aboutsummaryrefslogtreecommitdiff
path: root/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c
diff options
context:
space:
mode:
Diffstat (limited to 'cddl/contrib/opensolaris/tools/ctf/cvt/merge.c')
-rw-r--r--cddl/contrib/opensolaris/tools/ctf/cvt/merge.c1143
1 files changed, 1143 insertions, 0 deletions
diff --git a/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c b/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c
new file mode 100644
index 000000000000..2ef37d460b36
--- /dev/null
+++ b/cddl/contrib/opensolaris/tools/ctf/cvt/merge.c
@@ -0,0 +1,1143 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * This file contains routines that merge one tdata_t tree, called the child,
+ * into another, called the parent. Note that these names are used mainly for
+ * convenience and to represent the direction of the merge. They are not meant
+ * to imply any relationship between the tdata_t graphs prior to the merge.
+ *
+ * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
+ * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
+ * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
+ * clean up loose ends.
+ *
+ * The algorithm is as follows:
+ *
+ * 1. Mapping iidesc_t nodes
+ *
+ * For each child iidesc_t node, we first try to map its tdesc_t subgraph
+ * against the tdesc_t graph in the parent. For each node in the child subgraph
+ * that exists in the parent, a mapping between the two (between their type IDs)
+ * is established. For the child nodes that cannot be mapped onto existing
+ * parent nodes, a mapping is established between the child node ID and a
+ * newly-allocated ID that the node will use when it is re-created in the
+ * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
+ * Added) hash, which tracks nodes that need to be created in the parent.
+ *
+ * If all of the nodes in the subgraph for an iidesc_t in the child can be
+ * mapped to existing nodes in the parent, then we can try to map the child
+ * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
+ * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
+ * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
+ * list tracks iidesc_t nodes that are to be created in the parent.
+ *
+ * While visiting the tdesc_t nodes, we may discover a forward declaration (a
+ * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
+ * may be a structure or union definition in the child with the same name as the
+ * forward declaration in the parent. If we find such a node, we record an
+ * association in the md_fdida (Forward => Definition ID Association) list
+ * between the parent ID of the forward declaration and the ID that the
+ * definition will use when re-created in the parent.
+ *
+ * 2. Creating new tdesc_t nodes (the md_tdtba hash)
+ *
+ * We have now attempted to map all tdesc_t nodes from the child into the
+ * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
+ * created (or, as we so wittily call it, conjured) in the parent. We iterate
+ * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
+ * node, conjuring requires two steps - the copying of the common tdesc_t data
+ * (name, type, etc) from the child node, and the creation of links from the
+ * newly-created node to the parent equivalents of other tdesc_t nodes pointed
+ * to by node being conjured. Note that in some cases, the targets of these
+ * links will be on the md_tdtba hash themselves, and may not have been created
+ * yet. As such, we can't establish the links from these new nodes into the
+ * parent graph. We therefore conjure them with links to nodes in the *child*
+ * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
+ * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
+ * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
+ *
+ * 3. Creating new iidesc_t nodes (the md_iitba list)
+ *
+ * When we have completed step 2, all tdesc_t nodes have been created (or
+ * already existed) in the parent. Some of them may have incorrect links (the
+ * members of the md_tdtbr list), but they've all been created. As such, we can
+ * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
+ * pointers correctly. We create each node, and attach the pointers to the
+ * appropriate parts of the parent tdesc_t graph.
+ *
+ * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
+ *
+ * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
+ * created. Each entry in the md_tdtbr list is a pointer to where a link into
+ * the parent will be established. As saved in the md_tdtbr list, these
+ * pointers point into the child tdesc_t subgraph. We can thus get the target
+ * type ID from the child, look at the ID mapping to determine the desired link
+ * target, and redirect the link accordingly.
+ *
+ * 5. Parent => child forward declaration resolution
+ *
+ * If entries were made in the md_fdida list in step 1, we have forward
+ * declarations in the parent that need to be resolved to their definitions
+ * re-created in step 2 from the child. Using the md_fdida list, we can locate
+ * the definition for the forward declaration, and we can redirect all inbound
+ * edges to the forward declaration node to the actual definition.
