aboutsummaryrefslogtreecommitdiff
path: root/contrib/arm-optimized-routines/pl/math/cbrt_2u.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/arm-optimized-routines/pl/math/cbrt_2u.c')
-rw-r--r--contrib/arm-optimized-routines/pl/math/cbrt_2u.c69
1 files changed, 69 insertions, 0 deletions
diff --git a/contrib/arm-optimized-routines/pl/math/cbrt_2u.c b/contrib/arm-optimized-routines/pl/math/cbrt_2u.c
new file mode 100644
index 000000000000..80be83c4470c
--- /dev/null
+++ b/contrib/arm-optimized-routines/pl/math/cbrt_2u.c
@@ -0,0 +1,69 @@
+/*
+ * Double-precision cbrt(x) function.
+ *
+ * Copyright (c) 2022-2023, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include "math_config.h"
+#include "pl_sig.h"
+#include "pl_test.h"
+
+PL_SIG (S, D, 1, cbrt, -10.0, 10.0)
+
+#define AbsMask 0x7fffffffffffffff
+#define TwoThirds 0x1.5555555555555p-1
+
+#define C(i) __cbrt_data.poly[i]
+#define T(i) __cbrt_data.table[i]
+
+/* Approximation for double-precision cbrt(x), using low-order polynomial and
+ two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat
+ according to the exponent, for instance an error observed for double value
+ m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an
+ integer.
+ cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0
+ want 0x1.965fe72821e99p+0. */
+double
+cbrt (double x)
+{
+ uint64_t ix = asuint64 (x);
+ uint64_t iax = ix & AbsMask;
+ uint64_t sign = ix & ~AbsMask;
+
+ if (unlikely (iax == 0 || iax == 0x7ff0000000000000))
+ return x;
+
+ /* |x| = m * 2^e, where m is in [0.5, 1.0].
+ We can easily decompose x into m and e using frexp. */
+ int e;
+ double m = frexp (asdouble (iax), &e);
+
+ /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for
+ Newton iterations. */
+ double p_01 = fma (C (1), m, C (0));
+ double p_23 = fma (C (3), m, C (2));
+ double p = fma (p_23, m * m, p_01);
+
+ /* Two iterations of Newton's method for iteratively approximating cbrt. */
+ double m_by_3 = m / 3;
+ double a = fma (TwoThirds, p, m_by_3 / (p * p));
+ a = fma (TwoThirds, a, m_by_3 / (a * a));
+
+ /* Assemble the result by the following:
+
+ cbrt(x) = cbrt(m) * 2 ^ (e / 3).
+
+ Let t = (2 ^ (e / 3)) / (2 ^ round(e / 3)).
+
+ Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3.
+ i is an integer in [-2, 2], so t can be looked up in the table T.
+ Hence the result is assembled as:
+
+ cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign.
+ Which can be done easily using ldexp. */
+ return asdouble (asuint64 (ldexp (a * T (2 + e % 3), e / 3)) | sign);
+}
+
+PL_TEST_ULP (cbrt, 1.30)
+PL_TEST_SYM_INTERVAL (cbrt, 0, inf, 1000000)