aboutsummaryrefslogtreecommitdiff
path: root/sys
diff options
context:
space:
mode:
authorGleb Smirnoff <glebius@FreeBSD.org>2012-09-04 12:07:33 +0000
committerGleb Smirnoff <glebius@FreeBSD.org>2012-09-04 12:07:33 +0000
commit62208ca5d21b28478785b638e5af081314dec5bc (patch)
tree5a56f4d78ed7c2807e5e36a0c7f511f72811d98f /sys
parente99fc4b0f80494edd66e5f3ab60617c4a11ab6c2 (diff)
downloadsrc-62208ca5d21b28478785b638e5af081314dec5bc.tar.gz
src-62208ca5d21b28478785b638e5af081314dec5bc.zip
- Move jenkins.h to jenkins_hash.c
- Provide missing function that can do hashing of arbitrary sized buffer. - Refetch lookup3.c and do only minimal edits to it, so that diff between our jenkins_hash.c and lookup3.c is minimal. - Add declarations for jenkins_hash(), jenkins_hash32() to sys/hash.h. - Document these functions in hash(9) Obtained from: http://burtleburtle.net/bob/c/lookup3.c
Notes
Notes: svn path=/head/; revision=240086
Diffstat (limited to 'sys')
-rw-r--r--sys/conf/files1
-rw-r--r--sys/libkern/jenkins.h185
-rw-r--r--sys/libkern/jenkins_hash.c463
-rw-r--r--sys/net/flowtable.c6
-rw-r--r--sys/sys/hash.h9
5 files changed, 476 insertions, 188 deletions
diff --git a/sys/conf/files b/sys/conf/files
index 08730fb064e7..e08c25916b20 100644
--- a/sys/conf/files
+++ b/sys/conf/files
@@ -2797,6 +2797,7 @@ libkern/inet_aton.c standard
libkern/inet_ntoa.c standard
libkern/inet_ntop.c standard
libkern/inet_pton.c standard
+libkern/jenkins_hash.c standard
libkern/mcount.c optional profiling-routine
libkern/memcchr.c standard
libkern/memcmp.c standard
diff --git a/sys/libkern/jenkins.h b/sys/libkern/jenkins.h
deleted file mode 100644
index 0846ae8c913d..000000000000
--- a/sys/libkern/jenkins.h
+++ /dev/null
@@ -1,185 +0,0 @@
-#ifndef __LIBKERN_JENKINS_H__
-#define __LIBKERN_JENKINS_H__
-/*
- * Taken from http://burtleburtle.net/bob/c/lookup3.c
- * $FreeBSD$
- */
-
-/*
--------------------------------------------------------------------------------
- lookup3.c, by Bob Jenkins, May 2006, Public Domain.
-
- These are functions for producing 32-bit hashes for hash table lookup.
- hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
- are externally useful functions. Routines to test the hash are included
- if SELF_TEST is defined. You can use this free for any purpose. It's in
- the public domain. It has no warranty.
-
- You probably want to use hashlittle(). hashlittle() and hashbig()
- hash byte arrays. hashlittle() is faster than hashbig() on
- little-endian machines. Intel and AMD are little-endian machines.
- On second thought, you probably want hashlittle2(), which is identical to
- hashlittle() except it returns two 32-bit hashes for the price of one.
- You could implement hashbig2() if you wanted but I haven't bothered here.
-
- If you want to find a hash of, say, exactly 7 integers, do
- a = i1; b = i2; c = i3;
- mix(a,b,c);
- a += i4; b += i5; c += i6;
- mix(a,b,c);
- a += i7;
- final(a,b,c);
- then use c as the hash value. If you have a variable length array of
- 4-byte integers to hash, use hashword(). If you have a byte array (like
- a character string), use hashlittle(). If you have several byte arrays, or
- a mix of things, see the comments above hashlittle().
-
- Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
- then mix those integers. This is fast (you can do a lot more thorough
- mixing with 12*3 instructions on 3 integers than you can with 3 instructions
- on 1 byte), but shoehorning those bytes into integers efficiently is messy.
