diff options
Diffstat (limited to 'contrib/gcc/reload1.c')
-rw-r--r-- | contrib/gcc/reload1.c | 10263 |
1 files changed, 0 insertions, 10263 deletions
diff --git a/contrib/gcc/reload1.c b/contrib/gcc/reload1.c deleted file mode 100644 index d9245b0595c0..000000000000 --- a/contrib/gcc/reload1.c +++ /dev/null @@ -1,10263 +0,0 @@ -/* Reload pseudo regs into hard regs for insns that require hard regs. - Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ - - -#include "config.h" -#include "system.h" - -#include "machmode.h" -#include "hard-reg-set.h" -#include "rtl.h" -#include "obstack.h" -#include "insn-config.h" -#include "insn-flags.h" -#include "insn-codes.h" -#include "flags.h" -#include "expr.h" -#include "regs.h" -#include "basic-block.h" -#include "reload.h" -#include "recog.h" -#include "output.h" -#include "real.h" -#include "toplev.h" - -#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY -#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY -#endif - -/* This file contains the reload pass of the compiler, which is - run after register allocation has been done. It checks that - each insn is valid (operands required to be in registers really - are in registers of the proper class) and fixes up invalid ones - by copying values temporarily into registers for the insns - that need them. - - The results of register allocation are described by the vector - reg_renumber; the insns still contain pseudo regs, but reg_renumber - can be used to find which hard reg, if any, a pseudo reg is in. - - The technique we always use is to free up a few hard regs that are - called ``reload regs'', and for each place where a pseudo reg - must be in a hard reg, copy it temporarily into one of the reload regs. - - Reload regs are allocated locally for every instruction that needs - reloads. When there are pseudos which are allocated to a register that - has been chosen as a reload reg, such pseudos must be ``spilled''. - This means that they go to other hard regs, or to stack slots if no other - available hard regs can be found. Spilling can invalidate more - insns, requiring additional need for reloads, so we must keep checking - until the process stabilizes. - - For machines with different classes of registers, we must keep track - of the register class needed for each reload, and make sure that - we allocate enough reload registers of each class. - - The file reload.c contains the code that checks one insn for - validity and reports the reloads that it needs. This file - is in charge of scanning the entire rtl code, accumulating the - reload needs, spilling, assigning reload registers to use for - fixing up each insn, and generating the new insns to copy values - into the reload registers. */ - - -#ifndef REGISTER_MOVE_COST -#define REGISTER_MOVE_COST(x, y) 2 -#endif - -/* During reload_as_needed, element N contains a REG rtx for the hard reg - into which reg N has been reloaded (perhaps for a previous insn). */ -static rtx *reg_last_reload_reg; - -/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn - for an output reload that stores into reg N. */ -static char *reg_has_output_reload; - -/* Indicates which hard regs are reload-registers for an output reload - in the current insn. */ -static HARD_REG_SET reg_is_output_reload; - -/* Element N is the constant value to which pseudo reg N is equivalent, - or zero if pseudo reg N is not equivalent to a constant. - find_reloads looks at this in order to replace pseudo reg N - with the constant it stands for. */ -rtx *reg_equiv_constant; - -/* Element N is a memory location to which pseudo reg N is equivalent, - prior to any register elimination (such as frame pointer to stack - pointer). Depending on whether or not it is a valid address, this value - is transferred to either reg_equiv_address or reg_equiv_mem. */ -rtx *reg_equiv_memory_loc; - -/* Element N is the address of stack slot to which pseudo reg N is equivalent. - This is used when the address is not valid as a memory address - (because its displacement is too big for the machine.) */ -rtx *reg_equiv_address; - -/* Element N is the memory slot to which pseudo reg N is equivalent, - or zero if pseudo reg N is not equivalent to a memory slot. */ -rtx *reg_equiv_mem; - -/* Widest width in which each pseudo reg is referred to (via subreg). */ -static int *reg_max_ref_width; - -/* Element N is the list of insns that initialized reg N from its equivalent - constant or memory slot. */ -static rtx *reg_equiv_init; - -/* Vector to remember old contents of reg_renumber before spilling. */ -static short *reg_old_renumber; - -/* During reload_as_needed, element N contains the last pseudo regno reloaded - into hard register N. If that pseudo reg occupied more than one register, - reg_reloaded_contents points to that pseudo for each spill register in - use; all of these must remain set for an inheritance to occur. */ -static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER]; - -/* During reload_as_needed, element N contains the insn for which - hard register N was last used. Its contents are significant only - when reg_reloaded_valid is set for this register. */ -static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER]; - -/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */ -static HARD_REG_SET reg_reloaded_valid; -/* Indicate if the register was dead at the end of the reload. - This is only valid if reg_reloaded_contents is set and valid. */ -static HARD_REG_SET reg_reloaded_dead; - -/* Number of spill-regs so far; number of valid elements of spill_regs. */ -static int n_spills; - -/* In parallel with spill_regs, contains REG rtx's for those regs. - Holds the last rtx used for any given reg, or 0 if it has never - been used for spilling yet. This rtx is reused, provided it has - the proper mode. */ -static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER]; - -/* In parallel with spill_regs, contains nonzero for a spill reg - that was stored after the last time it was used. - The precise value is the insn generated to do the store. */ -static rtx spill_reg_store[FIRST_PSEUDO_REGISTER]; - -/* This is the register that was stored with spill_reg_store. This is a - copy of reload_out / reload_out_reg when the value was stored; if - reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */ -static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER]; - -/* This table is the inverse mapping of spill_regs: - indexed by hard reg number, - it contains the position of that reg in spill_regs, - or -1 for something that is not in spill_regs. - - ?!? This is no longer accurate. */ -static short spill_reg_order[FIRST_PSEUDO_REGISTER]; - -/* This reg set indicates registers that can't be used as spill registers for - the currently processed insn. These are the hard registers which are live - during the insn, but not allocated to pseudos, as well as fixed - registers. */ -static HARD_REG_SET bad_spill_regs; - -/* These are the hard registers that can't be used as spill register for any - insn. This includes registers used for user variables and registers that - we can't eliminate. A register that appears in this set also can't be used - to retry register allocation. */ -static HARD_REG_SET bad_spill_regs_global; - -/* Describes order of use of registers for reloading - of spilled pseudo-registers. `n_spills' is the number of - elements that are actually valid; new ones are added at the end. - - Both spill_regs and spill_reg_order are used on two occasions: - once during find_reload_regs, where they keep track of the spill registers - for a single insn, but also during reload_as_needed where they show all - the registers ever used by reload. For the latter case, the information - is calculated during finish_spills. */ -static short spill_regs[FIRST_PSEUDO_REGISTER]; - -/* This vector of reg sets indicates, for each pseudo, which hard registers - may not be used for retrying global allocation because the register was - formerly spilled from one of them. If we allowed reallocating a pseudo to - a register that it was already allocated to, reload might not - terminate. */ -static HARD_REG_SET *pseudo_previous_regs; - -/* This vector of reg sets indicates, for each pseudo, which hard - registers may not be used for retrying global allocation because they - are used as spill registers during one of the insns in which the - pseudo is live. */ -static HARD_REG_SET *pseudo_forbidden_regs; - -/* All hard regs that have been used as spill registers for any insn are - marked in this set. */ -static HARD_REG_SET used_spill_regs; - -/* Index of last register assigned as a spill register. We allocate in - a round-robin fashion. */ -static int last_spill_reg; - -/* Describes order of preference for putting regs into spill_regs. - Contains the numbers of all the hard regs, in order most preferred first. - This order is different for each function. - It is set up by order_regs_for_reload. - Empty elements at the end contain -1. */ -static short potential_reload_regs[FIRST_PSEUDO_REGISTER]; - -/* Nonzero if indirect addressing is supported on the machine; this means - that spilling (REG n) does not require reloading it into a register in - order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The - value indicates the level of indirect addressing supported, e.g., two - means that (MEM (MEM (REG n))) is also valid if (REG n) does not get - a hard register. */ -static char spill_indirect_levels; - -/* Nonzero if indirect addressing is supported when the innermost MEM is - of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to - which these are valid is the same as spill_indirect_levels, above. */ -char indirect_symref_ok; - -/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */ -char double_reg_address_ok; - -/* Record the stack slot for each spilled hard register. */ -static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER]; - -/* Width allocated so far for that stack slot. */ -static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER]; - -/* Record which pseudos needed to be spilled. */ -static regset spilled_pseudos; - -/* First uid used by insns created by reload in this function. - Used in find_equiv_reg. */ -int reload_first_uid; - -/* Flag set by local-alloc or global-alloc if anything is live in - a call-clobbered reg across calls. */ -int caller_save_needed; - -/* Set to 1 while reload_as_needed is operating. - Required by some machines to handle any generated moves differently. */ -int reload_in_progress = 0; - -/* These arrays record the insn_code of insns that may be needed to - perform input and output reloads of special objects. They provide a - place to pass a scratch register. */ -enum insn_code reload_in_optab[NUM_MACHINE_MODES]; -enum insn_code reload_out_optab[NUM_MACHINE_MODES]; - -/* This obstack is used for allocation of rtl during register elimination. - The allocated storage can be freed once find_reloads has processed the - insn. */ -struct obstack reload_obstack; - -/* Points to the beginning of the reload_obstack. All insn_chain structures - are allocated first. */ -char *reload_startobj; - -/* The point after all insn_chain structures. Used to quickly deallocate - memory used while processing one insn. */ -char *reload_firstobj; - -#define obstack_chunk_alloc xmalloc -#define obstack_chunk_free free - -/* List of labels that must never be deleted. */ -extern rtx forced_labels; - -/* List of insn_chain instructions, one for every insn that reload needs to - examine. */ -struct insn_chain *reload_insn_chain; - -#ifdef TREE_CODE -extern tree current_function_decl; -#else -extern union tree_node *current_function_decl; -#endif - -/* List of all insns needing reloads. */ -static struct insn_chain *insns_need_reload; - -/* This structure is used to record information about register eliminations. - Each array entry describes one possible way of eliminating a register - in favor of another. If there is more than one way of eliminating a - particular register, the most preferred should be specified first. */ - -struct elim_table -{ - int from; /* Register number to be eliminated. */ - int to; /* Register number used as replacement. */ - int initial_offset; /* Initial difference between values. */ - int can_eliminate; /* Non-zero if this elimination can be done. */ - int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over - insns made by reload. */ - int offset; /* Current offset between the two regs. */ - int previous_offset; /* Offset at end of previous insn. */ - int ref_outside_mem; /* "to" has been referenced outside a MEM. */ - rtx from_rtx; /* REG rtx for the register to be eliminated. - We cannot simply compare the number since - we might then spuriously replace a hard - register corresponding to a pseudo - assigned to the reg to be eliminated. */ - rtx to_rtx; /* REG rtx for the replacement. */ -}; - -static struct elim_table * reg_eliminate = 0; - -/* This is an intermediate structure to initialize the table. It has - exactly the members provided by ELIMINABLE_REGS. */ -static struct elim_table_1 -{ - int from; - int to; -} reg_eliminate_1[] = - -/* If a set of eliminable registers was specified, define the table from it. - Otherwise, default to the normal case of the frame pointer being - replaced by the stack pointer. */ - -#ifdef ELIMINABLE_REGS - ELIMINABLE_REGS; -#else - {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}; -#endif - -#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0]) - -/* Record the number of pending eliminations that have an offset not equal - to their initial offset. If non-zero, we use a new copy of each - replacement result in any insns encountered. */ -int num_not_at_initial_offset; - -/* Count the number of registers that we may be able to eliminate. */ -static int num_eliminable; -/* And the number of registers that are equivalent to a constant that - can be eliminated to frame_pointer / arg_pointer + constant. */ -static int num_eliminable_invariants; - -/* For each label, we record the offset of each elimination. If we reach - a label by more than one path and an offset differs, we cannot do the - elimination. This information is indexed by the number of the label. - The first table is an array of flags that records whether we have yet - encountered a label and the second table is an array of arrays, one - entry in the latter array for each elimination. */ - -static char *offsets_known_at; -static int (*offsets_at)[NUM_ELIMINABLE_REGS]; - -/* Number of labels in the current function. */ - -static int num_labels; - -struct hard_reg_n_uses -{ - int regno; - unsigned int uses; -}; - -static void maybe_fix_stack_asms PROTO((void)); -static void calculate_needs_all_insns PROTO((int)); -static void calculate_needs PROTO((struct insn_chain *)); -static void find_reload_regs PROTO((struct insn_chain *chain, - FILE *)); -static void find_tworeg_group PROTO((struct insn_chain *, int, - FILE *)); -static void find_group PROTO((struct insn_chain *, int, - FILE *)); -static int possible_group_p PROTO((struct insn_chain *, int)); -static void count_possible_groups PROTO((struct insn_chain *, int)); -static int modes_equiv_for_class_p PROTO((enum machine_mode, - enum machine_mode, - enum reg_class)); -static void delete_caller_save_insns PROTO((void)); - -static void spill_failure PROTO((rtx)); -static void new_spill_reg PROTO((struct insn_chain *, int, int, - int, FILE *)); -static void maybe_mark_pseudo_spilled PROTO((int)); -static void delete_dead_insn PROTO((rtx)); -static void alter_reg PROTO((int, int)); -static void set_label_offsets PROTO((rtx, rtx, int)); -static int eliminate_regs_in_insn PROTO((rtx, int)); -static void update_eliminable_offsets PROTO((void)); -static void mark_not_eliminable PROTO((rtx, rtx)); -static void set_initial_elim_offsets PROTO((void)); -static void verify_initial_elim_offsets PROTO((void)); -static void set_initial_label_offsets PROTO((void)); -static void set_offsets_for_label PROTO((rtx)); -static void init_elim_table PROTO((void)); -static void update_eliminables PROTO((HARD_REG_SET *)); -static void spill_hard_reg PROTO((int, FILE *, int)); -static int finish_spills PROTO((int, FILE *)); -static void ior_hard_reg_set PROTO((HARD_REG_SET *, HARD_REG_SET *)); -static void scan_paradoxical_subregs PROTO((rtx)); -static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR)); -static void count_pseudo PROTO((struct hard_reg_n_uses *, int)); -static void order_regs_for_reload PROTO((struct insn_chain *)); -static void reload_as_needed PROTO((int)); -static void forget_old_reloads_1 PROTO((rtx, rtx)); -static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR)); -static void mark_reload_reg_in_use PROTO((int, int, enum reload_type, - enum machine_mode)); -static void clear_reload_reg_in_use PROTO((int, int, enum reload_type, - enum machine_mode)); -static int reload_reg_free_p PROTO((int, int, enum reload_type)); -static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx, rtx, int, int)); -static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type)); -static int allocate_reload_reg PROTO((struct insn_chain *, int, int, - int)); -static void choose_reload_regs PROTO((struct insn_chain *)); -static void merge_assigned_reloads PROTO((rtx)); -static void emit_reload_insns PROTO((struct insn_chain *)); -static void delete_output_reload PROTO((rtx, int, int)); -static void delete_address_reloads PROTO((rtx, rtx)); -static void delete_address_reloads_1 PROTO((rtx, rtx, rtx)); -static rtx inc_for_reload PROTO((rtx, rtx, rtx, int)); -static int constraint_accepts_reg_p PROTO((const char *, rtx)); -static void reload_cse_regs_1 PROTO((rtx)); -static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int)); -static int reload_cse_mem_conflict_p PROTO((rtx, rtx)); -static void reload_cse_invalidate_mem PROTO((rtx)); -static void reload_cse_invalidate_rtx PROTO((rtx, rtx)); -static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode)); -static int reload_cse_noop_set_p PROTO((rtx, rtx)); -static int reload_cse_simplify_set PROTO((rtx, rtx)); -static int reload_cse_simplify_operands PROTO((rtx)); -static void reload_cse_check_clobber PROTO((rtx, rtx)); -static void reload_cse_record_set PROTO((rtx, rtx)); -static void reload_combine PROTO((void)); -static void reload_combine_note_use PROTO((rtx *, rtx)); -static void reload_combine_note_store PROTO((rtx, rtx)); -static void reload_cse_move2add PROTO((rtx)); -static void move2add_note_store PROTO((rtx, rtx)); -#ifdef AUTO_INC_DEC -static void add_auto_inc_notes PROTO((rtx, rtx)); -#endif - -/* Initialize the reload pass once per compilation. */ - -void -init_reload () -{ - register int i; - - /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack. - Set spill_indirect_levels to the number of levels such addressing is - permitted, zero if it is not permitted at all. */ - - register rtx tem - = gen_rtx_MEM (Pmode, - gen_rtx_PLUS (Pmode, - gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1), - GEN_INT (4))); - spill_indirect_levels = 0; - - while (memory_address_p (QImode, tem)) - { - spill_indirect_levels++; - tem = gen_rtx_MEM (Pmode, tem); - } - - /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */ - - tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo")); - indirect_symref_ok = memory_address_p (QImode, tem); - - /* See if reg+reg is a valid (and offsettable) address. */ - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - tem = gen_rtx_PLUS (Pmode, - gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM), - gen_rtx_REG (Pmode, i)); - /* This way, we make sure that reg+reg is an offsettable address. */ - tem = plus_constant (tem, 4); - - if (memory_address_p (QImode, tem)) - { - double_reg_address_ok = 1; - break; - } - } - - /* Initialize obstack for our rtl allocation. */ - gcc_obstack_init (&reload_obstack); - reload_startobj = (char *) obstack_alloc (&reload_obstack, 0); -} - -/* List of insn chains that are currently unused. */ -static struct insn_chain *unused_insn_chains = 0; - -/* Allocate an empty insn_chain structure. */ -struct insn_chain * -new_insn_chain () -{ - struct insn_chain *c; - - if (unused_insn_chains == 0) - { - c = (struct insn_chain *) - obstack_alloc (&reload_obstack, sizeof (struct insn_chain)); - c->live_before = OBSTACK_ALLOC_REG_SET (&reload_obstack); - c->live_after = OBSTACK_ALLOC_REG_SET (&reload_obstack); - } - else - { - c = unused_insn_chains; - unused_insn_chains = c->next; - } - c->is_caller_save_insn = 0; - c->need_operand_change = 0; - c->need_reload = 0; - c->need_elim = 0; - return c; -} - -/* Small utility function to set all regs in hard reg set TO which are - allocated to pseudos in regset FROM. */ -void -compute_use_by_pseudos (to, from) - HARD_REG_SET *to; - regset from; -{ - int regno; - EXECUTE_IF_SET_IN_REG_SET - (from, FIRST_PSEUDO_REGISTER, regno, - { - int r = reg_renumber[regno]; - int nregs; - if (r < 0) - { - /* reload_combine uses the information from - BASIC_BLOCK->global_live_at_start, which might still - contain registers that have not actually been allocated - since they have an equivalence. */ - if (! reload_completed) - abort (); - } - else - { - nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno)); - while (nregs-- > 0) - SET_HARD_REG_BIT (*to, r + nregs); - } - }); -} - -/* Global variables used by reload and its subroutines. */ - -/* Set during calculate_needs if an insn needs register elimination. */ -static int something_needs_elimination; -/* Set during calculate_needs if an insn needs an operand changed. */ -int something_needs_operands_changed; - -/* Nonzero means we couldn't get enough spill regs. */ -static int failure; - -/* Main entry point for the reload pass. - - FIRST is the first insn of the function being compiled. - - GLOBAL nonzero means we were called from global_alloc - and should attempt to reallocate any pseudoregs that we - displace from hard regs we will use for reloads. - If GLOBAL is zero, we do not have enough information to do that, - so any pseudo reg that is spilled must go to the stack. - - DUMPFILE is the global-reg debugging dump file stream, or 0. - If it is nonzero, messages are written to it to describe - which registers are seized as reload regs, which pseudo regs - are spilled from them, and where the pseudo regs are reallocated to. - - Return value is nonzero if reload failed - and we must not do any more for this function. */ - -int -reload (first, global, dumpfile) - rtx first; - int global; - FILE *dumpfile; -{ - register int i; - register rtx insn; - register struct elim_table *ep; - - /* The two pointers used to track the true location of the memory used - for label offsets. */ - char *real_known_ptr = NULL_PTR; - int (*real_at_ptr)[NUM_ELIMINABLE_REGS]; - - /* Make sure even insns with volatile mem refs are recognizable. */ - init_recog (); - - failure = 0; - - reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0); - - /* Make sure that the last insn in the chain - is not something that needs reloading. */ - emit_note (NULL_PTR, NOTE_INSN_DELETED); - - /* Enable find_equiv_reg to distinguish insns made by reload. */ - reload_first_uid = get_max_uid (); - -#ifdef SECONDARY_MEMORY_NEEDED - /* Initialize the secondary memory table. */ - clear_secondary_mem (); -#endif - - /* We don't have a stack slot for any spill reg yet. */ - bzero ((char *) spill_stack_slot, sizeof spill_stack_slot); - bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width); - - /* Initialize the save area information for caller-save, in case some - are needed. */ - init_save_areas (); - - /* Compute which hard registers are now in use - as homes for pseudo registers. - This is done here rather than (eg) in global_alloc - because this point is reached even if not optimizing. */ - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - mark_home_live (i); - - /* A function that receives a nonlocal goto must save all call-saved - registers. */ - if (current_function_has_nonlocal_label) - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - if (! call_used_regs[i] && ! fixed_regs[i]) - regs_ever_live[i] = 1; - } - - /* Find all the pseudo registers that didn't get hard regs - but do have known equivalent constants or memory slots. - These include parameters (known equivalent to parameter slots) - and cse'd or loop-moved constant memory addresses. - - Record constant equivalents in reg_equiv_constant - so they will be substituted by find_reloads. - Record memory equivalents in reg_mem_equiv so they can - be substituted eventually by altering the REG-rtx's. */ - - reg_equiv_constant = (rtx *) xmalloc (max_regno * sizeof (rtx)); - bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx)); - reg_equiv_memory_loc = (rtx *) xmalloc (max_regno * sizeof (rtx)); - bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx)); - reg_equiv_mem = (rtx *) xmalloc (max_regno * sizeof (rtx)); - bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx)); - reg_equiv_init = (rtx *) xmalloc (max_regno * sizeof (rtx)); - bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx)); - reg_equiv_address = (rtx *) xmalloc (max_regno * sizeof (rtx)); - bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx)); - reg_max_ref_width = (int *) xmalloc (max_regno * sizeof (int)); - bzero ((char *) reg_max_ref_width, max_regno * sizeof (int)); - reg_old_renumber = (short *) xmalloc (max_regno * sizeof (short)); - bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short)); - pseudo_forbidden_regs - = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET)); - pseudo_previous_regs - = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET)); - - CLEAR_HARD_REG_SET (bad_spill_regs_global); - bzero ((char *) pseudo_previous_regs, max_regno * sizeof (HARD_REG_SET)); - - /* Look for REG_EQUIV notes; record what each pseudo is equivalent to. - Also find all paradoxical subregs and find largest such for each pseudo. - On machines with small register classes, record hard registers that - are used for user variables. These can never be used for spills. - Also look for a "constant" NOTE_INSN_SETJMP. This means that all - caller-saved registers must be marked live. */ - - num_eliminable_invariants = 0; - for (insn = first; insn; insn = NEXT_INSN (insn)) - { - rtx set = single_set (insn); - - if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn) - && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (! call_used_regs[i]) - regs_ever_live[i] = 1; - - if (set != 0 && GET_CODE (SET_DEST (set)) == REG) - { - rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX); - if (note -#ifdef LEGITIMATE_PIC_OPERAND_P - && (! function_invariant_p (XEXP (note, 0)) - || ! flag_pic - || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))) -#endif - ) - { - rtx x = XEXP (note, 0); - i = REGNO (SET_DEST (set)); - if (i > LAST_VIRTUAL_REGISTER) - { - if (GET_CODE (x) == MEM) - { - /* If the operand is a PLUS, the MEM may be shared, - so make sure we have an unshared copy here. */ - if (GET_CODE (XEXP (x, 0)) == PLUS) - x = copy_rtx (x); - - reg_equiv_memory_loc[i] = x; - } - else if (function_invariant_p (x)) - { - if (GET_CODE (x) == PLUS) - { - /* This is PLUS of frame pointer and a constant, - and might be shared. Unshare it. */ - reg_equiv_constant[i] = copy_rtx (x); - num_eliminable_invariants++; - } - else if (x == frame_pointer_rtx - || x == arg_pointer_rtx) - { - reg_equiv_constant[i] = x; - num_eliminable_invariants++; - } - else if (LEGITIMATE_CONSTANT_P (x)) - reg_equiv_constant[i] = x; - else - reg_equiv_memory_loc[i] - = force_const_mem (GET_MODE (SET_DEST (set)), x); - } - else - continue; - - /* If this register is being made equivalent to a MEM - and the MEM is not SET_SRC, the equivalencing insn - is one with the MEM as a SET_DEST and it occurs later. - So don't mark this insn now. */ - if (GET_CODE (x) != MEM - || rtx_equal_p (SET_SRC (set), x)) - reg_equiv_init[i] - = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]); - } - } - } - - /* If this insn is setting a MEM from a register equivalent to it, - this is the equivalencing insn. */ - else if (set && GET_CODE (SET_DEST (set)) == MEM - && GET_CODE (SET_SRC (set)) == REG - && reg_equiv_memory_loc[REGNO (SET_SRC (set))] - && rtx_equal_p (SET_DEST (set), - reg_equiv_memory_loc[REGNO (SET_SRC (set))])) - reg_equiv_init[REGNO (SET_SRC (set))] - = gen_rtx_INSN_LIST (VOIDmode, insn, - reg_equiv_init[REGNO (SET_SRC (set))]); - - if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') - scan_paradoxical_subregs (PATTERN (insn)); - } - - init_elim_table (); - - num_labels = max_label_num () - get_first_label_num (); - - /* Allocate the tables used to store offset information at labels. */ - /* We used to use alloca here, but the size of what it would try to - allocate would occasionally cause it to exceed the stack limit and - cause a core dump. */ - real_known_ptr = xmalloc (num_labels); - real_at_ptr - = (int (*)[NUM_ELIMINABLE_REGS]) - xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int)); - - offsets_known_at = real_known_ptr - get_first_label_num (); - offsets_at - = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ()); - - /* Alter each pseudo-reg rtx to contain its hard reg number. - Assign stack slots to the pseudos that lack hard regs or equivalents. - Do not touch virtual registers. */ - - for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++) - alter_reg (i, -1); - - /* If we have some registers we think can be eliminated, scan all insns to - see if there is an insn that sets one of these registers to something - other than itself plus a constant. If so, the register cannot be - eliminated. Doing this scan here eliminates an extra pass through the - main reload loop in the most common case where register elimination - cannot be done. */ - for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn)) - if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN - || GET_CODE (insn) == CALL_INSN) - note_stores (PATTERN (insn), mark_not_eliminable); - -#ifndef REGISTER_CONSTRAINTS - /* If all the pseudo regs have hard regs, - except for those that are never referenced, - we know that no reloads are needed. */ - /* But that is not true if there are register constraints, since - in that case some pseudos might be in the wrong kind of hard reg. */ - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0) - break; - - if (i == max_regno && num_eliminable == 0 && ! caller_save_needed) - { - free (real_known_ptr); - free (real_at_ptr); - free (reg_equiv_constant); - free (reg_equiv_memory_loc); - free (reg_equiv_mem); - free (reg_equiv_init); - free (reg_equiv_address); - free (reg_max_ref_width); - free (reg_old_renumber); - free (pseudo_previous_regs); - free (pseudo_forbidden_regs); - return 0; - } -#endif - - maybe_fix_stack_asms (); - - insns_need_reload = 0; - something_needs_elimination = 0; - - /* Initialize to -1, which means take the first spill register. */ - last_spill_reg = -1; - - spilled_pseudos = ALLOCA_REG_SET (); - - /* Spill any hard regs that we know we can't eliminate. */ - CLEAR_HARD_REG_SET (used_spill_regs); - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (! ep->can_eliminate) - spill_hard_reg (ep->from, dumpfile, 1); - -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - if (frame_pointer_needed) - spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1); -#endif - finish_spills (global, dumpfile); - - /* From now on, we may need to generate moves differently. We may also - allow modifications of insns which cause them to not be recognized. - Any such modifications will be cleaned up during reload itself. */ - reload_in_progress = 1; - - /* This loop scans the entire function each go-round - and repeats until one repetition spills no additional hard regs. */ - for (;;) - { - int something_changed; - int did_spill; - struct insn_chain *chain; - - HOST_WIDE_INT starting_frame_size; - - /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done - here because the stack size may be a part of the offset computation - for register elimination, and there might have been new stack slots - created in the last iteration of this loop. */ - assign_stack_local (BLKmode, 0, 0); - - starting_frame_size = get_frame_size (); - - set_initial_elim_offsets (); - set_initial_label_offsets (); - - /* For each pseudo register that has an equivalent location defined, - try to eliminate any eliminable registers (such as the frame pointer) - assuming initial offsets for the replacement register, which - is the normal case. - - If the resulting location is directly addressable, substitute - the MEM we just got directly for the old REG. - - If it is not addressable but is a constant or the sum of a hard reg - and constant, it is probably not addressable because the constant is - out of range, in that case record the address; we will generate - hairy code to compute the address in a register each time it is - needed. Similarly if it is a hard register, but one that is not - valid as an address register. - - If the location is not addressable, but does not have one of the - above forms, assign a stack slot. We have to do this to avoid the - potential of producing lots of reloads if, e.g., a location involves - a pseudo that didn't get a hard register and has an equivalent memory - location that also involves a pseudo that didn't get a hard register. - - Perhaps at some point we will improve reload_when_needed handling - so this problem goes away. But that's very hairy. */ - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i]) - { - rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX); - - if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]), - XEXP (x, 0))) - reg_equiv_mem[i] = x, reg_equiv_address[i] = 0; - else if (CONSTANT_P (XEXP (x, 0)) - || (GET_CODE (XEXP (x, 0)) == REG - && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER) - || (GET_CODE (XEXP (x, 0)) == PLUS - && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG - && (REGNO (XEXP (XEXP (x, 0), 0)) - < FIRST_PSEUDO_REGISTER) - && CONSTANT_P (XEXP (XEXP (x, 0), 1)))) - reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0; - else - { - /* Make a new stack slot. Then indicate that something - changed so we go back and recompute offsets for - eliminable registers because the allocation of memory - below might change some offset. reg_equiv_{mem,address} - will be set up for this pseudo on the next pass around - the loop. */ - reg_equiv_memory_loc[i] = 0; - reg_equiv_init[i] = 0; - alter_reg (i, -1); - } - } - - if (caller_save_needed) - setup_save_areas (); - - /* If we allocated another stack slot, redo elimination bookkeeping. */ - if (starting_frame_size != get_frame_size ()) - continue; - - if (caller_save_needed) - { - save_call_clobbered_regs (); - /* That might have allocated new insn_chain structures. */ - reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0); - } - - calculate_needs_all_insns (global); - - CLEAR_REG_SET (spilled_pseudos); - did_spill = 0; - - something_changed = 0; - - /* If we allocated any new memory locations, make another pass - since it might have changed elimination offsets. */ - if (starting_frame_size != get_frame_size ()) - something_changed = 1; - - { - HARD_REG_SET to_spill; - CLEAR_HARD_REG_SET (to_spill); - update_eliminables (&to_spill); - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (TEST_HARD_REG_BIT (to_spill, i)) - { - spill_hard_reg (i, dumpfile, 1); - did_spill = 1; - - /* Regardless of the state of spills, if we previously had - a register that we thought we could eliminate, but no can - not eliminate, we must run another pass. - - Consider pseudos which have an entry in reg_equiv_* which - reference an eliminable register. We must make another pass - to update reg_equiv_* so that we do not substitute in the - old value from when we thought the elimination could be - performed. */ - something_changed = 1; - } - } - - CLEAR_HARD_REG_SET (used_spill_regs); - /* Try to satisfy the needs for each insn. */ - for (chain = insns_need_reload; chain != 0; - chain = chain->next_need_reload) - find_reload_regs (chain, dumpfile); - - if (failure) - goto failed; - - if (insns_need_reload != 0 || did_spill) - something_changed |= finish_spills (global, dumpfile); - - if (! something_changed) - break; - - if (caller_save_needed) - delete_caller_save_insns (); - } - - /* If global-alloc was run, notify it of any register eliminations we have - done. */ - if (global) - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (ep->can_eliminate) - mark_elimination (ep->from, ep->to); - - /* If a pseudo has no hard reg, delete the insns that made the equivalence. - If that insn didn't set the register (i.e., it copied the register to - memory), just delete that insn instead of the equivalencing insn plus - anything now dead. If we call delete_dead_insn on that insn, we may - delete the insn that actually sets the register if the register dies - there and that is incorrect. */ - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - { - if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0) - { - rtx list; - for (list = reg_equiv_init[i]; list; list = XEXP (list, 1)) - { - rtx equiv_insn = XEXP (list, 0); - if (GET_CODE (equiv_insn) == NOTE) - continue; - if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn))) - delete_dead_insn (equiv_insn); - else - { - PUT_CODE (equiv_insn, NOTE); - NOTE_SOURCE_FILE (equiv_insn) = 0; - NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED; - } - } - } - } - - /* Use the reload registers where necessary - by generating move instructions to move the must-be-register - values into or out of the reload registers. */ - - if (insns_need_reload != 0 || something_needs_elimination - || something_needs_operands_changed) - { - int old_frame_size = get_frame_size (); - - reload_as_needed (global); - - if (old_frame_size != get_frame_size ()) - abort (); - - if (num_eliminable) - verify_initial_elim_offsets (); - } - - /* If we were able to eliminate the frame pointer, show that it is no - longer live at the start of any basic block. If it ls live by - virtue of being in a pseudo, that pseudo will be marked live - and hence the frame pointer will be known to be live via that - pseudo. */ - - if (! frame_pointer_needed) - for (i = 0; i < n_basic_blocks; i++) - CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start, - HARD_FRAME_POINTER_REGNUM); - - /* Come here (with failure set nonzero) if we can't get enough spill regs - and we decide not to abort about it. */ - failed: - - reload_in_progress = 0; - - /* Now eliminate all pseudo regs by modifying them into - their equivalent memory references. - The REG-rtx's for the pseudos are modified in place, - so all insns that used to refer to them now refer to memory. - - For a reg that has a reg_equiv_address, all those insns - were changed by reloading so that no insns refer to it any longer; - but the DECL_RTL of a variable decl may refer to it, - and if so this causes the debugging info to mention the variable. */ - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - { - rtx addr = 0; - int in_struct = 0; - int is_scalar; - int is_readonly = 0; - - if (reg_equiv_memory_loc[i]) - { - in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]); - is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]); - is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]); - } - - if (reg_equiv_mem[i]) - addr = XEXP (reg_equiv_mem[i], 0); - - if (reg_equiv_address[i]) - addr = reg_equiv_address[i]; - - if (addr) - { - if (reg_renumber[i] < 0) - { - rtx reg = regno_reg_rtx[i]; - XEXP (reg, 0) = addr; - REG_USERVAR_P (reg) = 0; - RTX_UNCHANGING_P (reg) = is_readonly; - MEM_IN_STRUCT_P (reg) = in_struct; - MEM_SCALAR_P (reg) = is_scalar; - /* We have no alias information about this newly created - MEM. */ - MEM_ALIAS_SET (reg) = 0; - PUT_CODE (reg, MEM); - } - else if (reg_equiv_mem[i]) - XEXP (reg_equiv_mem[i], 0) = addr; - } - } - - /* We must set reload_completed now since the cleanup_subreg_operands call - below will re-recognize each insn and reload may have generated insns - which are only valid during and after reload. */ - reload_completed = 1; - - /* Make a pass over all the insns and delete all USEs which we - inserted only to tag a REG_EQUAL note on them. Remove all - REG_DEAD and REG_UNUSED notes. Delete all CLOBBER insns and - simplify (subreg (reg)) operands. Also remove all REG_RETVAL and - REG_LIBCALL notes since they are no longer useful or accurate. - Strip and regenerate REG_INC notes that may have been moved - around. */ - - for (insn = first; insn; insn = NEXT_INSN (insn)) - if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') - { - rtx *pnote; - - if ((GET_CODE (PATTERN (insn)) == USE - && find_reg_note (insn, REG_EQUAL, NULL_RTX)) - || GET_CODE (PATTERN (insn)) == CLOBBER) - { - PUT_CODE (insn, NOTE); - NOTE_SOURCE_FILE (insn) = 0; - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - continue; - } - - pnote = ®_NOTES (insn); - while (*pnote != 0) - { - if (REG_NOTE_KIND (*pnote) == REG_DEAD - || REG_NOTE_KIND (*pnote) == REG_UNUSED - || REG_NOTE_KIND (*pnote) == REG_INC - || REG_NOTE_KIND (*pnote) == REG_RETVAL - || REG_NOTE_KIND (*pnote) == REG_LIBCALL) - *pnote = XEXP (*pnote, 1); - else - pnote = &XEXP (*pnote, 1); - } - -#ifdef AUTO_INC_DEC - add_auto_inc_notes (insn, PATTERN (insn)); -#endif - - /* And simplify (subreg (reg)) if it appears as an operand. */ - cleanup_subreg_operands (insn); - } - - /* If we are doing stack checking, give a warning if this function's - frame size is larger than we expect. */ - if (flag_stack_check && ! STACK_CHECK_BUILTIN) - { - HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE; - static int verbose_warned = 0; - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i]) - size += UNITS_PER_WORD; - - if (size > STACK_CHECK_MAX_FRAME_SIZE) - { - warning ("frame size too large for reliable stack checking"); - if (! verbose_warned) - { - warning ("try reducing the number of local variables"); - verbose_warned = 1; - } - } - } - - /* Indicate that we no longer have known memory locations or constants. */ - if (reg_equiv_constant) - free (reg_equiv_constant); - reg_equiv_constant = 0; - if (reg_equiv_memory_loc) - free (reg_equiv_memory_loc); - reg_equiv_memory_loc = 0; - - if (real_known_ptr) - free (real_known_ptr); - if (real_at_ptr) - free (real_at_ptr); - - free (reg_equiv_mem); - free (reg_equiv_init); - free (reg_equiv_address); - free (reg_max_ref_width); - free (reg_old_renumber); - free (pseudo_previous_regs); - free (pseudo_forbidden_regs); - - FREE_REG_SET (spilled_pseudos); - - CLEAR_HARD_REG_SET (used_spill_regs); - for (i = 0; i < n_spills; i++) - SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]); - - /* Free all the insn_chain structures at once. */ - obstack_free (&reload_obstack, reload_startobj); - unused_insn_chains = 0; - - return failure; -} - -/* Yet another special case. Unfortunately, reg-stack forces people to - write incorrect clobbers in asm statements. These clobbers must not - cause the register to appear in bad_spill_regs, otherwise we'll call - fatal_insn later. We clear the corresponding regnos in the live - register sets to avoid this. - The whole thing is rather sick, I'm afraid. */ -static void -maybe_fix_stack_asms () -{ -#ifdef STACK_REGS - char *constraints[MAX_RECOG_OPERANDS]; - enum machine_mode operand_mode[MAX_RECOG_OPERANDS]; - struct insn_chain *chain; - - for (chain = reload_insn_chain; chain != 0; chain = chain->next) - { - int i, noperands; - HARD_REG_SET clobbered, allowed; - rtx pat; - - if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i' - || (noperands = asm_noperands (PATTERN (chain->insn))) < 0) - continue; - pat = PATTERN (chain->insn); - if (GET_CODE (pat) != PARALLEL) - continue; - - CLEAR_HARD_REG_SET (clobbered); - CLEAR_HARD_REG_SET (allowed); - - /* First, make a mask of all stack regs that are clobbered. */ - for (i = 0; i < XVECLEN (pat, 0); i++) - { - rtx t = XVECEXP (pat, 0, i); - if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0))) - SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0))); - } - - /* Get the operand values and constraints out of the insn. */ - decode_asm_operands (pat, recog_operand, recog_operand_loc, - constraints, operand_mode); - - /* For every operand, see what registers are allowed. */ - for (i = 0; i < noperands; i++) - { - char *p = constraints[i]; - /* For every alternative, we compute the class of registers allowed - for reloading in CLS, and merge its contents into the reg set - ALLOWED. */ - int cls = (int) NO_REGS; - - for (;;) - { - char c = *p++; - - if (c == '\0' || c == ',' || c == '#') - { - /* End of one alternative - mark the regs in the current - class, and reset the class. */ - IOR_HARD_REG_SET (allowed, reg_class_contents[cls]); - cls = NO_REGS; - if (c == '#') - do { - c = *p++; - } while (c != '\0' && c != ','); - if (c == '\0') - break; - continue; - } - - switch (c) - { - case '=': case '+': case '*': case '%': case '?': case '!': - case '0': case '1': case '2': case '3': case '4': case 'm': - case '<': case '>': case 'V': case 'o': case '&': case 'E': - case 'F': case 's': case 'i': case 'n': case 'X': case 'I': - case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': - case 'P': -#ifdef EXTRA_CONSTRAINT - case 'Q': case 'R': case 'S': case 'T': case 'U': -#endif - break; - - case 'p': - cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS]; - break; - - case 'g': - case 'r': - cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS]; - break; - - default: - cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)]; - - } - } - } - /* Those of the registers which are clobbered, but allowed by the - constraints, must be usable as reload registers. So clear them - out of the life information. */ - AND_HARD_REG_SET (allowed, clobbered); - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (TEST_HARD_REG_BIT (allowed, i)) - { - CLEAR_REGNO_REG_SET (chain->live_before, i); - CLEAR_REGNO_REG_SET (chain->live_after, i); - } - } - -#endif -} - - -/* Walk the chain of insns, and determine for each whether it needs reloads - and/or eliminations. Build the corresponding insns_need_reload list, and - set something_needs_elimination as appropriate. */ -static void -calculate_needs_all_insns (global) - int global; -{ - struct insn_chain **pprev_reload = &insns_need_reload; - struct insn_chain **pchain; - - something_needs_elimination = 0; - - for (pchain = &reload_insn_chain; *pchain != 0; pchain = &(*pchain)->next) - { - rtx insn; - struct insn_chain *chain; - - chain = *pchain; - insn = chain->insn; - - /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might - include REG_LABEL), we need to see what effects this has on the - known offsets at labels. */ - - if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN - || (GET_RTX_CLASS (GET_CODE (insn)) == 'i' - && REG_NOTES (insn) != 0)) - set_label_offsets (insn, insn, 0); - - if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') - { - rtx old_body = PATTERN (insn); - int old_code = INSN_CODE (insn); - rtx old_notes = REG_NOTES (insn); - int did_elimination = 0; - int operands_changed = 0; - rtx set = single_set (insn); - - /* Skip insns that only set an equivalence. */ - if (set && GET_CODE (SET_DEST (set)) == REG - && reg_renumber[REGNO (SET_DEST (set))] < 0 - && reg_equiv_constant[REGNO (SET_DEST (set))]) - { - /* Must clear out the shortcuts, in case they were set last - time through. */ - chain->need_elim = 0; - chain->need_reload = 0; - chain->need_operand_change = 0; - continue; - } - - /* If needed, eliminate any eliminable registers. */ - if (num_eliminable || num_eliminable_invariants) - did_elimination = eliminate_regs_in_insn (insn, 0); - - /* Analyze the instruction. */ - operands_changed = find_reloads (insn, 0, spill_indirect_levels, - global, spill_reg_order); - - /* If a no-op set needs more than one reload, this is likely - to be something that needs input address reloads. We - can't get rid of this cleanly later, and it is of no use - anyway, so discard it now. - We only do this when expensive_optimizations is enabled, - since this complements reload inheritance / output - reload deletion, and it can make debugging harder. */ - if (flag_expensive_optimizations && n_reloads > 1) - { - rtx set = single_set (insn); - if (set - && SET_SRC (set) == SET_DEST (set) - && GET_CODE (SET_SRC (set)) == REG - && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER) - { - PUT_CODE (insn, NOTE); - NOTE_SOURCE_FILE (insn) = 0; - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - continue; - } - } - if (num_eliminable) - update_eliminable_offsets (); - - /* Remember for later shortcuts which insns had any reloads or - register eliminations. */ - chain->need_elim = did_elimination; - chain->need_reload = n_reloads > 0; - chain->need_operand_change = operands_changed; - - /* Discard any register replacements done. */ - if (did_elimination) - { - obstack_free (&reload_obstack, reload_firstobj); - PATTERN (insn) = old_body; - INSN_CODE (insn) = old_code; - REG_NOTES (insn) = old_notes; - something_needs_elimination = 1; - } - - something_needs_operands_changed |= operands_changed; - - if (n_reloads != 0) - { - *pprev_reload = chain; - pprev_reload = &chain->next_need_reload; - - calculate_needs (chain); - } - } - } - *pprev_reload = 0; -} - -/* Compute the most additional registers needed by one instruction, - given by CHAIN. Collect information separately for each class of regs. - - To compute the number of reload registers of each class needed for an - insn, we must simulate what choose_reload_regs can do. We do this by - splitting an insn into an "input" and an "output" part. RELOAD_OTHER - reloads are used in both. The input part uses those reloads, - RELOAD_FOR_INPUT reloads, which must be live over the entire input section - of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and - RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs. - - The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT, - which are live for the entire output portion, and the maximum of all the - RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand. - - The total number of registers needed is the maximum of the - inputs and outputs. */ - -static void -calculate_needs (chain) - struct insn_chain *chain; -{ - int i; - - /* Each `struct needs' corresponds to one RELOAD_... type. */ - struct { - struct needs other; - struct needs input; - struct needs output; - struct needs insn; - struct needs other_addr; - struct needs op_addr; - struct needs op_addr_reload; - struct needs in_addr[MAX_RECOG_OPERANDS]; - struct needs in_addr_addr[MAX_RECOG_OPERANDS]; - struct needs out_addr[MAX_RECOG_OPERANDS]; - struct needs out_addr_addr[MAX_RECOG_OPERANDS]; - } insn_needs; - - bzero ((char *) chain->group_size, sizeof chain->group_size); - for (i = 0; i < N_REG_CLASSES; i++) - chain->group_mode[i] = VOIDmode; - bzero ((char *) &insn_needs, sizeof insn_needs); - - /* Count each reload once in every class - containing the reload's own class. */ - - for (i = 0; i < n_reloads; i++) - { - register enum reg_class *p; - enum reg_class class = reload_reg_class[i]; - int size; - enum machine_mode mode; - struct needs *this_needs; - - /* Don't count the dummy reloads, for which one of the - regs mentioned in the insn can be used for reloading. - Don't count optional reloads. - Don't count reloads that got combined with others. */ - if (reload_reg_rtx[i] != 0 - || reload_optional[i] != 0 - || (reload_out[i] == 0 && reload_in[i] == 0 - && ! reload_secondary_p[i])) - continue; - - mode = reload_inmode[i]; - if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode)) - mode = reload_outmode[i]; - size = CLASS_MAX_NREGS (class, mode); - - /* Decide which time-of-use to count this reload for. */ - switch (reload_when_needed[i]) - { - case RELOAD_OTHER: - this_needs = &insn_needs.other; - break; - case RELOAD_FOR_INPUT: - this_needs = &insn_needs.input; - break; - case RELOAD_FOR_OUTPUT: - this_needs = &insn_needs.output; - break; - case RELOAD_FOR_INSN: - this_needs = &insn_needs.insn; - break; - case RELOAD_FOR_OTHER_ADDRESS: - this_needs = &insn_needs.other_addr; - break; - case RELOAD_FOR_INPUT_ADDRESS: - this_needs = &insn_needs.in_addr[reload_opnum[i]]; - break; - case RELOAD_FOR_INPADDR_ADDRESS: - this_needs = &insn_needs.in_addr_addr[reload_opnum[i]]; - break; - case RELOAD_FOR_OUTPUT_ADDRESS: - this_needs = &insn_needs.out_addr[reload_opnum[i]]; - break; - case RELOAD_FOR_OUTADDR_ADDRESS: - this_needs = &insn_needs.out_addr_addr[reload_opnum[i]]; - break; - case RELOAD_FOR_OPERAND_ADDRESS: - this_needs = &insn_needs.op_addr; - break; - case RELOAD_FOR_OPADDR_ADDR: - this_needs = &insn_needs.op_addr_reload; - break; - default: - abort(); - } - - if (size > 1) - { - enum machine_mode other_mode, allocate_mode; - - /* Count number of groups needed separately from - number of individual regs needed. */ - this_needs->groups[(int) class]++; - p = reg_class_superclasses[(int) class]; - while (*p != LIM_REG_CLASSES) - this_needs->groups[(int) *p++]++; - - /* Record size and mode of a group of this class. */ - /* If more than one size group is needed, - make all groups the largest needed size. */ - if (chain->group_size[(int) class] < size) - { - other_mode = chain->group_mode[(int) class]; - allocate_mode = mode; - - chain->group_size[(int) class] = size; - chain->group_mode[(int) class] = mode; - } - else - { - other_mode = mode; - allocate_mode = chain->group_mode[(int) class]; - } - - /* Crash if two dissimilar machine modes both need - groups of consecutive regs of the same class. */ - - if (other_mode != VOIDmode && other_mode != allocate_mode - && ! modes_equiv_for_class_p (allocate_mode, - other_mode, class)) - fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class", - chain->insn); - } - else if (size == 1) - { - this_needs->regs[(unsigned char)reload_nongroup[i]][(int) class] += 1; - p = reg_class_superclasses[(int) class]; - while (*p != LIM_REG_CLASSES) - this_needs->regs[(unsigned char)reload_nongroup[i]][(int) *p++] += 1; - } - else - abort (); - } - - /* All reloads have been counted for this insn; - now merge the various times of use. - This sets insn_needs, etc., to the maximum total number - of registers needed at any point in this insn. */ - - for (i = 0; i < N_REG_CLASSES; i++) - { - int j, in_max, out_max; - - /* Compute normal and nongroup needs. */ - for (j = 0; j <= 1; j++) - { - int k; - for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++) - { - in_max = MAX (in_max, - (insn_needs.in_addr[k].regs[j][i] - + insn_needs.in_addr_addr[k].regs[j][i])); - out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]); - out_max = MAX (out_max, - insn_needs.out_addr_addr[k].regs[j][i]); - } - - /* RELOAD_FOR_INSN reloads conflict with inputs, outputs, - and operand addresses but not things used to reload - them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads - don't conflict with things needed to reload inputs or - outputs. */ - - in_max = MAX (MAX (insn_needs.op_addr.regs[j][i], - insn_needs.op_addr_reload.regs[j][i]), - in_max); - - out_max = MAX (out_max, insn_needs.insn.regs[j][i]); - - insn_needs.input.regs[j][i] - = MAX (insn_needs.input.regs[j][i] - + insn_needs.op_addr.regs[j][i] - + insn_needs.insn.regs[j][i], - in_max + insn_needs.input.regs[j][i]); - - insn_needs.output.regs[j][i] += out_max; - insn_needs.other.regs[j][i] - += MAX (MAX (insn_needs.input.regs[j][i], - insn_needs.output.regs[j][i]), - insn_needs.other_addr.regs[j][i]); - - } - - /* Now compute group needs. */ - for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++) - { - in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]); - in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]); - out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]); - out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]); - } - - in_max = MAX (MAX (insn_needs.op_addr.groups[i], - insn_needs.op_addr_reload.groups[i]), - in_max); - out_max = MAX (out_max, insn_needs.insn.groups[i]); - - insn_needs.input.groups[i] - = MAX (insn_needs.input.groups[i] - + insn_needs.op_addr.groups[i] - + insn_needs.insn.groups[i], - in_max + insn_needs.input.groups[i]); - - insn_needs.output.groups[i] += out_max; - insn_needs.other.groups[i] - += MAX (MAX (insn_needs.input.groups[i], - insn_needs.output.groups[i]), - insn_needs.other_addr.groups[i]); - } - - /* Record the needs for later. */ - chain->need = insn_needs.other; -} - -/* Find a group of exactly 2 registers. - - First try to fill out the group by spilling a single register which - would allow completion of the group. - - Then try to create a new group from a pair of registers, neither of - which are explicitly used. - - Then try to create a group from any pair of registers. */ - -static void -find_tworeg_group (chain, class, dumpfile) - struct insn_chain *chain; - int class; - FILE *dumpfile; -{ - int i; - /* First, look for a register that will complete a group. */ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int j, other; - - j = potential_reload_regs[i]; - if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j) - && ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0) - && TEST_HARD_REG_BIT (reg_class_contents[class], j) - && TEST_HARD_REG_BIT (reg_class_contents[class], other) - && HARD_REGNO_MODE_OK (other, chain->group_mode[class]) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other) - /* We don't want one part of another group. - We could get "two groups" that overlap! */ - && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other)) - || (j < FIRST_PSEUDO_REGISTER - 1 - && (other = j + 1, spill_reg_order[other] >= 0) - && TEST_HARD_REG_BIT (reg_class_contents[class], j) - && TEST_HARD_REG_BIT (reg_class_contents[class], other) - && HARD_REGNO_MODE_OK (j, chain->group_mode[class]) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, other) - && ! TEST_HARD_REG_BIT (chain->counted_for_groups, other)))) - { - register enum reg_class *p; - - /* We have found one that will complete a group, - so count off one group as provided. */ - chain->need.groups[class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - { - if (chain->group_size [(int) *p] <= chain->group_size [class]) - chain->need.groups[(int) *p]--; - p++; - } - - /* Indicate both these regs are part of a group. */ - SET_HARD_REG_BIT (chain->counted_for_groups, j); - SET_HARD_REG_BIT (chain->counted_for_groups, other); - break; - } - } - /* We can't complete a group, so start one. */ - if (i == FIRST_PSEUDO_REGISTER) - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int j, k; - j = potential_reload_regs[i]; - /* Verify that J+1 is a potential reload reg. */ - for (k = 0; k < FIRST_PSEUDO_REGISTER; k++) - if (potential_reload_regs[k] == j + 1) - break; - if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER - && k < FIRST_PSEUDO_REGISTER - && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0 - && TEST_HARD_REG_BIT (reg_class_contents[class], j) - && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1) - && HARD_REGNO_MODE_OK (j, chain->group_mode[class]) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, j + 1) - && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1)) - break; - } - - /* I should be the index in potential_reload_regs - of the new reload reg we have found. */ - - new_spill_reg (chain, i, class, 0, dumpfile); -} - -/* Find a group of more than 2 registers. - Look for a sufficient sequence of unspilled registers, and spill them all - at once. */ - -static void -find_group (chain, class, dumpfile) - struct insn_chain *chain; - int class; - FILE *dumpfile; -{ - int i; - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int j = potential_reload_regs[i]; - - if (j >= 0 - && j + chain->group_size[class] <= FIRST_PSEUDO_REGISTER - && HARD_REGNO_MODE_OK (j, chain->group_mode[class])) - { - int k; - /* Check each reg in the sequence. */ - for (k = 0; k < chain->group_size[class]; k++) - if (! (spill_reg_order[j + k] < 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k) - && TEST_HARD_REG_BIT (reg_class_contents[class], j + k))) - break; - /* We got a full sequence, so spill them all. */ - if (k == chain->group_size[class]) - { - register enum reg_class *p; - for (k = 0; k < chain->group_size[class]; k++) - { - int idx; - SET_HARD_REG_BIT (chain->counted_for_groups, j + k); - for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++) - if (potential_reload_regs[idx] == j + k) - break; - new_spill_reg (chain, idx, class, 0, dumpfile); - } - - /* We have found one that will complete a group, - so count off one group as provided. */ - chain->need.groups[class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - { - if (chain->group_size [(int) *p] - <= chain->group_size [class]) - chain->need.groups[(int) *p]--; - p++; - } - return; - } - } - } - /* There are no groups left. */ - spill_failure (chain->insn); - failure = 1; -} - -/* If pseudo REG conflicts with one of our reload registers, mark it as - spilled. */ -static void -maybe_mark_pseudo_spilled (reg) - int reg; -{ - int i; - int r = reg_renumber[reg]; - int nregs; - - if (r < 0) - abort (); - nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg)); - for (i = 0; i < n_spills; i++) - if (r <= spill_regs[i] && r + nregs > spill_regs[i]) - { - SET_REGNO_REG_SET (spilled_pseudos, reg); - return; - } -} - -/* Find more reload regs to satisfy the remaining need of an insn, which - is given by CHAIN. - Do it by ascending class number, since otherwise a reg - might be spilled for a big class and might fail to count - for a smaller class even though it belongs to that class. - - Count spilled regs in `spills', and add entries to - `spill_regs' and `spill_reg_order'. - - ??? Note there is a problem here. - When there is a need for a group in a high-numbered class, - and also need for non-group regs that come from a lower class, - the non-group regs are chosen first. If there aren't many regs, - they might leave no room for a group. - - This was happening on the 386. To fix it, we added the code - that calls possible_group_p, so that the lower class won't - break up the last possible group. - - Really fixing the problem would require changes above - in counting the regs already spilled, and in choose_reload_regs. - It might be hard to avoid introducing bugs there. */ - -static void -find_reload_regs (chain, dumpfile) - struct insn_chain *chain; - FILE *dumpfile; -{ - int i, class; - short *group_needs = chain->need.groups; - short *simple_needs = chain->need.regs[0]; - short *nongroup_needs = chain->need.regs[1]; - - if (dumpfile) - fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn)); - - /* Compute the order of preference for hard registers to spill. - Store them by decreasing preference in potential_reload_regs. */ - - order_regs_for_reload (chain); - - /* So far, no hard regs have been spilled. */ - n_spills = 0; - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - spill_reg_order[i] = -1; - - CLEAR_HARD_REG_SET (chain->used_spill_regs); - CLEAR_HARD_REG_SET (chain->counted_for_groups); - CLEAR_HARD_REG_SET (chain->counted_for_nongroups); - - for (class = 0; class < N_REG_CLASSES; class++) - { - /* First get the groups of registers. - If we got single registers first, we might fragment - possible groups. */ - while (group_needs[class] > 0) - { - /* If any single spilled regs happen to form groups, - count them now. Maybe we don't really need - to spill another group. */ - count_possible_groups (chain, class); - - if (group_needs[class] <= 0) - break; - - /* Groups of size 2, the only groups used on most machines, - are treated specially. */ - if (chain->group_size[class] == 2) - find_tworeg_group (chain, class, dumpfile); - else - find_group (chain, class, dumpfile); - if (failure) - return; - } - - /* Now similarly satisfy all need for single registers. */ - - while (simple_needs[class] > 0 || nongroup_needs[class] > 0) - { - /* If we spilled enough regs, but they weren't counted - against the non-group need, see if we can count them now. - If so, we can avoid some actual spilling. */ - if (simple_needs[class] <= 0 && nongroup_needs[class] > 0) - for (i = 0; i < n_spills; i++) - { - int regno = spill_regs[i]; - if (TEST_HARD_REG_BIT (reg_class_contents[class], regno) - && !TEST_HARD_REG_BIT (chain->counted_for_groups, regno) - && !TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno) - && nongroup_needs[class] > 0) - { - register enum reg_class *p; - - SET_HARD_REG_BIT (chain->counted_for_nongroups, regno); - nongroup_needs[class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - nongroup_needs[(int) *p++]--; - } - } - - if (simple_needs[class] <= 0 && nongroup_needs[class] <= 0) - break; - - /* Consider the potential reload regs that aren't - yet in use as reload regs, in order of preference. - Find the most preferred one that's in this class. */ - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int regno = potential_reload_regs[i]; - if (regno >= 0 - && TEST_HARD_REG_BIT (reg_class_contents[class], regno) - /* If this reg will not be available for groups, - pick one that does not foreclose possible groups. - This is a kludge, and not very general, - but it should be sufficient to make the 386 work, - and the problem should not occur on machines with - more registers. */ - && (nongroup_needs[class] == 0 - || possible_group_p (chain, regno))) - break; - } - - /* If we couldn't get a register, try to get one even if we - might foreclose possible groups. This may cause problems - later, but that's better than aborting now, since it is - possible that we will, in fact, be able to form the needed - group even with this allocation. */ - - if (i >= FIRST_PSEUDO_REGISTER - && asm_noperands (chain->insn) < 0) - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (potential_reload_regs[i] >= 0 - && TEST_HARD_REG_BIT (reg_class_contents[class], - potential_reload_regs[i])) - break; - - /* I should be the index in potential_reload_regs - of the new reload reg we have found. */ - - new_spill_reg (chain, i, class, 1, dumpfile); - if (failure) - return; - } - } - - /* We know which hard regs to use, now mark the pseudos that live in them - as needing to be kicked out. */ - EXECUTE_IF_SET_IN_REG_SET - (chain->live_before, FIRST_PSEUDO_REGISTER, i, - { - maybe_mark_pseudo_spilled (i); - }); - EXECUTE_IF_SET_IN_REG_SET - (chain->live_after, FIRST_PSEUDO_REGISTER, i, - { - maybe_mark_pseudo_spilled (i); - }); - - IOR_HARD_REG_SET (used_spill_regs, chain->used_spill_regs); -} - -void -dump_needs (chain, dumpfile) - struct insn_chain *chain; - FILE *dumpfile; -{ - static char *reg_class_names[] = REG_CLASS_NAMES; - int i; - struct needs *n = &chain->need; - - for (i = 0; i < N_REG_CLASSES; i++) - { - if (n->regs[i][0] > 0) - fprintf (dumpfile, - ";; Need %d reg%s of class %s.\n", - n->regs[i][0], n->regs[i][0] == 1 ? "" : "s", - reg_class_names[i]); - if (n->regs[i][1] > 0) - fprintf (dumpfile, - ";; Need %d nongroup reg%s of class %s.\n", - n->regs[i][1], n->regs[i][1] == 1 ? "" : "s", - reg_class_names[i]); - if (n->groups[i] > 0) - fprintf (dumpfile, - ";; Need %d group%s (%smode) of class %s.\n", - n->groups[i], n->groups[i] == 1 ? "" : "s", - mode_name[(int) chain->group_mode[i]], - reg_class_names[i]); - } -} - -/* Delete all insns that were inserted by emit_caller_save_insns during - this iteration. */ -static void -delete_caller_save_insns () -{ - struct insn_chain *c = reload_insn_chain; - - while (c != 0) - { - while (c != 0 && c->is_caller_save_insn) - { - struct insn_chain *next = c->next; - rtx insn = c->insn; - - if (insn == BLOCK_HEAD (c->block)) - BLOCK_HEAD (c->block) = NEXT_INSN (insn); - if (insn == BLOCK_END (c->block)) - BLOCK_END (c->block) = PREV_INSN (insn); - if (c == reload_insn_chain) - reload_insn_chain = next; - - if (NEXT_INSN (insn) != 0) - PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn); - if (PREV_INSN (insn) != 0) - NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn); - - if (next) - next->prev = c->prev; - if (c->prev) - c->prev->next = next; - c->next = unused_insn_chains; - unused_insn_chains = c; - c = next; - } - if (c != 0) - c = c->next; - } -} - -/* Nonzero if, after spilling reg REGNO for non-groups, - it will still be possible to find a group if we still need one. */ - -static int -possible_group_p (chain, regno) - struct insn_chain *chain; - int regno; -{ - int i; - int class = (int) NO_REGS; - - for (i = 0; i < (int) N_REG_CLASSES; i++) - if (chain->need.groups[i] > 0) - { - class = i; - break; - } - - if (class == (int) NO_REGS) - return 1; - - /* Consider each pair of consecutive registers. */ - for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++) - { - /* Ignore pairs that include reg REGNO. */ - if (i == regno || i + 1 == regno) - continue; - - /* Ignore pairs that are outside the class that needs the group. - ??? Here we fail to handle the case where two different classes - independently need groups. But this never happens with our - current machine descriptions. */ - if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i) - && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1))) - continue; - - /* A pair of consecutive regs we can still spill does the trick. */ - if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, i) - && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)) - return 1; - - /* A pair of one already spilled and one we can spill does it - provided the one already spilled is not otherwise reserved. */ - if (spill_reg_order[i] < 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, i) - && spill_reg_order[i + 1] >= 0 - && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i + 1) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i + 1)) - return 1; - if (spill_reg_order[i + 1] < 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1) - && spill_reg_order[i] >= 0 - && ! TEST_HARD_REG_BIT (chain->counted_for_groups, i) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, i)) - return 1; - } - - return 0; -} - -/* Count any groups of CLASS that can be formed from the registers recently - spilled. */ - -static void -count_possible_groups (chain, class) - struct insn_chain *chain; - int class; -{ - HARD_REG_SET new; - int i, j; - - /* Now find all consecutive groups of spilled registers - and mark each group off against the need for such groups. - But don't count them against ordinary need, yet. */ - - if (chain->group_size[class] == 0) - return; - - CLEAR_HARD_REG_SET (new); - - /* Make a mask of all the regs that are spill regs in class I. */ - for (i = 0; i < n_spills; i++) - { - int regno = spill_regs[i]; - - if (TEST_HARD_REG_BIT (reg_class_contents[class], regno) - && ! TEST_HARD_REG_BIT (chain->counted_for_groups, regno) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regno)) - SET_HARD_REG_BIT (new, regno); - } - - /* Find each consecutive group of them. */ - for (i = 0; i < FIRST_PSEUDO_REGISTER && chain->need.groups[class] > 0; i++) - if (TEST_HARD_REG_BIT (new, i) - && i + chain->group_size[class] <= FIRST_PSEUDO_REGISTER - && HARD_REGNO_MODE_OK (i, chain->group_mode[class])) - { - for (j = 1; j < chain->group_size[class]; j++) - if (! TEST_HARD_REG_BIT (new, i + j)) - break; - - if (j == chain->group_size[class]) - { - /* We found a group. Mark it off against this class's need for - groups, and against each superclass too. */ - register enum reg_class *p; - - chain->need.groups[class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - { - if (chain->group_size [(int) *p] <= chain->group_size [class]) - chain->need.groups[(int) *p]--; - p++; - } - - /* Don't count these registers again. */ - for (j = 0; j < chain->group_size[class]; j++) - SET_HARD_REG_BIT (chain->counted_for_groups, i + j); - } - - /* Skip to the last reg in this group. When i is incremented above, - it will then point to the first reg of the next possible group. */ - i += j - 1; - } -} - -/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is - another mode that needs to be reloaded for the same register class CLASS. - If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail. - ALLOCATE_MODE will never be smaller than OTHER_MODE. - - This code used to also fail if any reg in CLASS allows OTHER_MODE but not - ALLOCATE_MODE. This test is unnecessary, because we will never try to put - something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this - causes unnecessary failures on machines requiring alignment of register - groups when the two modes are different sizes, because the larger mode has - more strict alignment rules than the smaller mode. */ - -static int -modes_equiv_for_class_p (allocate_mode, other_mode, class) - enum machine_mode allocate_mode, other_mode; - enum reg_class class; -{ - register int regno; - for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) - { - if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno) - && HARD_REGNO_MODE_OK (regno, allocate_mode) - && ! HARD_REGNO_MODE_OK (regno, other_mode)) - return 0; - } - return 1; -} - -/* Handle the failure to find a register to spill. - INSN should be one of the insns which needed this particular spill reg. */ - -static void -spill_failure (insn) - rtx insn; -{ - if (asm_noperands (PATTERN (insn)) >= 0) - error_for_asm (insn, "`asm' needs too many reloads"); - else - fatal_insn ("Unable to find a register to spill.", insn); -} - -/* Add a new register to the tables of available spill-registers. - CHAIN is the insn for which the register will be used; we decrease the - needs of that insn. - I is the index of this register in potential_reload_regs. - CLASS is the regclass whose need is being satisfied. - NONGROUP is 0 if this register is part of a group. - DUMPFILE is the same as the one that `reload' got. */ - -static void -new_spill_reg (chain, i, class, nongroup, dumpfile) - struct insn_chain *chain; - int i; - int class; - int nongroup; - FILE *dumpfile; -{ - register enum reg_class *p; - int regno = potential_reload_regs[i]; - - if (i >= FIRST_PSEUDO_REGISTER) - { - spill_failure (chain->insn); - failure = 1; - return; - } - - if (TEST_HARD_REG_BIT (bad_spill_regs, regno)) - { - static char *reg_class_names[] = REG_CLASS_NAMES; - - if (asm_noperands (PATTERN (chain->insn)) < 0) - { - /* The error message is still correct - we know only that it wasn't - an asm statement that caused the problem, but one of the global - registers declared by the users might have screwed us. */ - error ("fixed or forbidden register %d (%s) was spilled for class %s.", - regno, reg_names[regno], reg_class_names[class]); - error ("This may be due to a compiler bug or to impossible asm"); - error ("statements or clauses."); - fatal_insn ("This is the instruction:", chain->insn); - } - error_for_asm (chain->insn, "Invalid `asm' statement:"); - error_for_asm (chain->insn, - "fixed or forbidden register %d (%s) was spilled for class %s.", - regno, reg_names[regno], reg_class_names[class]); - failure = 1; - return; - } - - /* Make reg REGNO an additional reload reg. */ - - potential_reload_regs[i] = -1; - spill_regs[n_spills] = regno; - spill_reg_order[regno] = n_spills; - if (dumpfile) - fprintf (dumpfile, "Spilling reg %d.\n", regno); - SET_HARD_REG_BIT (chain->used_spill_regs, regno); - - /* Clear off the needs we just satisfied. */ - - chain->need.regs[0][class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - chain->need.regs[0][(int) *p++]--; - - if (nongroup && chain->need.regs[1][class] > 0) - { - SET_HARD_REG_BIT (chain->counted_for_nongroups, regno); - chain->need.regs[1][class]--; - p = reg_class_superclasses[class]; - while (*p != LIM_REG_CLASSES) - chain->need.regs[1][(int) *p++]--; - } - - n_spills++; -} - -/* Delete an unneeded INSN and any previous insns who sole purpose is loading - data that is dead in INSN. */ - -static void -delete_dead_insn (insn) - rtx insn; -{ - rtx prev = prev_real_insn (insn); - rtx prev_dest; - - /* If the previous insn sets a register that dies in our insn, delete it - too. */ - if (prev && GET_CODE (PATTERN (prev)) == SET - && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG) - && reg_mentioned_p (prev_dest, PATTERN (insn)) - && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)) - && ! side_effects_p (SET_SRC (PATTERN (prev)))) - delete_dead_insn (prev); - - PUT_CODE (insn, NOTE); - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (insn) = 0; -} - -/* Modify the home of pseudo-reg I. - The new home is present in reg_renumber[I]. - - FROM_REG may be the hard reg that the pseudo-reg is being spilled from; - or it may be -1, meaning there is none or it is not relevant. - This is used so that all pseudos spilled from a given hard reg - can share one stack slot. */ - -static void -alter_reg (i, from_reg) - register int i; - int from_reg; -{ - /* When outputting an inline function, this can happen - for a reg that isn't actually used. */ - if (regno_reg_rtx[i] == 0) - return; - - /* If the reg got changed to a MEM at rtl-generation time, - ignore it. */ - if (GET_CODE (regno_reg_rtx[i]) != REG) - return; - - /* Modify the reg-rtx to contain the new hard reg - number or else to contain its pseudo reg number. */ - REGNO (regno_reg_rtx[i]) - = reg_renumber[i] >= 0 ? reg_renumber[i] : i; - - /* If we have a pseudo that is needed but has no hard reg or equivalent, - allocate a stack slot for it. */ - - if (reg_renumber[i] < 0 - && REG_N_REFS (i) > 0 - && reg_equiv_constant[i] == 0 - && reg_equiv_memory_loc[i] == 0) - { - register rtx x; - int inherent_size = PSEUDO_REGNO_BYTES (i); - int total_size = MAX (inherent_size, reg_max_ref_width[i]); - int adjust = 0; - - /* Each pseudo reg has an inherent size which comes from its own mode, - and a total size which provides room for paradoxical subregs - which refer to the pseudo reg in wider modes. - - We can use a slot already allocated if it provides both - enough inherent space and enough total space. - Otherwise, we allocate a new slot, making sure that it has no less - inherent space, and no less total space, then the previous slot. */ - if (from_reg == -1) - { - /* No known place to spill from => no slot to reuse. */ - x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size, - inherent_size == total_size ? 0 : -1); - if (BYTES_BIG_ENDIAN) - /* Cancel the big-endian correction done in assign_stack_local. - Get the address of the beginning of the slot. - This is so we can do a big-endian correction unconditionally - below. */ - adjust = inherent_size - total_size; - - RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]); - } - /* Reuse a stack slot if possible. */ - else if (spill_stack_slot[from_reg] != 0 - && spill_stack_slot_width[from_reg] >= total_size - && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg])) - >= inherent_size)) - x = spill_stack_slot[from_reg]; - /* Allocate a bigger slot. */ - else - { - /* Compute maximum size needed, both for inherent size - and for total size. */ - enum machine_mode mode = GET_MODE (regno_reg_rtx[i]); - rtx stack_slot; - if (spill_stack_slot[from_reg]) - { - if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg])) - > inherent_size) - mode = GET_MODE (spill_stack_slot[from_reg]); - if (spill_stack_slot_width[from_reg] > total_size) - total_size = spill_stack_slot_width[from_reg]; - } - /* Make a slot with that size. */ - x = assign_stack_local (mode, total_size, - inherent_size == total_size ? 