aboutsummaryrefslogtreecommitdiff
path: root/contrib/bearssl/src/rsa/rsa_i15_keygen.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/bearssl/src/rsa/rsa_i15_keygen.c')
-rw-r--r--contrib/bearssl/src/rsa/rsa_i15_keygen.c583
1 files changed, 583 insertions, 0 deletions
diff --git a/contrib/bearssl/src/rsa/rsa_i15_keygen.c b/contrib/bearssl/src/rsa/rsa_i15_keygen.c
new file mode 100644
index 000000000000..1c011fe0dcdf
--- /dev/null
+++ b/contrib/bearssl/src/rsa/rsa_i15_keygen.c
@@ -0,0 +1,583 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * Make a random integer of the provided size. The size is encoded.
+ * The header word is untouched.
+ */
+static void
+mkrand(const br_prng_class **rng, uint16_t *x, uint32_t esize)
+{
+ size_t u, len;
+ unsigned m;
+
+ len = (esize + 15) >> 4;
+ (*rng)->generate(rng, x + 1, len * sizeof(uint16_t));
+ for (u = 1; u < len; u ++) {
+ x[u] &= 0x7FFF;
+ }
+ m = esize & 15;
+ if (m == 0) {
+ x[len] &= 0x7FFF;
+ } else {
+ x[len] &= 0x7FFF >> (15 - m);
+ }
+}
+
+/*
+ * This is the big-endian unsigned representation of the product of
+ * all small primes from 13 to 1481.
+ */
+static const unsigned char SMALL_PRIMES[] = {
+ 0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
+ 0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
+ 0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
+ 0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
+ 0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
+ 0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
+ 0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
+ 0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
+ 0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
+ 0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
+ 0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
+ 0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
+ 0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
+ 0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
+ 0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
+ 0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
+ 0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
+ 0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
+ 0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
+ 0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
+ 0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
+ 0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
+ 0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
+ 0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
+ 0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
+ 0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
+};
+
+/*
+ * We need temporary values for at least 7 integers of the same size
+ * as a factor (including header word); more space helps with performance
+ * (in modular exponentiations), but we much prefer to remain under
+ * 2 kilobytes in total, to save stack space. The macro TEMPS below
+ * exceeds 1024 (which is a count in 16-bit words) when BR_MAX_RSA_SIZE
+ * is greater than 4350 (default value is 4096, so the 2-kB limit is
+ * maintained unless BR_MAX_RSA_SIZE was modified).
+ */
+#define MAX(x, y) ((x) > (y) ? (x) : (y))
+#define TEMPS MAX(1024, 7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 29) / 15))
+
+/*
+ * Perform trial division on a candidate prime. This computes
+ * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
+ * br_i15_moddiv() function will report an error if y is not invertible
+ * modulo x. Returned value is 1 on success (none of the small primes
+ * divides x), 0 on error (a non-trivial GCD is obtained).
+ *
+ * This function assumes that x is odd.
+ */
+static uint32_t
+trial_divisions(const uint16_t *x, uint16_t *t)
+{
+ uint16_t *y;
+ uint16_t x0i;
+
+ y = t;
+ t += 1 + ((x[0] + 15) >> 4);
+ x0i = br_i15_ninv15(x[1]);
+ br_i15_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
+ return br_i15_moddiv(y, y, x, x0i, t);
+}
+
+/*
+ * Perform n rounds of Miller-Rabin on the candidate prime x. This
+ * function assumes that x = 3 mod 4.
+ *
+ * Returned value is 1 on success (all rounds completed successfully),
+ * 0 otherwise.
