aboutsummaryrefslogtreecommitdiff
path: root/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
diff options
context:
space:
mode:
authorEd Maste <emaste@FreeBSD.org>2013-08-23 17:46:38 +0000
committerEd Maste <emaste@FreeBSD.org>2013-08-23 17:46:38 +0000
commitf034231a6a1fd5d6395206c1651de8cd9402cca3 (patch)
treef561dabc721ad515599172c16da3a4400b7f4aec /source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
downloadsrc-f034231a6a1fd5d6395206c1651de8cd9402cca3.tar.gz
src-f034231a6a1fd5d6395206c1651de8cd9402cca3.zip
Import lldb as of SVN r188801
(A number of files not required for the FreeBSD build have been removed.) Sponsored by: DARPA, AFRL
Notes
Notes: svn path=/vendor/lldb/dist/; revision=254721
Diffstat (limited to 'source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp')
-rw-r--r--source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp971
1 files changed, 971 insertions, 0 deletions
diff --git a/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
new file mode 100644
index 000000000000..b1612a5f3c2f
--- /dev/null
+++ b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
@@ -0,0 +1,971 @@
+//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "GDBRemoteRegisterContext.h"
+
+// C Includes
+// C++ Includes
+// Other libraries and framework includes
+#include "lldb/Core/DataBufferHeap.h"
+#include "lldb/Core/DataExtractor.h"
+#include "lldb/Core/RegisterValue.h"
+#include "lldb/Core/Scalar.h"
+#include "lldb/Core/StreamString.h"
+#include "lldb/Target/ExecutionContext.h"
+#include "lldb/Utility/Utils.h"
+// Project includes
+#include "Utility/StringExtractorGDBRemote.h"
+#include "ProcessGDBRemote.h"
+#include "ProcessGDBRemoteLog.h"
+#include "ThreadGDBRemote.h"
+#include "Utility/ARM_GCC_Registers.h"
+#include "Utility/ARM_DWARF_Registers.h"
+
+using namespace lldb;
+using namespace lldb_private;
+
+//----------------------------------------------------------------------
+// GDBRemoteRegisterContext constructor
+//----------------------------------------------------------------------
+GDBRemoteRegisterContext::GDBRemoteRegisterContext
+(
+ ThreadGDBRemote &thread,
+ uint32_t concrete_frame_idx,
+ GDBRemoteDynamicRegisterInfo &reg_info,
+ bool read_all_at_once
+) :
+ RegisterContext (thread, concrete_frame_idx),
+ m_reg_info (reg_info),
+ m_reg_valid (),
+ m_reg_data (),
+ m_read_all_at_once (read_all_at_once)
+{
+ // Resize our vector of bools to contain one bool for every register.
+ // We will use these boolean values to know when a register value
+ // is valid in m_reg_data.
+ m_reg_valid.resize (reg_info.GetNumRegisters());
+
+ // Make a heap based buffer that is big enough to store all registers
+ DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0));
+ m_reg_data.SetData (reg_data_sp);
+
+}
+
+//----------------------------------------------------------------------
+// Destructor
+//----------------------------------------------------------------------
+GDBRemoteRegisterContext::~GDBRemoteRegisterContext()
+{
+}
+
+void
+GDBRemoteRegisterContext::InvalidateAllRegisters ()
+{
+ SetAllRegisterValid (false);
+}
+
+void
+GDBRemoteRegisterContext::SetAllRegisterValid (bool b)
+{
+ std::vector<bool>::iterator pos, end = m_reg_valid.end();
+ for (pos = m_reg_valid.begin(); pos != end; ++pos)
+ *pos = b;
+}
+
+size_t
+GDBRemoteRegisterContext::GetRegisterCount ()
+{
+ return m_reg_info.GetNumRegisters ();
+}
+
+const RegisterInfo *
+GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg)
+{
+ return m_reg_info.GetRegisterInfoAtIndex (reg);
+}
+
+size_t
+GDBRemoteRegisterContext::GetRegisterSetCount ()
+{
+ return m_reg_info.GetNumRegisterSets ();
+}
+
+
+
+const RegisterSet *
+GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set)
+{
+ return m_reg_info.GetRegisterSet (reg_set);
+}
+
+
+
+bool
+GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
+{
+ // Read the register
+ if (ReadRegisterBytes (reg_info, m_reg_data))
+ {
+ const bool partial_data_ok = false;
+ Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
+ return error.Success();
+ }
+ return false;
+}
+
+bool
+GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response)
+{
+ const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg);
+ if (reg_info == NULL)
+ return false;
+
+ // Invalidate if needed
+ InvalidateIfNeeded(false);
+
+ const uint32_t reg_byte_size = reg_info->byte_size;
+ const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc');
+ bool success = bytes_copied == reg_byte_size;
+ if (success)
+ {
+ SetRegisterIsValid(reg, true);
+ }
+ else if (bytes_copied > 0)
+ {
+ // Only set register is valid to false if we copied some bytes, else
+ // leave it as it was.