--------------------------------------------------------------------------------
-*/
-
-#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
-
-/*
--------------------------------------------------------------------------------
-mix -- mix 3 32-bit values reversibly.
-
-This is reversible, so any information in (a,b,c) before mix() is
-still in (a,b,c) after mix().
-
-If four pairs of (a,b,c) inputs are run through mix(), or through
-mix() in reverse, there are at least 32 bits of the output that
-are sometimes the same for one pair and different for another pair.
-This was tested for:
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
-satisfy this are
- 4 6 8 16 19 4
- 9 15 3 18 27 15
- 14 9 3 7 17 3
-Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
-for "differ" defined as + with a one-bit base and a two-bit delta. I
-used http://burtleburtle.net/bob/hash/avalanche.html to choose
-the operations, constants, and arrangements of the variables.
-
-This does not achieve avalanche. There are input bits of (a,b,c)
-that fail to affect some output bits of (a,b,c), especially of a. The
-most thoroughly mixed value is c, but it doesn't really even achieve
-avalanche in c.
-
-This allows some parallelism. Read-after-writes are good at doubling
-the number of bits affected, so the goal of mixing pulls in the opposite
-direction as the goal of parallelism. I did what I could. Rotates
-seem to cost as much as shifts on every machine I could lay my hands
-on, and rotates are much kinder to the top and bottom bits, so I used
-rotates.
--------------------------------------------------------------------------------
-*/
-#define mix(a,b,c) \
-{ \
- a -= c; a ^= rot(c, 4); c += b; \
- b -= a; b ^= rot(a, 6); a += c; \
- c -= b; c ^= rot(b, 8); b += a; \
- a -= c; a ^= rot(c,16); c += b; \
- b -= a; b ^= rot(a,19); a += c; \
- c -= b; c ^= rot(b, 4); b += a; \
-}
-
-/*
--------------------------------------------------------------------------------
-final -- final mixing of 3 32-bit values (a,b,c) into c
-
-Pairs of (a,b,c) values differing in only a few bits will usually
-produce values of c that look totally different. This was tested for
-* pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
-* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
-* the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
-These constants passed:
- 14 11 25 16 4 14 24
- 12 14 25 16 4 14 24
-and these came close:
- 4 8 15 26 3 22 24
- 10 8 15 26 3 22 24
- 11 8 15 26 3 22 24
--------------------------------------------------------------------------------
-*/
-#define final(a,b,c) \
-{ \
- c ^= b; c -= rot(b,14); \
- a ^= c; a -= rot(c,11); \
- b ^= a; b -= rot(a,25); \
- c ^= b; c -= rot(b,16); \
- a ^= c; a -= rot(c,4); \
- b ^= a; b -= rot(a,14); \
- c ^= b; c -= rot(b,24); \
-}
-
-/*
---------------------------------------------------------------------
- This works on all machines. To be useful, it requires
- -- that the key be an array of uint32_t's, and
- -- that the length be the number of uint32_t's in the key
-
- The function hashword() is identical to hashlittle() on little-endian
- machines, and identical to hashbig() on big-endian machines,
- except that the length has to be measured in uint32_ts rather than in
- bytes. hashlittle() is more complicated than hashword() only because
- hashlittle() has to dance around fitting the key bytes into registers.
