aboutsummaryrefslogtreecommitdiff
path: root/sys/sys/disk_zone.h
diff options
context:
space:
mode:
authorKenneth D. Merry <ken@FreeBSD.org>2016-05-19 14:08:36 +0000
committerKenneth D. Merry <ken@FreeBSD.org>2016-05-19 14:08:36 +0000
commit9a6844d55fe33a5c55973951843be9aac013693f (patch)
tree1af6f454f346e774b76140fd865f31db8c2c6838 /sys/sys/disk_zone.h
parentb7c02deed2ea0b3cfd1370dffd0dfaa234671c91 (diff)
downloadsrc-9a6844d55fe33a5c55973951843be9aac013693f.tar.gz
src-9a6844d55fe33a5c55973951843be9aac013693f.zip
Add support for managing Shingled Magnetic Recording (SMR) drives.
This change includes support for SCSI SMR drives (which conform to the Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to the Zoned ATA Command Set or ZAC spec) behind SAS expanders. This includes full management support through the GEOM BIO interface, and through a new userland utility, zonectl(8), and through camcontrol(8). This is now ready for filesystems to use to detect and manage zoned drives. (There is no work in progress that I know of to use this for ZFS or UFS, if anyone is interested, let me know and I may have some suggestions.) Also, improve ATA command passthrough and dispatch support, both via ATA and ATA passthrough over SCSI. Also, add support to camcontrol(8) for the ATA Extended Power Conditions feature set. You can now manage ATA device power states, and set various idle time thresholds for a drive to enter lower power states. Note that this change cannot be MFCed in full, because it depends on changes to the struct bio API that break compatilibity. In order to avoid breaking the stable API, only changes that don't touch or depend on the struct bio changes can be merged. For example, the camcontrol(8) changes don't depend on the new bio API, but zonectl(8) and the probe changes to the da(4) and ada(4) drivers do depend on it. Also note that the SMR changes have not yet been tested with an actual SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT layer, so any testing help would be appreciated. These changes have been tested with Seagate Host Aware SATA drives attached to both SAS and SATA controllers. Also, I do not have any SATA Host Managed devices, and I suspect that it may take additional (hopefully minor) changes to support them. Thanks to Seagate for supplying the test hardware and answering questions. sbin/camcontrol/Makefile: Add epc.c and zone.c. sbin/camcontrol/camcontrol.8: Document the zone and epc subcommands. sbin/camcontrol/camcontrol.c: Add the zone and epc subcommands. Add auxiliary register support to build_ata_cmd(). Make sure to set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA flags as appropriate for ATA commands. Add a new get_ata_status() function to parse ATA result from SCSI sense descriptors (for ATA passthrough over SCSI) and ATA I/O requests. sbin/camcontrol/camcontrol.h: Update the build_ata_cmd() prototype Add get_ata_status(), zone(), and epc(). sbin/camcontrol/epc.c: Support for ATA Extended Power Conditions features. This includes support for all features documented in the ACS-4 Revision 12 specification from t13.org (dated February 18, 2016). The EPC feature set allows putting a drive into a power power mode immediately, or setting timeouts so that the drive will automatically enter progressively lower power states after various idle times. sbin/camcontrol/fwdownload.c: Update the firmware download code for the new build_ata_cmd() arguments. sbin/camcontrol/zone.c: Implement support for Shingled Magnetic Recording (SMR) drives via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA Command Set (ZAC). These specs were developed in concert, and are functionally identical. The primary differences are due to SCSI and ATA differences. (SCSI is big endian, ATA is little endian, for example.) This includes support for all commands defined in the ZBC and ZAC specs. sys/cam/ata/ata_all.c: Decode a number of additional ATA command names in ata_op_string(). Add a new CCB building function, ata_read_log(). Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building functions. These support both DMA and NCQ encapsulation. sys/cam/ata/ata_all.h: Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and ata_zac_mgmt_in(). sys/cam/ata/ata_da.c: Revamp the ada(4) driver to support zoned devices. Add four new probe states to gather information needed for zone support. Add a new adasetflags() function to avoid duplication of large blocks of flag setting between the async handler and register functions. Add new sysctl variables that describe zone support and paramters. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. sys/cam/scsi/scsi_all.c: Add command descriptions for the ZBC IN/OUT commands. Add descriptions for ZBC Host Managed devices. Add a new function, scsi_ata_pass() to do ATA passthrough over SCSI. This will eventually replace scsi_ata_pass_16() -- it can create the 12, 16, and 32-byte variants of the ATA PASS-THROUGH command, and supports setting all of the registers defined as of SAT-4, Revision 5 (March 11, 2016). Change scsi_ata_identify() to use scsi_ata_pass() instead of scsi_ata_pass_16(). Add a new scsi_ata_read_log() function to facilitate reading ATA logs via SCSI. sys/cam/scsi/scsi_all.h: Add the new ATA PASS-THROUGH(32) command CDB. Add extended and variable CDB opcodes. Add Zoned Block Device Characteristics VPD page. Add ATA Return SCSI sense