+ SetRegisterIsValid(reg, false);
+ }
+ return success;
+}
+
+// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
+bool
+GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
+ GDBRemoteCommunicationClient &gdb_comm)
+{
+ char packet[64];
+ StringExtractorGDBRemote response;
+ int packet_len = 0;
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+ if (gdb_comm.GetThreadSuffixSupported())
+ packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID());
+ else
+ packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg);
+ assert (packet_len < ((int)sizeof(packet) - 1));
+ if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
+ return PrivateSetRegisterValue (reg, response);
+
+ return false;
+}
+bool
+GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data)
+{
+ ExecutionContext exe_ctx (CalculateThread());
+
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
+
+ GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+
+ InvalidateIfNeeded(false);
+
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+
+ if (!GetRegisterIsValid(reg))
+ {
+ Mutex::Locker locker;
+ if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register."))
+ {
+ const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
+ ProcessSP process_sp (m_thread.GetProcess());
+ if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
+ {
+ char packet[64];
+ StringExtractorGDBRemote response;
+ int packet_len = 0;
+ if (m_read_all_at_once)
+ {
+ // Get all registers in one packet
+ if (thread_suffix_supported)
+ packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+ else
+ packet_len = ::snprintf (packet, sizeof(packet), "g");
+ assert (packet_len < ((int)sizeof(packet) - 1));
+ if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false))
+ {
+ if (response.IsNormalResponse())
+ if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize())
+ SetAllRegisterValid (true);
+ }
+ }
+ else if (reg_info->value_regs)
+ {
+ // Process this composite register request by delegating to the constituent
+ // primordial registers.
+
+ // Index of the primordial register.
+ bool success = true;
+ for (uint32_t idx = 0; success; ++idx)
+ {
+ const uint32_t prim_reg = reg_info->value_regs[idx];
+ if (prim_reg == LLDB_INVALID_REGNUM)
+ break;
+ // We have a valid primordial regsiter as our constituent.
+ // Grab the corresponding register info.
+ const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
+ if (prim_reg_info == NULL)
+ success = false;
+ else
+ {
+ // Read the containing register if it hasn't already been read
+ if (!GetRegisterIsValid(prim_reg))
+ success = GetPrimordialRegister(prim_reg_info, gdb_comm);
+ }
+ }
+
+ if (success)
+ {
+ // If we reach this point, all primordial register requests have succeeded.
+ // Validate this composite register.