---------------------------------------------------------------------
-*/
-static uint32_t
-jenkins_hashword(
- const uint32_t *k, /* the key, an array of uint32_t values */
- size_t length, /* the length of the key, in uint32_ts */
- uint32_t initval /* the previous hash, or an arbitrary value */
-)
-{
- uint32_t a,b,c;
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
-
- /*------------------------------------------------- handle most of the key */
- while (length > 3)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 3;
- k += 3;
- }
-
- /*------------------------------------------- handle the last 3 uint32_t's */
- switch(length) /* all the case statements fall through */
- {
- case 3 : c+=k[2];
- case 2 : b+=k[1];
- case 1 : a+=k[0];
- final(a,b,c);
- case 0: /* case 0: nothing left to add */
- break;
- }
- /*------------------------------------------------------ report the result */
- return c;
-}
-#endif
diff --git a/sys/libkern/jenkins_hash.c b/sys/libkern/jenkins_hash.c
new file mode 100644
index 000000000000..e582bd85a9f9
--- /dev/null
+++ b/sys/libkern/jenkins_hash.c
@@ -0,0 +1,463 @@
+/*
+ * Taken from http://burtleburtle.net/bob/c/lookup3.c
+ * $FreeBSD$
+ */
+
+#include <sys/hash.h>
+#include <machine/endian.h>
+
+/*
+-------------------------------------------------------------------------------
+lookup3.c, by Bob Jenkins, May 2006, Public Domain.
+
+These are functions for producing 32-bit hashes for hash table lookup.
+hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
+are externally useful functions. Routines to test the hash are included
+if SELF_TEST is defined. You can use this free for any purpose. It's in
+the public domain. It has no warranty.
+
+You probably want to use hashlittle(). hashlittle() and hashbig()
+hash byte arrays. hashlittle() is is faster than hashbig() on
+little-endian machines. Intel and AMD are little-endian machines.
+On second thought, you probably want hashlittle2(), which is identical to
+hashlittle() except it returns two 32-bit hashes for the price of one.
+You could implement hashbig2() if you wanted but I haven't bothered here.
+
+If you want to find a hash of, say, exactly 7 integers, do
+ a = i1; b = i2; c = i3;
+ mix(a,b,c);
+ a += i4; b += i5; c += i6;
+ mix(a,b,c);
+ a += i7;
+ final(a,b,c);
+then use c as the hash value. If you have a variable length array of
+4-byte integers to hash, use hashword(). If you have a byte array (like
+a character string), use hashlittle(). If you have several byte arrays, or
+a mix of things, see the comments above hashlittle().
+
+Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
+then mix those integers. This is fast (you can do a lot more thorough
+mixing with 12*3 instructions on 3 integers than you can with 3 instructions
+on 1 byte), but shoehorning those bytes into integers efficiently is messy.
+-------------------------------------------------------------------------------
+*/
+
+#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
+
+/*
+-------------------------------------------------------------------------------
+mix -- mix 3 32-bit values reversibly.
+
+This is reversible, so any information in (a,b,c) before mix() is
+still in (a,b,c) after mix().
+
+If four pairs of (a,b,c) inputs are run through mix(), or through
+mix() in reverse, there are at least 32 bits of the output that
+are sometimes the same for one pair and different for another pair.
+This was tested for:
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
+satisfy this are
+ 4 6 8 16 19 4
+ 9 15 3 18 27 15
+ 14 9 3 7 17 3
+Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
+for "differ" defined as + with a one-bit base and a two-bit delta. I
+used http://burtleburtle.net/bob/hash/avalanche.html to choose
+the operations, constants, and arrangements of the variables.
+
+This does not achieve avalanche. There are input bits of (a,b,c)
+that fail to affect some output bits of (a,b,c), especially of a. The
+most thoroughly mixed value is c, but it doesn't really even achieve
+avalanche in c.
+
+This allows some parallelism. Read-after-writes are good at doubling
+the number of bits affected, so the goal of mixing pulls in the opposite
+direction as the goal of parallelism. I did what I could. Rotates
+seem to cost as much as shifts on every machine I could lay my hands
+on, and rotates are much kinder to the top and bottom bits, so I used
+rotates.