+ *
+ * A pox on the house of anyone who changes the algorithm without updating
+ * this comment.
+ */
+
+#include <stdio.h>
+#include <strings.h>
+#include <assert.h>
+#include <pthread.h>
+
+#include "ctf_headers.h"
+#include "ctftools.h"
+#include "list.h"
+#include "alist.h"
+#include "memory.h"
+#include "traverse.h"
+
+typedef struct equiv_data equiv_data_t;
+typedef struct merge_cb_data merge_cb_data_t;
+
+/*
+ * There are two traversals in this file, for equivalency and for tdesc_t
+ * re-creation, that do not fit into the tdtraverse() framework. We have our
+ * own traversal mechanism and ops vector here for those two cases.
+ */
+typedef struct tdesc_ops {
+ const char *name;
+ int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
+ tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
+} tdesc_ops_t;
+extern tdesc_ops_t tdesc_ops[];
+
+/*
+ * The workhorse structure of tdata_t merging. Holds all lists of nodes to be
+ * processed during various phases of the merge algorithm.
+ */
+struct merge_cb_data {
+ tdata_t *md_parent;
+ tdata_t *md_tgt;
+ alist_t *md_ta; /* Type Association */
+ alist_t *md_fdida; /* Forward -> Definition ID Association */
+ list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */
+ hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */
+ list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */
+ int md_flags;
+}; /* merge_cb_data_t */
+
+/*
+ * When we first create a tdata_t from stabs data, we will have duplicate nodes.
+ * Normal merges, however, assume that the child tdata_t is already self-unique,
+ * and for speed reasons do not attempt to self-uniquify. If this flag is set,
+ * the merge algorithm will self-uniquify by avoiding the insertion of
+ * duplicates in the md_tdtdba list.
+ */
+#define MCD_F_SELFUNIQUIFY 0x1
+
+/*
+ * When we merge the CTF data for the modules, we don't want it to contain any
+ * data that can be found in the reference module (usually genunix). If this
+ * flag is set, we're doing a merge between the fully merged tdata_t for this
+ * module and the tdata_t for the reference module, with the data unique to this
+ * module ending up in a third tdata_t. It is this third tdata_t that will end
+ * up in the .SUNW_ctf section for the module.
+ */
+#define MCD_F_REFMERGE 0x2
+
+/*
+ * Mapping of child type IDs to parent type IDs
+ */
+
+static void
+add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
+{
+ debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
+
+ assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
+ assert(srcid != 0 && tgtid != 0);
+
+ alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
+}
+
+static tid_t
+get_mapping(alist_t *ta, int srcid)
+{
+ void *ltgtid;
+
+ if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
+ return ((uintptr_t)ltgtid);
+ else
+ return (0);
+}
+
+/*
+ * Determining equivalence of tdesc_t subgraphs
+ */
+
+struct equiv_data {
+ alist_t *ed_ta;
+ tdesc_t *ed_node;
+ tdesc_t *ed_tgt;
+
+ int ed_clear_mark;
+ int ed_cur_mark;
+ int ed_selfuniquify;
+}; /* equiv_data_t */
+
+static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
+
+/*ARGSUSED2*/
+static int
+equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
+{
+ intr_t *si = stdp->t_intr;
+ intr_t *ti = ttdp->t_intr;
+
+ if (si->intr_type != ti->intr_type ||
+ si->intr_signed != ti->intr_signed ||
+ si->intr_offset != ti->intr_offset ||
+ si->intr_nbits != ti->intr_nbits)
+ return (0);
+
+ if (si->intr_type == INTR_INT &&
+ si->intr_iformat != ti->intr_iformat)
+ return (0);
+ else if (si->intr_type == INTR_REAL &&
+ si->intr_fformat != ti->intr_fformat)
+ return (0);
+
+ return (1);
+}
+
+static int
+equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
+{
+ return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
+}
+
+static int
+equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
+{
+ fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
+ int i;
+
+ if (fn1->fn_nargs != fn2->fn_nargs ||
+ fn1->fn_vargs != fn2->fn_vargs)
+ return (0);
+
+ if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
+ return (0);
+
+ for (i = 0; i < (int) fn1->fn_nargs; i++) {
+ if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
+ return (0);
+ }
+
+ return (1);
+}
+
+static int
+equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
+{
+ ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
+
+ if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
+ !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
+ return (0);
+
+ if (ar1->ad_nelems != ar2->ad_nelems)
+ return (0);
+
+ return (1);
+}
+
+static int
+equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
+{
+ mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
+ mlist_t *olm1 = NULL;
+
+ while (ml1 && ml2) {
+ if (ml1->ml_offset != ml2->ml_offset ||
+ strcmp(ml1->ml_name, ml2->ml_name) != 0)
+ return (0);
+
+ /*
+ * Don't do the recursive equivalency checking more than
+ * we have to.