descriptor. Add prototypes for scsi_ata_read_log() and scsi_ata_pass(). sys/cam/scsi/scsi_da.c: Revamp the da(4) driver to support zoned devices. Add five new probe states, four of which are needed for ATA devices. Add five new sysctl variables that describe zone support and parameters. The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC devices when they are attached via a SCSI to ATA Translation (SAT) layer. Since ZBC -> ZAC translation is a new feature in the T10 SAT-4 spec, most SATA drives will be supported via ATA commands sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will prefer the ZBC interface, if it is available, for performance reasons, but will use the ATA PASS-THROUGH interface to the ZAC command set if the SAT layer doesn't support translation yet. As I mentioned above, ZBC command support is untested. Add support for the new BIO_ZONE bio, and all of its subcommands: DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP, DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS. Add scsi_zbc_in() and scsi_zbc_out() CCB building functions. Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB building functions. Note that these have return values, unlike almost all other CCB building functions in CAM. The reason is that they can fail, depending upon the particular combination of input parameters. The primary failure case is if the user wants NCQ, but fails to specify additional CDB storage. NCQ requires using the 32-byte version of the SCSI ATA PASS-THROUGH command, and the current CAM CDB size is 16 bytes. sys/cam/scsi/scsi_da.h: Add ZBC IN and ZBC OUT CDBs and opcodes. Add SCSI Report Zones data structures. Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and scsi_ata_zac_mgmt_in() prototypes. sys/dev/ahci/ahci.c: Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver. ahci_setup_fis() previously set the top bits of the sector count register in the FIS to 0 for FPDMA commands. This is okay for read and write, because the PRIO field is in the only thing in those bits, and we don't implement that further up the stack. But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that byte, so it needs to be transmitted to the drive. In ahci_setup_fis(), always set the the top 8 bits of the sector count register. We need it in both the standard and NCQ / FPDMA cases. sys/geom/eli/g_eli.c: Pass BIO_ZONE commands through the GELI class. sys/geom/geom.h: Add g_io_zonecmd() prototype. sys/geom/geom_dev.c: Add new DIOCZONECMD ioctl, which allows sending zone commands to disks. sys/geom/geom_disk.c: Add support for BIO_ZONE commands. sys/geom/geom_disk.h: Add a new flag, DISKFLAG_CANZONE, that indicates that a given GEOM disk client can handle BIO_ZONE commands. sys/geom/geom_io.c: Add a new function, g_io_zonecmd(), that handles execution of BIO_ZONE commands. Add permissions check for BIO_ZONE commands. Add command decoding for BIO_ZONE commands. sys/geom/geom_subr.c: Add DDB command decoding for BIO_ZONE commands. sys/kern/subr_devstat.c: Record statistics for REPORT ZONES commands. Note that the number of bytes transferred for REPORT ZONES won't quite match what is received from the harware. This is because we're necessarily counting bytes coming from the da(4) / ada(4) drivers, which are using the disk_zone.h interface to communicate up the stack. The structure sizes it uses are slightly different than the SCSI and ATA structure sizes. sys/sys/ata.h: Add many bit and structure definitions for ZAC, NCQ, and EPC command support. sys/sys/bio.h: Convert the bio_cmd field to a straight enumeration. This will yield more space for additional commands in the future. After change r297955 and other related changes, this is now possible. Converting to an enumeration will also prevent use as a bitmask in the future. sys/sys/disk.h: Define the DIOCZONECMD ioctl. sys/sys/disk_zone.h: Add a new API for managing zoned disks. This is very close to the SCSI ZBC and ATA ZAC standards, but uses integers in native byte order instead of big endian (SCSI) or little endian (ATA) byte arrays. This is intended to offer to the complete feature set of the ZBC and ZAC disk management without requiring the application developer to include SCSI or ATA headers. We also use one set of headers for ioctl consumers and kernel bio-level consumers. sys/sys/param.h: Bump __FreeBSD_version for sys/bio.h command changes, and inclusion of SMR support. usr.sbin/Makefile: Add the zonectl utility. usr.sbin/diskinfo/diskinfo.c Add disk zoning capability to the 'diskinfo -v' output. usr.sbin/zonectl/Makefile: Add zonectl makefile. usr.sbin/zonectl/zonectl.8 zonectl(8) man page. usr.sbin/zonectl/zonectl.c The zonectl(8) utility. This allows managing SCSI or ATA zoned disks via the disk_zone.h API. You can report zones, reset write pointers, get parameters, etc. Sponsored by: Spectra Logic Differential Revision: https://reviews.freebsd.org/D6147 Reviewed by: wblock (documentation)
Notes
Notes: svn path=/head/; revision=300207
Diffstat (limited to 'sys/sys/disk_zone.h')
-rw-r--r--sys/sys/disk_zone.h184
1 files changed, 184 insertions, 0 deletions
diff --git a/sys/sys/disk_zone.h b/sys/sys/disk_zone.h
new file mode 100644
index 000000000000..6f1fe5c15ef5
--- /dev/null
+++ b/sys/sys/disk_zone.h
@@ -0,0 +1,184 @@
+/*-
+ * Copyright (c) 2015 Spectra Logic Corporation
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification.
