diff options
author | Ed Maste <emaste@FreeBSD.org> | 2013-08-23 17:46:38 +0000 |
---|---|---|
committer | Ed Maste <emaste@FreeBSD.org> | 2013-08-23 17:46:38 +0000 |
commit | f034231a6a1fd5d6395206c1651de8cd9402cca3 (patch) | |
tree | f561dabc721ad515599172c16da3a4400b7f4aec /source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp | |
download | src-f034231a6a1fd5d6395206c1651de8cd9402cca3.tar.gz src-f034231a6a1fd5d6395206c1651de8cd9402cca3.zip |
Import lldb as of SVN r188801
(A number of files not required for the FreeBSD build have been removed.)
Sponsored by: DARPA, AFRL
Notes
Notes:
svn path=/vendor/lldb/dist/; revision=254721
Diffstat (limited to 'source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp')
-rw-r--r-- | source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp new file mode 100644 index 000000000000..b1612a5f3c2f --- /dev/null +++ b/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp @@ -0,0 +1,971 @@ +//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "GDBRemoteRegisterContext.h" + +// C Includes +// C++ Includes +// Other libraries and framework includes +#include "lldb/Core/DataBufferHeap.h" +#include "lldb/Core/DataExtractor.h" +#include "lldb/Core/RegisterValue.h" +#include "lldb/Core/Scalar.h" +#include "lldb/Core/StreamString.h" +#include "lldb/Target/ExecutionContext.h" +#include "lldb/Utility/Utils.h" +// Project includes +#include "Utility/StringExtractorGDBRemote.h" +#include "ProcessGDBRemote.h" +#include "ProcessGDBRemoteLog.h" +#include "ThreadGDBRemote.h" +#include "Utility/ARM_GCC_Registers.h" +#include "Utility/ARM_DWARF_Registers.h" + +using namespace lldb; +using namespace lldb_private; + +//---------------------------------------------------------------------- +// GDBRemoteRegisterContext constructor +//---------------------------------------------------------------------- +GDBRemoteRegisterContext::GDBRemoteRegisterContext +( + ThreadGDBRemote &thread, + uint32_t concrete_frame_idx, + GDBRemoteDynamicRegisterInfo ®_info, + bool read_all_at_once +) : + RegisterContext (thread, concrete_frame_idx), + m_reg_info (reg_info), + m_reg_valid (), + m_reg_data (), + m_read_all_at_once (read_all_at_once) +{ + // Resize our vector of bools to contain one bool for every register. + // We will use these boolean values to know when a register value + // is valid in m_reg_data. + m_reg_valid.resize (reg_info.GetNumRegisters()); + + // Make a heap based buffer that is big enough to store all registers + DataBufferSP reg_data_sp(new DataBufferHeap (reg_info.GetRegisterDataByteSize(), 0)); + m_reg_data.SetData (reg_data_sp); + +} + +//---------------------------------------------------------------------- +// Destructor +//---------------------------------------------------------------------- +GDBRemoteRegisterContext::~GDBRemoteRegisterContext() +{ +} + +void +GDBRemoteRegisterContext::InvalidateAllRegisters () +{ + SetAllRegisterValid (false); +} + +void +GDBRemoteRegisterContext::SetAllRegisterValid (bool b) +{ + std::vector<bool>::iterator pos, end = m_reg_valid.end(); + for (pos = m_reg_valid.begin(); pos != end; ++pos) + *pos = b; +} + +size_t +GDBRemoteRegisterContext::GetRegisterCount () +{ + return m_reg_info.GetNumRegisters (); +} + +const RegisterInfo * +GDBRemoteRegisterContext::GetRegisterInfoAtIndex (size_t reg) +{ + return m_reg_info.GetRegisterInfoAtIndex (reg); +} + +size_t +GDBRemoteRegisterContext::GetRegisterSetCount () +{ + return m_reg_info.GetNumRegisterSets (); +} + + + +const RegisterSet * +GDBRemoteRegisterContext::GetRegisterSet (size_t reg_set) +{ + return m_reg_info.GetRegisterSet (reg_set); +} + + + +bool +GDBRemoteRegisterContext::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) +{ + // Read the register + if (ReadRegisterBytes (reg_info, m_reg_data)) + { + const bool partial_data_ok = false; + Error error (value.SetValueFromData(reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); + return error.Success(); + } + return false; +} + +bool +GDBRemoteRegisterContext::PrivateSetRegisterValue (uint32_t reg, StringExtractor &response) +{ + const RegisterInfo *reg_info = GetRegisterInfoAtIndex (reg); + if (reg_info == NULL) + return false; + + // Invalidate if needed + InvalidateIfNeeded(false); + + const uint32_t reg_byte_size = reg_info->byte_size; + const size_t bytes_copied = response.GetHexBytes (const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), reg_byte_size, '\xcc'); + bool success = bytes_copied == reg_byte_size; + if (success) + { + SetRegisterIsValid(reg, true); + } + else if (bytes_copied > 0) + { + // Only set