+ */
+ if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
+ if (ml1->ml_size != ml2->ml_size ||
+ !equiv_node(ml1->ml_type, ml2->ml_type, ed))
+ return (0);
+ }
+
+ olm1 = ml1;
+ ml1 = ml1->ml_next;
+ ml2 = ml2->ml_next;
+ }
+
+ if (ml1 || ml2)
+ return (0);
+
+ return (1);
+}
+
+/*ARGSUSED2*/
+static int
+equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
+{
+ elist_t *el1 = stdp->t_emem;
+ elist_t *el2 = ttdp->t_emem;
+
+ while (el1 && el2) {
+ if (el1->el_number != el2->el_number ||
+ strcmp(el1->el_name, el2->el_name) != 0)
+ return (0);
+
+ el1 = el1->el_next;
+ el2 = el2->el_next;
+ }
+
+ if (el1 || el2)
+ return (0);
+
+ return (1);
+}
+
+/*ARGSUSED*/
+static int
+equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
+{
+ /* foul, evil, and very bad - this is a "shouldn't happen" */
+ assert(1 == 0);
+
+ return (0);
+}
+
+static int
+fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
+{
+ tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
+
+ return (defn->t_type == STRUCT || defn->t_type == UNION);
+}
+
+static int
+equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
+{
+ int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
+ int mapping;
+
+ if (ctdp->t_emark > ed->ed_clear_mark ||
+ mtdp->t_emark > ed->ed_clear_mark)
+ return (ctdp->t_emark == mtdp->t_emark);
+
+ /*
+ * In normal (non-self-uniquify) mode, we don't want to do equivalency
+ * checking on a subgraph that has already been checked. If a mapping
+ * has already been established for a given child node, we can simply
+ * compare the mapping for the child node with the ID of the parent
+ * node. If we are in self-uniquify mode, then we're comparing two
+ * subgraphs within the child graph, and thus need to ignore any
+ * type mappings that have been created, as they are only valid into the
+ * parent.
+ */
+ if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
+ mapping == mtdp->t_id && !ed->ed_selfuniquify)
+ return (1);
+
+ if (!streq(ctdp->t_name, mtdp->t_name))
+ return (0);
+
+ if (ctdp->t_type != mtdp->t_type) {
+ if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
+ return (fwd_equiv(ctdp, mtdp));
+ else
+ return (0);
+ }
+
+ ctdp->t_emark = ed->ed_cur_mark;
+ mtdp->t_emark = ed->ed_cur_mark;
+ ed->ed_cur_mark++;
+
+ if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
+ return (equiv(ctdp, mtdp, ed));
+
+ return (1);
+}
+
+/*
+ * We perform an equivalency check on two subgraphs by traversing through them
+ * in lockstep. If a given node is equivalent in both the parent and the child,
+ * we mark it in both subgraphs, using the t_emark field, with a monotonically
+ * increasing number. If, in the course of the traversal, we reach a node that
+ * we have visited and numbered during this equivalency check, we have a cycle.
+ * If the previously-visited nodes don't have the same emark, then the edges
+ * that brought us to these nodes are not equivalent, and so the check ends.