0 : -1); - stack_slot = x; - if (BYTES_BIG_ENDIAN) - { - /* Cancel the big-endian correction done in assign_stack_local. - Get the address of the beginning of the slot. - This is so we can do a big-endian correction unconditionally - below. */ - adjust = GET_MODE_SIZE (mode) - total_size; - if (adjust) - stack_slot = gen_rtx_MEM (mode_for_size (total_size - * BITS_PER_UNIT, - MODE_INT, 1), - plus_constant (XEXP (x, 0), adjust)); - } - spill_stack_slot[from_reg] = stack_slot; - spill_stack_slot_width[from_reg] = total_size; - } - - /* On a big endian machine, the "address" of the slot - is the address of the low part that fits its inherent mode. */ - if (BYTES_BIG_ENDIAN && inherent_size < total_size) - adjust += (total_size - inherent_size); - - /* If we have any adjustment to make, or if the stack slot is the - wrong mode, make a new stack slot. */ - if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i])) - { - x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]), - plus_constant (XEXP (x, 0), adjust)); - - /* If this was shared among registers, must ensure we never - set it readonly since that can cause scheduling - problems. Note we would only have in this adjustment - case in any event, since the code above doesn't set it. */ - - if (from_reg == -1) - RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]); - } - - /* Save the stack slot for later. */ - reg_equiv_memory_loc[i] = x; - } -} - -/* Mark the slots in regs_ever_live for the hard regs - used by pseudo-reg number REGNO. */ - -void -mark_home_live (regno) - int regno; -{ - register int i, lim; - i = reg_renumber[regno]; - if (i < 0) - return; - lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno)); - while (i < lim) - regs_ever_live[i++] = 1; -} - -/* This function handles the tracking of elimination offsets around branches. - - X is a piece of RTL being scanned. - - INSN is the insn that it came from, if any. - - INITIAL_P is non-zero if we are to set the offset to be the initial - offset and zero if we are setting the offset of the label to be the - current offset. */ - -static void -set_label_offsets (x, insn, initial_p) - rtx x; - rtx insn; - int initial_p; -{ - enum rtx_code code = GET_CODE (x); - rtx tem; - unsigned int i; - struct elim_table *p; - - switch (code) - { - case LABEL_REF: - if (LABEL_REF_NONLOCAL_P (x)) - return; - - x = XEXP (x, 0); - - /* ... fall through ... */ - - case CODE_LABEL: - /* If we know nothing about this label, set the desired offsets. Note - that this sets the offset at a label to be the offset before a label - if we don't know anything about the label. This is not correct for - the label after a BARRIER, but is the best guess we can make. If - we guessed wrong, we will suppress an elimination that might have - been possible had we been able to guess correctly. */ - - if (! offsets_known_at[CODE_LABEL_NUMBER (x)]) - { - for (i = 0; i < NUM_ELIMINABLE_REGS; i++) - offsets_at[CODE_LABEL_NUMBER (x)][i] - = (initial_p ? reg_eliminate[i].initial_offset - : reg_eliminate[i].offset); - offsets_known_at[CODE_LABEL_NUMBER (x)] = 1; - } - - /* Otherwise, if this is the definition of a label and it is - preceded by a BARRIER, set our offsets to the known offset of - that label. */ - - else if (x == insn - && (tem = prev_nonnote_insn (insn)) != 0 - && GET_CODE (tem) == BARRIER) - set_offsets_for_label (insn); - else - /* If neither of the above cases is true, compare each offset - with those previously recorded and suppress any eliminations - where the offsets disagree. */ - - for (i = 0; i < NUM_ELIMINABLE_REGS; i++) - if (offsets_at[CODE_LABEL_NUMBER (x)][i] - != (initial_p ? reg_eliminate[i].initial_offset - : reg_eliminate[i].offset)) - reg_eliminate[i].can_eliminate = 0; - - return; - - case JUMP_INSN: - set_label_offsets (PATTERN (insn), insn, initial_p); - - /* ... fall through ... */ - - case INSN: - case CALL_INSN: - /* Any labels mentioned in REG_LABEL notes can be branched to indirectly - and hence must have all eliminations at their initial offsets. */ - for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1)) - if (REG_NOTE_KIND (tem) == REG_LABEL) - set_label_offsets (XEXP (tem, 0), insn, 1); - return; - - case ADDR_VEC: - case ADDR_DIFF_VEC: - /* Each of the labels in the address vector must be at their initial - offsets. We want the first field for ADDR_VEC and the second - field for ADDR_DIFF_VEC. */ - - for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++) - set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i), - insn, initial_p); - return; - - case SET: - /* We only care about setting PC. If the source is not RETURN, - IF_THEN_ELSE, or a label, disable any eliminations not at - their initial offsets. Similarly if any arm of the IF_THEN_ELSE - isn't one of those possibilities. For branches to a label, - call ourselves recursively. - - Note that this can disable elimination unnecessarily when we have - a non-local goto since it will look like a non-constant jump to - someplace in the current function. This isn't a significant - problem since such jumps will normally be when all elimination - pairs are back to their initial offsets. */ - - if (SET_DEST (x) != pc_rtx) - return; - - switch (GET_CODE (SET_SRC (x))) - { - case PC: - case RETURN: - return; - - case LABEL_REF: - set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p); - return; - - case IF_THEN_ELSE: - tem = XEXP (SET_SRC (x), 1); - if (GET_CODE (tem) == LABEL_REF) - set_label_offsets (XEXP (tem, 0), insn, initial_p); - else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) - break; - - tem = XEXP (SET_SRC (x), 2); - if (GET_CODE (tem) == LABEL_REF) - set_label_offsets (XEXP (tem, 0), insn, initial_p); - else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) - break; - return; - - default: - break; - } - - /* If we reach here, all eliminations must be at their initial - offset because we are doing a jump to a variable address. */ - for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++) - if (p->offset != p->initial_offset) - p->can_eliminate = 0; - break; - - default: - break; - } -} - -/* Used for communication between the next two function to properly share - the vector for an ASM_OPERANDS. */ - -static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec; - -/* Scan X and replace any eliminable registers (such as fp) with a - replacement (such as sp), plus an offset. - - MEM_MODE is the mode of an enclosing MEM. We need this to know how - much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a - MEM, we are allowed to replace a sum of a register and the constant zero - with the register, which we cannot do outside a MEM. In addition, we need - to record the fact that a register is referenced outside a MEM. - - If INSN is an insn, it is the insn containing X. If we replace a REG - in a SET_DEST with an equivalent MEM and INSN is non-zero, write a - CLOBBER of the pseudo after INSN so find_equiv_regs will know that - the REG is being modified. - - Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST). - That's used when we eliminate in expressions stored in notes. - This means, do not set ref_outside_mem even if the reference - is outside of MEMs. - - If we see a modification to a register we know about, take the - appropriate action (see case SET, below). - - REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had - replacements done assuming all offsets are at their initial values. If - they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we - encounter, return the actual location so that find_reloads will do - the proper thing. */ - -rtx -eliminate_regs (x, mem_mode, insn) - rtx x; - enum machine_mode mem_mode; - rtx insn; -{ - enum rtx_code code = GET_CODE (x); - struct elim_table *ep; - int regno; - rtx new; - int i, j; - char *fmt; - int copied = 0; - - if (! current_function_decl) - return x; - - switch (code) - { - case CONST_INT: - case CONST_DOUBLE: - case CONST: - case SYMBOL_REF: - case CODE_LABEL: - case PC: - case CC0: - case ASM_INPUT: - case ADDR_VEC: - case ADDR_DIFF_VEC: - case RETURN: - return x; - - case ADDRESSOF: - /* This is only for the benefit of the debugging backends, which call - eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are - removed after CSE. */ - new = eliminate_regs (XEXP (x, 0), 0, insn); - if (GET_CODE (new) == MEM) - return XEXP (new, 0); - return x; - - case REG: - regno = REGNO (x); - - /* First handle the case where we encounter a bare register that - is eliminable. Replace it with a PLUS. */ - if (regno < FIRST_PSEUDO_REGISTER) - { - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->from_rtx == x && ep->can_eliminate) - { - if (! mem_mode - /* Refs inside notes don't count for this purpose. */ - && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST - || GET_CODE (insn) == INSN_LIST))) - ep->ref_outside_mem = 1; - return plus_constant (ep->to_rtx, ep->previous_offset); - } - - } - else if (reg_renumber[regno] < 0 && reg_equiv_constant - && reg_equiv_constant[regno] - && ! CONSTANT_P (reg_equiv_constant[regno])) - return eliminate_regs (copy_rtx (reg_equiv_constant[regno]), - mem_mode, insn); - return x; - - case PLUS: - /* If this is the sum of an eliminable register and a constant, rework - the sum. */ - if (GET_CODE (XEXP (x, 0)) == REG - && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER - && CONSTANT_P (XEXP (x, 1))) - { - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) - { - if (! mem_mode - /* Refs inside notes don't count for this purpose. */ - && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST - || GET_CODE (insn) == INSN_LIST))) - ep->ref_outside_mem = 1; - - /* The only time we want to replace a PLUS with a REG (this - occurs when the constant operand of the PLUS is the negative - of the offset) is when we are inside a MEM. We won't want - to do so at other times because that would change the - structure of the insn in a way that reload can't handle. - We special-case the commonest situation in - eliminate_regs_in_insn, so just replace a PLUS with a - PLUS here, unless inside a MEM. */ - if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT - && INTVAL (XEXP (x, 1)) == - ep->previous_offset) - return ep->to_rtx; - else - return gen_rtx_PLUS (Pmode, ep->to_rtx, - plus_constant (XEXP (x, 1), - ep->previous_offset)); - } - - /* If the register is not eliminable, we are done since the other - operand is a constant. */ - return x; - } - - /* If this is part of an address, we want to bring any constant to the - outermost PLUS. We will do this by doing register replacement in - our operands and seeing if a constant shows up in one of them. - - We assume here this is part of an address (or a "load address" insn) - since an eliminable register is not likely to appear in any other - context. - - If we have (plus (eliminable) (reg)), we want to produce - (plus (plus (replacement) (reg) (const))). If this was part of a - normal add insn, (plus (replacement) (reg)) will be pushed as a - reload. This is the desired action. */ - - { - rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn); - rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn); - - if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) - { - /* If one side is a PLUS and the other side is a pseudo that - didn't get a hard register but has a reg_equiv_constant, - we must replace the constant here since it may no longer - be in the position of any operand. */ - if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG - && REGNO (new1) >= FIRST_PSEUDO_REGISTER - && reg_renumber[REGNO (new1)] < 0 - && reg_equiv_constant != 0 - && reg_equiv_constant[REGNO (new1)] != 0) - new1 = reg_equiv_constant[REGNO (new1)]; - else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG - && REGNO (new0) >= FIRST_PSEUDO_REGISTER - && reg_renumber[REGNO (new0)] < 0 - && reg_equiv_constant[REGNO (new0)] != 0) - new0 = reg_equiv_constant[REGNO (new0)]; - - new = form_sum (new0, new1); - - /* As above, if we are not inside a MEM we do not want to - turn a PLUS into something else. We might try to do so here - for an addition of 0 if we aren't optimizing. */ - if (! mem_mode && GET_CODE (new) != PLUS) - return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx); - else - return new; - } - } - return x; - - case MULT: - /* If this is the product of an eliminable register and a - constant, apply the distribute law and move the constant out - so that we have (plus (mult ..) ..). This is needed in order - to keep load-address insns valid. This case is pathological. - We ignore the possibility of overflow here. */ - if (GET_CODE (XEXP (x, 0)) == REG - && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER - && GET_CODE (XEXP (x, 1)) == CONST_INT) - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) - { - if (! mem_mode - /* Refs inside notes don't count for this purpose. */ - && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST - || GET_CODE (insn) == INSN_LIST))) - ep->ref_outside_mem = 1; - - return - plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)), - ep->previous_offset * INTVAL (XEXP (x, 1))); - } - - /* ... fall through ... */ - - case CALL: - case COMPARE: - case MINUS: - case DIV: case UDIV: - case MOD: case UMOD: - case AND: case IOR: case XOR: - case ROTATERT: case ROTATE: - case ASHIFTRT: case LSHIFTRT: case ASHIFT: - case NE: case EQ: - case GE: case GT: case GEU: case GTU: - case LE: case LT: case LEU: case LTU: - { - rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn); - rtx new1 - = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0; - - if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) - return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1); - } - return x; - - case EXPR_LIST: - /* If we have something in XEXP (x, 0), the usual case, eliminate it. */ - if (XEXP (x, 0)) - { - new = eliminate_regs (XEXP (x, 0), mem_mode, insn); - if (new != XEXP (x, 0)) - { - /* If this is a REG_DEAD note, it is not valid anymore. - Using the eliminated version could result in creating a - REG_DEAD note for the stack or frame pointer. */ - if (GET_MODE (x) == REG_DEAD) - return (XEXP (x, 1) - ? eliminate_regs (XEXP (x, 1), mem_mode, insn) - : NULL_RTX); - - x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1)); - } - } - - /* ... fall through ... */ - - case INSN_LIST: - /* Now do eliminations in the rest of the chain. If this was - an EXPR_LIST, this might result in allocating more memory than is - strictly needed, but it simplifies the code. */ - if (XEXP (x, 1)) - { - new = eliminate_regs (XEXP (x, 1), mem_mode, insn); - if (new != XEXP (x, 1)) - return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new); - } - return x; - - case PRE_INC: - case POST_INC: - case PRE_DEC: - case POST_DEC: - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (ep->to_rtx == XEXP (x, 0)) - { - int size = GET_MODE_SIZE (mem_mode); - - /* If more bytes than MEM_MODE are pushed, account for them. */ -#ifdef PUSH_ROUNDING - if (ep->to_rtx == stack_pointer_rtx) - size = PUSH_ROUNDING (size); -#endif - if (code == PRE_DEC || code == POST_DEC) - ep->offset += size; - else - ep->offset -= size; - } - - /* Fall through to generic unary operation case. */ - case STRICT_LOW_PART: - case NEG: case NOT: - case SIGN_EXTEND: case ZERO_EXTEND: - case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: - case FLOAT: case FIX: - case UNSIGNED_FIX: case UNSIGNED_FLOAT: - case ABS: - case SQRT: - case FFS: - new = eliminate_regs (XEXP (x, 0), mem_mode, insn); - if (new != XEXP (x, 0)) - return gen_rtx_fmt_e (code, GET_MODE (x), new); - return x; - - case SUBREG: - /* Similar to above processing, but preserve SUBREG_WORD. - Convert (subreg (mem)) to (mem) if not paradoxical. - Also, if we have a non-paradoxical (subreg (pseudo)) and the - pseudo didn't get a hard reg, we must replace this with the - eliminated version of the memory location because push_reloads - may do the replacement in certain circumstances. */ - if (GET_CODE (SUBREG_REG (x)) == REG - && (GET_MODE_SIZE (GET_MODE (x)) - <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) - && reg_equiv_memory_loc != 0 - && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0) - { -#if 0 - new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))], - mem_mode, insn); - - /* If we didn't change anything, we must retain the pseudo. */ - if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))]) - new = SUBREG_REG (x); - else - { - /* In this case, we must show that the pseudo is used in this - insn so that delete_output_reload will do the right thing. */ - if (insn != 0 && GET_CODE (insn) != EXPR_LIST - && GET_CODE (insn) != INSN_LIST) - REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, - SUBREG_REG (x)), - insn)) - = gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX); - - /* Ensure NEW isn't shared in case we have to reload it. */ - new = copy_rtx (new); - } -#else - new = SUBREG_REG (x); -#endif - } - else - new = eliminate_regs (SUBREG_REG (x), mem_mode, insn); - - if (new != XEXP (x, 0)) - { - int x_size = GET_MODE_SIZE (GET_MODE (x)); - int new_size = GET_MODE_SIZE (GET_MODE (new)); - - if (GET_CODE (new) == MEM - && ((x_size < new_size -#ifdef WORD_REGISTER_OPERATIONS - /* On these machines, combine can create rtl of the form - (set (subreg:m1 (reg:m2 R) 0) ...) - where m1 < m2, and expects something interesting to - happen to the entire word. Moreover, it will use the - (reg:m2 R) later, expecting all bits to be preserved. - So if the number of words is the same, preserve the - subreg so that push_reloads can see it. */ - && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD) -#endif - ) - || (x_size == new_size)) - ) - { - int offset = SUBREG_WORD (x) * UNITS_PER_WORD; - enum machine_mode mode = GET_MODE (x); - - if (BYTES_BIG_ENDIAN) - offset += (MIN (UNITS_PER_WORD, - GET_MODE_SIZE (GET_MODE (new))) - - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))); - - PUT_MODE (new, mode); - XEXP (new, 0) = plus_constant (XEXP (new, 0), offset); - return new; - } - else - return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x)); - } - - return x; - - case USE: - /* If using a register that is the source of an eliminate we still - think can be performed, note it cannot be performed since we don't - know how this register is used. */ - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (ep->from_rtx == XEXP (x, 0)) - ep->can_eliminate = 0; - - new = eliminate_regs (XEXP (x, 0), mem_mode, insn); - if (new != XEXP (x, 0)) - return gen_rtx_fmt_e (code, GET_MODE (x), new); - return x; - - case CLOBBER: - /* If clobbering a register that is the replacement register for an - elimination we still think can be performed, note that it cannot - be performed. Otherwise, we need not be concerned about it. */ - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (ep->to_rtx == XEXP (x, 0)) - ep->can_eliminate = 0; - - new = eliminate_regs (XEXP (x, 0), mem_mode, insn); - if (new != XEXP (x, 0)) - return gen_rtx_fmt_e (code, GET_MODE (x), new); - return x; - - case ASM_OPERANDS: - { - rtx *temp_vec; - /* Properly handle sharing input and constraint vectors. */ - if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec) - { - /* When we come to a new vector not seen before, - scan all its elements; keep the old vector if none - of them changes; otherwise, make a copy. */ - old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x); - temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx)); - for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) - temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i), - mem_mode, insn); - - for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) - if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i)) - break; - - if (i == ASM_OPERANDS_INPUT_LENGTH (x)) - new_asm_operands_vec = old_asm_operands_vec; - else - new_asm_operands_vec - = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec); - } - - /* If we had to copy the vector, copy the entire ASM_OPERANDS. */ - if (new_asm_operands_vec == old_asm_operands_vec) - return x; - - new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x), - ASM_OPERANDS_OUTPUT_CONSTRAINT (x), - ASM_OPERANDS_OUTPUT_IDX (x), - new_asm_operands_vec, - ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x), - ASM_OPERANDS_SOURCE_FILE (x), - ASM_OPERANDS_SOURCE_LINE (x)); - new->volatil = x->volatil; - return new; - } - - case SET: - /* Check for setting a register that we know about. */ - if (GET_CODE (SET_DEST (x)) == REG) - { - /* See if this is setting the replacement register for an - elimination. - - If DEST is the hard frame pointer, we do nothing because we - assume that all assignments to the frame pointer are for - non-local gotos and are being done at a time when they are valid - and do not disturb anything else. Some machines want to - eliminate a fake argument pointer (or even a fake frame pointer) - with either the real frame or the stack pointer. Assignments to - the hard frame pointer must not prevent this elimination. */ - - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->to_rtx == SET_DEST (x) - && SET_DEST (x) != hard_frame_pointer_rtx) - { - /* If it is being incremented, adjust the offset. Otherwise, - this elimination can't be done. */ - rtx src = SET_SRC (x); - - if (GET_CODE (src) == PLUS - && XEXP (src, 0) == SET_DEST (x) - && GET_CODE (XEXP (src, 1)) == CONST_INT) - ep->offset -= INTVAL (XEXP (src, 1)); - else - ep->can_eliminate = 0; - } - - /* Now check to see we are assigning to a register that can be - eliminated. If so, it must be as part of a PARALLEL, since we - will not have been called if this is a single SET. So indicate - that we can no longer eliminate this reg. */ - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate) - ep->can_eliminate = 0; - } - - /* Now avoid the loop below in this common case. */ - { - rtx new0 = eliminate_regs (SET_DEST (x), 0, insn); - rtx new1 = eliminate_regs (SET_SRC (x), 0, insn); - - /* If SET_DEST changed from a REG to a MEM and INSN is an insn, - write a CLOBBER insn. */ - if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM - && insn != 0 && GET_CODE (insn) != EXPR_LIST - && GET_CODE (insn) != INSN_LIST) - emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn); - - if (new0 != SET_DEST (x) || new1 != SET_SRC (x)) - return gen_rtx_SET (VOIDmode, new0, new1); - } - - return x; - - case MEM: - /* This is only for the benefit of the debugging backends, which call - eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are - removed after CSE. */ - if (GET_CODE (XEXP (x, 0)) == ADDRESSOF) - return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn); - - /* Our only special processing is to pass the mode of the MEM to our - recursive call and copy the flags. While we are here, handle this - case more efficiently. */ - new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn); - if (new != XEXP (x, 0)) - { - new = gen_rtx_MEM (GET_MODE (x), new); - new->volatil = x->volatil; - new->unchanging = x->unchanging; - new->in_struct = x->in_struct; - return new; - } - else - return x; - - default: - break; - } - - /* Process each of our operands recursively. If any have changed, make a - copy of the rtx. */ - fmt = GET_RTX_FORMAT (code); - for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) - { - if (*fmt == 'e') - { - new = eliminate_regs (XEXP (x, i), mem_mode, insn); - if (new != XEXP (x, i) && ! copied) - { - rtx new_x = rtx_alloc (code); - bcopy ((char *) x, (char *) new_x, - (sizeof (*new_x) - sizeof (new_x->fld) - + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code))); - x = new_x; - copied = 1; - } - XEXP (x, i) = new; - } - else if (*fmt == 'E') - { - int copied_vec = 0; - for (j = 0; j < XVECLEN (x, i); j++) - { - new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn); - if (new != XVECEXP (x, i, j) && ! copied_vec) - { - rtvec new_v = gen_rtvec_vv (XVECLEN (x, i), - XVEC (x, i)->elem); - if (! copied) - { - rtx new_x = rtx_alloc (code); - bcopy ((char *) x, (char *) new_x, - (sizeof (*new_x) - sizeof (new_x->fld) - + (sizeof (new_x->fld[0]) - * GET_RTX_LENGTH (code)))); - x = new_x; - copied = 1; - } - XVEC (x, i) = new_v; - copied_vec = 1; - } - XVECEXP (x, i, j) = new; - } - } - } - - return x; -} - -/* Scan INSN and eliminate all eliminable registers in it. - - If REPLACE is nonzero, do the replacement destructively. Also - delete the insn as dead it if it is setting an eliminable register. - - If REPLACE is zero, do all our allocations in reload_obstack. - - If no eliminations were done and this insn doesn't require any elimination - processing (these are not identical conditions: it might be updating sp, - but not referencing fp; this needs to be seen during reload_as_needed so - that the offset between fp and sp can be taken into consideration), zero - is returned. Otherwise, 1 is returned. */ - -static int -eliminate_regs_in_insn (insn, replace) - rtx insn; - int replace; -{ - rtx old_body = PATTERN (insn); - rtx old_set = single_set (insn); - rtx new_body; - int val = 0; - struct elim_table *ep; - - if (! replace) - push_obstacks (&reload_obstack, &reload_obstack); - - if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG - && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER) - { - /* Check for setting an eliminable register. */ - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate) - { -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - /* If this is setting the frame pointer register to the - hardware frame pointer register and this is an elimination - that will be done (tested above), this insn is really - adjusting the frame pointer downward to compensate for - the adjustment done before a nonlocal goto. */ - if (ep->from == FRAME_POINTER_REGNUM - && ep->to == HARD_FRAME_POINTER_REGNUM) - { - rtx src = SET_SRC (old_set); - int offset = 0, ok = 0; - rtx prev_insn, prev_set; - - if (src == ep->to_rtx) - offset = 0, ok = 1; - else if (GET_CODE (src) == PLUS - && GET_CODE (XEXP (src, 0)) == CONST_INT - && XEXP (src, 1) == ep->to_rtx) - offset = INTVAL (XEXP (src, 0)), ok = 1; - else if (GET_CODE (src) == PLUS - && GET_CODE (XEXP (src, 1)) == CONST_INT - && XEXP (src, 0) == ep->to_rtx) - offset = INTVAL (XEXP (src, 1)), ok = 1; - else if ((prev_insn = prev_nonnote_insn (insn)) != 0 - && (prev_set = single_set (prev_insn)) != 0 - && rtx_equal_p (SET_DEST (prev_set), src)) - { - src = SET_SRC (prev_set); - if (src == ep->to_rtx) - offset = 0, ok = 1; - else if (GET_CODE (src) == PLUS - && GET_CODE (XEXP (src, 0)) == CONST_INT - && XEXP (src, 1) == ep->to_rtx) - offset = INTVAL (XEXP (src, 0)), ok = 1; - else if (GET_CODE (src) == PLUS - && GET_CODE (XEXP (src, 1)) == CONST_INT - && XEXP (src, 0) == ep->to_rtx) - offset = INTVAL (XEXP (src, 1)), ok = 1; - } - - if (ok) - { - if (replace) - { - rtx src - = plus_constant (ep->to_rtx, offset - ep->offset); - - /* First see if this insn remains valid when we - make the change. If not, keep the INSN_CODE - the same and let reload fit it up. */ - validate_change (insn, &SET_SRC (old_set), src, 1); - validate_change (insn, &SET_DEST (old_set), - ep->to_rtx, 1); - if (! apply_change_group ()) - { - SET_SRC (old_set) = src; - SET_DEST (old_set) = ep->to_rtx; - } - } - - val = 1; - goto done; - } - } -#endif - - /* In this case this insn isn't serving a useful purpose. We - will delete it in reload_as_needed once we know that this - elimination is, in fact, being done. - - If REPLACE isn't set, we can't delete this insn, but needn't - process it since it won't be used unless something changes. */ - if (replace) - delete_dead_insn (insn); - val = 1; - goto done; - } - - /* Check for (set (reg) (plus (reg from) (offset))) where the offset - in the insn is the negative of the offset in FROM. Substitute - (set (reg) (reg to)) for the insn and change its code. - - We have to do this here, rather than in eliminate_regs, so that we can - change the insn code. */ - - if (GET_CODE (SET_SRC (old_set)) == PLUS - && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG - && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT) - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; - ep++) - if (ep->from_rtx == XEXP (SET_SRC (old_set), 0) - && ep->can_eliminate) - { - /* We must stop at the first elimination that will be used. - If this one would replace the PLUS with a REG, do it - now. Otherwise, quit the loop and let eliminate_regs - do its normal replacement. */ - if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1))) - { - /* We assume here that we don't need a PARALLEL of - any CLOBBERs for this assignment. There's not - much we can do if we do need it. */ - PATTERN (insn) = gen_rtx_SET (VOIDmode, - SET_DEST (old_set), - ep->to_rtx); - INSN_CODE (insn) = -1; - val = 1; - goto done; - } - - break; - } - } - - old_asm_operands_vec = 0; - - /* Replace the body of this insn with a substituted form. If we changed - something, return non-zero. - - If we are replacing a body that was a (set X (plus Y Z)), try to - re-recognize the insn. We do this in case we had a simple addition - but now can do this as a load-address. This saves an insn in this - common case. */ - - new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX); - if (new_body != old_body) - { - /* If we aren't replacing things permanently and we changed something, - make another copy to ensure that all the RTL is new. Otherwise - things can go wrong if find_reload swaps commutative operands - and one is inside RTL that has been copied while the other is not. */ - - /* Don't copy an asm_operands because (1) there's no need and (2) - copy_rtx can't do it properly when there are multiple outputs. */ - if (! replace && asm_noperands (old_body) < 0) - new_body = copy_rtx (new_body); - - /* If we had a move insn but now we don't, rerecognize it. This will - cause spurious re-recognition if the old move had a PARALLEL since - the new one still will, but we can't call single_set