+-------------------------------------------------------------------------------
+*/
+#define mix(a,b,c) \
+{ \
+ a -= c; a ^= rot(c, 4); c += b; \
+ b -= a; b ^= rot(a, 6); a += c; \
+ c -= b; c ^= rot(b, 8); b += a; \
+ a -= c; a ^= rot(c,16); c += b; \
+ b -= a; b ^= rot(a,19); a += c; \
+ c -= b; c ^= rot(b, 4); b += a; \
+}
+
+/*
+-------------------------------------------------------------------------------
+final -- final mixing of 3 32-bit values (a,b,c) into c
+
+Pairs of (a,b,c) values differing in only a few bits will usually
+produce values of c that look totally different. This was tested for
+* pairs that differed by one bit, by two bits, in any combination
+ of top bits of (a,b,c), or in any combination of bottom bits of
+ (a,b,c).
+* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
+ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
+ is commonly produced by subtraction) look like a single 1-bit
+ difference.
+* the base values were pseudorandom, all zero but one bit set, or
+ all zero plus a counter that starts at zero.
+
+These constants passed:
+ 14 11 25 16 4 14 24
+ 12 14 25 16 4 14 24
+and these came close:
+ 4 8 15 26 3 22 24
+ 10 8 15 26 3 22 24
+ 11 8 15 26 3 22 24
+-------------------------------------------------------------------------------
+*/
+#define final(a,b,c) \
+{ \
+ c ^= b; c -= rot(b,14); \
+ a ^= c; a -= rot(c,11); \
+ b ^= a; b -= rot(a,25); \
+ c ^= b; c -= rot(b,16); \
+ a ^= c; a -= rot(c,4); \
+ b ^= a; b -= rot(a,14); \
+ c ^= b; c -= rot(b,24); \
+}
+
+/*
+--------------------------------------------------------------------
+ This works on all machines. To be useful, it requires
+ -- that the key be an array of uint32_t's, and
+ -- that the length be the number of uint32_t's in the key
+
+ The function hashword() is identical to hashlittle() on little-endian
+ machines, and identical to hashbig() on big-endian machines,
+ except that the length has to be measured in uint32_ts rather than in
+ bytes. hashlittle() is more complicated than hashword() only because
+ hashlittle() has to dance around fitting the key bytes into registers.
+--------------------------------------------------------------------
+*/
+uint32_t jenkins_hash32(
+const uint32_t *k, /* the key, an array of uint32_t values */
+size_t length, /* the length of the key, in uint32_ts */
+uint32_t initval) /* the previous hash, or an arbitrary value */
+{
+ uint32_t a,b,c;
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
+
+ /*------------------------------------------------- handle most of the key */
+ while (length > 3)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 3;
+ k += 3;
+ }
+
+ /*------------------------------------------- handle the last 3 uint32_t's */
+ switch(length) /* all the case statements fall through */
+ {
+ case 3 : c+=k[2];
+ case 2 : b+=k[1];
+ case 1 : a+=k[0];
+ final(a,b,c);
+ case 0: /* case 0: nothing left to add */
+ break;
+ }
+ /*------------------------------------------------------ report the result */
+ return c;
+}
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+/*
+-------------------------------------------------------------------------------
+hashlittle() -- hash a variable-length key into a 32-bit value
+ k : the key (the unaligned variable-length array of bytes)
+ length : the length of the key, counting by bytes
+ initval : can be any 4-byte value
+Returns a 32-bit value. Every bit of the key affects every bit of
+the return value. Two keys differing by one or two bits will have
+totally different hash values.
+
+The best hash table sizes are powers of 2. There is no need to do
+mod a prime (mod is sooo slow!). If you need less than 32 bits,
+use a bitmask. For example, if you need only 10 bits, do
+ h = (h & hashmask(10));
+In which case, the hash table should have hashsize(10) elements.
+
+If you are hashing n strings (uint8_t **)k, do it like this:
+ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
+
+By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
+code any way you wish, private, educational, or commercial. It's free.
+
+Use for hash table lookup, or anything where one collision in 2^^32 is
+acceptable. Do NOT use for cryptographic purposes.