+ SetRegisterIsValid (reg_info, true);
+ }
+ }
+ else
+ {
+ // Get each register individually
+ GetPrimordialRegister(reg_info, gdb_comm);
+ }
+ }
+ }
+ else
+ {
+#if LLDB_CONFIGURATION_DEBUG
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ Host::SetCrashDescription (strm.GetData());
+ assert (!"Didn't get sequence mutex for read register.");
+#else
+ Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
+ if (log)
+ {
+ if (log->GetVerbose())
+ {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData());
+ }
+ else
+ {
+ log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name);
+ }
+ }
+#endif
+ }
+
+ // Make sure we got a valid register value after reading it
+ if (!GetRegisterIsValid(reg))
+ return false;
+ }
+
+ if (&data != &m_reg_data)
+ {
+ // If we aren't extracting into our own buffer (which
+ // only happens when this function is called from
+ // ReadRegisterValue(uint32_t, Scalar&)) then
+ // we transfer bytes from our buffer into the data
+ // buffer that was passed in
+ data.SetByteOrder (m_reg_data.GetByteOrder());
+ data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size);
+ }
+ return true;
+}
+
+bool
+GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info,
+ const RegisterValue &value)
+{
+ DataExtractor data;
+ if (value.GetData (data))
+ return WriteRegisterBytes (reg_info, data, 0);
+ return false;
+}
+
+// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
+bool
+GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info,
+ GDBRemoteCommunicationClient &gdb_comm)
+{
+ StreamString packet;
+ StringExtractorGDBRemote response;
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+ packet.Printf ("P%x=", reg);
+ packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
+ reg_info->byte_size,
+ lldb::endian::InlHostByteOrder(),
+ lldb::endian::InlHostByteOrder());
+
+ if (gdb_comm.GetThreadSuffixSupported())
+ packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+
+ // Invalidate just this register
+ SetRegisterIsValid(reg, false);
+ if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
+ packet.GetString().size(),
+ response,
+ false))
+ {
+ if (response.IsOKResponse())
+ return true;
+ }
+ return false;
+}
+
+void
+GDBRemoteRegisterContext::SyncThreadState(Process *process)
+{
+ // NB. We assume our caller has locked the sequence mutex.
+
+ GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote());
+ if (!gdb_comm.GetSyncThreadStateSupported())
+ return;
+
+ StreamString packet;
+ StringExtractorGDBRemote response;
+ packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+ if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
+ packet.GetString().size(),
+ response,
+ false))
+ {
+ if (response.IsOKResponse())
+ InvalidateAllRegisters();
+ }
+}
+
+bool
+GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
+{
+ ExecutionContext exe_ctx (CalculateThread());
+
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
+
+ GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+// FIXME: This check isn't right because IsRunning checks the Public state, but this
+// is work you need to do - for instance in ShouldStop & friends - before the public
+// state has been changed.
+// if (gdb_comm.IsRunning())
+// return false;
+
+ // Grab a pointer to where we are going to put this register
+ uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
+
+ if (dst == NULL)
+ return false;
+
+
+ if (data.CopyByteOrderedData (data_offset, // src offset
+ reg_info->byte_size, // src length
+ dst, // dst
+ reg_info->byte_size, // dst length
+ m_reg_data.GetByteOrder())) // dst byte order
+ {
+ Mutex::Locker locker;
+ if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register."))
+ {
+ const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
+ ProcessSP process_sp (m_thread.GetProcess());
+ if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
+ {
+ StreamString packet;
+ StringExtractorGDBRemote response;
+
+ if (m_read_all_at_once)
+ {
+ // Set all registers in one packet
+ packet.PutChar ('G');
+ packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(),
+ m_reg_data.GetByteSize(),
+ lldb::endian::InlHostByteOrder(),
+ lldb::endian::InlHostByteOrder());
+
+ if (thread_suffix_supported)
+ packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+
+ // Invalidate all register values
+ InvalidateIfNeeded (true);
+
+ if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
+ packet.GetString().size(),
+ response,
+ false))
+ {
+ SetAllRegisterValid (false);
+ if (response.IsOKResponse())
+ {
+ return true;
+ }
+ }
+ }
+ else
+ {
+ bool success = true;
+
+ if (reg_info->value_regs)
+ {
+ // This register is part of another register. In this case we read the actual
+ // register data for any "value_regs", and once all that data is read, we will
+ // have enough data in our register context bytes for the value of this register
+
+ // Invalidate this composite register first.
+
+ for (uint32_t idx = 0; success; ++idx)
+ {
+ const uint32_t reg = reg_info->value_regs[idx];
+ if (reg == LLDB_INVALID_REGNUM)
+ break;
+ // We have a valid primordial regsiter as our constituent.
+ // Grab the corresponding register info.