+ */
+static uint32_t
+miller_rabin(const br_prng_class **rng, const uint16_t *x, int n,
+ uint16_t *t, size_t tlen)
+{
+ /*
+ * Since x = 3 mod 4, the Miller-Rabin test is simple:
+ * - get a random base a (such that 1 < a < x-1)
+ * - compute z = a^((x-1)/2) mod x
+ * - if z != 1 and z != x-1, the number x is composite
+ *
+ * We generate bases 'a' randomly with a size which is
+ * one bit less than x, which ensures that a < x-1. It
+ * is not useful to verify that a > 1 because the probability
+ * that we get a value a equal to 0 or 1 is much smaller
+ * than the probability of our Miller-Rabin tests not to
+ * detect a composite, which is already quite smaller than the
+ * probability of the hardware misbehaving and return a
+ * composite integer because of some glitch (e.g. bad RAM
+ * or ill-timed cosmic ray).
+ */
+ unsigned char *xm1d2;
+ size_t xlen, xm1d2_len, xm1d2_len_u16, u;
+ uint32_t asize;
+ unsigned cc;
+ uint16_t x0i;
+
+ /*
+ * Compute (x-1)/2 (encoded).
+ */
+ xm1d2 = (unsigned char *)t;
+ xm1d2_len = ((x[0] - (x[0] >> 4)) + 7) >> 3;
+ br_i15_encode(xm1d2, xm1d2_len, x);
+ cc = 0;
+ for (u = 0; u < xm1d2_len; u ++) {
+ unsigned w;
+
+ w = xm1d2[u];
+ xm1d2[u] = (unsigned char)((w >> 1) | cc);
+ cc = w << 7;
+ }
+
+ /*
+ * We used some words of the provided buffer for (x-1)/2.
+ */
+ xm1d2_len_u16 = (xm1d2_len + 1) >> 1;
+ t += xm1d2_len_u16;
+ tlen -= xm1d2_len_u16;
+
+ xlen = (x[0] + 15) >> 4;
+ asize = x[0] - 1 - EQ0(x[0] & 15);
+ x0i = br_i15_ninv15(x[1]);
+ while (n -- > 0) {
+ uint16_t *a;
+ uint32_t eq1, eqm1;
+
+ /*
+ * Generate a random base. We don't need the base to be
+ * really uniform modulo x, so we just get a random
+ * number which is one bit shorter than x.
+ */
+ a = t;
+ a[0] = x[0];
+ a[xlen] = 0;
+ mkrand(rng, a, asize);
+
+ /*
+ * Compute a^((x-1)/2) mod x. We assume here that the
+ * function will not fail (the temporary array is large
+ * enough).
+ */
+ br_i15_modpow_opt(a, xm1d2, xm1d2_len,
+ x, x0i, t + 1 + xlen, tlen - 1 - xlen);
+
+ /*
+ * We must obtain either 1 or x-1. Note that x is odd,
+ * hence x-1 differs from x only in its low word (no
+ * carry).
+ */
+ eq1 = a[1] ^ 1;
+ eqm1 = a[1] ^ (x[1] - 1);
+ for (u = 2; u <= xlen; u ++) {
+ eq1 |= a[u];
+ eqm1 |= a[u] ^ x[u];
+ }
+
+ if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+ * Create a random prime of the provided size. 'size' is the _encoded_
+ * bit length. The two top bits and the two bottom bits are set to 1.
+ */
+static void
+mkprime(const br_prng_class **rng, uint16_t *x, uint32_t esize,
+ uint32_t pubexp, uint16_t *t, size_t tlen)
+{
+ size_t len;
+
+ x[0] = esize;
+ len = (esize + 15) >> 4;
+ for (;;) {
+ size_t u;
+ uint32_t m3, m5, m7, m11;
+ int rounds;
+
+ /*
+ * Generate random bits. We force the two top bits and the
+ * two bottom bits to 1.