+ * If the emarks are the same, the edges are equivalent. We then backtrack and
+ * continue the traversal. If we have exhausted all edges in the subgraph, and
+ * have not found any inequivalent nodes, then the subgraphs are equivalent.
+ */
+static int
+equiv_cb(void *bucket, void *arg)
+{
+ equiv_data_t *ed = arg;
+ tdesc_t *mtdp = bucket;
+ tdesc_t *ctdp = ed->ed_node;
+
+ ed->ed_clear_mark = ed->ed_cur_mark + 1;
+ ed->ed_cur_mark = ed->ed_clear_mark + 1;
+
+ if (equiv_node(ctdp, mtdp, ed)) {
+ debug(3, "equiv_node matched %d <%x> %d <%x>\n",
+ ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
+ ed->ed_tgt = mtdp;
+ /* matched. stop looking */
+ return (-1);
+ }
+
+ return (0);
+}
+
+/*ARGSUSED1*/
+static int
+map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
+{
+ merge_cb_data_t *mcd = private;
+
+ if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
+ return (0);
+
+ return (1);
+}
+
+/*ARGSUSED1*/
+static int
+map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
+{
+ merge_cb_data_t *mcd = private;
+ equiv_data_t ed;
+
+ ed.ed_ta = mcd->md_ta;
+ ed.ed_clear_mark = mcd->md_parent->td_curemark;
+ ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
+ ed.ed_node = ctdp;
+ ed.ed_selfuniquify = 0;
+
+ debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
+
+ if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
+ equiv_cb, &ed) < 0) {
+ /* We found an equivalent node */
+ if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
+ int id = mcd->md_tgt->td_nextid++;
+
+ debug(3, "Creating new defn type %d <%x>\n", id, id);
+ add_mapping(mcd->md_ta, ctdp->t_id, id);
+ alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
+ (void *)(ulong_t)id);
+ hash_add(mcd->md_tdtba, ctdp);
+ } else
+ add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
+
+ } else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
+ equiv_cb, &ed) < 0) {
+ /*
+ * We didn't find an equivalent node by looking through the
+ * layout hash, but we somehow found it by performing an
+ * exhaustive search through the entire graph. This usually
+ * means that the "name" hash function is broken.
+ */
+ aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
+ tdesc_name(ctdp), ed.ed_tgt->t_id);
+ } else {
+ int id = mcd->md_tgt->td_nextid++;
+
+ debug(3, "Creating new type %d <%x>\n", id, id);
+ add_mapping(mcd->md_ta, ctdp->t_id, id);
+ hash_add(mcd->md_tdtba, ctdp);
+ }
+
+ mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
+
+ return (1);
+}
+
+/*ARGSUSED1*/
+static int
+map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
+{
+ merge_cb_data_t *mcd = private;
+ equiv_data_t ed;
+
+ ed.ed_ta = mcd->md_ta;
+ ed.ed_clear_mark = mcd->md_parent->td_curemark;
+ ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
+ ed.ed_node = ctdp;
+ ed.ed_selfuniquify = 1;
+ ed.ed_tgt = NULL;
+
+ if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
+ debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
+ ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
+ add_mapping(mcd->md_ta, ctdp->t_id,
+ get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
+ } else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
+ equiv_cb, &ed) < 0) {
+ /*
+ * We didn't find an equivalent node using the quick way (going
+ * through the hash normally), but we did find it by iterating
+ * through the entire hash. This usually means that the hash
+ * function is broken.