register is valid to false if we copied some bytes, else + // leave it as it was. + SetRegisterIsValid(reg, false); + } + return success; +} + +// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). +bool +GDBRemoteRegisterContext::GetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, + GDBRemoteCommunicationClient &gdb_comm) +{ + char packet[64]; + StringExtractorGDBRemote response; + int packet_len = 0; + const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + if (gdb_comm.GetThreadSuffixSupported()) + packet_len = ::snprintf (packet, sizeof(packet), "p%x;thread:%4.4" PRIx64 ";", reg, m_thread.GetProtocolID()); + else + packet_len = ::snprintf (packet, sizeof(packet), "p%x", reg); + assert (packet_len < ((int)sizeof(packet) - 1)); + if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) + return PrivateSetRegisterValue (reg, response); + + return false; +} +bool +GDBRemoteRegisterContext::ReadRegisterBytes (const RegisterInfo *reg_info, DataExtractor &data) +{ + ExecutionContext exe_ctx (CalculateThread()); + + Process *process = exe_ctx.GetProcessPtr(); + Thread *thread = exe_ctx.GetThreadPtr(); + if (process == NULL || thread == NULL) + return false; + + GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + + InvalidateIfNeeded(false); + + const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + + if (!GetRegisterIsValid(reg)) + { + Mutex::Locker locker; + if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read register.")) + { + const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); + ProcessSP process_sp (m_thread.GetProcess()); + if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) + { + char packet[64]; + StringExtractorGDBRemote response; + int packet_len = 0; + if (m_read_all_at_once) + { + // Get all registers in one packet + if (thread_suffix_supported) + packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + else + packet_len = ::snprintf (packet, sizeof(packet), "g"); + assert (packet_len < ((int)sizeof(packet) - 1)); + if (gdb_comm.SendPacketAndWaitForResponse(packet, response, false)) + { + if (response.IsNormalResponse()) + if (response.GetHexBytes ((void *)m_reg_data.GetDataStart(), m_reg_data.GetByteSize(), '\xcc') == m_reg_data.GetByteSize()) + SetAllRegisterValid (true); + } + } + else if (reg_info->value_regs) + { + // Process this composite register request by delegating to the constituent + // primordial registers. + + // Index of the primordial register. + bool success = true; + for (uint32_t idx = 0; success; ++idx) + { + const uint32_t prim_reg = reg_info->value_regs[idx]; + if (prim_reg == LLDB_INVALID_REGNUM) + break; + // We have a valid primordial regsiter as our constituent. + // Grab the corresponding register info. + const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); + if (prim_reg_info == NULL) + success = false; + else + { + // Read the containing register if it hasn't already been read + if (!GetRegisterIsValid(prim_reg)) + success = GetPrimordialRegister(prim_reg_info, gdb_comm); + } + } + + if (success) + { + // If we reach this point, all primordial register requests have succeeded. + // Validate this composite register. + SetRegisterIsValid (reg_info, true); + } + } + else + { + // Get each register individually + GetPrimordialRegister(reg_info, gdb_comm); + } + } + } + else + { +#if LLDB_CONFIGURATION_DEBUG + StreamString strm; + gdb_comm.DumpHistory(strm); + Host::SetCrashDescription (strm.GetData()); + assert (!"Didn't get sequence mutex for read register."); +#else + Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); + if (log) + { + if (log->GetVerbose()) + { + StreamString strm; + gdb_comm.DumpHistory(strm); + log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\":\n%s", reg_info->name, strm.GetData()); + } + else + { + log->Printf("error: failed to get packet sequence mutex, not sending read register for \"%s\"", reg_info->name); + } + } +#endif + } + + // Make sure we got a valid register value after reading it + if (!GetRegisterIsValid(reg)) + return false; + } + + if (&data != &m_reg_data) + { + // If we aren't extracting into our own buffer (which + // only happens when this function is called from + // ReadRegisterValue(uint32_t, Scalar&)) then + // we transfer bytes from our buffer into the data + // buffer that was passed in + data.SetByteOrder (m_reg_data.GetByteOrder()); + data.SetData (m_reg_data, reg_info->byte_offset, reg_info->byte_size); + } + return true; +} + +bool +GDBRemoteRegisterContext::WriteRegister (const RegisterInfo *reg_info, + const RegisterValue &value) +{ + DataExtractor