+ */
+ mkrand(rng, x, esize);
+ if ((esize & 15) == 0) {
+ x[len] |= 0x6000;
+ } else if ((esize & 15) == 1) {
+ x[len] |= 0x0001;
+ x[len - 1] |= 0x4000;
+ } else {
+ x[len] |= 0x0003 << ((esize & 15) - 2);
+ }
+ x[1] |= 0x0003;
+
+ /*
+ * Trial division with low primes (3, 5, 7 and 11). We
+ * use the following properties:
+ *
+ * 2^2 = 1 mod 3
+ * 2^4 = 1 mod 5
+ * 2^3 = 1 mod 7
+ * 2^10 = 1 mod 11
+ */
+ m3 = 0;
+ m5 = 0;
+ m7 = 0;
+ m11 = 0;
+ for (u = 0; u < len; u ++) {
+ uint32_t w;
+
+ w = x[1 + u];
+ m3 += w << (u & 1);
+ m3 = (m3 & 0xFF) + (m3 >> 8);
+ m5 += w << ((4 - u) & 3);
+ m5 = (m5 & 0xFF) + (m5 >> 8);
+ m7 += w;
+ m7 = (m7 & 0x1FF) + (m7 >> 9);
+ m11 += w << (5 & -(u & 1));
+ m11 = (m11 & 0x3FF) + (m11 >> 10);
+ }
+
+ /*
+ * Maximum values of m* at this point:
+ * m3: 511
+ * m5: 2310
+ * m7: 510
+ * m11: 2047
+ * We use the same properties to make further reductions.
+ */
+
+ m3 = (m3 & 0x0F) + (m3 >> 4); /* max: 46 */
+ m3 = (m3 & 0x0F) + (m3 >> 4); /* max: 16 */
+ m3 = ((m3 * 43) >> 5) & 3;
+
+ m5 = (m5 & 0xFF) + (m5 >> 8); /* max: 263 */
+ m5 = (m5 & 0x0F) + (m5 >> 4); /* max: 30 */
+ m5 = (m5 & 0x0F) + (m5 >> 4); /* max: 15 */
+ m5 -= 10 & -GT(m5, 9);
+ m5 -= 5 & -GT(m5, 4);
+
+ m7 = (m7 & 0x3F) + (m7 >> 6); /* max: 69 */
+ m7 = (m7 & 7) + (m7 >> 3); /* max: 14 */
+ m7 = ((m7 * 147) >> 7) & 7;
+
+ /*
+ * 2^5 = 32 = -1 mod 11.
+ */
+ m11 = (m11 & 0x1F) + 66 - (m11 >> 5); /* max: 97 */
+ m11 -= 88 & -GT(m11, 87);
+ m11 -= 44 & -GT(m11, 43);
+ m11 -= 22 & -GT(m11, 21);
+ m11 -= 11 & -GT(m11, 10);
+
+ /*
+ * If any of these modulo is 0, then the candidate is
+ * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
+ * corresponding modulus is 1, then the candidate must
+ * be rejected, because we need e to be invertible
+ * modulo p-1. We can use simple comparisons here
+ * because they won't leak information on a candidate
+ * that we keep, only on one that we reject (and is thus
+ * not secret).
+ */
+ if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
+ continue;
+ }
+ if ((pubexp == 3 && m3 == 1)
+ || (pubexp == 5 && m5 == 5)
+ || (pubexp == 7 && m5 == 7)
+ || (pubexp == 11 && m5 == 11))
+ {
+ continue;
+ }
+
+ /*
+ * More trial divisions.
+ */
+ if (!trial_divisions(x, t)) {
+ continue;
+ }
+
+ /*
+ * Miller-Rabin algorithm. Since we selected a random
+ * integer, not a maliciously crafted integer, we can use
+ * relatively few rounds to lower the risk of a false
+ * positive (i.e. declaring prime a non-prime) under
+ * 2^(-80). It is not useful to lower the probability much
+ * below that, since that would be substantially below
+ * the probability of the hardware misbehaving. Sufficient
+ * numbers of rounds are extracted from the Handbook of
+ * Applied Cryptography, note 4.49 (page 149).
+ *
+ * Since we work on the encoded size (esize), we need to
+ * compare with encoded thresholds.
