b >> 32);
+ recip32 = (uint64_t)recip32 * correction32 >> 31;
+
+ // recip32 might have overflowed to exactly zero in the preceeding
+ // computation if the high word of b is exactly 1.0. This would sabotage
+ // the full-width final stage of the computation that follows, so we adjust
+ // recip32 downward by one bit.
+ recip32--;
+
+ // We need to perform one more iteration to get us to 56 binary digits;
+ // The last iteration needs to happen with extra precision.
+ const uint32_t q63blo = bSignificand << 11;
+ uint64_t correction, reciprocal;
+ correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
+ uint32_t cHi = correction >> 32;
+ uint32_t cLo = correction;
+ reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
+
+ // We already adjusted the 32-bit estimate, now we need to adjust the final
+ // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
+ // than the infinitely precise exact reciprocal. Because the computation
+ // of the Newton-Raphson step is truncating at every step, this adjustment
+ // is small; most of the work is already done.
+ reciprocal -= 2;
+
+ // The numerical reciprocal is accurate to within 2^-56, lies in the
+ // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+ // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
+ // in Q53 with the following properties:
+ //
+ // 1. q < a/b
+ // 2. q is in the interval [0.5, 2.0)
+ // 3. the error in q is bounded away from 2^-53 (actually, we have a
+ // couple of bits to spare, but this is all we need).
+
+ // We need a 64 x 64 multiply high to compute q, which isn't a basic
+ // operation in C, so we need to be a little bit fussy.
+ rep_t quotient, quotientLo;
+ wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
+
+ // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+ // In either case, we are going to compute a residual of the form
+ //
+ // r = a - q*b
+ //
+ // We know from the construction of q that r satisfies:
+ //
+ // 0 <= r < ulp(q)*b
+ //
+ // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
+ // already have the correct result. The exact halfway case cannot occur.
+ // We also take this time to right shift quotient if it falls in the [1,2)
+ // range and adjust the exponent accordingly.
+ rep_t residual;
+ if (quotient < (implicitBit << 1)) {
+ residual = (aSignificand << 53) - quotient * bSignificand;
+ quotientExponent--;
+ } else {
+ quotient >>= 1;
+ residual = (aSignificand << 52) - quotient * bSignificand;
+ }
+
+ const int writtenExponent = quotientExponent + exponentBias;
+
+ if (writtenExponent >= maxExponent) {
+ // If we have overflowed the exponent, return infinity.
+ return fromRep(infRep | quotientSign);
+ }
+
+ else if (writtenExponent < 1) {
+ // Flush denormals to zero. In the future, it would be nice to add
+ // code to round them correctly.
+ return fromRep(quotientSign);
+ }
+
+ else {
+ const bool round = (residual << 1) > bSignificand;
+ // Clear the implicit bit
+ rep_t absResult = quotient & significandMask;
+ // Insert the exponent
+ absResult |= (rep_t)writtenExponent << significandBits;
+ // Round
+ absResult += round;
+ // Insert the sign and return
+ const double result = fromRep(absResult | quotientSign);
+ return result;
+ }
+}