data; + if (value.GetData (data)) + return WriteRegisterBytes (reg_info, data, 0); + return false; +} + +// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). +bool +GDBRemoteRegisterContext::SetPrimordialRegister(const lldb_private::RegisterInfo *reg_info, + GDBRemoteCommunicationClient &gdb_comm) +{ + StreamString packet; + StringExtractorGDBRemote response; + const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + packet.Printf ("P%x=", reg); + packet.PutBytesAsRawHex8 (m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), + reg_info->byte_size, + lldb::endian::InlHostByteOrder(), + lldb::endian::InlHostByteOrder()); + + if (gdb_comm.GetThreadSuffixSupported()) + packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + + // Invalidate just this register + SetRegisterIsValid(reg, false); + if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), + packet.GetString().size(), + response, + false)) + { + if (response.IsOKResponse()) + return true; + } + return false; +} + +void +GDBRemoteRegisterContext::SyncThreadState(Process *process) +{ + // NB. We assume our caller has locked the sequence mutex. + + GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *) process)->GetGDBRemote()); + if (!gdb_comm.GetSyncThreadStateSupported()) + return; + + StreamString packet; + StringExtractorGDBRemote response; + packet.Printf ("QSyncThreadState:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), + packet.GetString().size(), + response, + false)) + { + if (response.IsOKResponse()) + InvalidateAllRegisters(); + } +} + +bool +GDBRemoteRegisterContext::WriteRegisterBytes (const lldb_private::RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) +{ + ExecutionContext exe_ctx (CalculateThread()); + + Process *process = exe_ctx.GetProcessPtr(); + Thread *thread = exe_ctx.GetThreadPtr(); + if (process == NULL || thread == NULL) + return false; + + GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); +// FIXME: This check isn't right because IsRunning checks the Public state, but this +// is work you need to do - for instance in ShouldStop & friends - before the public +// state has been changed. +// if (gdb_comm.IsRunning()) +// return false; + + // Grab a pointer to where we are going to put this register + uint8_t *dst = const_cast<uint8_t*>(m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); + + if (dst == NULL) + return false; + + + if (data.CopyByteOrderedData (data_offset, // src offset + reg_info->byte_size, // src length + dst, // dst + reg_info->byte_size, // dst length + m_reg_data.GetByteOrder())) // dst byte order + { + Mutex::Locker locker; + if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write register.")) + { + const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); + ProcessSP process_sp (m_thread.GetProcess()); + if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) + { + StreamString packet; + StringExtractorGDBRemote response; + + if (m_read_all_at_once) + { + // Set all registers in one packet + packet.PutChar ('G'); + packet.PutBytesAsRawHex8 (m_reg_data.GetDataStart(), + m_reg_data.GetByteSize(), + lldb::endian::InlHostByteOrder(), + lldb::endian::InlHostByteOrder()); + + if (thread_suffix_supported) + packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + + // Invalidate all register values + InvalidateIfNeeded (true); + + if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), + packet.GetString().size(), + response, + false)) + { + SetAllRegisterValid (false); + if (response.IsOKResponse()) + { + return true; + } + } + } + else + { + bool success = true; + + if (reg_info->value_regs) + { + // This register is part of another register. In this case we read the actual + // register data for any "value_regs", and once all that data is read, we will + // have enough data in our register context bytes for the value of this register + + // Invalidate this composite register first. + + for (uint32_t idx = 0; success; ++idx) + { + const uint32_t reg = reg_info->value_regs[idx]; + if (reg == LLDB_INVALID_REGNUM) + break; + // We have a valid primordial regsiter as our constituent. + // Grab the corresponding register info. + const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); + if (value_reg_info == NULL) + success = false; + else + success = SetPrimordialRegister(value_reg_info, gdb_comm); + } + } + else + { + // This is an actual register, write it + success = SetPrimordialRegister(reg_info, gdb_comm); + } + + // Check if writing this register will invalidate any other register values? + // If so, invalidate them + if (reg_info->invalidate_regs) + { + for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; + reg != LLDB_INVALID_REGNUM; + reg = reg_info->invalidate_regs[++idx]) + { + SetRegisterIsValid(reg, false); + } + } + + return success; + } + } + } + else + { + Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); + if (log) + { + if (log->GetVerbose()) + { + StreamString strm; + gdb_comm.DumpHistory(strm); + log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\":\n%s", reg_info->name, strm.GetData()); + } + else + log->Printf("error: failed to get packet sequence mutex, not sending write register for \"%s\"", reg_info->name); + } + } + } + return false; +} + + +bool +GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) +{ + ExecutionContext exe_ctx (CalculateThread()); + + Process *process = exe_ctx.GetProcessPtr(); + Thread *thread = exe_ctx.GetThreadPtr(); + if (process == NULL || thread == NULL) + return false; + + GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + + StringExtractorGDBRemote response; + + Mutex::Locker locker; + if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for read all registers.")) + { + SyncThreadState(process); + + char packet[32]; + const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); + ProcessSP process_sp (m_thread.GetProcess()); + if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) + { + int packet_len = 0; + if (thread_suffix_supported) + packet_len = ::snprintf (packet, sizeof(packet), "g;thread:%4.4" PRIx64, m_thread.GetProtocolID()); + else + packet_len = ::snprintf (packet, sizeof(packet), "g"); + assert (packet_len < ((int)sizeof(packet) - 1)); + + if (gdb_comm.SendPacketAndWaitForResponse(packet, packet_len, response, false)) + { + if (response.IsErrorResponse()) + return false; + + std::string &response_str = response.GetStringRef(); + if (isxdigit(response_str[0])) + { + response_str.insert(0, 1, 'G'); + if (thread_suffix_supported) + { + char thread_id_cstr[64]; + ::snprintf (thread_id_cstr, sizeof(thread_id_cstr), ";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + response_str.append (thread_id_cstr); + } + data_sp.reset (new DataBufferHeap (response_str.c_str(), response_str.size())); + return true; + } + } + } + } + else + { + Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); + if (log) + { + if (log->GetVerbose()) + { + StreamString strm; + gdb_comm.DumpHistory(strm); + log->Printf("error: failed to get packet sequence mutex, not sending read all registers:\n%s", strm.GetData()); + } + else + log->Printf("error: failed to get packet sequence mutex, not sending read all registers"); + } + } + + data_sp.reset(); + return false; +} + +bool +GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) +{ + if (!data_sp || data_sp->GetBytes() == NULL || data_sp->GetByteSize() == 0) + return false; + + ExecutionContext exe_ctx (CalculateThread()); + + Process *process = exe_ctx.GetProcessPtr(); + Thread *thread = exe_ctx.GetThreadPtr(); + if (process == NULL || thread == NULL) + return false; + + GDBRemoteCommunicationClient &gdb_comm (((ProcessGDBRemote *)process)->GetGDBRemote()); + + StringExtractorGDBRemote response; + Mutex::Locker locker; + if (gdb_comm.GetSequenceMutex (locker, "Didn't get sequence mutex for write all registers.")) + { + const bool thread_suffix_supported = gdb_comm.GetThreadSuffixSupported(); + ProcessSP process_sp (m_thread.GetProcess()); + if (thread_suffix_supported || static_cast<ProcessGDBRemote *>(process_sp.get())->GetGDBRemote().SetCurrentThread(m_thread.GetProtocolID())) + { + // The data_sp contains the entire G response packet including the + // G, and if the thread suffix is supported, it has the thread suffix + // as well. + const char *G_packet = (const char *)data_sp->GetBytes(); + size_t G_packet_len = data_sp->GetByteSize(); + if (gdb_comm.SendPacketAndWaitForResponse (G_packet, + G_packet_len, + response, + false)) + { + if (response.IsOKResponse()) + return true; + else if (response.IsErrorResponse()) + { + uint32_t num_restored = 0; + // We need to manually go through all of the registers and + // restore them manually + + response.GetStringRef().assign (G_packet, G_packet_len); + response.SetFilePos(1); // Skip the leading 'G' + DataBufferHeap buffer (m_reg_data.GetByteSize(), 0); + DataExtractor restore_data (buffer.GetBytes(), + buffer.GetByteSize(), + m_reg_data.GetByteOrder(), + m_reg_data.GetAddressByteSize()); + + const uint32_t bytes_extracted = response.GetHexBytes ((void *)restore_data.GetDataStart(), + restore_data.GetByteSize(), + '\xcc'); + + if (bytes_extracted < restore_data.GetByteSize()) + restore_data.SetData(restore_data.GetDataStart(), bytes_extracted, m_reg_data.GetByteOrder()); + + //ReadRegisterBytes (const RegisterInfo *reg_info, RegisterValue &value, DataExtractor &data) + const RegisterInfo *reg_info; + // We have to march the offset of each register along in the + // buffer to make sure we get the right offset. + uint32_t reg_byte_offset = 0; + for (uint32_t reg_idx=0; (reg_info = GetRegisterInfoAtIndex (reg_idx)) != NULL; ++reg_idx, reg_byte_offset += reg_info->byte_size) + { + const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; + + // Skip composite registers. + if (reg_info->value_regs) + continue; + + // Only write down the registers that need to be written + // if we are going to be doing registers individually. + bool write_reg = true; + const uint32_t reg_byte_size = reg_info->byte_size; + + const char *restore_src = (const char *)restore_data.PeekData(reg_byte_offset, reg_byte_size); + if (restore_src) + { + if (GetRegisterIsValid(reg)) + { + const char *current_src = (const char *)m_reg_data.PeekData(reg_byte_offset, reg_byte_size); + if (current_src) + write_reg = memcmp (current_src, restore_src, reg_byte_size) != 0; + } + + if (write_reg) + { + StreamString packet; + packet.Printf ("P%x=", reg); + packet.PutBytesAsRawHex8 (restore_src, + reg_byte_size, + lldb::endian::InlHostByteOrder(), + lldb::endian::InlHostByteOrder()); + + if (thread_suffix_supported) + packet.Printf (";thread:%4.4" PRIx64 ";", m_thread.GetProtocolID()); + + SetRegisterIsValid(reg, false); + if (gdb_comm.SendPacketAndWaitForResponse(packet.GetString().c_str(), + packet.GetString().size(), + response, + false)) + { + if (response.IsOKResponse()) + ++num_restored; + } + } + } + } + return num_restored > 0; + } + } + } + } + else + { + Log *log (ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet (GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); + if (log) + { + if (log->GetVerbose()) + { + StreamString strm; + gdb_comm.DumpHistory(strm); + log->Printf("error: failed to get packet sequence mutex, not sending write all registers:\n%s", strm.GetData()); + } + else + log->Printf("error: failed to get packet sequence mutex, not sending write all registers"); + } + } + return false; +} + + +uint32_t +GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber (uint32_t kind, uint32_t num) +{ + return m_reg_info.ConvertRegisterKindToRegisterNumber (kind, num); +} + +void +GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) +{ + // For Advanced SIMD and VFP register mapping. + static uint32_t g_d0_regs[] = { 26, 27, LLDB_INVALID_REGNUM }; // (s0, s1) + static uint32_t g_d1_regs[] = { 28, 29, LLDB_INVALID_REGNUM }; // (s2, s3) + static uint32_t g_d2_regs[] = { 30, 31, LLDB_INVALID_REGNUM }; // (s4, s5) + static uint32_t g_d3_regs[] = { 32, 33, LLDB_INVALID_REGNUM }; // (s6, s7) + static uint32_t g_d4_regs[] = { 34, 35, LLDB_INVALID_REGNUM }; // (s8, s9) + static uint32_t g_d5_regs[] = { 36, 37, LLDB_INVALID_REGNUM }; // (s10, s11) + static uint32_t g_d6_regs[] = { 38, 39, LLDB_INVALID_REGNUM }; // (s12, s13) + static uint32_t g_d7_regs[] = { 40, 41, LLDB_INVALID_REGNUM }; // (s14, s15) + static uint32_t g_d8_regs[] = { 42, 43, LLDB_INVALID_REGNUM }; // (s16, s17) + static uint32_t g_d9_regs[] = { 44, 45, LLDB_INVALID_REGNUM }; // (s18, s19) + static uint32_t g_d10_regs[] = { 46, 47, LLDB_INVALID_REGNUM }; // (s20, s21) + static uint32_t g_d11_regs[] = { 48, 49, LLDB_INVALID_REGNUM }; // (s22, s23) + static uint32_t g_d12_regs[] = { 50, 51, LLDB_INVALID_REGNUM }; // (s24, s25) + static uint32_t g_d13_regs[] = { 52, 53, LLDB_INVALID_REGNUM }; // (s26, s27) + static uint32_t g_d14_regs[] = { 54, 55, LLDB_INVALID_REGNUM }; // (s28, s29) + static uint32_t g_d15_regs[] = { 56, 57, LLDB_INVALID_REGNUM }; // (s30, s31) + static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM }; // (d0, d1) -> (s0, s1, s2, s3) + static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM }; // (d2, d3) -> (s4, s5, s6, s7) + static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM }; // (d4, d5) -> (s8, s9, s10, s11) + static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM }; // (d6, d7) -> (s12, s13, s14, s15) + static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM }; // (d8, d9) -> (s16, s17, s18, s19) + static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM }; // (d10, d11) -> (s20, s21, s22, s23) + static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM }; // (d12, d13) -> (s24, s25, s26, s27) + static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM }; // (d14, d15) -> (s28, s29, s30, s31) + static