+ */
+ if (esize < 320) {
+ rounds = 12;
+ } else if (esize < 480) {
+ rounds = 9;
+ } else if (esize < 693) {
+ rounds = 6;
+ } else if (esize < 906) {
+ rounds = 4;
+ } else if (esize < 1386) {
+ rounds = 3;
+ } else {
+ rounds = 2;
+ }
+
+ if (miller_rabin(rng, x, rounds, t, tlen)) {
+ return;
+ }
+ }
+}
+
+/*
+ * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
+ * as parameter (with announced bit length equal to that of p). This
+ * function computes d = 1/e mod p-1 (for an odd integer e). Returned
+ * value is 1 on success, 0 on error (an error is reported if e is not
+ * invertible modulo p-1).
+ *
+ * The temporary buffer (t) must have room for at least 4 integers of
+ * the size of p.
+ */
+static uint32_t
+invert_pubexp(uint16_t *d, const uint16_t *m, uint32_t e, uint16_t *t)
+{
+ uint16_t *f;
+ uint32_t r;
+
+ f = t;
+ t += 1 + ((m[0] + 15) >> 4);
+
+ /*
+ * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
+ */
+ br_i15_zero(d, m[0]);
+ d[1] = 1;
+ br_i15_zero(f, m[0]);
+ f[1] = e & 0x7FFF;
+ f[2] = (e >> 15) & 0x7FFF;
+ f[3] = e >> 30;
+ r = br_i15_moddiv(d, f, m, br_i15_ninv15(m[1]), t);
+
+ /*
+ * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
+ * the result is either the d we got, or d + m.
+ *
+ * Let's write e*d = 1 + k*m, for some integer k. Integers e
+ * and m are odd. If d is odd, then e*d is odd, which implies
+ * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
+ * thus d is already fine. Conversely, if d is even, then k
+ * is odd, and we must add m to d in order to get the correct
+ * result.
+ */
+ br_i15_add(d, m, (uint32_t)(1 - (d[1] & 1)));
+
+ return r;
+}
+
+/*
+ * Swap two buffers in RAM. They must be disjoint.
+ */
+static void
+bufswap(void *b1, void *b2, size_t len)
+{
+ size_t u;
+ unsigned char *buf1, *buf2;
+
+ buf1 = b1;
+ buf2 = b2;
+ for (u = 0; u < len; u ++) {
+ unsigned w;
+
+ w = buf1[u];
+ buf1[u] = buf2[u];
+ buf2[u] = w;
+ }
+}
+
+/* see bearssl_rsa.h */
+uint32_t
+br_rsa_i15_keygen(const br_prng_class **rng,
+ br_rsa_private_key *sk, void *kbuf_priv,
+ br_rsa_public_key *pk, void *kbuf_pub,
+ unsigned size, uint32_t pubexp)
+{
+ uint32_t esize_p, esize_q;
+ size_t plen, qlen, tlen;
+ uint16_t *p, *q, *t;
+ uint16_t tmp[TEMPS];
+ uint32_t r;
+
+ if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
+ return 0;
+ }
+ if (pubexp == 0) {
+ pubexp = 3;
+ } else if (pubexp == 1 || (pubexp & 1) == 0) {
+ return 0;
+ }
+
+ esize_p = (size + 1) >> 1;
+ esize_q = size - esize_p;
+ sk->n_bitlen = size;
+ sk->p = kbuf_priv;
+ sk->plen = (esize_p + 7) >> 3;
+ sk->q = sk->p + sk->plen;
+ sk->qlen = (esize_q + 7) >> 3;
+ sk->dp = sk->q + sk->qlen;
+ sk->dplen = sk->plen;
+ sk->dq = sk->dp + sk->dplen;
+ sk->dqlen = sk->qlen;
+ sk->iq = sk->dq + sk->dqlen;
+ sk->iqlen = sk->plen;
+
+ if (pk != NULL) {
+ pk->n = kbuf_pub;
+ pk->nlen = (size + 7) >> 3;
+ pk->e = pk->n + pk->nlen;
+ pk->elen = 4;
+ br_enc32be(pk->e, pubexp);
+ while (*pk->e == 0) {
+ pk->e ++;
+ pk->elen --;
+ }
+ }
+
+ /*
+ * We now switch to encoded sizes.