+ const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
+ if (value_reg_info == NULL)
+ success = false;
+ else
+ success = SetPrimordialRegister(value_reg_info, gdb_comm);
+ }
+ }
+ else
+ {
+ // This is an actual register, write it
+ success = SetPrimordialRegister(reg_info, gdb_comm);
+ }
+
+ // Check if writing this register will invalidate any other register values?
+ // If so, invalidate them
+ if (reg_info->invalidate_regs)
+ {
+ for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
+ reg != LLDB_INVALID_REGNUM;
+ reg = reg_info->invalidate_regs[++idx])
+ {
+ SetRegisterIsValid(reg, false);
+ }
+ }
+
+ return success;
+ }
+ }
+ }
+ else
+ {
+ Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
+ if (log)
+ {
+ if (log->GetVerbose())
+ {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData());
+ }
+ else
+ log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name);
+ }
+ }
+ }
+ return false;
+}
+
+
+bool
+GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
+{
+ ExecutionContext exe_ctx (CalculateThread());
+
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
+
+ GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+
+ StringExtractorGDBRemote response;
+
+ Mutex::Locker locker;
+ if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers."))
+ {
+ SyncThreadState(process);
+
+ char packet[32];
+ const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
+ ProcessSP process_sp (m_thread.GetProcess());
+ if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
+ {
+ int packet_len = 0;
+ if (thread_suffix_supported)
+ packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID());
+ else
+ packet_len = ::snprintf (packet, sizeof(packet), "g");
+ assert (packet_len < ((int)sizeof(packet) - 1));
+
+ if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false))
+ {
+ if (response.IsErrorResponse())
+ return false;
+
+ std::string &response_str = response.GetStringRef();
+ if (isxdigit(response_str[0]))
+ {
+ response_str.insert(0, 1, 'G');
+ if (thread_suffix_supported)
+ {
+ char thread_id_cstr[64];
+ ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+ response_str.append (thread_id_cstr);
+ }
+ data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size()));
+ return true;
+ }
+ }
+ }
+ }
+ else
+ {
+ Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
+ if (log)
+ {
+ if (log->GetVerbose())
+ {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData());
+ }
+ else
+ log->Printf("error: failed to get packet sequence mutex, not sending read all registers");
+ }
+ }
+
+ data_sp.reset();
+ return false;
+}
+
+bool
+GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
+{
+ if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0)
+ return false;
+
+ ExecutionContext exe_ctx (CalculateThread());
+
+ Process *process = exe_ctx.GetProcessPtr();
+ Thread *thread = exe_ctx.GetThreadPtr();
+ if (process == NULL || thread == NULL)
+ return false;
+
+ GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote());
+
+ StringExtractorGDBRemote response;
+ Mutex::Locker locker;
+ if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers."))
+ {
+ const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported();
+ ProcessSP process_sp (m_thread.GetProcess());
+ if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID()))
+ {
+ // The data_sp contains the entire G response packet including the
+ // G, and if the thread suffix is supported, it has the thread suffix
+ // as well.
+ const char *G_packet = (const char *)data_sp->GetBytes();
+ size_t G_packet_len = data_sp->GetByteSize();
+ if (gdb_comm.SendPacketAndWaitForResponse (G_packet,
+ G_packet_len,
+ response,
+ false))
+ {
+ if (response.IsOKResponse())
+ return true;
+ else if (response.IsErrorResponse())
+ {
+ uint32_t num_restored = 0;
+ // We need to manually go through all of the registers and
+ // restore them manually
+
+ response.GetStringRef().assign (G_packet, G_packet_len);
+ response.SetFilePos(1); // Skip the leading 'G'
+ DataBufferHeap buffer (m_reg_data.GetByteSize(), 0);
+ DataExtractor restore_data (buffer.GetBytes(),
+ buffer.GetByteSize(),
+ m_reg_data.GetByteOrder(),
+ m_reg_data.GetAddressByteSize());
+
+ const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(),
+ restore_data.GetByteSize(),
+ '\xcc');
+
+ if (bytes_extracted < restore_data.GetByteSize())
+ restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder());
+
+ //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data)
+ const RegisterInfo *reg_info;
+ // We have to march the offset of each register along in the
+ // buffer to make sure we get the right offset.