+ */
+ aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
+ ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
+ ed.ed_tgt->t_id);
+ } else {
+ int id = mcd->md_tgt->td_nextid++;
+
+ debug(3, "Creating new type %d <%x>\n", id, id);
+ add_mapping(mcd->md_ta, ctdp->t_id, id);
+ hash_add(mcd->md_tdtba, ctdp);
+ }
+
+ mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
+
+ return (1);
+}
+
+static tdtrav_cb_f map_pre[] = {
+ NULL,
+ map_td_tree_pre, /* intrinsic */
+ map_td_tree_pre, /* pointer */
+ map_td_tree_pre, /* array */
+ map_td_tree_pre, /* function */
+ map_td_tree_pre, /* struct */
+ map_td_tree_pre, /* union */
+ map_td_tree_pre, /* enum */
+ map_td_tree_pre, /* forward */
+ map_td_tree_pre, /* typedef */
+ tdtrav_assert, /* typedef_unres */
+ map_td_tree_pre, /* volatile */
+ map_td_tree_pre, /* const */
+ map_td_tree_pre /* restrict */
+};
+
+static tdtrav_cb_f map_post[] = {
+ NULL,
+ map_td_tree_post, /* intrinsic */
+ map_td_tree_post, /* pointer */
+ map_td_tree_post, /* array */
+ map_td_tree_post, /* function */
+ map_td_tree_post, /* struct */
+ map_td_tree_post, /* union */
+ map_td_tree_post, /* enum */
+ map_td_tree_post, /* forward */
+ map_td_tree_post, /* typedef */
+ tdtrav_assert, /* typedef_unres */
+ map_td_tree_post, /* volatile */
+ map_td_tree_post, /* const */
+ map_td_tree_post /* restrict */
+};
+
+static tdtrav_cb_f map_self_post[] = {
+ NULL,
+ map_td_tree_self_post, /* intrinsic */
+ map_td_tree_self_post, /* pointer */
+ map_td_tree_self_post, /* array */
+ map_td_tree_self_post, /* function */
+ map_td_tree_self_post, /* struct */
+ map_td_tree_self_post, /* union */
+ map_td_tree_self_post, /* enum */
+ map_td_tree_self_post, /* forward */
+ map_td_tree_self_post, /* typedef */
+ tdtrav_assert, /* typedef_unres */
+ map_td_tree_self_post, /* volatile */
+ map_td_tree_self_post, /* const */
+ map_td_tree_self_post /* restrict */
+};
+
+/*
+ * Determining equivalence of iidesc_t nodes
+ */
+
+typedef struct iifind_data {
+ iidesc_t *iif_template;
+ alist_t *iif_ta;
+ int iif_newidx;
+ int iif_refmerge;
+} iifind_data_t;
+
+/*
+ * Check to see if this iidesc_t (node) - the current one on the list we're
+ * iterating through - matches the target one (iif->iif_template). Return -1
+ * if it matches, to stop the iteration.
+ */
+static int
+iidesc_match(void *data, void *arg)
+{
+ iidesc_t *node = data;
+ iifind_data_t *iif = arg;
+ int i;
+
+ if (node->ii_type != iif->iif_template->ii_type ||
+ !streq(node->ii_name, iif->iif_template->ii_name) ||
+ node->ii_dtype->t_id != iif->iif_newidx)
+ return (0);
+
+ if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
+ !streq(node->ii_owner, iif->iif_template->ii_owner))
+ return (0);
+
+ if (node->ii_nargs != iif->iif_template->ii_nargs)
+ return (0);
+
+ for (i = 0; i < node->ii_nargs; i++) {
+ if (get_mapping(iif->iif_ta,
+ iif->iif_template->ii_args[i]->t_id) !=
+ node->ii_args[i]->t_id)
+ return (0);
+ }
+
+ if (iif->iif_refmerge) {
+ switch (iif->iif_template->ii_type) {
+ case II_GFUN:
+ case II_SFUN:
+ case II_GVAR:
+ case II_SVAR:
+ debug(3, "suppressing duping of %d %s from %s\n",
+ iif->iif_template->ii_type,
+ iif->iif_template->ii_name,
+ (iif->iif_template->ii_owner ?