+ * 2. Redistributions in binary form must reproduce at minimum a disclaimer
+ * substantially similar to the "NO WARRANTY" disclaimer below
+ * ("Disclaimer") and any redistribution must be conditioned upon
+ * including a substantially similar Disclaimer requirement for further
+ * binary redistribution.
+ *
+ * NO WARRANTY
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGES.
+ *
+ * Authors: Ken Merry (Spectra Logic Corporation)
+ *
+ * $FreeBSD$
+ */
+
+#ifndef _SYS_DISK_ZONE_H_
+#define _SYS_DISK_ZONE_H_
+
+/*
+ * Interface for Zone-based disks. This allows managing devices that
+ * conform to the SCSI Zoned Block Commands (ZBC) and ATA Zoned ATA Command
+ * Set (ZAC) specifications. Devices using these command sets are
+ * currently (October 2015) hard drives using Shingled Magnetic Recording
+ * (SMR).
+ */
+
+/*
+ * There are currently three types of zoned devices:
+ *
+ * Drive Managed:
+ * Drive Managed drives look and act just like a standard random access
+ * block device, but underneath, the drive reads and writes the bulk of
+ * its capacity using SMR zones. Sequential writes will yield better
+ * performance, but writing sequentially is not required.
+ *
+ * Host Aware:
+ * Host Aware drives expose the underlying zone layout via SCSI or ATA
+ * commands and allow the host to manage the zone conditions. The host
+ * is not required to manage the zones on the drive, though. Sequential
+ * writes will yield better performance in Sequential Write Preferred
+ * zones, but the host can write randomly in those zones.
+ *
+ * Host Managed:
+ * Host Managed drives expose the underlying zone layout via SCSI or ATA
+ * commands. The host is required to access the zones according to the
+ * rules described by the zone layout. Any commands that violate the
+ * rules will be returned with an error.
+ */
+struct disk_zone_disk_params {
+ uint32_t zone_mode;
+#define DISK_ZONE_MODE_NONE 0x00
+#define DISK_ZONE_MODE_HOST_AWARE 0x01
+#define DISK_ZONE_MODE_DRIVE_MANAGED 0x02
+#define DISK_ZONE_MODE_HOST_MANAGED 0x04
+ uint64_t flags;
+#define DISK_ZONE_DISK_URSWRZ 0x001
+#define DISK_ZONE_OPT_SEQ_SET 0x002
+#define DISK_ZONE_OPT_NONSEQ_SET 0x004
+#define DISK_ZONE_MAX_SEQ_SET 0x008
+#define DISK_ZONE_RZ_SUP 0x010
+#define DISK_ZONE_OPEN_SUP 0x020
+#define DISK_ZONE_CLOSE_SUP 0x040
+#define DISK_ZONE_FINISH_SUP 0x080
+#define DISK_ZONE_RWP_SUP 0x100
+#define DISK_ZONE_CMD_SUP_MASK 0x1f0
+ uint64_t optimal_seq_zones;
+ uint64_t optimal_nonseq_zones;
+ uint64_t max_seq_zones;
+};
+
+/*
+ * Used for reset write pointer, open, close and finish.