+ *
+ * floor((x * 17477) / (2^18)) is equal to floor(x/15) for all
+ * integers x from 0 to 23833.
+ */
+ esize_p += MUL15(esize_p, 17477) >> 18;
+ esize_q += MUL15(esize_q, 17477) >> 18;
+ plen = (esize_p + 15) >> 4;
+ qlen = (esize_q + 15) >> 4;
+ p = tmp;
+ q = p + 1 + plen;
+ t = q + 1 + qlen;
+ tlen = ((sizeof tmp) / sizeof(uint16_t)) - (2 + plen + qlen);
+
+ /*
+ * When looking for primes p and q, we temporarily divide
+ * candidates by 2, in order to compute the inverse of the
+ * public exponent.
+ */
+
+ for (;;) {
+ mkprime(rng, p, esize_p, pubexp, t, tlen);
+ br_i15_rshift(p, 1);
+ if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
+ br_i15_add(p, p, 1);
+ p[1] |= 1;
+ br_i15_encode(sk->p, sk->plen, p);
+ br_i15_encode(sk->dp, sk->dplen, t);
+ break;
+ }
+ }
+
+ for (;;) {
+ mkprime(rng, q, esize_q, pubexp, t, tlen);
+ br_i15_rshift(q, 1);
+ if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
+ br_i15_add(q, q, 1);
+ q[1] |= 1;
+ br_i15_encode(sk->q, sk->qlen, q);
+ br_i15_encode(sk->dq, sk->dqlen, t);
+ break;
+ }
+ }
+
+ /*
+ * If p and q have the same size, then it is possible that q > p
+ * (when the target modulus size is odd, we generate p with a
+ * greater bit length than q). If q > p, we want to swap p and q
+ * (and also dp and dq) for two reasons:
+ * - The final step below (inversion of q modulo p) is easier if
+ * p > q.
+ * - While BearSSL's RSA code is perfectly happy with RSA keys such
+ * that p < q, some other implementations have restrictions and
+ * require p > q.
+ *
+ * Note that we can do a simple non-constant-time swap here,
+ * because the only information we leak here is that we insist on
+ * returning p and q such that p > q, which is not a secret.
+ */
+ if (esize_p == esize_q && br_i15_sub(p, q, 0) == 1) {
+ bufswap(p, q, (1 + plen) * sizeof *p);
+ bufswap(sk->p, sk->q, sk->plen);
+ bufswap(sk->dp, sk->dq, sk->dplen);
+ }
+
+ /*
+ * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
+ *
+ * We ensured that p >= q, so this is just a matter of updating the
+ * header word for q (and possibly adding an extra word).
+ *
+ * Theoretically, the call below may fail, in case we were
+ * extraordinarily unlucky, and p = q. Another failure case is if
+ * Miller-Rabin failed us _twice_, and p and q are non-prime and
+ * have a factor is common. We report the error mostly because it
+ * is cheap and we can, but in practice this never happens (or, at
+ * least, it happens way less often than hardware glitches).
+ */
+ q[0] = p[0];
+ if (plen > qlen) {
+ q[plen] = 0;
+ t ++;
+ tlen --;
+ }
+ br_i15_zero(t, p[0]);
+ t[1] = 1;
+ r = br_i15_moddiv(t, q, p, br_i15_ninv15(p[1]), t + 1 + plen);
+ br_i15_encode(sk->iq, sk->iqlen, t);
+
+ /*
+ * Compute the public modulus too, if required.
+ */
+ if (pk != NULL) {
+ br_i15_zero(t, p[0]);
+ br_i15_mulacc(t, p, q);
+ br_i15_encode(pk->n, pk->nlen, t);
+ }
+
+ return r;
+}