+-------------------------------------------------------------------------------
+*/
+
+uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a,b,c; /* internal state */
+ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
+
+ u.ptr = key;
+ if ((u.i & 0x3) == 0) {
+ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]&0xffffff" actually reads beyond the end of the string, but
+ * then masks off the part it's not allowed to read. Because the
+ * string is aligned, the masked-off tail is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff; break;
+ case 2 : a+=k[0]&0xffff; break;
+ case 1 : a+=k[0]&0xff; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+ } else if ((u.i & 0x1) == 0) {
+ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
+ const uint8_t *k8;
+
+ /*--------------- all but last block: aligned reads and different mixing */
+ while (length > 12)
+ {
+ a += k[0] + (((uint32_t)k[1])<<16);
+ b += k[2] + (((uint32_t)k[3])<<16);
+ c += k[4] + (((uint32_t)k[5])<<16);
+ mix(a,b,c);
+ length -= 12;
+ k += 6;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ k8 = (const uint8_t *)k;
+ switch(length)
+ {
+ case 12: c+=k[4]+(((uint32_t)k[5])<<16);
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
+ case 10: c+=k[4];
+ b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 9 : c+=k8[8]; /* fall through */
+ case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
+ case 6 : b+=k[2];
+ a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 5 : b+=k8[4]; /* fall through */
+ case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
+ break;
+ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
+ case 2 : a+=k[0];
+ break;
+ case 1 : a+=k8[0];
+ break;
+ case 0 : return c; /* zero length requires no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ a += ((uint32_t)k[1])<<8;
+ a += ((uint32_t)k[2])<<16;
+ a += ((uint32_t)k[3])<<24;
+ b += k[4];
+ b += ((uint32_t)k[5])<<8;
+ b += ((uint32_t)k[6])<<16;
+ b += ((uint32_t)k[7])<<24;
+ c += k[8];
+ c += ((uint32_t)k[9])<<8;
+ c += ((uint32_t)k[10])<<16;
+ c += ((uint32_t)k[11])<<24;
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=((uint32_t)k[11])<<24;
+ case 11: c+=((uint32_t)k[10])<<16;
+ case 10: c+=((uint32_t)k[9])<<8;
+ case 9 : c+=k[8];
+ case 8 : b+=((uint32_t)k[7])<<24;
+ case 7 : b+=((uint32_t)k[6])<<16;
+ case 6 : b+=((uint32_t)k[5])<<8;
+ case 5 : b+=k[4];
+ case 4 : a+=((uint32_t)k[3])<<24;
+ case 3 : a+=((uint32_t)k[2])<<16;
+ case 2 : a+=((uint32_t)k[1])<<8;
+ case 1 : a+=k[0];
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}
+
+#else /* !(BYTE_ORDER == LITTLE_ENDIAN) */
+
+/*
+ * hashbig():
+ * This is the same as hashword() on big-endian machines. It is different
+ * from hashlittle() on all machines. hashbig() takes advantage of
+ * big-endian byte ordering.
+ */
+uint32_t jenkins_hash( const void *key, size_t length, uint32_t initval)
+{
+ uint32_t a,b,c;
+ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
+
+ /* Set up the internal state */
+ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
+
+ u.ptr = key;
+ if ((u.i & 0x3) == 0) {
+ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
+
+ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += k[0];
+ b += k[1];
+ c += k[2];
+ mix(a,b,c);
+ length -= 12;
+ k += 3;
+ }
+
+ /*----------------------------- handle the last (probably partial) block */
+ /*
+ * "k[2]<<8" actually reads beyond the end of the string, but
+ * then shifts out the part it's not allowed to read. Because the
+ * string is aligned, the illegal read is in the same word as the
+ * rest of the string. Every machine with memory protection I've seen
+ * does it on word boundaries, so is OK with this. But VALGRIND will
+ * still catch it and complain. The masking trick does make the hash
+ * noticably faster for short strings (like English words).