+ iif->iif_template->ii_owner : "NULL"));
+ return (0);
+ case II_NOT:
+ case II_PSYM:
+ case II_SOU:
+ case II_TYPE:
+ break;
+ }
+ }
+
+ return (-1);
+}
+
+static int
+merge_type_cb(void *data, void *arg)
+{
+ iidesc_t *sii = data;
+ merge_cb_data_t *mcd = arg;
+ iifind_data_t iif;
+ tdtrav_cb_f *post;
+
+ post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
+
+ /* Map the tdesc nodes */
+ (void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
+ mcd);
+
+ /* Map the iidesc nodes */
+ iif.iif_template = sii;
+ iif.iif_ta = mcd->md_ta;
+ iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
+ iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
+
+ if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
+ &iif) == 1)
+ /* successfully mapped */
+ return (1);
+
+ debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
+ sii->ii_type);
+
+ list_add(mcd->md_iitba, sii);
+
+ return (0);
+}
+
+static int
+remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
+ merge_cb_data_t *mcd)
+{
+ tdesc_t *tgt = NULL;
+ tdesc_t template;
+ int oldid = oldtgt->t_id;
+
+ if (oldid == selftid) {
+ *tgtp = newself;
+ return (1);
+ }
+
+ if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
+ aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
+
+ if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
+ (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
+ !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
+ (void *)&tgt))) {
+ debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
+ template.t_id, oldid, oldid);
+ *tgtp = oldtgt;
+ list_add(mcd->md_tdtbr, tgtp);
+ return (0);
+ }
+
+ *tgtp = tgt;
+ return (1);
+}
+
+static tdesc_t *
+conjure_template(tdesc_t *old, int newselfid)
+{
+ tdesc_t *new = xcalloc(sizeof (tdesc_t));
+
+ new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
+ new->t_type = old->t_type;
+ new->t_size = old->t_size;
+ new->t_id = newselfid;
+ new->t_flags = old->t_flags;
+
+ return (new);
+}
+
+/*ARGSUSED2*/
+static tdesc_t *
+conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+
+ new->t_intr = xmalloc(sizeof (intr_t));
+ bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
+
+ return (new);
+}
+
+static tdesc_t *
+conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+
+ (void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
+
+ return (new);
+}
+
+static tdesc_t *
+conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+ fndef_t *nfn = xmalloc(sizeof (fndef_t));
+ fndef_t *ofn = old->t_fndef;
+ int i;
+
+ (void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
+
+ nfn->fn_nargs = ofn->fn_nargs;
+ nfn->fn_vargs = ofn->fn_vargs;
+
+ if (nfn->fn_nargs > 0)
+ nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
+
+ for (i = 0; i < (int) ofn->fn_nargs; i++) {
+ (void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
+ new, mcd);
+ }
+
+ new->t_fndef = nfn;
+
+ return (new);
+}
+
+static tdesc_t *
+conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+ ardef_t *nar = xmalloc(sizeof (ardef_t));
+ ardef_t *oar = old->t_ardef;
+
+ (void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
+ mcd);
+ (void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
+ mcd);
+
+ nar->ad_nelems = oar->ad_nelems;
+
+ new->t_ardef = nar;
+
+ return (new);
+}
+
+static tdesc_t *
+conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+ mlist_t *omem, **nmemp;
+
+ for (omem = old->t_members, nmemp = &new->t_members;
+ omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
+ *nmemp = xmalloc(sizeof (mlist_t));
+ (*nmemp)->ml_offset = omem->ml_offset;
+ (*nmemp)->ml_size = omem->ml_size;
+ (*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
+ (void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
+ old->t_id, new, mcd);
+ }
+ *nmemp = NULL;
+
+ return (new);
+}
+