+ uint32_t reg_byte_offset = 0;
+ for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size)
+ {
+ const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
+
+ // Skip composite registers.
+ if (reg_info->value_regs)
+ continue;
+
+ // Only write down the registers that need to be written
+ // if we are going to be doing registers individually.
+ bool write_reg = true;
+ const uint32_t reg_byte_size = reg_info->byte_size;
+
+ const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size);
+ if (restore_src)
+ {
+ if (GetRegisterIsValid(reg))
+ {
+ const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size);
+ if (current_src)
+ write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0;
+ }
+
+ if (write_reg)
+ {
+ StreamString packet;
+ packet.Printf ("P%x=", reg);
+ packet.PutBytesAsRawHex8 (restore_src,
+ reg_byte_size,
+ lldb::endian::InlHostByteOrder(),
+ lldb::endian::InlHostByteOrder());
+
+ if (thread_suffix_supported)
+ packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID());
+
+ SetRegisterIsValid(reg, false);
+ if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(),
+ packet.GetString().size(),
+ response,
+ false))
+ {
+ if (response.IsOKResponse())
+ ++num_restored;
+ }
+ }
+ }
+ }
+ return num_restored > 0;
+ }
+ }
+ }
+ }
+ else
+ {
+ Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS));
+ if (log)
+ {
+ if (log->GetVerbose())
+ {
+ StreamString strm;
+ gdb_comm.DumpHistory(strm);
+ log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData());
+ }
+ else
+ log->Printf("error: failed to get packet sequence mutex, not sending write all registers");
+ }
+ }
+ return false;
+}
+
+
+uint32_t
+GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num)
+{
+ return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num);
+}
+
+void
+GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch)
+{
+ // For Advanced SIMD and VFP register mapping.
+ static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1)
+ static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3)
+ static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5)
+ static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7)
+ static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9)
+ static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11)
+ static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13)
+ static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15)
+ static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17)
+ static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19)
+ static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21)
+ static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23)
+ static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25)
+ static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27)
+ static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29)
+ static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31)
+ static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3)
+ static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7)
+ static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11)
+ static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15)
+ static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19)
+ static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23)
+ static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27)
+ static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31)
+ static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17)
+ static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19)
+ static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21)
+ static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23)
+ static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25)
+ static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27)
+ static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29)
+ static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31)
+
+ // This is our array of composite registers, with each element coming from the above register mappings.
+ static uint32_t *g_composites[] = {
+ g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs,
+ g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs,
+ g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs,
+ g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs
+ };
+
+ static RegisterInfo g_register_infos[] = {
+// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS
+// ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== ===============
+ { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL},
+ { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL},
+ { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL},
+ { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL},
+ { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL},
+ { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL},
+ { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL},
+ { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL},
+ { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL},
+ { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL},
+ { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL},
+ { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL},
+ { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL},
+ { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL},
+ { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL},
+ { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL},
+ { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL},
+ { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL},
+ { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL},
+ { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL},
+ { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL},
+ { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL},
+ { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL},
+ { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL},
+ { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL},
+ { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL},
+ { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL},
+ { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL},
+ { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL},
+ { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL},
+ { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL},
+ { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL},
+ { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL},
+ { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL},
+ { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL},
+ { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL},
+ { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL},
+ { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL},
+ { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL},
+ { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL},
+ { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL},
+ { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL},
+ { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL},
+ { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL},
+ { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL},
+ { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL},
+ { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL},
+ { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL},
+ { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL},
+ { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL},
+ { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL},
+ { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL},
+ { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL},
+ { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL},
+ { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL},
+ { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL},
+ { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL},
+ { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL},
+ { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL},
+ { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL},
+ { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL},
+ { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL},
+ { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL},
+ { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL},
+ { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL},
+ { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL},
+ { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL},
+ { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL},
+ { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL},
+ { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL},
+ { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL},
+ { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL},
+ { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL},
+ { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL},
+ { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL},
+ { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL},
+ { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL},
+ { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL},
+ { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL},
+ { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL},
+ { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL},
+ { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL},
+ { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL},
+ { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL},
+ { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL},
+ { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL},
+ { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL},
+ { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL},
+ { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL},
+ { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL},
+ { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL},
+ { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL},
+ { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL},
+ { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL},
+ { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL},
+ { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL},
+ { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL},
+ { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL},
+ { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL},
+ { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL},
+ { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL},
+ { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL},
+ { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL},
+ { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL},
+ { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL},
+ { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL},
+ { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL}
+ };
+
+ static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
+ static ConstString gpr_reg_set ("General Purpose Registers");
+ static ConstString sfp_reg_set ("Software Floating Point Registers");
+ static ConstString vfp_reg_set ("Floating Point Registers");
+ size_t i;
+ if (from_scratch)
+ {
+ // Calculate the offsets of the registers
+ // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the
+ // "primordial" registers is important. This enables us to calculate the offset of the composite
+ // register by using the offset of its first primordial register. For example, to calculate the
+ // offset of q0, use s0's offset.