without - having put NEW_BODY into the insn and the re-recognition won't - hurt in this rare case. */ - if (old_set != 0 - && ((GET_CODE (SET_SRC (old_set)) == REG - && (GET_CODE (new_body) != SET - || GET_CODE (SET_SRC (new_body)) != REG)) - /* If this was a load from or store to memory, compare - the MEM in recog_operand to the one in the insn. If they - are not equal, then rerecognize the insn. */ - || (old_set != 0 - && ((GET_CODE (SET_SRC (old_set)) == MEM - && SET_SRC (old_set) != recog_operand[1]) - || (GET_CODE (SET_DEST (old_set)) == MEM - && SET_DEST (old_set) != recog_operand[0]))) - /* If this was an add insn before, rerecognize. */ - || GET_CODE (SET_SRC (old_set)) == PLUS)) - { - if (! validate_change (insn, &PATTERN (insn), new_body, 0)) - /* If recognition fails, store the new body anyway. - It's normal to have recognition failures here - due to bizarre memory addresses; reloading will fix them. */ - PATTERN (insn) = new_body; - } - else - PATTERN (insn) = new_body; - - val = 1; - } - - /* Loop through all elimination pairs. See if any have changed. - - We also detect a cases where register elimination cannot be done, - namely, if a register would be both changed and referenced outside a MEM - in the resulting insn since such an insn is often undefined and, even if - not, we cannot know what meaning will be given to it. Note that it is - valid to have a register used in an address in an insn that changes it - (presumably with a pre- or post-increment or decrement). - - If anything changes, return nonzero. */ - - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - if (ep->previous_offset != ep->offset && ep->ref_outside_mem) - ep->can_eliminate = 0; - - ep->ref_outside_mem = 0; - - if (ep->previous_offset != ep->offset) - val = 1; - } - - done: - /* If we changed something, perform elimination in REG_NOTES. This is - needed even when REPLACE is zero because a REG_DEAD note might refer - to a register that we eliminate and could cause a different number - of spill registers to be needed in the final reload pass than in - the pre-passes. */ - if (val && REG_NOTES (insn) != 0) - REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn)); - - if (! replace) - pop_obstacks (); - - return val; -} - -/* Loop through all elimination pairs. - Recalculate the number not at initial offset. - - Compute the maximum offset (minimum offset if the stack does not - grow downward) for each elimination pair. */ - -static void -update_eliminable_offsets () -{ - struct elim_table *ep; - - num_not_at_initial_offset = 0; - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - ep->previous_offset = ep->offset; - if (ep->can_eliminate && ep->offset != ep->initial_offset) - num_not_at_initial_offset++; - } -} - -/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register - replacement we currently believe is valid, mark it as not eliminable if X - modifies DEST in any way other than by adding a constant integer to it. - - If DEST is the frame pointer, we do nothing because we assume that - all assignments to the hard frame pointer are nonlocal gotos and are being - done at a time when they are valid and do not disturb anything else. - Some machines want to eliminate a fake argument pointer with either the - frame or stack pointer. Assignments to the hard frame pointer must not - prevent this elimination. - - Called via note_stores from reload before starting its passes to scan - the insns of the function. */ - -static void -mark_not_eliminable (dest, x) - rtx dest; - rtx x; -{ - register unsigned int i; - - /* A SUBREG of a hard register here is just changing its mode. We should - not see a SUBREG of an eliminable hard register, but check just in - case. */ - if (GET_CODE (dest) == SUBREG) - dest = SUBREG_REG (dest); - - if (dest == hard_frame_pointer_rtx) - return; - - for (i = 0; i < NUM_ELIMINABLE_REGS; i++) - if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx - && (GET_CODE (x) != SET - || GET_CODE (SET_SRC (x)) != PLUS - || XEXP (SET_SRC (x), 0) != dest - || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT)) - { - reg_eliminate[i].can_eliminate_previous - = reg_eliminate[i].can_eliminate = 0; - num_eliminable--; - } -} - -/* Verify that the initial elimination offsets did not change since the - last call to set_initial_elim_offsets. This is used to catch cases - where something illegal happened during reload_as_needed that could - cause incorrect code to be generated if we did not check for it. */ -static void -verify_initial_elim_offsets () -{ - int t; - -#ifdef ELIMINABLE_REGS - struct elim_table *ep; - - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t); - if (t != ep->initial_offset) - abort (); - } -#else - INITIAL_FRAME_POINTER_OFFSET (t); - if (t != reg_eliminate[0].initial_offset) - abort (); -#endif -} - -/* Reset all offsets on eliminable registers to their initial values. */ -static void -set_initial_elim_offsets () -{ - struct elim_table *ep = reg_eliminate; - -#ifdef ELIMINABLE_REGS - for (; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset); - ep->previous_offset = ep->offset = ep->initial_offset; - } -#else - INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset); - ep->previous_offset = ep->offset = ep->initial_offset; -#endif - - num_not_at_initial_offset = 0; -} - -/* Initialize the known label offsets. - Set a known offset for each forced label to be at the initial offset - of each elimination. We do this because we assume that all - computed jumps occur from a location where each elimination is - at its initial offset. - For all other labels, show that we don't know the offsets. */ - -static void -set_initial_label_offsets () -{ - rtx x; - bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels); - - for (x = forced_labels; x; x = XEXP (x, 1)) - if (XEXP (x, 0)) - set_label_offsets (XEXP (x, 0), NULL_RTX, 1); -} - -/* Set all elimination offsets to the known values for the code label given - by INSN. */ -static void -set_offsets_for_label (insn) - rtx insn; -{ - unsigned int i; - int label_nr = CODE_LABEL_NUMBER (insn); - struct elim_table *ep; - - num_not_at_initial_offset = 0; - for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++) - { - ep->offset = ep->previous_offset = offsets_at[label_nr][i]; - if (ep->can_eliminate && ep->offset != ep->initial_offset) - num_not_at_initial_offset++; - } -} - -/* See if anything that happened changes which eliminations are valid. - For example, on the Sparc, whether or not the frame pointer can - be eliminated can depend on what registers have been used. We need - not check some conditions again (such as flag_omit_frame_pointer) - since they can't have changed. */ - -static void -update_eliminables (pset) - HARD_REG_SET *pset; -{ -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - int previous_frame_pointer_needed = frame_pointer_needed; -#endif - struct elim_table *ep; - - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED) -#ifdef ELIMINABLE_REGS - || ! CAN_ELIMINATE (ep->from, ep->to) -#endif - ) - ep->can_eliminate = 0; - - /* Look for the case where we have discovered that we can't replace - register A with register B and that means that we will now be - trying to replace register A with register C. This means we can - no longer replace register C with register B and we need to disable - such an elimination, if it exists. This occurs often with A == ap, - B == sp, and C == fp. */ - - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - struct elim_table *op; - register int new_to = -1; - - if (! ep->can_eliminate && ep->can_eliminate_previous) - { - /* Find the current elimination for ep->from, if there is a - new one. */ - for (op = reg_eliminate; - op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) - if (op->from == ep->from && op->can_eliminate) - { - new_to = op->to; - break; - } - - /* See if there is an elimination of NEW_TO -> EP->TO. If so, - disable it. */ - for (op = reg_eliminate; - op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) - if (op->from == new_to && op->to == ep->to) - op->can_eliminate = 0; - } - } - - /* See if any registers that we thought we could eliminate the previous - time are no longer eliminable. If so, something has changed and we - must spill the register. Also, recompute the number of eliminable - registers and see if the frame pointer is needed; it is if there is - no elimination of the frame pointer that we can perform. */ - - frame_pointer_needed = 1; - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM - && ep->to != HARD_FRAME_POINTER_REGNUM) - frame_pointer_needed = 0; - - if (! ep->can_eliminate && ep->can_eliminate_previous) - { - ep->can_eliminate_previous = 0; - SET_HARD_REG_BIT (*pset, ep->from); - num_eliminable--; - } - } - -#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM - /* If we didn't need a frame pointer last time, but we do now, spill - the hard frame pointer. */ - if (frame_pointer_needed && ! previous_frame_pointer_needed) - SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM); -#endif -} - -/* Initialize the table of registers to eliminate. */ -static void -init_elim_table () -{ - struct elim_table *ep; -#ifdef ELIMINABLE_REGS - struct elim_table_1 *ep1; -#endif - - if (!reg_eliminate) - { - reg_eliminate = (struct elim_table *) - xmalloc(sizeof(struct elim_table) * NUM_ELIMINABLE_REGS); - bzero ((PTR) reg_eliminate, - sizeof(struct elim_table) * NUM_ELIMINABLE_REGS); - } - - /* Does this function require a frame pointer? */ - - frame_pointer_needed = (! flag_omit_frame_pointer -#ifdef EXIT_IGNORE_STACK - /* ?? If EXIT_IGNORE_STACK is set, we will not save - and restore sp for alloca. So we can't eliminate - the frame pointer in that case. At some point, - we should improve this by emitting the - sp-adjusting insns for this case. */ - || (current_function_calls_alloca - && EXIT_IGNORE_STACK) -#endif - || FRAME_POINTER_REQUIRED); - - num_eliminable = 0; - -#ifdef ELIMINABLE_REGS - for (ep = reg_eliminate, ep1 = reg_eliminate_1; - ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++) - { - ep->from = ep1->from; - ep->to = ep1->to; - ep->can_eliminate = ep->can_eliminate_previous - = (CAN_ELIMINATE (ep->from, ep->to) - && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed)); - } -#else - reg_eliminate[0].from = reg_eliminate_1[0].from; - reg_eliminate[0].to = reg_eliminate_1[0].to; - reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous - = ! frame_pointer_needed; -#endif - - /* Count the number of eliminable registers and build the FROM and TO - REG rtx's. Note that code in gen_rtx will cause, e.g., - gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx. - We depend on this. */ - for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) - { - num_eliminable += ep->can_eliminate; - ep->from_rtx = gen_rtx_REG (Pmode, ep->from); - ep->to_rtx = gen_rtx_REG (Pmode, ep->to); - } -} - -/* Kick all pseudos out of hard register REGNO. - If DUMPFILE is nonzero, log actions taken on that file. - - If CANT_ELIMINATE is nonzero, it means that we are doing this spill - because we found we can't eliminate some register. In the case, no pseudos - are allowed to be in the register, even if they are only in a block that - doesn't require spill registers, unlike the case when we are spilling this - hard reg to produce another spill register. - - Return nonzero if any pseudos needed to be kicked out. */ - -static void -spill_hard_reg (regno, dumpfile, cant_eliminate) - register int regno; - FILE *dumpfile; - int cant_eliminate; -{ - register int i; - - if (cant_eliminate) - { - SET_HARD_REG_BIT (bad_spill_regs_global, regno); - regs_ever_live[regno] = 1; - } - - /* Spill every pseudo reg that was allocated to this reg - or to something that overlaps this reg. */ - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - if (reg_renumber[i] >= 0 - && reg_renumber[i] <= regno - && (reg_renumber[i] - + HARD_REGNO_NREGS (reg_renumber[i], - PSEUDO_REGNO_MODE (i)) - > regno)) - SET_REGNO_REG_SET (spilled_pseudos, i); -} - -/* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET - from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */ -static void -ior_hard_reg_set (set1, set2) - HARD_REG_SET *set1, *set2; -{ - IOR_HARD_REG_SET (*set1, *set2); -} - -/* After find_reload_regs has been run for all insn that need reloads, - and/or spill_hard_regs was called, this function is used to actually - spill pseudo registers and try to reallocate them. It also sets up the - spill_regs array for use by choose_reload_regs. */ - -static int -finish_spills (global, dumpfile) - int global; - FILE *dumpfile; -{ - struct insn_chain *chain; - int something_changed = 0; - int i; - - /* Build the spill_regs array for the function. */ - /* If there are some registers still to eliminate and one of the spill regs - wasn't ever used before, additional stack space may have to be - allocated to store this register. Thus, we may have changed the offset - between the stack and frame pointers, so mark that something has changed. - - One might think that we need only set VAL to 1 if this is a call-used - register. However, the set of registers that must be saved by the - prologue is not identical to the call-used set. For example, the - register used by the call insn for the return PC is a call-used register, - but must be saved by the prologue. */ - - n_spills = 0; - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (TEST_HARD_REG_BIT (used_spill_regs, i)) - { - spill_reg_order[i] = n_spills; - spill_regs[n_spills++] = i; - if (num_eliminable && ! regs_ever_live[i]) - something_changed = 1; - regs_ever_live[i] = 1; - } - else - spill_reg_order[i] = -1; - - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - if (REGNO_REG_SET_P (spilled_pseudos, i)) - { - /* Record the current hard register the pseudo is allocated to in - pseudo_previous_regs so we avoid reallocating it to the same - hard reg in a later pass. */ - if (reg_renumber[i] < 0) - abort (); - SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]); - /* Mark it as no longer having a hard register home. */ - reg_renumber[i] = -1; - /* We will need to scan everything again. */ - something_changed = 1; - } - - /* Retry global register allocation if possible. */ - if (global) - { - bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET)); - /* For every insn that needs reloads, set the registers used as spill - regs in pseudo_forbidden_regs for every pseudo live across the - insn. */ - for (chain = insns_need_reload; chain; chain = chain->next_need_reload) - { - EXECUTE_IF_SET_IN_REG_SET - (chain->live_before, FIRST_PSEUDO_REGISTER, i, - { - ior_hard_reg_set (pseudo_forbidden_regs + i, - &chain->used_spill_regs); - }); - EXECUTE_IF_SET_IN_REG_SET - (chain->live_after, FIRST_PSEUDO_REGISTER, i, - { - ior_hard_reg_set (pseudo_forbidden_regs + i, - &chain->used_spill_regs); - }); - } - - /* Retry allocating the spilled pseudos. For each reg, merge the - various reg sets that indicate which hard regs can't be used, - and call retry_global_alloc. - We change spill_pseudos here to only contain pseudos that did not - get a new hard register. */ - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - if (reg_old_renumber[i] != reg_renumber[i]) - { - HARD_REG_SET forbidden; - COPY_HARD_REG_SET (forbidden, bad_spill_regs_global); - IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]); - IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]); - retry_global_alloc (i, forbidden); - if (reg_renumber[i] >= 0) - CLEAR_REGNO_REG_SET (spilled_pseudos, i); - } - } - - /* Fix up the register information in the insn chain. - This involves deleting those of the spilled pseudos which did not get - a new hard register home from the live_{before,after} sets. */ - for (chain = reload_insn_chain; chain; chain = chain->next) - { - HARD_REG_SET used_by_pseudos; - HARD_REG_SET used_by_pseudos2; - - AND_COMPL_REG_SET (chain->live_before, spilled_pseudos); - AND_COMPL_REG_SET (chain->live_after, spilled_pseudos); - - /* Mark any unallocated hard regs as available for spills. That - makes inheritance work somewhat better. */ - if (chain->need_reload) - { - REG_SET_TO_HARD_REG_SET (used_by_pseudos, chain->live_before); - REG_SET_TO_HARD_REG_SET (used_by_pseudos2, chain->live_after); - IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2); - - /* Save the old value for the sanity test below. */ - COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs); - - compute_use_by_pseudos (&used_by_pseudos, chain->live_before); - compute_use_by_pseudos (&used_by_pseudos, chain->live_after); - COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos); - AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs); - - /* Make sure we only enlarge the set. */ - GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok); - abort (); - ok:; - } - } - - /* Let alter_reg modify the reg rtx's for the modified pseudos. */ - for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) - { - int regno = reg_renumber[i]; - if (reg_old_renumber[i] == regno) - continue; - - alter_reg (i, reg_old_renumber[i]); - reg_old_renumber[i] = regno; - if (dumpfile) - { - if (regno == -1) - fprintf (dumpfile, " Register %d now on stack.\n\n", i); - else - fprintf (dumpfile, " Register %d now in %d.\n\n", - i, reg_renumber[i]); - } - } - - return something_changed; -} - -/* Find all paradoxical subregs within X and update reg_max_ref_width. - Also mark any hard registers used to store user variables as - forbidden from being used for spill registers. */ - -static void -scan_paradoxical_subregs (x) - register rtx x; -{ - register int i; - register char *fmt; - register enum rtx_code code = GET_CODE (x); - - switch (code) - { - case REG: -#if 0 - if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER - && REG_USERVAR_P (x)) - SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x)); -#endif - return; - - case CONST_INT: - case CONST: - case SYMBOL_REF: - case LABEL_REF: - case CONST_DOUBLE: - case CC0: - case PC: - case USE: - case CLOBBER: - return; - - case SUBREG: - if (GET_CODE (SUBREG_REG (x)) == REG - && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) - reg_max_ref_width[REGNO (SUBREG_REG (x))] - = GET_MODE_SIZE (GET_MODE (x)); - return; - - default: - break; - } - - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - scan_paradoxical_subregs (XEXP (x, i)); - else if (fmt[i] == 'E') - { - register int j; - for (j = XVECLEN (x, i) - 1; j >=0; j--) - scan_paradoxical_subregs (XVECEXP (x, i, j)); - } - } -} - -static int -hard_reg_use_compare (p1p, p2p) - const GENERIC_PTR p1p; - const GENERIC_PTR p2p; -{ - struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p; - struct hard_reg_n_uses *p2 = (struct hard_reg_n_uses *)p2p; - int bad1 = TEST_HARD_REG_BIT (bad_spill_regs, p1->regno); - int bad2 = TEST_HARD_REG_BIT (bad_spill_regs, p2->regno); - if (bad1 && bad2) - return p1->regno - p2->regno; - if (bad1) - return 1; - if (bad2) - return -1; - if (p1->uses > p2->uses) - return 1; - if (p1->uses < p2->uses) - return -1; - /* If regs are equally good, sort by regno, - so that the results of qsort leave nothing to chance. */ - return p1->regno - p2->regno; -} - -/* Used for communication between order_regs_for_reload and count_pseudo. - Used to avoid counting one pseudo twice. */ -static regset pseudos_counted; - -/* Update the costs in N_USES, considering that pseudo REG is live. */ -static void -count_pseudo (n_uses, reg) - struct hard_reg_n_uses *n_uses; - int reg; -{ - int r = reg_renumber[reg]; - int nregs; - - if (REGNO_REG_SET_P (pseudos_counted, reg)) - return; - SET_REGNO_REG_SET (pseudos_counted, reg); - - if (r < 0) - abort (); - - nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg)); - while (nregs-- > 0) - n_uses[r++].uses += REG_N_REFS (reg); -} -/* Choose the order to consider regs for use as reload registers - based on how much trouble would be caused by spilling one. - Store them in order of decreasing preference in potential_reload_regs. */ - -static void -order_regs_for_reload (chain) - struct insn_chain *chain; -{ - register int i; - register int o = 0; - struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER]; - - pseudos_counted = ALLOCA_REG_SET (); - - COPY_HARD_REG_SET (bad_spill_regs, bad_spill_regs_global); - - /* Count number of uses of each hard reg by pseudo regs allocated to it - and then order them by decreasing use. */ - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int j; - - hard_reg_n_uses[i].regno = i; - hard_reg_n_uses[i].uses = 0; - - /* Test the various reasons why we can't use a register for - spilling in this insn. */ - if (fixed_regs[i] - || REGNO_REG_SET_P (chain->live_before, i) - || REGNO_REG_SET_P (chain->live_after, i)) - { - SET_HARD_REG_BIT (bad_spill_regs, i); - continue; - } - - /* Now find out which pseudos are allocated to it, and update - hard_reg_n_uses. */ - CLEAR_REG_SET (pseudos_counted); - - EXECUTE_IF_SET_IN_REG_SET - (chain->live_before, FIRST_PSEUDO_REGISTER, j, - { - count_pseudo (hard_reg_n_uses, j); - }); - EXECUTE_IF_SET_IN_REG_SET - (chain->live_after, FIRST_PSEUDO_REGISTER, j, - { - count_pseudo (hard_reg_n_uses, j); - }); - } - - FREE_REG_SET (pseudos_counted); - - /* Prefer registers not so far used, for use in temporary loading. - Among them, if REG_ALLOC_ORDER is defined, use that order. - Otherwise, prefer registers not preserved by calls. */ - -#ifdef REG_ALLOC_ORDER - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - int regno = reg_alloc_order[i]; - - if (hard_reg_n_uses[regno].uses == 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, regno)) - potential_reload_regs[o++] = regno; - } -#else - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i] - && ! TEST_HARD_REG_BIT (bad_spill_regs, i)) - potential_reload_regs[o++] = i; - } - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i] - && ! TEST_HARD_REG_BIT (bad_spill_regs, i)) - potential_reload_regs[o++] = i; - } -#endif - - qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER, - sizeof hard_reg_n_uses[0], hard_reg_use_compare); - - /* Now add the regs that are already used, - preferring those used less often. The fixed and otherwise forbidden - registers will be at the end of this list. */ - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (hard_reg_n_uses[i].uses != 0 - && ! TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno)) - potential_reload_regs[o++] = hard_reg_n_uses[i].regno; - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (TEST_HARD_REG_BIT (bad_spill_regs, hard_reg_n_uses[i].regno)) - potential_reload_regs[o++] = hard_reg_n_uses[i].regno; -} - -/* Reload pseudo-registers into hard regs around each insn as needed. - Additional register load insns are output before the insn that needs it - and perhaps store insns after insns that modify the reloaded pseudo reg. - - reg_last_reload_reg and reg_reloaded_contents keep track of - which registers are already available in reload registers. - We update these for the reloads that we perform, - as the insns are scanned. */ - -static void -reload_as_needed (live_known) - int live_known; -{ - struct insn_chain *chain; -#if defined (AUTO_INC_DEC) || defined (INSN_CLOBBERS_REGNO_P) - register int i; -#endif - rtx x; - - bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx); - bzero ((char *) spill_reg_store, sizeof spill_reg_store); - reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx)); - bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx)); - reg_has_output_reload = (char *) alloca (max_regno); - CLEAR_HARD_REG_SET (reg_reloaded_valid); - - set_initial_elim_offsets (); - - for (chain = reload_insn_chain; chain; chain = chain->next) - { - rtx prev; - rtx insn = chain->insn; - rtx old_next = NEXT_INSN (insn); - - /* If we pass a label, copy the offsets from the label information - into the current offsets of each elimination. */ - if (GET_CODE (insn) == CODE_LABEL) - set_offsets_for_label (insn); - - else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') - { - rtx oldpat = PATTERN (insn); - - /* If this is a USE and CLOBBER of a MEM, ensure that any - references to eliminable registers have been removed. */ - - if ((GET_CODE (PATTERN (insn)) == USE - || GET_CODE (PATTERN (insn)) == CLOBBER) - && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM) - XEXP (XEXP (PATTERN (insn), 0), 0) - = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0), - GET_MODE (XEXP (PATTERN (insn), 0)), - NULL_RTX); - - /* If we need to do register elimination processing, do so. - This might delete the insn, in which case we are done. */ - if ((num_eliminable || num_eliminable_invariants) && chain->need_elim) - { - eliminate_regs_in_insn (insn, 1); - if (GET_CODE (insn) == NOTE) - { - update_eliminable_offsets (); - continue; - } - } - - /* If need_elim is nonzero but need_reload is zero, one might think - that we could simply set n_reloads to 0. However, find_reloads - could have done some manipulation of the insn (such as swapping - commutative operands), and these manipulations are lost during - the first pass for every insn that needs register elimination. - So the actions of find_reloads must be redone here. */ - - if (! chain->need_elim && ! chain->need_reload - && ! chain->need_operand_change) - n_reloads = 0; - /* First find the pseudo regs that must be reloaded for this insn. - This info is returned in the tables reload_... (see reload.h). - Also modify the body of INSN by substituting RELOAD - rtx's for those pseudo regs. */ - else - { - bzero (reg_has_output_reload, max_regno); - CLEAR_HARD_REG_SET (reg_is_output_reload); - - find_reloads (insn, 1, spill_indirect_levels, live_known, - spill_reg_order); - } - - if (num_eliminable && chain->need_elim) - update_eliminable_offsets (); - - if (n_reloads > 0) - { - rtx next = NEXT_INSN (insn); - rtx p; - - prev = PREV_INSN (insn); - - /* Now compute which reload regs to reload them into. Perhaps - reusing reload regs from previous insns, or else output - load insns to reload them. Maybe output store insns too. - Record the choices of reload reg in reload_reg_rtx. */ - choose_reload_regs (chain); - - /* Merge any reloads that we didn't combine for fear of - increasing the number of spill registers needed but now - discover can be safely merged. */ - if (SMALL_REGISTER_CLASSES) - merge_assigned_reloads (insn); - - /* Generate the insns to reload operands into or out of - their reload regs. */ - emit_reload_insns (chain); - - /* Substitute the chosen reload regs from reload_reg_rtx - into the insn's body (or perhaps into the bodies of other - load and store insn that we just made for reloading - and that we moved the structure into). */ - subst_reloads (); - - /* If this was an ASM, make sure that all the reload insns - we have generated are valid. If not, give an error - and delete them. */ - - if (asm_noperands (PATTERN (insn)) >= 0) - for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p)) - if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i' - && (recog_memoized (p) < 0 - || (extract_insn (p), ! constrain_operands (1)))) - { - error_for_asm (insn, - "`asm' operand requires impossible reload"); - PUT_CODE (p, NOTE); - NOTE_SOURCE_FILE (p) = 0; - NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED; - } - } - /* Any previously reloaded spilled pseudo reg, stored in this insn, - is no longer validly