+ */
+
+ switch(length)
+ {
+ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
+ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
+ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
+ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
+ case 8 : b+=k[1]; a+=k[0]; break;
+ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
+ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
+ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
+ case 4 : a+=k[0]; break;
+ case 3 : a+=k[0]&0xffffff00; break;
+ case 2 : a+=k[0]&0xffff0000; break;
+ case 1 : a+=k[0]&0xff000000; break;
+ case 0 : return c; /* zero length strings require no mixing */
+ }
+
+ } else { /* need to read the key one byte at a time */
+ const uint8_t *k = (const uint8_t *)key;
+
+ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
+ while (length > 12)
+ {
+ a += ((uint32_t)k[0])<<24;
+ a += ((uint32_t)k[1])<<16;
+ a += ((uint32_t)k[2])<<8;
+ a += ((uint32_t)k[3]);
+ b += ((uint32_t)k[4])<<24;
+ b += ((uint32_t)k[5])<<16;
+ b += ((uint32_t)k[6])<<8;
+ b += ((uint32_t)k[7]);
+ c += ((uint32_t)k[8])<<24;
+ c += ((uint32_t)k[9])<<16;
+ c += ((uint32_t)k[10])<<8;
+ c += ((uint32_t)k[11]);
+ mix(a,b,c);
+ length -= 12;
+ k += 12;
+ }
+
+ /*-------------------------------- last block: affect all 32 bits of (c) */
+ switch(length) /* all the case statements fall through */
+ {
+ case 12: c+=k[11];
+ case 11: c+=((uint32_t)k[10])<<8;
+ case 10: c+=((uint32_t)k[9])<<16;
+ case 9 : c+=((uint32_t)k[8])<<24;
+ case 8 : b+=k[7];
+ case 7 : b+=((uint32_t)k[6])<<8;
+ case 6 : b+=((uint32_t)k[5])<<16;
+ case 5 : b+=((uint32_t)k[4])<<24;
+ case 4 : a+=k[3];
+ case 3 : a+=((uint32_t)k[2])<<8;
+ case 2 : a+=((uint32_t)k[1])<<16;
+ case 1 : a+=((uint32_t)k[0])<<24;
+ break;
+ case 0 : return c;
+ }
+ }
+
+ final(a,b,c);
+ return c;
+}
+#endif
diff --git a/sys/net/flowtable.c b/sys/net/flowtable.c
index 2e209ef0fa1f..6995798b3117 100644
--- a/sys/net/flowtable.c
+++ b/sys/net/flowtable.c
@@ -41,6 +41,7 @@ __FBSDID("$FreeBSD$");
#include <sys/bitstring.h>
#include <sys/condvar.h>
#include <sys/callout.h>
+#include <sys/hash.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/limits.h>
@@ -73,7 +74,6 @@ __FBSDID("$FreeBSD$");
#include <netinet/udp.h>
#include <netinet/sctp.h>
-#include <libkern/jenkins.h>
#include <ddb/ddb.h>
struct ipv4_tuple {
@@ -585,7 +585,7 @@ ipv4_flow_lookup_hash_internal(
} else
offset = V_flow_hashjitter + proto;
- return (jenkins_hashword(key, 3, offset));
+ return (jenkins_hash32(key, 3, offset));
}
static struct flentry *
@@ -791,7 +791,7 @@ ipv6_flow_lookup_hash_internal(
} else
offset = V_flow_hashjitter + proto;
- return (jenkins_hashword(key, 9, offset));
+ return (jenkins_hash32(key, 9, offset));
}
static struct flentry *
diff --git a/sys/sys/hash.h b/sys/sys/hash.h
index 6ad89c5ef905..ca9cc6789f02 100644
--- a/sys/sys/hash.h
+++ b/sys/sys/hash.h
@@ -118,4 +118,13 @@ hash32_strne(const void *buf, size_t len, int end, const char **ep,
return hash;
}
+
+#ifdef _KERNEL
+/*
+ * Hashing function from Bob Jenkins. Implementation in libkern/jenkins_hash.c.
+ */
+uint32_t jenkins_hash(const void *, size_t, uint32_t);
+uint32_t jenkins_hash32(const uint32_t *, size_t, uint32_t);
+#endif /* _KERNEL */
+
#endif /* !_SYS_HASH_H_ */