+ if (g_register_infos[2].byte_offset == 0)
+ {
+ uint32_t byte_offset = 0;
+ for (i=0; i<num_registers; ++i)
+ {
+ // For primordial registers, increment the byte_offset by the byte_size to arrive at the
+ // byte_offset for the next register. Otherwise, we have a composite register whose
+ // offset can be calculated by consulting the offset of its first primordial register.
+ if (!g_register_infos[i].value_regs)
+ {
+ g_register_infos[i].byte_offset = byte_offset;
+ byte_offset += g_register_infos[i].byte_size;
+ }
+ else
+ {
+ const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0];
+ g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset;
+ }
+ }
+ }
+ for (i=0; i<num_registers; ++i)
+ {
+ ConstString name;
+ ConstString alt_name;
+ if (g_register_infos[i].name && g_register_infos[i].name[0])
+ name.SetCString(g_register_infos[i].name);
+ if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
+ alt_name.SetCString(g_register_infos[i].alt_name);
+
+ if (i <= 15 || i == 25)
+ AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set);
+ else if (i <= 24)
+ AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set);
+ else
+ AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set);
+ }
+ }
+ else
+ {
+ // Add composite registers to our primordial registers, then.
+ const size_t num_composites = llvm::array_lengthof(g_composites);
+ const size_t num_dynamic_regs = GetNumRegisters();
+ const size_t num_common_regs = num_registers - num_composites;
+ RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
+
+ // First we need to validate that all registers that we already have match the non composite regs.
+ // If so, then we can add the registers, else we need to bail
+ bool match = true;
+ if (num_dynamic_regs == num_common_regs)
+ {
+ for (i=0; match && i<num_dynamic_regs; ++i)
+ {
+ // Make sure all register names match
+ if (m_regs[i].name && g_register_infos[i].name)
+ {
+ if (strcmp(m_regs[i].name, g_register_infos[i].name))
+ {
+ match = false;
+ break;
+ }
+ }
+
+ // Make sure all register byte sizes match
+ if (m_regs[i].byte_size != g_register_infos[i].byte_size)
+ {
+ match = false;
+ break;
+ }
+ }
+ }
+ else
+ {
+ // Wrong number of registers.
+ match = false;
+ }
+ // If "match" is true, then we can add extra registers.
+ if (match)
+ {
+ for (i=0; i<num_composites; ++i)
+ {
+ ConstString name;
+ ConstString alt_name;
+ const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0];
+ const char *reg_name = g_register_infos[first_primordial_reg].name;
+ if (reg_name && reg_name[0])
+ {
+ for (uint32_t j = 0; j < num_dynamic_regs; ++j)
+ {
+ const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
+ // Find a matching primordial register info entry.
+ if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0)
+ {
+ // The name matches the existing primordial entry.
+ // Find and assign the offset, and then add this composite register entry.
+ g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
+ name.SetCString(g_comp_register_infos[i].name);
+ AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set);
+ }
+ }
+ }
+ }
+ }
+ }
+}