uint32_t g_q8_regs[] = { 59, 60, LLDB_INVALID_REGNUM }; // (d16, d17) + static uint32_t g_q9_regs[] = { 61, 62, LLDB_INVALID_REGNUM }; // (d18, d19) + static uint32_t g_q10_regs[] = { 63, 64, LLDB_INVALID_REGNUM }; // (d20, d21) + static uint32_t g_q11_regs[] = { 65, 66, LLDB_INVALID_REGNUM }; // (d22, d23) + static uint32_t g_q12_regs[] = { 67, 68, LLDB_INVALID_REGNUM }; // (d24, d25) + static uint32_t g_q13_regs[] = { 69, 70, LLDB_INVALID_REGNUM }; // (d26, d27) + static uint32_t g_q14_regs[] = { 71, 72, LLDB_INVALID_REGNUM }; // (d28, d29) + static uint32_t g_q15_regs[] = { 73, 74, LLDB_INVALID_REGNUM }; // (d30, d31) + + // This is our array of composite registers, with each element coming from the above register mappings. + static uint32_t *g_composites[] = { + g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, + g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, + g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, + g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs + }; + + static RegisterInfo g_register_infos[] = { +// NAME ALT SZ OFF ENCODING FORMAT COMPILER DWARF GENERIC GDB LLDB VALUE REGS INVALIDATE REGS +// ====== ====== === === ============= ============ =================== =================== ====================== === ==== ========== =============== + { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { gcc_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, NULL, NULL}, + { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { gcc_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, NULL, NULL}, + { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { gcc_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, NULL, NULL}, + { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { gcc_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, NULL, NULL}, + { "r4", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, NULL, NULL}, + { "r5", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, NULL, NULL}, + { "r6", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, NULL, NULL}, + { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { gcc_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, NULL, NULL}, + { "r8", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, NULL, NULL}, + { "r9", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, NULL, NULL}, + { "r10", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, NULL, NULL}, + { "r11", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, NULL, NULL}, + { "r12", NULL, 4, 0, eEncodingUint, eFormatHex, { gcc_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, NULL, NULL}, + { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { gcc_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, NULL, NULL}, + { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { gcc_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, NULL, NULL}, + { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { gcc_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, NULL, NULL}, + { "f0", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, NULL, NULL}, + { "f1", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, NULL, NULL}, + { "f2", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, NULL, NULL}, + { "f3", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, NULL, NULL}, + { "f4", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, NULL, NULL}, + { "f5", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, NULL, NULL}, + { "f6", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, NULL, NULL}, + { "f7", NULL, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, NULL, NULL}, + { "fps", NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, NULL, NULL}, + { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { gcc_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, NULL, NULL}, + { "s0", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, NULL, NULL}, + { "s1", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, NULL, NULL}, + { "s2", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, NULL, NULL}, + { "s3", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, NULL, NULL}, + { "s4", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, NULL, NULL}, + { "s5", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, NULL, NULL}, + { "s6", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, NULL, NULL}, + { "s7", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, NULL, NULL}, + { "s8", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, NULL, NULL}, + { "s9", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