+/*ARGSUSED2*/
+static tdesc_t *
+conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+ elist_t *oel, **nelp;
+
+ for (oel = old->t_emem, nelp = &new->t_emem;
+ oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
+ *nelp = xmalloc(sizeof (elist_t));
+ (*nelp)->el_name = xstrdup(oel->el_name);
+ (*nelp)->el_number = oel->el_number;
+ }
+ *nelp = NULL;
+
+ return (new);
+}
+
+/*ARGSUSED2*/
+static tdesc_t *
+conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
+{
+ tdesc_t *new = conjure_template(old, newselfid);
+
+ list_add(&mcd->md_tgt->td_fwdlist, new);
+
+ return (new);
+}
+
+/*ARGSUSED*/
+static tdesc_t *
+conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
+{
+ assert(1 == 0);
+ return (NULL);
+}
+
+static iidesc_t *
+conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
+{
+ iidesc_t *new = iidesc_dup(old);
+ int i;
+
+ (void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
+ for (i = 0; i < new->ii_nargs; i++) {
+ (void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
+ mcd);
+ }
+
+ return (new);
+}
+
+static int
+fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
+{
+ alist_t *map = private;
+ void *defn;
+
+ if (!alist_find(map, (void *)fwd, (void **)&defn))
+ return (0);
+
+ debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
+
+ *fwdp = defn;
+
+ return (1);
+}
+
+static tdtrav_cb_f fwd_redir_cbs[] = {
+ NULL,
+ NULL, /* intrinsic */
+ NULL, /* pointer */
+ NULL, /* array */
+ NULL, /* function */
+ NULL, /* struct */
+ NULL, /* union */
+ NULL, /* enum */
+ fwd_redir, /* forward */
+ NULL, /* typedef */
+ tdtrav_assert, /* typedef_unres */
+ NULL, /* volatile */
+ NULL, /* const */
+ NULL /* restrict */
+};
+
+typedef struct redir_mstr_data {
+ tdata_t *rmd_tgt;
+ alist_t *rmd_map;
+} redir_mstr_data_t;
+
+static int
+redir_mstr_fwd_cb(void *name, void *value, void *arg)
+{
+ tdesc_t *fwd = name;
+ int defnid = (uintptr_t)value;
+ redir_mstr_data_t *rmd = arg;
+ tdesc_t template;
+ tdesc_t *defn;
+
+ template.t_id = defnid;
+
+ if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
+ (void *)&defn)) {
+ aborterr("Couldn't unforward %d (%s)\n", defnid,
+ tdesc_name(defn));
+ }
+
+ debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
+
+ alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
+
+ return (1);
+}
+
+static void
+redir_mstr_fwds(merge_cb_data_t *mcd)
+{
+ redir_mstr_data_t rmd;
+ alist_t *map = alist_new(NULL, NULL);
+
+ rmd.rmd_tgt = mcd->md_tgt;
+ rmd.rmd_map = map;
+
+ if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
+ (void) iitraverse_hash(mcd->md_tgt->td_iihash,
+ &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
+ }
+
+ alist_free(map);
+}
+
+static int
+add_iitba_cb(void *data, void *private)
+{
+ merge_cb_data_t *mcd = private;
+ iidesc_t *tba = data;
+ iidesc_t *new;
+ iifind_data_t iif;
+ int newidx;
+
+ newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
+ assert(newidx != -1);
+
+ (void) list_remove(mcd->md_iitba, data, NULL, NULL);
+
+ iif.iif_template = tba;
+ iif.iif_ta = mcd->md_ta;
+ iif.iif_newidx = newidx;
+ iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
+
+ if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
+ &iif) == 1) {
+ debug(3, "iidesc_t %s already exists\n",
+ (tba->ii_name ? tba->ii_name : "(anon)"));
+ return (1);
+ }
+
+ new = conjure_iidesc(tba, mcd);
+ hash_add(mcd->md_tgt->td_iihash, new);
+
+ return (1);
+}
+
+static int
+add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
+{
+ tdesc_t *newtdp;
+ tdesc_t template;
+
+ template.t_id = newid;
+ assert(hash_find(mcd->md_parent->td_idhash,
+ (void *)&template, NULL) == 0);
+
+ debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
+ oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
+ oldtdp->t_id, newid, newid);
+