+ */
+struct disk_zone_rwp {
+ uint64_t id;
+ uint8_t flags;
+#define DISK_ZONE_RWP_FLAG_NONE 0x00
+#define DISK_ZONE_RWP_FLAG_ALL 0x01
+};
+
+/*
+ * Report Zones header. All of these values are passed out.
+ */
+struct disk_zone_rep_header {
+ uint8_t same;
+#define DISK_ZONE_SAME_ALL_DIFFERENT 0x0 /* Lengths and types vary */
+#define DISK_ZONE_SAME_ALL_SAME 0x1 /* Lengths and types the same */
+#define DISK_ZONE_SAME_LAST_DIFFERENT 0x2 /* Types same, last len varies */
+#define DISK_ZONE_SAME_TYPES_DIFFERENT 0x3 /* Types vary, length the same */
+ uint64_t maximum_lba;
+ /*
+ * XXX KDM padding space may not be a good idea inside the bio.
+ */
+ uint8_t reserved[64];
+};
+
+/*
+ * Report Zones entry. Note that the zone types, conditions, and flags
+ * are mapped directly from the SCSI/ATA flag values. Any additional
+ * SCSI/ATA zone types or conditions or flags that are defined in the
+ * future could result in additional values that are not yet defined here.
+ */
+struct disk_zone_rep_entry {
+ uint8_t zone_type;
+#define DISK_ZONE_TYPE_CONVENTIONAL 0x01
+#define DISK_ZONE_TYPE_SEQ_REQUIRED 0x02 /* Host Managed */
+#define DISK_ZONE_TYPE_SEQ_PREFERRED 0x03 /* Host Aware */
+ uint8_t zone_condition;
+#define DISK_ZONE_COND_NOT_WP 0x00
+#define DISK_ZONE_COND_EMPTY 0x01
+#define DISK_ZONE_COND_IMPLICIT_OPEN 0x02
+#define DISK_ZONE_COND_EXPLICIT_OPEN 0x03
+#define DISK_ZONE_COND_CLOSED 0x04
+#define DISK_ZONE_COND_READONLY 0x0D
+#define DISK_ZONE_COND_FULL 0x0E
+#define DISK_ZONE_COND_OFFLINE 0x0F
+ uint8_t zone_flags;
+#define DISK_ZONE_FLAG_RESET 0x01 /* Zone needs RWP */
+#define DISK_ZONE_FLAG_NON_SEQ 0x02 /* Zone accssessed nonseq */
+ uint64_t zone_length;
+ uint64_t zone_start_lba;
+ uint64_t write_pointer_lba;
+ /* XXX KDM padding space may not be a good idea inside the bio */
+ uint8_t reserved[32];
+};
+
+struct disk_zone_report {
+ uint64_t starting_id; /* Passed In */
+ uint8_t rep_options; /* Passed In */
+#define DISK_ZONE_REP_ALL 0x00
+#define DISK_ZONE_REP_EMPTY 0x01
+#define DISK_ZONE_REP_IMP_OPEN 0x02
+#define DISK_ZONE_REP_EXP_OPEN 0x03
+#define DISK_ZONE_REP_CLOSED 0x04
+#define DISK_ZONE_REP_FULL 0x05
+#define DISK_ZONE_REP_READONLY 0x06
+#define DISK_ZONE_REP_OFFLINE 0x07
+#define DISK_ZONE_REP_RWP 0x10
+#define DISK_ZONE_REP_NON_SEQ 0x11
+#define DISK_ZONE_REP_NON_WP 0x3F
+ struct disk_zone_rep_header header;
+ uint32_t entries_allocated; /* Passed In */
+ uint32_t entries_filled; /* Passed Out */
+ uint32_t entries_available; /* Passed Out */
+ struct disk_zone_rep_entry *entries;
+};
+
+union disk_zone_params {
+ struct disk_zone_disk_params disk_params;
+ struct disk_zone_rwp rwp;
+ struct disk_zone_report report;
+};
+
+struct disk_zone_args {
+ uint8_t zone_cmd;
+#define DISK_ZONE_OPEN 0x00
+#define DISK_ZONE_CLOSE 0x01
+#define DISK_ZONE_FINISH 0x02
+#define DISK_ZONE_REPORT_ZONES 0x03
+#define DISK_ZONE_RWP 0x04
+#define DISK_ZONE_GET_PARAMS 0x05
+ union disk_zone_params zone_params;
+};
+
+#endif /* _SYS_DISK_ZONE_H_ */