, NULL, NULL}, + { "s10", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, NULL, NULL}, + { "s11", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, NULL, NULL}, + { "s12", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, NULL, NULL}, + { "s13", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, NULL, NULL}, + { "s14", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, NULL, NULL}, + { "s15", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, NULL, NULL}, + { "s16", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, NULL, NULL}, + { "s17", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, NULL, NULL}, + { "s18", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, NULL, NULL}, + { "s19", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, NULL, NULL}, + { "s20", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, NULL, NULL}, + { "s21", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, NULL, NULL}, + { "s22", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, NULL, NULL}, + { "s23", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, NULL, NULL}, + { "s24", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, NULL, NULL}, + { "s25", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, NULL, NULL}, + { "s26", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, NULL, NULL}, + { "s27", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, NULL, NULL}, + { "s28", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, NULL, NULL}, + { "s29", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, NULL, NULL}, + { "s30", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, NULL, NULL}, + { "s31", NULL, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, NULL, NULL}, + { "fpscr",NULL, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, NULL, NULL}, + { "d16", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, NULL, NULL}, + { "d17", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, NULL, NULL}, + { "d18", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, NULL, NULL}, + { "d19", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, NULL, NULL}, + { "d20", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, NULL, NULL}, + { "d21", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, NULL, NULL}, + { "d22", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, NULL, NULL}, + { "d23", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, NULL, NULL}, + { "d24", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, NULL, NULL}, + { "d25", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, NULL, NULL}, + { "d26", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, NULL, NULL}, + { "d27", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, NULL, NULL}, + { "d28", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, NULL, NULL}, + { "d29", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, NULL, NULL}, + { "d30", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, NULL, NULL}, + { "d31", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, NULL, NULL}, + { "d0", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, NULL}, + { "d1", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, NULL}, + { "d2", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, NULL}, + { "d3", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, NULL}, + { "d4", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, NULL}, + { "d5", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, NULL}, + { "d6", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, NULL}, + { "d7", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, NULL}, + { "d8", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, NULL}, + { "d9", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, NULL}, + { "d10", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, NULL}, + { "d11", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, NULL}, + { "d12", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, NULL}, + { "d13", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, NULL}, + { "d14", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, NULL}, + { "d15", NULL, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, NULL}, + { "q0", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, NULL}, + { "q1", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, NULL}, + { "q2", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, NULL}, + { "q3", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, NULL}, + { "q4", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, NULL}, + { "q5", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, NULL}, + { "q6", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, NULL}, + { "q7", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, NULL}, + { "q8", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, NULL}, + { "q9", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, NULL}, + { "q10", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, NULL}, + { "q11", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, NULL}, + { "q12", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, NULL}, + { "q13", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, NULL}, + { "q14", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, NULL}, + { "q15", NULL, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, NULL} + }; + + static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); + static ConstString gpr_reg_set ("General Purpose Registers"); + static ConstString sfp_reg_set ("Software Floating Point Registers"); + static ConstString vfp_reg_set ("Floating Point Registers"); + size_t i; + if (from_scratch) + { + // Calculate the offsets of the registers + // Note that the layout of the "composite" registers (d0-d15 and q0-q15) which comes after the + // "primordial" registers is important. This enables us to calculate the offset of the composite + // register by using the offset of its first primordial register. For example, to calculate the + // offset of q0, use s0's offset. + if (g_register_infos[2].byte_offset == 0) + { + uint32_t byte_offset = 0; + for (i=0; i<num_registers; ++i) + { + // For primordial registers, increment the byte_offset by the byte_size to arrive at the + // byte_offset for the next register. Otherwise, we have a composite register whose + // offset can be calculated by consulting the offset of its first primordial register. + if (!g_register_infos[i].value_regs) + { + g_register_infos[i].byte_offset = byte_offset; + byte_offset += g_register_infos[i].byte_size; + } + else + { + const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; + g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; + } + } + } + for (i=0; i<num_registers; ++i) + { + ConstString name; + ConstString alt_name; + if (g_register_infos[i].name && g_register_infos[i].name[0]) + name.SetCString(g_register_infos[i].name); + if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) + alt_name.SetCString(g_register_infos[i].alt_name); + + if (i <= 15 || i == 25) + AddRegister (g_register_infos[i], name, alt_name, gpr_reg_set); + else if (i <= 24) + AddRegister (g_register_infos[i], name, alt_name, sfp_reg_set); + else + AddRegister (g_register_infos[i], name, alt_name, vfp_reg_set); + } + } + else + { + // Add composite registers to our primordial registers, then. + const size_t num_composites = llvm::array_lengthof(g_composites); + const size_t num_dynamic_regs = GetNumRegisters(); + const size_t num_common_regs = num_registers - num_composites; + RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; + + // First we need to validate that all registers that we already have match the non composite regs. + // If so, then we can add the registers, else we need to bail + bool match = true; + if (num_dynamic_regs == num_common_regs) + { + for (i=0; match && i<num_dynamic_regs; ++i) + { + // Make sure all register names match + if (m_regs[i].name && g_register_infos[i].name) + { + if (strcmp(m_regs[i].name, g_register_infos[i].name)) + { + match = false; + break; + } + } + + // Make sure all register byte sizes match + if (m_regs[i].byte_size != g_register_infos[i].byte_size) + { + match = false; + break; + } + } + } + else + { + // Wrong number of registers. + match = false; + } + // If "match" is true, then we can add extra registers. + if (match) + { + for (i=0; i<num_composites; ++i) + { + ConstString name; + ConstString alt_name; + const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; + const char *reg_name = g_register_infos[first_primordial_reg].name; + if (reg_name && reg_name[0]) + { + for (uint32_t j = 0; j < num_dynamic_regs; ++j) + { + const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); + // Find a matching primordial register info entry. + if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) + { + // The name matches the existing primordial entry. + // Find and assign the offset, and then add this composite register entry. + g_comp_register_infos[i].byte_offset = reg_info->byte_offset; + name.SetCString(g_comp_register_infos[i].name); + AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); + } + } + } + } + } + } +} |