+ if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
+ mcd)) == NULL)
+ /* couldn't map everything */
+ return (0);
+
+ debug(3, "succeeded\n");
+
+ hash_add(mcd->md_tgt->td_idhash, newtdp);
+ hash_add(mcd->md_tgt->td_layouthash, newtdp);
+
+ return (1);
+}
+
+static int
+add_tdtba_cb(void *data, void *arg)
+{
+ tdesc_t *tdp = data;
+ merge_cb_data_t *mcd = arg;
+ int newid;
+ int rc;
+
+ newid = get_mapping(mcd->md_ta, tdp->t_id);
+ assert(newid != -1);
+
+ if ((rc = add_tdesc(tdp, newid, mcd)))
+ hash_remove(mcd->md_tdtba, (void *)tdp);
+
+ return (rc);
+}
+
+static int
+add_tdtbr_cb(void *data, void *arg)
+{
+ tdesc_t **tdpp = data;
+ merge_cb_data_t *mcd = arg;
+
+ debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
+
+ if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
+ return (0);
+
+ (void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
+ return (1);
+}
+
+static void
+merge_types(hash_t *src, merge_cb_data_t *mcd)
+{
+ list_t *iitba = NULL;
+ list_t *tdtbr = NULL;
+ int iirc, tdrc;
+
+ mcd->md_iitba = &iitba;
+ mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
+ tdesc_layoutcmp);
+ mcd->md_tdtbr = &tdtbr;
+
+ (void) hash_iter(src, merge_type_cb, mcd);
+
+ tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
+ debug(3, "add_tdtba_cb added %d items\n", tdrc);
+
+ iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
+ debug(3, "add_iitba_cb added %d items\n", iirc);
+
+ assert(list_count(*mcd->md_iitba) == 0 &&
+ hash_count(mcd->md_tdtba) == 0);
+
+ tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
+ debug(3, "add_tdtbr_cb added %d items\n", tdrc);
+
+ if (list_count(*mcd->md_tdtbr) != 0)
+ aborterr("Couldn't remap all nodes\n");
+
+ /*
+ * We now have an alist of master forwards and the ids of the new master
+ * definitions for those forwards in mcd->md_fdida. By this point,
+ * we're guaranteed that all of the master definitions referenced in
+ * fdida have been added to the master tree. We now traverse through
+ * the master tree, redirecting all edges inbound to forwards that have
+ * definitions to those definitions.
+ */
+ if (mcd->md_parent == mcd->md_tgt) {
+ redir_mstr_fwds(mcd);
+ }
+}
+
+void
+merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
+{
+ merge_cb_data_t mcd;
+
+ cur->td_ref++;
+ mstr->td_ref++;
+ if (tgt)
+ tgt->td_ref++;
+
+ assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
+ (tgt == NULL || tgt->td_ref == 1));
+
+ mcd.md_parent = mstr;
+ mcd.md_tgt = (tgt ? tgt : mstr);
+ mcd.md_ta = alist_new(NULL, NULL);
+ mcd.md_fdida = alist_new(NULL, NULL);
+ mcd.md_flags = 0;
+
+ if (selfuniquify)
+ mcd.md_flags |= MCD_F_SELFUNIQUIFY;
+ if (tgt)
+ mcd.md_flags |= MCD_F_REFMERGE;
+
+ mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
+ mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
+
+ merge_types(cur->td_iihash, &mcd);
+
+ if (debug_level >= 3) {
+ debug(3, "Type association stats\n");
+ alist_stats(mcd.md_ta, 0);
+ debug(3, "Layout hash stats\n");
+ hash_stats(mcd.md_tgt->td_layouthash, 1);
+ }
+
+ alist_free(mcd.md_fdida);
+ alist_free(mcd.md_ta);
+
+ cur->td_ref--;
+ mstr->td_ref--;
+ if (tgt)
+ tgt->td_ref--;
+}
+
+tdesc_ops_t tdesc_ops[] = {
+ { "ERROR! BAD tdesc TYPE", NULL, NULL },
+ { "intrinsic", equiv_intrinsic, conjure_intrinsic },
+ { "pointer", equiv_plain, conjure_plain },
+ { "array", equiv_array, conjure_array },
+ { "function", equiv_function, conjure_function },
+ { "struct", equiv_su, conjure_su },
+ { "union", equiv_su, conjure_su },
+ { "enum", equiv_enum, conjure_enum },
+ { "forward", NULL, conjure_forward },
+ { "typedef", equiv_plain, conjure_plain },
+ { "typedef_unres", equiv_assert, conjure_assert },
+ { "volatile", equiv_plain, conjure_plain },
+ { "const", equiv_plain, conjure_plain },
+ { "restrict", equiv_plain, conjure_plain }
+};