lying around to save a future reload. - Note that this does not detect pseudos that were reloaded - for this insn in order to be stored in - (obeying register constraints). That is correct; such reload - registers ARE still valid. */ - note_stores (oldpat, forget_old_reloads_1); - - /* There may have been CLOBBER insns placed after INSN. So scan - between INSN and NEXT and use them to forget old reloads. */ - for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x)) - if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER) - note_stores (PATTERN (x), forget_old_reloads_1); - -#ifdef AUTO_INC_DEC - /* Likewise for regs altered by auto-increment in this insn. - REG_INC notes have been changed by reloading: - find_reloads_address_1 records substitutions for them, - which have been performed by subst_reloads above. */ - for (i = n_reloads - 1; i >= 0; i--) - { - rtx in_reg = reload_in_reg[i]; - if (in_reg) - { - enum rtx_code code = GET_CODE (in_reg); - /* PRE_INC / PRE_DEC will have the reload register ending up - with the same value as the stack slot, but that doesn't - hold true for POST_INC / POST_DEC. Either we have to - convert the memory access to a true POST_INC / POST_DEC, - or we can't use the reload register for inheritance. */ - if ((code == POST_INC || code == POST_DEC) - && TEST_HARD_REG_BIT (reg_reloaded_valid, - REGNO (reload_reg_rtx[i])) - /* Make sure it is the inc/dec pseudo, and not - some other (e.g. output operand) pseudo. */ - && (reg_reloaded_contents[REGNO (reload_reg_rtx[i])] - == REGNO (XEXP (in_reg, 0)))) - - { - rtx reload_reg = reload_reg_rtx[i]; - enum machine_mode mode = GET_MODE (reload_reg); - int n = 0; - rtx p; - - for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p)) - { - /* We really want to ignore REG_INC notes here, so - use PATTERN (p) as argument to reg_set_p . */ - if (reg_set_p (reload_reg, PATTERN (p))) - break; - n = count_occurrences (PATTERN (p), reload_reg); - if (! n) - continue; - if (n == 1) - { - n = validate_replace_rtx (reload_reg, - gen_rtx (code, mode, - reload_reg), - p); - - /* We must also verify that the constraints - are met after the replacement. */ - extract_insn (p); - if (n) - n = constrain_operands (1); - else - break; - - /* If the constraints were not met, then - undo the replacement. */ - if (!n) - { - validate_replace_rtx (gen_rtx (code, mode, - reload_reg), - reload_reg, p); - break; - } - - } - break; - } - if (n == 1) - { - REG_NOTES (p) - = gen_rtx_EXPR_LIST (REG_INC, reload_reg, - REG_NOTES (p)); - /* Mark this as having an output reload so that the - REG_INC processing code below won't invalidate - the reload for inheritance. */ - SET_HARD_REG_BIT (reg_is_output_reload, - REGNO (reload_reg)); - reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1; - } - else - forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX); - } - else if ((code == PRE_INC || code == PRE_DEC) - && TEST_HARD_REG_BIT (reg_reloaded_valid, - REGNO (reload_reg_rtx[i])) - /* Make sure it is the inc/dec pseudo, and not - some other (e.g. output operand) pseudo. */ - && (reg_reloaded_contents[REGNO (reload_reg_rtx[i])] - == REGNO (XEXP (in_reg, 0)))) - { - SET_HARD_REG_BIT (reg_is_output_reload, - REGNO (reload_reg_rtx[i])); - reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1; - } - } - } - /* If a pseudo that got a hard register is auto-incremented, - we must purge records of copying it into pseudos without - hard registers. */ - for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) - if (REG_NOTE_KIND (x) == REG_INC) - { - /* See if this pseudo reg was reloaded in this insn. - If so, its last-reload info is still valid - because it is based on this insn's reload. */ - for (i = 0; i < n_reloads; i++) - if (reload_out[i] == XEXP (x, 0)) - break; - - if (i == n_reloads) - forget_old_reloads_1 (XEXP (x, 0), NULL_RTX); - } -#endif - } - /* A reload reg's contents are unknown after a label. */ - if (GET_CODE (insn) == CODE_LABEL) - CLEAR_HARD_REG_SET (reg_reloaded_valid); - - /* Don't assume a reload reg is still good after a call insn - if it is a call-used reg. */ - else if (GET_CODE (insn) == CALL_INSN) - AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set); - - /* In case registers overlap, allow certain insns to invalidate - particular hard registers. */ - -#ifdef INSN_CLOBBERS_REGNO_P - for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++) - if (TEST_HARD_REG_BIT (reg_reloaded_valid, i) - && INSN_CLOBBERS_REGNO_P (insn, i)) - CLEAR_HARD_REG_BIT (reg_reloaded_valid, i); -#endif - -#ifdef USE_C_ALLOCA - alloca (0); -#endif - } -} - -/* Discard all record of any value reloaded from X, - or reloaded in X from someplace else; - unless X is an output reload reg of the current insn. - - X may be a hard reg (the reload reg) - or it may be a pseudo reg that was reloaded from. */ - -static void -forget_old_reloads_1 (x, ignored) - rtx x; - rtx ignored ATTRIBUTE_UNUSED; -{ - register int regno; - int nr; - int offset = 0; - - /* note_stores does give us subregs of hard regs. */ - while (GET_CODE (x) == SUBREG) - { - offset += SUBREG_WORD (x); - x = SUBREG_REG (x); - } - - if (GET_CODE (x) != REG) - return; - - regno = REGNO (x) + offset; - - if (regno >= FIRST_PSEUDO_REGISTER) - nr = 1; - else - { - int i; - nr = HARD_REGNO_NREGS (regno, GET_MODE (x)); - /* Storing into a spilled-reg invalidates its contents. - This can happen if a block-local pseudo is allocated to that reg - and it wasn't spilled because this block's total need is 0. - Then some insn might have an optional reload and use this reg. */ - for (i = 0; i < nr; i++) - /* But don't do this if the reg actually serves as an output - reload reg in the current instruction. */ - if (n_reloads == 0 - || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)) - CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i); - } - - /* Since value of X has changed, - forget any value previously copied from it. */ - - while (nr-- > 0) - /* But don't forget a copy if this is the output reload - that establishes the copy's validity. */ - if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0) - reg_last_reload_reg[regno + nr] = 0; -} - -/* For each reload, the mode of the reload register. */ -static enum machine_mode reload_mode[MAX_RELOADS]; - -/* For each reload, the largest number of registers it will require. */ -static int reload_nregs[MAX_RELOADS]; - -/* Comparison function for qsort to decide which of two reloads - should be handled first. *P1 and *P2 are the reload numbers. */ - -static int -reload_reg_class_lower (r1p, r2p) - const GENERIC_PTR r1p; - const GENERIC_PTR r2p; -{ - register int r1 = *(short *)r1p, r2 = *(short *)r2p; - register int t; - - /* Consider required reloads before optional ones. */ - t = reload_optional[r1] - reload_optional[r2]; - if (t != 0) - return t; - - /* Count all solitary classes before non-solitary ones. */ - t = ((reg_class_size[(int) reload_reg_class[r2]] == 1) - - (reg_class_size[(int) reload_reg_class[r1]] == 1)); - if (t != 0) - return t; - - /* Aside from solitaires, consider all multi-reg groups first. */ - t = reload_nregs[r2] - reload_nregs[r1]; - if (t != 0) - return t; - - /* Consider reloads in order of increasing reg-class number. */ - t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2]; - if (t != 0) - return t; - - /* If reloads are equally urgent, sort by reload number, - so that the results of qsort leave nothing to chance. */ - return r1 - r2; -} - -/* The following HARD_REG_SETs indicate when each hard register is - used for a reload of various parts of the current insn. */ - -/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */ -static HARD_REG_SET reload_reg_used; -/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */ -static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS]; -/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */ -static HARD_REG_SET reload_reg_used_in_op_addr; -/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */ -static HARD_REG_SET reload_reg_used_in_op_addr_reload; -/* If reg is in use for a RELOAD_FOR_INSN reload. */ -static HARD_REG_SET reload_reg_used_in_insn; -/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */ -static HARD_REG_SET reload_reg_used_in_other_addr; - -/* If reg is in use as a reload reg for any sort of reload. */ -static HARD_REG_SET reload_reg_used_at_all; - -/* If reg is use as an inherited reload. We just mark the first register - in the group. */ -static HARD_REG_SET reload_reg_used_for_inherit; - -/* Records which hard regs are used in any way, either as explicit use or - by being allocated to a pseudo during any point of the current insn. */ -static HARD_REG_SET reg_used_in_insn; - -/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and - TYPE. MODE is used to indicate how many consecutive regs are - actually used. */ - -static void -mark_reload_reg_in_use (regno, opnum, type, mode) - int regno; - int opnum; - enum reload_type type; - enum machine_mode mode; -{ - int nregs = HARD_REGNO_NREGS (regno, mode); - int i; - - for (i = regno; i < nregs + regno; i++) - { - switch (type) - { - case RELOAD_OTHER: - SET_HARD_REG_BIT (reload_reg_used, i); - break; - - case RELOAD_FOR_INPUT_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i); - break; - - case RELOAD_FOR_INPADDR_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i); - break; - - case RELOAD_FOR_OUTPUT_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i); - break; - - case RELOAD_FOR_OUTADDR_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i); - break; - - case RELOAD_FOR_OPERAND_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i); - break; - - case RELOAD_FOR_OPADDR_ADDR: - SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i); - break; - - case RELOAD_FOR_OTHER_ADDRESS: - SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i); - break; - - case RELOAD_FOR_INPUT: - SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i); - break; - - case RELOAD_FOR_OUTPUT: - SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i); - break; - - case RELOAD_FOR_INSN: - SET_HARD_REG_BIT (reload_reg_used_in_insn, i); - break; - } - - SET_HARD_REG_BIT (reload_reg_used_at_all, i); - } -} - -/* Similarly, but show REGNO is no longer in use for a reload. */ - -static void -clear_reload_reg_in_use (regno, opnum, type, mode) - int regno; - int opnum; - enum reload_type type; - enum machine_mode mode; -{ - int nregs = HARD_REGNO_NREGS (regno, mode); - int start_regno, end_regno; - int i; - /* A complication is that for some reload types, inheritance might - allow multiple reloads of the same types to share a reload register. - We set check_opnum if we have to check only reloads with the same - operand number, and check_any if we have to check all reloads. */ - int check_opnum = 0; - int check_any = 0; - HARD_REG_SET *used_in_set; - - switch (type) - { - case RELOAD_OTHER: - used_in_set = &reload_reg_used; - break; - - case RELOAD_FOR_INPUT_ADDRESS: - used_in_set = &reload_reg_used_in_input_addr[opnum]; - break; - - case RELOAD_FOR_INPADDR_ADDRESS: - check_opnum = 1; - used_in_set = &reload_reg_used_in_inpaddr_addr[opnum]; - break; - - case RELOAD_FOR_OUTPUT_ADDRESS: - used_in_set = &reload_reg_used_in_output_addr[opnum]; - break; - - case RELOAD_FOR_OUTADDR_ADDRESS: - check_opnum = 1; - used_in_set = &reload_reg_used_in_outaddr_addr[opnum]; - break; - - case RELOAD_FOR_OPERAND_ADDRESS: - used_in_set = &reload_reg_used_in_op_addr; - break; - - case RELOAD_FOR_OPADDR_ADDR: - check_any = 1; - used_in_set = &reload_reg_used_in_op_addr_reload; - break; - - case RELOAD_FOR_OTHER_ADDRESS: - used_in_set = &reload_reg_used_in_other_addr; - check_any = 1; - break; - - case RELOAD_FOR_INPUT: - used_in_set = &reload_reg_used_in_input[opnum]; - break; - - case RELOAD_FOR_OUTPUT: - used_in_set = &reload_reg_used_in_output[opnum]; - break; - - case RELOAD_FOR_INSN: - used_in_set = &reload_reg_used_in_insn; - break; - default: - abort (); - } - /* We resolve conflicts with remaining reloads of the same type by - excluding the intervals of of reload registers by them from the - interval of freed reload registers. Since we only keep track of - one set of interval bounds, we might have to exclude somewhat - more then what would be necessary if we used a HARD_REG_SET here. - But this should only happen very infrequently, so there should - be no reason to worry about it. */ - - start_regno = regno; - end_regno = regno + nregs; - if (check_opnum || check_any) - { - for (i = n_reloads - 1; i >= 0; i--) - { - if (reload_when_needed[i] == type - && (check_any || reload_opnum[i] == opnum) - && reload_reg_rtx[i]) - { - int conflict_start = true_regnum (reload_reg_rtx[i]); - int conflict_end - = (conflict_start - + HARD_REGNO_NREGS (conflict_start, reload_mode[i])); - - /* If there is an overlap with the first to-be-freed register, - adjust the interval start. */ - if (conflict_start <= start_regno && conflict_end > start_regno) - start_regno = conflict_end; - /* Otherwise, if there is a conflict with one of the other - to-be-freed registers, adjust the interval end. */ - if (conflict_start > start_regno && conflict_start < end_regno) - end_regno = conflict_start; - } - } - } - for (i = start_regno; i < end_regno; i++) - CLEAR_HARD_REG_BIT (*used_in_set, i); -} - -/* 1 if reg REGNO is free as a reload reg for a reload of the sort - specified by OPNUM and TYPE. */ - -static int -reload_reg_free_p (regno, opnum, type) - int regno; - int opnum; - enum reload_type type; -{ - int i; - - /* In use for a RELOAD_OTHER means it's not available for anything. */ - if (TEST_HARD_REG_BIT (reload_reg_used, regno)) - return 0; - - switch (type) - { - case RELOAD_OTHER: - /* In use for anything means we can't use it for RELOAD_OTHER. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) - return 0; - - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_INPUT: - if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)) - return 0; - - if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) - return 0; - - /* If it is used for some other input, can't use it. */ - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - /* If it is used in a later operand's address, can't use it. */ - for (i = opnum + 1; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_INPUT_ADDRESS: - /* Can't use a register if it is used for an input address for this - operand or used as an input in an earlier one. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) - return 0; - - for (i = 0; i < opnum; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_INPADDR_ADDRESS: - /* Can't use a register if it is used for an input address - for this operand or used as an input in an earlier - one. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) - return 0; - - for (i = 0; i < opnum; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_OUTPUT_ADDRESS: - /* Can't use a register if it is used for an output address for this - operand or used as an output in this or a later operand. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno)) - return 0; - - for (i = opnum; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_OUTADDR_ADDRESS: - /* Can't use a register if it is used for an output address - for this operand or used as an output in this or a - later operand. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno)) - return 0; - - for (i = opnum; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_OPERAND_ADDRESS: - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) - && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); - - case RELOAD_FOR_OPADDR_ADDR: - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)); - - case RELOAD_FOR_OUTPUT: - /* This cannot share a register with RELOAD_FOR_INSN reloads, other - outputs, or an operand address for this or an earlier output. */ - if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) - return 0; - - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - for (i = 0; i <= opnum; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_INSN: - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) - && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); - - case RELOAD_FOR_OTHER_ADDRESS: - return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); - } - abort (); -} - -/* Return 1 if the value in reload reg REGNO, as used by a reload - needed for the part of the insn specified by OPNUM and TYPE, - is still available in REGNO at the end of the insn. - - We can assume that the reload reg was already tested for availability - at the time it is needed, and we should not check this again, - in case the reg has already been marked in use. */ - -static int -reload_reg_reaches_end_p (regno, opnum, type) - int regno; - int opnum; - enum reload_type type; -{ - int i; - - switch (type) - { - case RELOAD_OTHER: - /* Since a RELOAD_OTHER reload claims the reg for the entire insn, - its value must reach the end. */ - return 1; - - /* If this use is for part of the insn, - its value reaches if no subsequent part uses the same register. - Just like the above function, don't try to do this with lots - of fallthroughs. */ - - case RELOAD_FOR_OTHER_ADDRESS: - /* Here we check for everything else, since these don't conflict - with anything else and everything comes later. */ - - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) - && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) - && ! TEST_HARD_REG_BIT (reload_reg_used, regno)); - - case RELOAD_FOR_INPUT_ADDRESS: - case RELOAD_FOR_INPADDR_ADDRESS: - /* Similar, except that we check only for this and subsequent inputs - and the address of only subsequent inputs and we do not need - to check for RELOAD_OTHER objects since they are known not to - conflict. */ - - for (i = opnum; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - for (i = opnum + 1; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) - return 0; - - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) - return 0; - - return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) - && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)); - - case RELOAD_FOR_INPUT: - /* Similar to input address, except we start at the next operand for - both input and input address and we do not check for - RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these - would conflict. */ - - for (i = opnum + 1; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) - return 0; - - /* ... fall through ... */ - - case RELOAD_FOR_OPERAND_ADDRESS: - /* Check outputs and their addresses. */ - - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return 1; - - case RELOAD_FOR_OPADDR_ADDR: - for (i = 0; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) - return 0; - - return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) - && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)); - - case RELOAD_FOR_INSN: - /* These conflict with other outputs with RELOAD_OTHER. So - we need only check for output addresses. */ - - opnum = -1; - - /* ... fall through ... */ - - case RELOAD_FOR_OUTPUT: - case RELOAD_FOR_OUTPUT_ADDRESS: - case RELOAD_FOR_OUTADDR_ADDRESS: - /* We already know these can't conflict with a later output. So the - only thing to check are later output addresses. */ - for (i = opnum + 1; i < reload_n_operands; i++) - if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) - || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) - return 0; - - return 1; - } - - abort (); -} - -/* Return 1 if the reloads denoted by R1 and R2 cannot share a register. - Return 0 otherwise. - - This function uses the same algorithm as reload_reg_free_p above. */ - -int -reloads_conflict (r1, r2) - int r1, r2; -{ - enum reload_type r1_type = reload_when_needed[r1]; - enum reload_type r2_type = reload_when_needed[r2]; - int r1_opnum = reload_opnum[r1]; - int r2_opnum = reload_opnum[r2]; - - /* RELOAD_OTHER conflicts with everything. */ - if (r2_type == RELOAD_OTHER) - return 1; - - /* Otherwise, check conflicts differently for each type. */ - - switch (r1_type) - { - case RELOAD_FOR_INPUT: - return (r2_type == RELOAD_FOR_INSN - || r2_type == RELOAD_FOR_OPERAND_ADDRESS - || r2_type == RELOAD_FOR_OPADDR_ADDR - || r2_type == RELOAD_FOR_INPUT - || ((r2_type == RELOAD_FOR_INPUT_ADDRESS - || r2_type == RELOAD_FOR_INPADDR_ADDRESS) - && r2_opnum > r1_opnum)); - - case RELOAD_FOR_INPUT_ADDRESS: - return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum) - || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); - - case RELOAD_FOR_INPADDR_ADDRESS: - return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum) - || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); - - case RELOAD_FOR_OUTPUT_ADDRESS: - return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum) - || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum)); - - case RELOAD_FOR_OUTADDR_ADDRESS: - return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum) - || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum)); - - case RELOAD_FOR_OPERAND_ADDRESS: - return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN - || r2_type == RELOAD_FOR_OPERAND_ADDRESS); - - case RELOAD_FOR_OPADDR_ADDR: - return (r2_type == RELOAD_FOR_INPUT - || r2_type == RELOAD_FOR_OPADDR_ADDR); - - case RELOAD_FOR_OUTPUT: - return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT - || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS - || r2_type == RELOAD_FOR_OUTADDR_ADDRESS) - && r2_opnum >= r1_opnum)); - - case RELOAD_FOR_INSN: - return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT - || r2_type == RELOAD_FOR_INSN - || r2_type == RELOAD_FOR_OPERAND_ADDRESS); - - case RELOAD_FOR_OTHER_ADDRESS: - return r2_type == RELOAD_FOR_OTHER_ADDRESS; - - case RELOAD_OTHER: - return 1; - - default: - abort (); - } -} - -/* Vector of reload-numbers showing the order in which the reloads should - be processed. */ -short reload_order[MAX_RELOADS]; - -/* Indexed by reload number, 1 if incoming value - inherited from previous insns. */ -char reload_inherited[MAX_RELOADS]; - -/* For an inherited reload, this is the insn the reload was inherited from, - if we know it. Otherwise, this is 0. */ -rtx reload_inheritance_insn[MAX_RELOADS]; - -/* If non-zero, this is a place to get the value of the reload, - rather than using reload_in. */ -rtx reload_override_in[MAX_RELOADS]; - -/* For each reload, the hard register number of the register used, - or -1 if we did not need a register for this reload. */ -int reload_spill_index[MAX_RELOADS]; - -/* Return 1 if the value in reload reg REGNO, as used by a reload - needed for the part of the insn specified by OPNUM and TYPE, - may be used to load VALUE into it. - - Other read-only reloads with the same value do not conflict - unless OUT is non-zero and these other reloads have to live while - output reloads live. - If OUT is CONST0_RTX, this is a special case: it means that the - test should not be for using register REGNO as reload register, but - for copying from register REGNO into the reload register. - - RELOADNUM is the number of the reload we want to load this value for; - a reload does not conflict with itself. - - When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with - reloads that load an address for the very reload we are considering. - - The caller has to make sure that there is no conflict with the return - register. */ -static int -reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum, - ignore_address_reloads) - int regno; - int opnum; - enum reload_type type; - rtx value, out; - int reloadnum; - int ignore_address_reloads; -{ - int time1; - int i; - int copy = 0; - - /* ??? reload_reg_used is abused to hold the registers that are not - available as spill registers, including hard registers that are - earlyclobbered in asms. As a temporary measure, reject anything - in reload_reg_used. */ - if (TEST_HARD_REG_BIT (reload_reg_used, regno)) - return 0; - - if (out == const0_rtx) - { - copy = 1; - out = NULL_RTX; - } - - /* We use some pseudo 'time' value to check if the lifetimes of the - new register use would overlap with the one of a previous reload - that is not read-only or uses a different value. - The 'time' used doesn't have to be linear in any shape or form, just - monotonic. - Some reload types use different 'buckets' for each operand. - So there are MAX_RECOG_OPERANDS different time values for each - such reload type. - We compute TIME1 as the time when the register for the prospective - new reload ceases to be live, and TIME2 for each existing - reload as the time when that the reload register of that reload - becomes live. - Where there is little to be gained by exact lifetime calculations, - we just make conservative assumptions, i.e. a longer lifetime; - this is done in the 'default:' cases. */ - switch (type) - { - case RELOAD_FOR_OTHER_ADDRESS: - time1 = 0; - break; - case RELOAD_OTHER: - time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5; - break; - /* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS, - RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 , - respectively, to the time values for these, we get distinct time - values. To get distinct time values for each operand, we have to - multiply opnum by at least three. We round that up to four because - multiply by four is often cheaper. */ - case RELOAD_FOR_INPADDR_ADDRESS: - time1 = opnum * 4 + 2; - break; - case RELOAD_FOR_INPUT_ADDRESS: - time1 = opnum * 4 + 3; - break; - case RELOAD_FOR_INPUT: - /* All RELOAD_FOR_INPUT reloads remain live till the instruction - executes (inclusive). */ - time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3; - break; - case RELOAD_FOR_OPADDR_ADDR: - /* opnum * 4 + 4 - <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */ - time1 = MAX_RECOG_OPERANDS * 4 + 1; - break; - case RELOAD_FOR_OPERAND_ADDRESS: - /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn - is executed. */ - time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3; - break; - case RELOAD_FOR_OUTADDR_ADDRESS: - time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum; - break; - case RELOAD_FOR_OUTPUT_ADDRESS: - time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum; - break; - default: - time1 = MAX_RECOG_OPERANDS * 5 + 5; - } - - for (i = 0; i < n_reloads; i++) - { - rtx reg = reload_reg_rtx[i]; - if (reg && GET_CODE (reg) == REG - && ((unsigned) regno - true_regnum (reg) - <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1) - && i != reloadnum) - { - if (! reload_in[i] || ! rtx_equal_p (reload_in[i], value) - || reload_out[i] || out) - { - int time2; - switch (reload_when_needed[i]) - { - case RELOAD_FOR_OTHER_ADDRESS: - time2 = 0; - break; - case RELOAD_FOR_INPADDR_ADDRESS: - /* find_reloads makes sure that a - RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used - by at most one - the first - - RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the - address reload is inherited, the address address reload - goes away, so we can ignore this conflict. */ - if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1 - && ignore_address_reloads - /* Unless the RELOAD_FOR_INPUT is an auto_inc expression. - Then the address address is still needed to store - back the new address. */ - && ! reload_out[reloadnum]) - continue; - /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its - RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS - reloads go away. */ - if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i] - && ignore_address_reloads - /* Unless we are reloading an auto_inc expression. */ - && ! reload_out[reloadnum]) - continue; - time2 = reload_opnum[i] * 4 + 2; - break; - case RELOAD_FOR_INPUT_ADDRESS: - if (type == RELOAD_FOR_INPUT && opnum == reload_opnum[i] - && ignore_address_reloads - && ! reload_out[reloadnum]) - continue; - time2 = reload_opnum[i] * 4 + 3; - break; - case RELOAD_FOR_INPUT: - time2 = reload_opnum[i] * 4 + 4; - break; - /* reload_opnum[i] * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4 - == MAX_RECOG_OPERAND * 4 */ - case RELOAD_FOR_OPADDR_ADDR: - if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1 - && ignore_address_reloads - && ! reload_out[reloadnum]) - continue; - time2 = MAX_RECOG_OPERANDS * 4 + 1; - break; - case RELOAD_FOR_OPERAND_ADDRESS: - time2 = MAX_RECOG_OPERANDS * 4 + 2; - break; - case RELOAD_FOR_INSN: - time2 = MAX_RECOG_OPERANDS * 4 + 3; - break; - case RELOAD_FOR_OUTPUT: - /* All RELOAD_FOR_OUTPUT reloads become live just after the - instruction is executed. */ - time2 = MAX_RECOG_OPERANDS * 4 + 4; - break; - /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with - the RELOAD_FOR_OUTPUT reloads, so assign it the same time - value. */ - case RELOAD_FOR_OUTADDR_ADDRESS: - if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1 - && ignore_address_reloads - && ! reload_out[reloadnum]) - continue; - time2 = MAX_RECOG_OPERANDS * 4 + 4 + reload_opnum[i]; - break; - case RELOAD_FOR_OUTPUT_ADDRESS: - time2 = MAX_RECOG_OPERANDS * 4 + 5 + reload_opnum[i]; - break; - case RELOAD_OTHER: - /* If there is no conflict in the input part, handle this - like an output reload. */ - if (! reload_in[i] || rtx_equal_p (reload_in[i], value)) - { - time2 = MAX_RECOG_OPERANDS * 4 + 4; - break; - } - time2 = 1; - /* RELOAD_OTHER might be live beyond instruction execution, - but this is not obvious when we set time2 = 1. So check - here if there might be a problem with the new reload - clobbering the register used by the RELOAD_OTHER. */ - if (out) - return 0; - break; - default: - return 0; - } - if ((time1 >= time2 - && (! reload_in[i] || reload_out[i] - || ! rtx_equal_p (reload_in[i], value))) - || (out && reload_out_reg[reloadnum] - && time2 >= MAX_RECOG_OPERANDS * 4 + 3)) - return 0; - } - } - } - return 1; -} - -/* Find a spill register to use as a reload register for reload R. - LAST_RELOAD is non-zero if this is the last reload for the insn being - processed. - - Set reload_reg_rtx[R] to the register allocated. - - If NOERROR is nonzero, we return 1 if successful, - or 0 if we couldn't find a spill reg and we didn't change anything. */ - -static int -allocate_reload_reg (chain, r, last_reload, noerror) - struct insn_chain *chain; - int r; - int last_reload; - int noerror; -{ - rtx insn = chain->insn; - int i, pass, count, regno; - rtx new; - - /* If we put this reload ahead, thinking it is a group, - then insist on finding a group. Otherwise we can grab a - reg that some other reload needs. - (That can happen when we have a 68000 DATA_OR_FP_REG - which is a group of data regs or one fp reg.) - We need not be so restrictive if there are no more reloads - for this insn. - - ??? Really it would be nicer to have smarter handling - for that kind of reg class, where a problem like this is normal. - Perhaps those classes should be avoided for reloading - by use of more alternatives. */ - - int force_group = reload_nregs[r] > 1 && ! last_reload; - - /* If we want a single register and haven't yet found one, - take any reg in the right class and not in use. - If we want a consecutive group, here is where we look for it. - - We use two passes so we can first look for reload regs to - reuse, which are already in use for other reloads in this insn, - and only then use additional registers. - I think that maximizing reuse is needed to make sure we don't - run out of reload regs. Suppose we have three reloads, and - reloads A and B can share regs. These need two regs. - Suppose A and B are given different regs. - That leaves none for C. */ - for (pass = 0; pass < 2; pass++) - { - /* I is the index in spill_regs. - We advance it round-robin between insns to use all spill regs - equally, so that inherited reloads have a chance - of leapfrogging each other. Don't do this, however, when we have - group needs and failure would be fatal; if we only have a relatively - small number of spill registers, and more than one of them has - group needs, then by starting in the middle, we may end up - allocating the first one in such a way that we are not left with - sufficient groups to handle the rest. */ - - if (noerror || ! force_group) - i = last_spill_reg; - else - i = -1; - - for (count = 0; count < n_spills; count++) - { - int class = (int) reload_reg_class[r]; - int regnum; - - i++; - if (i >= n_spills) - i -= n_spills; - regnum = spill_regs[i]; - - if ((reload_reg_free_p (regnum, reload_opnum[r], - reload_when_needed[r]) - || (reload_in[r] - /* We check reload_reg_used to make sure we - don't clobber the return register. */ - && ! TEST_HARD_REG_BIT (reload_reg_used, regnum) - && reload_reg_free_for_value_p (regnum, - reload_opnum[r], - reload_when_needed[r], - reload_in[r], - reload_out[r], r, 1))) - && TEST_HARD_REG_BIT (reg_class_contents[class], regnum) - && HARD_REGNO_MODE_OK (regnum, reload_mode[r]) - /* Look first for regs to share, then for unshared. But - don't share regs used for inherited reloads; they are - the ones we want to preserve. */ - && (pass - || (TEST_HARD_REG_BIT (reload_reg_used_at_all, - regnum) - && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit, - regnum)))) - { - int nr = HARD_REGNO_NREGS (regnum, reload_mode[r]); - /* Avoid the problem where spilling a GENERAL_OR_FP_REG - (on 68000) got us two FP regs. If NR is 1, - we would reject both of them. */ - if (force_group) - nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]); - /* If we need only one reg, we have already won. */ - if (nr == 1) - { - /* But reject a single reg if we demand a group. */ - if (force_group) - continue; - break; - } - /* Otherwise check that as many consecutive regs as we need - are available here. - Also, don't use for a group registers that are - needed for nongroups. */ - if (! TEST_HARD_REG_BIT (chain->counted_for_nongroups, regnum)) - while (nr > 1) - { - regno = regnum + nr - 1; - if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno) - && spill_reg_order[regno] >= 0 - && reload_reg_free_p (regno, reload_opnum[r], - reload_when_needed[r]) - && ! TEST_HARD_REG_BIT (chain->counted_for_nongroups, - regno))) - break; - nr--; - } - if (nr == 1) - break; - } - } - - /* If we found something on pass 1, omit pass 2. */ - if (count < n_spills) - break; - } - - /* We should have found a spill register by now. */ - if (count == n_spills) - { - if (noerror) - return 0; - goto failure; - } - - /* I is the index in SPILL_REG_RTX of the reload register we are to - allocate. Get an rtx for it and find its register number. */ - - new = spill_reg_rtx[i]; - - if (new == 0 || GET_MODE (new) != reload_mode[r]) - spill_reg_rtx[i] = new - = gen_rtx_REG (reload_mode[r], spill_regs[i]); - - regno = true_regnum (new); - - /* Detect when the reload reg can't hold the reload mode. - This used to be one `if', but Sequent compiler can't handle that. */ - if (HARD_REGNO_MODE_OK (regno, reload_mode[r])) - { - enum machine_mode test_mode = VOIDmode; - if (reload_in[r]) - test_mode = GET_MODE (reload_in[r]); - /* If reload_in[r] has VOIDmode, it means we will load it - in whatever mode the reload reg has: to wit, reload_mode[r]. - We have already tested that for validity. */ - /* Aside from that, we need to test that the expressions - to reload from or into have modes which are valid for this - reload register. Otherwise the reload insns would be invalid. */ - if (! (reload_in[r] != 0 && test_mode != VOIDmode - && ! HARD_REGNO_MODE_OK (regno, test_mode))) - if (! (reload_out[r] != 0 - && ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r])))) - { - /* The reg is OK. */ - last_spill_reg = i; - - /* Mark as in use for this insn the reload regs we use - for this. */ - mark_reload_reg_in_use (spill_regs[i], reload_opnum[r], - reload_when_needed[r], reload_mode[r]); - - reload_reg_rtx[r] = new; - reload_spill_index[r] = spill_regs[i]; - return 1; - } - } - - /* The reg is not OK. */ - if (noerror) - return 0; - - failure: - if (asm_noperands (PATTERN (insn)) < 0) - /* It's the compiler's fault. */ - fatal_insn ("Could not find a spill register", insn); - - /* It's the user's fault; the operand's mode and constraint - don't match. Disable this reload so we don't crash in final. */ - error_for_asm (insn, - "`asm' operand constraint incompatible with operand size"); - reload_in[r] = 0; - reload_out[r] = 0; - reload_reg_rtx[r] = 0; - reload_optional[r] = 1; - reload_secondary_p[r] = 1; - - return 1; -} - -/* Assign hard reg targets for the pseudo-registers we must reload - into hard regs for this insn. - Also output the instructions to copy them in and out of the hard regs. - - For machines with register classes, we are responsible for - finding a reload reg in the proper class. */ - -static void -choose_reload_regs (chain) - struct insn_chain *chain; -{ - rtx insn = chain->insn; - register int i, j; - int max_group_size = 1; - enum reg_class group_class = NO_REGS; - int inheritance; - int pass; - - rtx save_reload_reg_rtx[MAX_RELOADS]; - char save_reload_inherited[MAX_RELOADS]; - rtx save_reload_inheritance_insn[MAX_RELOADS]; - rtx save_reload_override_in[MAX_RELOADS]; - int save_reload_spill_index[MAX_RELOADS]; - HARD_REG_SET save_reload_reg_used; - HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS]; - HARD_REG_SET save_reload_reg_used_in_op_addr; - HARD_REG_SET save_reload_reg_used_in_op_addr_reload; - HARD_REG_SET save_reload_reg_used_in_insn; - HARD_REG_SET save_reload_reg_used_in_other_addr; - HARD_REG_SET save_reload_reg_used_at_all; - - bzero (reload_inherited, MAX_RELOADS); - bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx)); - bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx)); - - CLEAR_HARD_REG_SET (reload_reg_used); - CLEAR_HARD_REG_SET (reload_reg_used_at_all); - CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr); - CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload); - CLEAR_HARD_REG_SET (reload_reg_used_in_insn); - CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr); - - CLEAR_HARD_REG_SET (reg_used_in_insn); - { - HARD_REG_SET tmp; - REG_SET_TO_HARD_REG_SET (tmp, chain->live_before); - IOR_HARD_REG_SET (reg_used_in_insn, tmp); - REG_SET_TO_HARD_REG_SET (tmp, chain->live_after); - IOR_HARD_REG_SET (reg_used_in_insn, tmp); - compute_use_by_pseudos (®_used_in_insn, chain->live_before); - compute_use_by_pseudos (®_used_in_insn, chain->live_after); - } - for (i = 0; i < reload_n_operands; i++) - { - CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]); - CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]); - CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]); - CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]); - CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]); - CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]); - } - - IOR_COMPL_HARD_REG_SET (reload_reg_used, chain->used_spill_regs); - -#if 0 /* Not needed, now that we can always retry without inheritance. */ - /* See if we have more mandatory reloads than spill regs. - If so, then we cannot risk optimizations that could prevent - reloads from sharing one spill register. - - Since we will try finding a better register than reload_reg_rtx - unless it is equal to reload_in or reload_out, count such reloads. */ - - { - int tem = 0; - for (j = 0; j < n_reloads; j++) - if (! reload_optional[j] - && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j]) - && (reload_reg_rtx[j] == 0 - || (! rtx_equal_p (reload_reg_rtx[j], reload_in[j]) - && ! rtx_equal_p (reload_reg_rtx[j], reload_out[j])))) - tem++; - if (tem > n_spills) - must_reuse = 1; - } -#endif - - /* In order to be certain of getting the registers we need, - we must sort the reloads into order of increasing register class. - Then our grabbing of reload registers will parallel the process - that provided the reload registers. - - Also note whether any of the reloads wants a consecutive group of regs. - If so, record the maximum size of the group desired and what - register class contains all the groups needed by this insn. */ - - for (j = 0; j < n_reloads; j++) - { - reload_order[j] = j; - reload_spill_index[j] = -1; - - reload_mode[j] - = (reload_inmode[j] == VOIDmode - || (GET_MODE_SIZE (reload_outmode[j]) - > GET_MODE_SIZE (reload_inmode[j]))) - ? reload_outmode[j] : reload_inmode[j]; - - reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]); - - if (reload_nregs[j] > 1) - { - max_group_size = MAX (reload_nregs[j], max_group_size); - group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class]; - } - - /* If we have already decided to use a certain register, - don't use it in another way. */ - if (reload_reg_rtx[j]) - mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j], - reload_when_needed[j], reload_mode[j]); - } - - if (n_reloads > 1) - qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower); - - bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx, - sizeof reload_reg_rtx); - bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited); - bcopy ((char *) reload_inheritance_insn, - (char *) save_reload_inheritance_insn, - sizeof reload_inheritance_insn); - bcopy ((char *) reload_override_in, (char *) save_reload_override_in, - sizeof reload_override_in); - bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index, - sizeof reload_spill_index); - COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used); - COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all); - COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr, - reload_reg_used_in_op_addr); - - COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload, - reload_reg_used_in_op_addr_reload); - - COPY_HARD_REG_SET (save_reload_reg_used_in_insn, - reload_reg_used_in_insn); - COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr, - reload_reg_used_in_other_addr); - - for (i = 0; i < reload_n_operands; i++) - { - COPY_HARD_REG_SET (save_reload_reg_used_in_output[i], - reload_reg_used_in_output[i]); - COPY_HARD_REG_SET (save_reload_reg_used_in_input[i], - reload_reg_used_in_input[i]); - COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i], - reload_reg_used_in_input_addr[i]); - COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i], - reload_reg_used_in_inpaddr_addr[i]); - COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i], - reload_reg_used_in_output_addr[i]); - COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i], - reload_reg_used_in_outaddr_addr[i]); - } - - /* If -O, try first with inheritance, then turning it off. - If not -O, don't do inheritance. - Using inheritance when not optimizing leads to paradoxes - with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves - because one side of the comparison might be inherited. */ - - for (inheritance = optimize > 0; inheritance >= 0; inheritance--) - { - /* Process the reloads in order of preference just found. - Beyond this point, subregs can be found in reload_reg_rtx. - - This used to look for an existing reloaded home for all - of the reloads, and only then perform any new reloads. - But that could lose if the reloads were done out of reg-class order - because a later reload with a looser constraint might have an old - home in a register needed by an earlier reload with a tighter constraint. - - To solve this, we make two passes over the reloads, in the order - described above. In the first pass we try to inherit a reload - from a previous insn. If there is a later reload that needs a - class that is a proper subset of the class being processed, we must - also allocate a spill register during the first pass. - - Then make a second pass over the reloads to allocate any reloads - that haven't been given registers yet. */ - - CLEAR_HARD_REG_SET (reload_reg_used_for_inherit); - - for (j = 0; j < n_reloads; j++) - { - register int r = reload_order[j]; - rtx search_equiv = NULL_RTX; - - /* Ignore reloads that got marked inoperative. */ - if (reload_out[r] == 0 && reload_in[r] == 0 - && ! reload_secondary_p[r]) - continue; - - /* If find_reloads chose to use reload_in or reload_out as a reload - register, we don't need to chose one. Otherwise, try even if it - found one since we might save an insn if we find the value lying - around. - Try also when reload_in is a pseudo without a hard reg. */ - if (reload_in[r] != 0 && reload_reg_rtx[r] != 0 - && (rtx_equal_p (reload_in[r], reload_reg_rtx[r]) - || (rtx_equal_p (reload_out[r], reload_reg_rtx[r]) - && GET_CODE (reload_in[r]) != MEM - && true_regnum (reload_in[r]) < FIRST_PSEUDO_REGISTER))) - continue; - -#if 0 /* No longer needed for correct operation. - It might give better code, or might not; worth an experiment? */ - /* If this is an optional reload, we can't inherit from earlier insns - until we are sure that any non-optional reloads have been allocated. - The following code takes advantage of the fact that optional reloads - are at the end of reload_order. */ - if (reload_optional[r] != 0) - for (i = 0; i < j; i++) - if ((reload_out[reload_order[i]] != 0 - || reload_in[reload_order[i]] != 0 - || reload_secondary_p[reload_order[i]]) - && ! reload_optional[reload_order[i]] - && reload_reg_rtx[reload_order[i]] == 0) - allocate_reload_reg (chain, reload_order[i], 0, inheritance); -#endif - - /* First see if this pseudo is already available as reloaded - for a previous insn. We cannot try to inherit for reloads - that are smaller than the maximum number of registers needed - for groups unless the register we would allocate cannot be used - for the groups. - - We could check here to see if this is a secondary reload for - an object that is already in a register of the desired class. - This would avoid the need for the secondary reload register. - But this is complex because we can't easily determine what - objects might want to be loaded via this reload. So let a - register be allocated here. In `emit_reload_insns' we suppress - one of the loads in the case described above. */ - - if (inheritance) - { - int word = 0; - register int regno = -1; - enum machine_mode mode; - - if (reload_in[r] == 0) - ; - else if (GET_CODE (reload_in[r]) == REG) - { - regno = REGNO (reload_in[r]); - mode = GET_MODE (reload_in[r]); - } - else if (GET_CODE (reload_in_reg[r]) == REG) - { - regno = REGNO (reload_in_reg[r]); - mode = GET_MODE (reload_in_reg[r]); - } - else if (GET_CODE (reload_in_reg[r]) == SUBREG - && GET_CODE (SUBREG_REG (reload_in_reg[r])) == REG) - { - word = SUBREG_WORD (reload_in_reg[r]); - regno = REGNO (SUBREG_REG (reload_in_reg[r])); - if (regno < FIRST_PSEUDO_REGISTER) - regno += word; - mode = GET_MODE (reload_in_reg[r]); - } -#ifdef AUTO_INC_DEC - else if ((GET_CODE (reload_in_reg[r]) == PRE_INC - || GET_CODE (reload_in_reg[r]) == PRE_DEC - || GET_CODE (reload_in_reg[r]) == POST_INC - || GET_CODE (reload_in_reg[r]) == POST_DEC) - && GET_CODE (XEXP (reload_in_reg[r], 0)) == REG) - { - regno = REGNO (XEXP (reload_in_reg[r], 0)); - mode = GET_MODE (XEXP (reload_in_reg[r], 0)); - reload_out[r] = reload_in[r]; - } -#endif -#if 0 - /* This won't work, since REGNO can be a pseudo reg number. - Also, it takes much more hair to keep track of all the things - that can invalidate an inherited reload of part of a pseudoreg. */ - else if (GET_CODE (reload_in[r]) == SUBREG - && GET_CODE (SUBREG_REG (reload_in[r])) == REG) - regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]); -#endif - - if (regno >= 0 && reg_last_reload_reg[regno] != 0) - { - enum reg_class class = reload_reg_class[r], last_class; - rtx last_reg = reg_last_reload_reg[regno]; - - i = REGNO (last_reg) + word; - last_class = REGNO_REG_CLASS (i); - if ((GET_MODE_SIZE (GET_MODE (last_reg)) - >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD) - && reg_reloaded_contents[i] == regno - && TEST_HARD_REG_BIT (reg_reloaded_valid, i) - && HARD_REGNO_MODE_OK (i, reload_mode[r]) - && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i) - /* Even if we can't use this register as a reload - register, we might use it for reload_override_in, - if copying it to the desired class is cheap - enough. */ - || ((REGISTER_MOVE_COST (last_class, class) - < MEMORY_MOVE_COST (mode, class, 1)) -#ifdef SECONDARY_INPUT_RELOAD_CLASS - && (SECONDARY_INPUT_RELOAD_CLASS (class, mode, - last_reg) - == NO_REGS) -#endif -#ifdef SECONDARY_MEMORY_NEEDED - && ! SECONDARY_MEMORY_NEEDED (last_class, class, - mode) -#endif - )) - - && (reload_nregs[r] == max_group_size - || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class], - i)) - && reload_reg_free_for_value_p (i, reload_opnum[r], - reload_when_needed[r], - reload_in[r], - const0_rtx, r, 1)) - { - /* If a group is needed, verify that all the subsequent - registers still have their values intact. */ - int nr - = HARD_REGNO_NREGS (i, reload_mode[r]); - int k; - - for (k = 1; k < nr; k++) - if (reg_reloaded_contents[i + k] != regno - || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k)) - break; - - if (k == nr) - { - int i1; - - last_reg = (GET_MODE (last_reg) == mode - ? last_reg : gen_rtx_REG (mode, i)); - - /* We found a register that contains the - value we need. If this register is the - same as an `earlyclobber' operand of the - current insn, just mark it as a place to - reload from since we can't use it as the - reload register itself. */ - - for (i1 = 0; i1 < n_earlyclobbers; i1++) - if (reg_overlap_mentioned_for_reload_p - (reg_last_reload_reg[regno], - reload_earlyclobbers[i1])) - break; - - if (i1 != n_earlyclobbers - || ! (reload_reg_free_for_value_p - (i, reload_opnum[r], reload_when_needed[r], - reload_in[r], reload_out[r], r, 1)) - /* Don't use it if we'd clobber a pseudo reg. */ - || (TEST_HARD_REG_BIT (reg_used_in_insn, i) - && reload_out[r] - && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i)) - /* Don't clobber the frame pointer. */ - || (i == HARD_FRAME_POINTER_REGNUM - && reload_out[r]) - /* Don't really use the inherited spill reg - if we need it wider than we've got it. */ - || (GET_MODE_SIZE (reload_mode[r]) - > GET_MODE_SIZE (mode)) - || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]], - i) - - /* If find_reloads chose reload_out as reload - register, stay with it - that leaves the - inherited register for subsequent reloads. */ - || (reload_out[r] && reload_reg_rtx[r] - && rtx_equal_p (reload_out[r], - reload_reg_rtx[r]))) - { - reload_override_in[r] = last_reg; - reload_inheritance_insn[r] - = reg_reloaded_insn[i]; - } - else - { - int k; - /* We can use this as a reload reg. */ - /* Mark the register as in use for this part of - the insn. */ - mark_reload_reg_in_use (i, - reload_opnum[r], - reload_when_needed[r], - reload_mode[r]); - reload_reg_rtx[r] = last_reg; - reload_inherited[r] = 1; - reload_inheritance_insn[r] - = reg_reloaded_insn[i]; - reload_spill_index[r] = i; - for (k = 0; k < nr; k++) - SET_HARD_REG_BIT (reload_reg_used_for_inherit, - i + k); - } - } - } - } - } - - /* Here's another way to see if the value is already lying around. */ - if (inheritance - && reload_in[r] != 0 - && ! reload_inherited[r] - && reload_out[r] == 0 - && (CONSTANT_P (reload_in[r]) - || GET_CODE (reload_in[r]) == PLUS - || GET_CODE (reload_in[r]) == REG - || GET_CODE (reload_in[r]) == MEM) - && (reload_nregs[r] == max_group_size - || ! reg_classes_intersect_p (reload_reg_class[r], group_class))) - search_equiv = reload_in[r]; - /* If this is an output reload from a simple move insn, look - if an equivalence for the input is available. */ - else if (inheritance && reload_in[r] == 0 && reload_out[r] != 0) - { - rtx set = single_set (insn); - - if (set - && rtx_equal_p (reload_out[r], SET_DEST (set)) - && CONSTANT_P (SET_SRC (set))) - search_equiv = SET_SRC (set); - } - - if (search_equiv) - { - register rtx equiv - = find_equiv_reg (search_equiv, insn, reload_reg_class[r], - -1, NULL_PTR, 0, reload_mode[r]); - int regno; - - if (equiv != 0) - { - if (GET_CODE (equiv) == REG) - regno = REGNO (equiv); - else if (GET_CODE (equiv) == SUBREG) - { - /* This must be a SUBREG of a hard register. - Make a new REG since this might be used in an - address and not all machines support SUBREGs - there. */ - regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv); - equiv = gen_rtx_REG (reload_mode[r], regno); - } - else - abort (); - } - - /* If we found a spill reg, reject it unless it is free - and of the desired class. */ - if (equiv != 0 - && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno) - && ! reload_reg_free_for_value_p (regno, reload_opnum[r], - reload_when_needed[r], - reload_in[r], - reload_out[r], r, 1)) - || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]], - regno))) - equiv = 0; - - if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r])) - equiv = 0; - - /* We found a register that contains the value we need. - If this register is the same as an `earlyclobber' operand - of the current insn, just mark it as a place to reload from - since we can't use it as the reload register itself. */ - - if (equiv != 0) - for (i = 0; i < n_earlyclobbers; i++) - if (reg_overlap_mentioned_for_reload_p (equiv, - reload_earlyclobbers[i])) - { - reload_override_in[r] = equiv; - equiv = 0; - break; - } - - /* If the equiv register we have found is explicitly clobbered - in the current insn, it depends on the reload type if we - can use it, use it for reload_override_in, or not at all. - In particular, we then can't use EQUIV for a - RELOAD_FOR_OUTPUT_ADDRESS reload. */ - - if (equiv != 0 && regno_clobbered_p (regno, insn)) - { - switch (reload_when_needed[r]) - { - case RELOAD_FOR_OTHER_ADDRESS: - case RELOAD_FOR_INPADDR_ADDRESS: - case RELOAD_FOR_INPUT_ADDRESS: - case RELOAD_FOR_OPADDR_ADDR: - break; - case RELOAD_OTHER: - case RELOAD_FOR_INPUT: - case RELOAD_FOR_OPERAND_ADDRESS: - reload_override_in[r] = equiv; - /* Fall through. */ - default: - equiv = 0; - break; - } - } - - /* If we found an equivalent reg, say no code need be generated - to load it, and use it as our reload reg. */ - if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM) - { - int nr = HARD_REGNO_NREGS (regno, reload_mode[r]); - int k; - reload_reg_rtx[r] = equiv; - reload_inherited[r] = 1; - - /* If reg_reloaded_valid is not set for this register, - there might be a stale spill_reg_store lying around. - We must clear it, since otherwise emit_reload_insns - might delete the store. */ - if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno)) - spill_reg_store[regno] = NULL_RTX; - /* If any of the hard registers in EQUIV are spill - registers, mark them as in use for this insn. */ - for (k = 0; k < nr; k++) - { - i = spill_reg_order[regno + k]; - if (i >= 0) - { - mark_reload_reg_in_use (regno, reload_opnum[r], - reload_when_needed[r], - reload_mode[r]); - SET_HARD_REG_BIT (reload_reg_used_for_inherit, - regno + k); - } - } - } - } - - /* If we found a register to use already, or if this is an optional - reload, we are done. */ - if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0) - continue; - -#if 0 /* No longer needed for correct operation. Might or might not - give better code on the average. Want to experiment? */ - - /* See if there is a later reload that has a class different from our - class that intersects our class or that requires less register - than our reload. If so, we must allocate a register to this - reload now, since that reload might inherit a previous reload - and take the only available register in our class. Don't do this - for optional reloads since they will force all previous reloads - to be allocated. Also don't do this for reloads that have been - turned off. */ - - for (i = j + 1; i < n_reloads; i++) - { - int s = reload_order[i]; - - if ((reload_in[s] == 0 && reload_out[s] == 0 - && ! reload_secondary_p[s]) - || reload_optional[s]) - continue; - - if ((reload_reg_class[s] != reload_reg_class[r] - && reg_classes_intersect_p (reload_reg_class[r], - reload_reg_class[s])) - || reload_nregs[s] < reload_nregs[r]) - break; - } - - if (i == n_reloads) - continue; - - allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance); -#endif - } - - /* Now allocate reload registers for anything non-optional that - didn't get one yet. */ - for (j = 0; j < n_reloads; j++) - { - register int r = reload_order[j]; - - /* Ignore reloads that got marked inoperative. */ - if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r]) - continue; - - /* Skip reloads that already have a register allocated or are - optional. */ - if (reload_reg_rtx[r] != 0 || reload_optional[r]) - continue; - - if (! allocate_reload_reg (chain, r, j == n_reloads - 1, inheritance)) - break; - } - - /* If that loop got all the way, we have won. */ - if (j == n_reloads) - break; - - /* Loop around and try without any inheritance. */ - /* First undo everything done by the failed attempt - to allocate with inheritance. */ - bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx, - sizeof reload_reg_rtx); - bcopy ((char *) save_reload_inherited, (char *) reload_inherited, - sizeof reload_inherited); - bcopy ((char *) save_reload_inheritance_insn, - (char *) reload_inheritance_insn, - sizeof reload_inheritance_insn); - bcopy ((char *) save_reload_override_in, (char *) reload_override_in, - sizeof reload_override_in); - bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index, - sizeof reload_spill_index); - COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used); - COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all); - COPY_HARD_REG_SET (reload_reg_used_in_op_addr, - save_reload_reg_used_in_op_addr); - COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload, - save_reload_reg_used_in_op_addr_reload); - COPY_HARD_REG_SET (reload_reg_used_in_insn, - save_reload_reg_used_in_insn); - COPY_HARD_REG_SET (reload_reg_used_in_other_addr, - save_reload_reg_used_in_other_addr); - - for (i = 0; i < reload_n_operands; i++) - { - COPY_HARD_REG_SET (reload_reg_used_in_input[i], - save_reload_reg_used_in_input[i]); - COPY_HARD_REG_SET (reload_reg_used_in_output[i], - save_reload_reg_used_in_output[i]); - COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i], - save_reload_reg_used_in_input_addr[i]); - COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i], - save_reload_reg_used_in_inpaddr_addr[i]); - COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i], - save_reload_reg_used_in_output_addr[i]); - COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i], - save_reload_reg_used_in_outaddr_addr[i]); - } - } - - /* If we thought we could inherit a reload, because it seemed that - nothing else wanted the same reload register earlier in the insn, - verify that assumption, now that all reloads have been assigned. - Likewise for reloads where reload_override_in has been set. */ - - /* If doing expensive optimizations, do one preliminary pass that doesn't - cancel any inheritance, but removes reloads that have been needed only - for reloads that we know can be inherited. */ - for (pass = flag_expensive_optimizations; pass >= 0; pass--) - { - for (j = 0; j < n_reloads; j++) - { - register int r = reload_order[j]; - rtx check_reg; - if (reload_inherited[r] && reload_reg_rtx[r]) - check_reg = reload_reg_rtx[r]; - else if (reload_override_in[r] - && (GET_CODE (reload_override_in[r]) == REG - || GET_CODE (reload_override_in[r]) == SUBREG)) - check_reg = reload_override_in[r]; - else - continue; - if (! reload_reg_free_for_value_p (true_regnum (check_reg), - reload_opnum[r], - reload_when_needed[r], - reload_in[r], - (reload_inherited[r] - ? reload_out[r] : const0_rtx), - r, 1)) - { - if (pass) - continue; - reload_inherited[r] = 0; - reload_override_in[r] = 0; - } - /* If we can inherit a RELOAD_FOR_INPUT, or can use a - reload_override_in, then we do not need its related - RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads; - likewise for other reload types. - We handle this by removing a reload when its only replacement - is mentioned in reload_in of the reload we are going to inherit. - A special case are auto_inc expressions; even if the input is - inherited, we still need the address for the output. We can - recognize them because they have RELOAD_OUT set but not - RELOAD_OUT_REG. - If we suceeded removing some reload and we are doing a preliminary - pass just to remove such reloads, make another pass, since the - removal of one reload might allow us to inherit another one. */ - else if ((! reload_out[r] || reload_out_reg[r]) - && reload_in[r] - && remove_address_replacements (reload_in[r]) && pass) - pass = 2; - } - } - - /* Now that reload_override_in is known valid, - actually override reload_in. */ - for (j = 0; j < n_reloads; j++) - if (reload_override_in[j]) - reload_in[j] = reload_override_in[j]; - - /* If this reload won't be done because it has been cancelled or is - optional and not inherited, clear reload_reg_rtx so other - routines (such as subst_reloads) don't get confused. */ - for (j = 0; j < n_reloads; j++) - if (reload_reg_rtx[j] != 0 - && ((reload_optional[j] && ! reload_inherited[j]) - || (reload_in[j] == 0 && reload_out[j] == 0 - && ! reload_secondary_p[j]))) - { - int regno = true_regnum (reload_reg_rtx[j]); - - if (spill_reg_order[regno] >= 0) - clear_reload_reg_in_use (regno, reload_opnum[j], - reload_when_needed[j], reload_mode[j]); - reload_reg_rtx[j] = 0; - reload_spill_index[j] = -1; - } - - /* Record which pseudos and which spill regs have output reloads. */ - for (j = 0; j < n_reloads; j++) - { - register int r = reload_order[j]; - - i = reload_spill_index[r]; - - /* I is nonneg if this reload uses a register. - If reload_reg_rtx[r] is 0, this is an optional reload - that we opted to ignore. */ - if (reload_out_reg[r] != 0 && GET_CODE (reload_out_reg[r]) == REG - && reload_reg_rtx[r] != 0) - { - register int nregno = REGNO (reload_out_reg[r]); - int nr = 1; - - if (nregno < FIRST_PSEUDO_REGISTER) - nr = HARD_REGNO_NREGS (nregno, reload_mode[r]); - - while (--nr >= 0) - reg_has_output_reload[nregno + nr] = 1; - - if (i >= 0) - { - nr = HARD_REGNO_NREGS (i, reload_mode[r]); - while (--nr >= 0) - SET_HARD_REG_BIT (reg_is_output_reload, i + nr); - } - - if (reload_when_needed[r] != RELOAD_OTHER - && reload_when_needed[r] != RELOAD_FOR_OUTPUT - && reload_when_needed[r] != RELOAD_FOR_INSN) - abort (); - } - } -} - -/* Deallocate the reload register for reload R. This is called from - remove_address_replacements. */ -void -deallocate_reload_reg (r) - int r; -{ - int regno; - - if (! reload_reg_rtx[r]) - return; - regno = true_regnum (reload_reg_rtx[r]); - reload_reg_rtx[r] = 0; - if (spill_reg_order[regno] >= 0) - clear_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r], - reload_mode[r]); - reload_spill_index[r] = -1; -} - -/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two - reloads of the same item for fear that we might not have enough reload - registers. However, normally they will get the same reload register - and hence actually need not be loaded twice. - - Here we check for the most common case of this phenomenon: when we have - a number of reloads for the same object, each of which were allocated - the same reload_reg_rtx, that reload_reg_rtx is not used for any other - reload, and is not modified in the insn itself. If we find such, - merge all the reloads and set the resulting reload to RELOAD_OTHER. - This will not increase the number of spill registers needed and will - prevent redundant code. */ - -static void -merge_assigned_reloads (insn) - rtx insn; -{ - int i, j; - - /* Scan all the reloads looking for ones that only load values and - are not already RELOAD_OTHER and ones whose reload_reg_rtx are - assigned and not modified by INSN. */ - - for (i = 0; i < n_reloads; i++) - { - int conflicting_input = 0; - int max_input_address_opnum = -1; - int min_conflicting_input_opnum = MAX_RECOG_OPERANDS; - - if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER - || reload_out[i] != 0 || reload_reg_rtx[i] == 0 - || reg_set_p (reload_reg_rtx[i], insn)) - continue; - - /* Look at all other reloads. Ensure that the only use of this - reload_reg_rtx is in a reload that just loads the same value - as we do. Note that any secondary reloads must be of the identical - class since the values, modes, and result registers are the - same, so we need not do anything with any secondary reloads. */ - - for (j = 0; j < n_reloads; j++) - { - if (i == j || reload_reg_rtx[j] == 0 - || ! reg_overlap_mentioned_p (reload_reg_rtx[j], - reload_reg_rtx[i])) - continue; - - if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS - && reload_opnum[j] > max_input_address_opnum) - max_input_address_opnum = reload_opnum[j]; - - /* If the reload regs aren't exactly the same (e.g, different modes) - or if the values are different, we can't merge this reload. - But if it is an input reload, we might still merge - RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */ - - if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]) - || reload_out[j] != 0 || reload_in[j] == 0 - || ! rtx_equal_p (reload_in[i], reload_in[j])) - { - if (reload_when_needed[j] != RELOAD_FOR_INPUT - || ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS - || reload_opnum[i] > reload_opnum[j]) - && reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS)) - break; - conflicting_input = 1; - if (min_conflicting_input_opnum > reload_opnum[j]) - min_conflicting_input_opnum = reload_opnum[j]; - } - } - - /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if - we, in fact, found any matching reloads. */ - - if (j == n_reloads - && max_input_address_opnum <= min_conflicting_input_opnum) - { - for (j = 0; j < n_reloads; j++) - if (i != j && reload_reg_rtx[j] != 0 - && rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]) - && (! conflicting_input - || reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS - || reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS)) - { - reload_when_needed[i] = RELOAD_OTHER; - reload_in[j] = 0; - reload_spill_index[j] = -1; - transfer_replacements (i, j); - } - - /* If this is now RELOAD_OTHER, look for any reloads that load - parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS - if they were for inputs, RELOAD_OTHER for outputs. Note that - this test is equivalent to looking for reloads for this operand - number. */ - - if (reload_when_needed[i] == RELOAD_OTHER) - for (j = 0; j < n_reloads; j++) - if (reload_in[j] != 0 - && reload_when_needed[i] != RELOAD_OTHER - && reg_overlap_mentioned_for_reload_p (reload_in[j], - reload_in[i])) - reload_when_needed[j] - = ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS - || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS) - ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER); - } - } -} - - -/* Output insns to reload values in and out of the chosen reload regs. */ - -static void -emit_reload_insns (chain) - struct insn_chain *chain; -{ - rtx insn = chain->insn; - - register int j; - rtx input_reload_insns[MAX_RECOG_OPERANDS]; - rtx other_input_address_reload_insns = 0; - rtx other_input_reload_insns = 0; - rtx input_address_reload_insns[MAX_RECOG_OPERANDS]; - rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS]; - rtx output_reload_insns[MAX_RECOG_OPERANDS]; - rtx output_address_reload_insns[MAX_RECOG_OPERANDS]; - rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS]; - rtx operand_reload_insns = 0; - rtx other_operand_reload_insns = 0; - rtx other_output_reload_insns[MAX_RECOG_OPERANDS]; - rtx following_insn = NEXT_INSN (insn); - rtx before_insn = PREV_INSN (insn); - int special; - /* Values to be put in spill_reg_store are put here first. */ - rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER]; - HARD_REG_SET reg_reloaded_died; - - CLEAR_HARD_REG_SET (reg_reloaded_died); - - for (j = 0; j < reload_n_operands; j++) - input_reload_insns[j] = input_address_reload_insns[j] - = inpaddr_address_reload_insns[j] - = output_reload_insns[j] = output_address_reload_insns[j] - = outaddr_address_reload_insns[j] - = other_output_reload_insns[j] = 0; - - /* Now output the instructions to copy the data into and out of the - reload registers. Do these in the order that the reloads were reported, - since reloads of base and index registers precede reloads of operands - and the operands may need the base and index registers reloaded. */ - - for (j = 0; j < n_reloads; j++) - { - register rtx old; - rtx oldequiv_reg = 0; - rtx this_reload_insn = 0; - int expect_occurrences = 1; - - if (reload_reg_rtx[j] - && REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER) - new_spill_reg_store[REGNO (reload_reg_rtx[j])] = 0; - - old = (reload_in[j] && GET_CODE (reload_in[j]) == MEM - ? reload_in_reg[j] : reload_in[j]); - - if (old != 0 - /* AUTO_INC reloads need to be handled even if inherited. We got an - AUTO_INC reload if reload_out is set but reload_out_reg isn't. */ - && (! reload_inherited[j] || (reload_out[j] && ! reload_out_reg[j])) - && ! rtx_equal_p (reload_reg_rtx[j], old) - && reload_reg_rtx[j] != 0) - { - register rtx reloadreg = reload_reg_rtx[j]; - rtx oldequiv = 0; - enum machine_mode mode; - rtx *where; - - /* Determine the mode to reload in. - This is very tricky because we have three to choose from. - There is the mode the insn operand wants (reload_inmode[J]). - There is the mode of the reload register RELOADREG. - There is the intrinsic mode of the operand, which we could find - by stripping some SUBREGs. - It turns out that RELOADREG's mode is irrelevant: - we can change that arbitrarily. - - Consider (SUBREG:SI foo:QI) as an operand that must be SImode; - then the reload reg may not support QImode moves, so use SImode. - If foo is in memory due to spilling a pseudo reg, this is safe, - because the QImode value is in the least significant part of a - slot big enough for a SImode. If foo is some other sort of - memory reference, then it is impossible to reload this case, - so previous passes had better make sure this never happens. - - Then consider a one-word union which has SImode and one of its - members is a float, being fetched as (SUBREG:SF union:SI). - We must fetch that as SFmode because we could be loading into - a float-only register. In this case OLD's mode is correct. - - Consider an immediate integer: it has VOIDmode. Here we need - to get a mode from something else. - - In some cases, there is a fourth mode, the operand's - containing mode. If the insn specifies a containing mode for - this operand, it overrides all others. - - I am not sure whether the algorithm here is always right, - but it does the right things in those cases. */ - - mode = GET_MODE (old); - if (mode == VOIDmode) - mode = reload_inmode[j]; - -#ifdef SECONDARY_INPUT_RELOAD_CLASS - /* If we need a secondary register for this operation, see if - the value is already in a register in that class. Don't - do this if the secondary register will be used as a scratch - register. */ - - if (reload_secondary_in_reload[j] >= 0 - && reload_secondary_in_icode[j] == CODE_FOR_nothing - && optimize) - oldequiv - = find_equiv_reg (old, insn, - reload_reg_class[reload_secondary_in_reload[j]], - -1, NULL_PTR, 0, mode); -#endif - - /* If reloading from memory, see if there is a register - that already holds the same value. If so, reload from there. - We can pass 0 as the reload_reg_p argument because - any other reload has either already been emitted, - in which case find_equiv_reg will see the reload-insn, - or has yet to be emitted, in which case it doesn't matter - because we will use this equiv reg right away. */ - - if (oldequiv == 0 && optimize - && (GET_CODE (old) == MEM - || (GET_CODE (old) == REG - && REGNO (old) >= FIRST_PSEUDO_REGISTER - && reg_renumber[REGNO (old)] < 0))) - oldequiv = find_equiv_reg (old, insn, ALL_REGS, - -1, NULL_PTR, 0, mode); - - if (oldequiv) - { - int regno = true_regnum (oldequiv); - - /* Don't use OLDEQUIV if any other reload changes it at an - earlier stage of this insn or at this stage. */ - if (! reload_reg_free_for_value_p (regno, reload_opnum[j], - reload_when_needed[j], - reload_in[j], const0_rtx, j, - 0)) - oldequiv = 0; - - /* If it is no cheaper to copy from OLDEQUIV into the - reload register than it would be to move from memory, - don't use it. Likewise, if we need a secondary register - or memory. */ - - if (oldequiv != 0 - && ((REGNO_REG_CLASS (regno) != reload_reg_class[j] - && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno), - reload_reg_class[j]) - >= MEMORY_MOVE_COST (mode, reload_reg_class[j], 1))) -#ifdef SECONDARY_INPUT_RELOAD_CLASS - || (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j], - mode, oldequiv) - != NO_REGS) -#endif -#ifdef SECONDARY_MEMORY_NEEDED - || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno), - reload_reg_class[j], - mode) -#endif - )) - oldequiv = 0; - } - - /* delete_output_reload is only invoked properly if old contains - the original pseudo register. Since this is replaced with a - hard reg when RELOAD_OVERRIDE_IN is set, see if we can - find the pseudo in RELOAD_IN_REG. */ - if (oldequiv == 0 - && reload_override_in[j] - && GET_CODE (reload_in_reg[j]) == REG) - { - oldequiv = old; - old = reload_in_reg[j]; - } - if (oldequiv == 0) - oldequiv = old; - else if (GET_CODE (oldequiv) == REG) - oldequiv_reg = oldequiv; - else if (GET_CODE (oldequiv) == SUBREG) - oldequiv_reg = SUBREG_REG (oldequiv); - - /* If we are reloading from a register that was recently stored in - with an output-reload, see if we can prove there was - actually no need to store the old value in it. */ - - if (optimize && GET_CODE (oldequiv) == REG - && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER - && spill_reg_store[REGNO (oldequiv)] - && GET_CODE (old) == REG - && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)]) - || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)], - reload_out_reg[j]))) - delete_output_reload (insn, j, REGNO (oldequiv)); - - /* Encapsulate both RELOADREG and OLDEQUIV into that mode, - then load RELOADREG from OLDEQUIV. Note that we cannot use - gen_lowpart_common since it can do the wrong thing when - RELOADREG has a multi-word mode. Note that RELOADREG - must always be a REG here. */ - - if (GET_MODE (reloadreg) != mode) - reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); - while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode) - oldequiv = SUBREG_REG (oldequiv); - if (GET_MODE (oldequiv) != VOIDmode - && mode != GET_MODE (oldequiv)) - oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0); - - /* Switch to the right place to emit the reload insns. */ - switch (reload_when_needed[j]) - { - case RELOAD_OTHER: - where = &other_input_reload_insns; - break; - case RELOAD_FOR_INPUT: - where = &input_reload_insns[reload_opnum[j]]; - break; - case RELOAD_FOR_INPUT_ADDRESS: - where = &input_address_reload_insns[reload_opnum[j]]; - break; - case RELOAD_FOR_INPADDR_ADDRESS: - where = &inpaddr_address_reload_insns[reload_opnum[j]]; - break; - case RELOAD_FOR_OUTPUT_ADDRESS: - where = &output_address_reload_insns[reload_opnum[j]]; - break; - case RELOAD_FOR_OUTADDR_ADDRESS: - where = &outaddr_address_reload_insns[reload_opnum[j]]; - break; - case RELOAD_FOR_OPERAND_ADDRESS: - where = &operand_reload_insns; - break; - case RELOAD_FOR_OPADDR_ADDR: - where = &other_operand_reload_insns; - break; - case RELOAD_FOR_OTHER_ADDRESS: - where = &other_input_address_reload_insns; - break; - default: - abort (); - } - - push_to_sequence (*where); - special = 0; - - /* Auto-increment addresses must be reloaded in a special way. */ - if (reload_out[j] && ! reload_out_reg[j]) - { - /* We are not going to bother supporting the case where a - incremented register can't be copied directly from - OLDEQUIV since this seems highly unlikely. */ - if (reload_secondary_in_reload[j] >= 0) - abort (); - - if (reload_inherited[j]) - oldequiv = reloadreg; - - old = XEXP (reload_in_reg[j], 0); - - if (optimize && GET_CODE (oldequiv) == REG - && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER - && spill_reg_store[REGNO (oldequiv)] - && GET_CODE (old) == REG - && (dead_or_set_p (insn, - spill_reg_stored_to[REGNO (oldequiv)]) - || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)], - old))) - delete_output_reload (insn, j, REGNO (oldequiv)); - - /* Prevent normal processing of this reload. */ - special = 1; - /* Output a special code sequence for this case. */ - new_spill_reg_store[REGNO (reloadreg)] - = inc_for_reload (reloadreg, oldequiv, reload_out[j], - reload_inc[j]); - } - - /* If we are reloading a pseudo-register that was set by the previous - insn, see if we can get rid of that pseudo-register entirely - by redirecting the previous insn into our reload register. */ - - else if (optimize && GET_CODE (old) == REG - && REGNO (old) >= FIRST_PSEUDO_REGISTER - && dead_or_set_p (insn, old) - /* This is unsafe if some other reload - uses the same reg first. */ - && reload_reg_free_for_value_p (REGNO (reloadreg), - reload_opnum[j], - reload_when_needed[j], - old, reload_out[j], - j, 0)) - { - rtx temp = PREV_INSN (insn); - while (temp && GET_CODE (temp) == NOTE) - temp = PREV_INSN (temp); - if (temp - && GET_CODE (temp) == INSN - && GET_CODE (PATTERN (temp)) == SET - && SET_DEST (PATTERN (temp)) == old - /* Make sure we can access insn_operand_constraint. */ - && asm_noperands (PATTERN (temp)) < 0 - /* This is unsafe if prev insn rejects our reload reg. */ - && constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0], - reloadreg) - /* This is unsafe if operand occurs more than once in current - insn. Perhaps some occurrences aren't reloaded. */ - && count_occurrences (PATTERN (insn), old) == 1 - /* Don't risk splitting a matching pair of operands. */ - && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp)))) - { - /* Store into the reload register instead of the pseudo. */ - SET_DEST (PATTERN (temp)) = reloadreg; - - /* If the previous insn is an output reload, the source is - a reload register, and its spill_reg_store entry will - contain the previous destination. This is now - invalid. */ - if (GET_CODE (SET_SRC (PATTERN (temp))) == REG - && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER) - { - spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0; - spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0; - } - - /* If these are the only uses of the pseudo reg, - pretend for GDB it lives in the reload reg we used. */ - if (REG_N_DEATHS (REGNO (old)) == 1 - && REG_N_SETS (REGNO (old)) == 1) - { - reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]); - alter_reg (REGNO (old), -1); - } - special = 1; - } - } - - /* We can't do that, so output an insn to load RELOADREG. */ - - if (! special) - { -#ifdef SECONDARY_INPUT_RELOAD_CLASS - rtx second_reload_reg = 0; - enum insn_code icode; - - /* If we have a secondary reload, pick up the secondary register - and icode, if any. If OLDEQUIV and OLD are different or - if this is an in-out reload, recompute whether or not we - still need a secondary register and what the icode should - be. If we still need a secondary register and the class or - icode is different, go back to reloading from OLD if using - OLDEQUIV means that we got the wrong type of register. We - cannot have different class or icode due to an in-out reload - because we don't make such reloads when both the input and - output need secondary reload registers. */ - - if (reload_secondary_in_reload[j] >= 0) - { - int secondary_reload = reload_secondary_in_reload[j]; - rtx real_oldequiv = oldequiv; - rtx real_old = old; - rtx tmp; - - /* If OLDEQUIV is a pseudo with a MEM, get the real MEM - and similarly for OLD. - See comments in get_secondary_reload in reload.c. */ - /* If it is a pseudo that cannot be replaced with its - equivalent MEM, we must fall back to reload_in, which - will have all the necessary substitutions registered. - Likewise for a pseudo that can't be replaced with its - equivalent constant. - - Take extra care for subregs of such pseudos. Note that - we cannot use reg_equiv_mem in this case because it is - not in the right mode. */ - - tmp = oldequiv; - if (GET_CODE (tmp) == SUBREG) - tmp = SUBREG_REG (tmp); - if (GET_CODE (tmp) == REG - && REGNO (tmp) >= FIRST_PSEUDO_REGISTER - && (reg_equiv_memory_loc[REGNO (tmp)] != 0 - || reg_equiv_constant[REGNO (tmp)] != 0)) - { - if (! reg_equiv_mem[REGNO (tmp)] - || num_not_at_initial_offset - || GET_CODE (oldequiv) == SUBREG) - real_oldequiv = reload_in[j]; - else - real_oldequiv = reg_equiv_mem[REGNO (tmp)]; - } - - tmp = old; - if (GET_CODE (tmp) == SUBREG) - tmp = SUBREG_REG (tmp); - if (GET_CODE (tmp) == REG - && REGNO (tmp) >= FIRST_PSEUDO_REGISTER - && (reg_equiv_memory_loc[REGNO (tmp)] != 0 - || reg_equiv_constant[REGNO (tmp)] != 0)) - { - if (! reg_equiv_mem[REGNO (tmp)] - || num_not_at_initial_offset - || GET_CODE (old) == SUBREG) - real_old = reload_in[j]; - else - real_old = reg_equiv_mem[REGNO (tmp)]; - } - - second_reload_reg = reload_reg_rtx[secondary_reload]; - icode = reload_secondary_in_icode[j]; - - if ((old != oldequiv && ! rtx_equal_p (old, oldequiv)) - || (reload_in[j] != 0 && reload_out[j] != 0)) - { - enum reg_class new_class - = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j], - mode, real_oldequiv); - - if (new_class == NO_REGS) - second_reload_reg = 0; - else - { - enum insn_code new_icode; - enum machine_mode new_mode; - - if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], - REGNO (second_reload_reg))) - oldequiv = old, real_oldequiv = real_old; - else - { - new_icode = reload_in_optab[(int) mode]; - if (new_icode != CODE_FOR_nothing - && ((insn_operand_predicate[(int) new_icode][0] - && ! ((*insn_operand_predicate[(int) new_icode][0]) - (reloadreg, mode))) - || (insn_operand_predicate[(int) new_icode][1] - && ! ((*insn_operand_predicate[(int) new_icode][1]) - (real_oldequiv, mode))))) - new_icode = CODE_FOR_nothing; - - if (new_icode == CODE_FOR_nothing) - new_mode = mode; - else - new_mode = insn_operand_mode[(int) new_icode][2]; - - if (GET_MODE (second_reload_reg) != new_mode) - { - if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg), - new_mode)) - oldequiv = old, real_oldequiv = real_old; - else - second_reload_reg - = gen_rtx_REG (new_mode, - REGNO (second_reload_reg)); - } - } - } - } - - /* If we still need a secondary reload register, check - to see if it is being used as a scratch or intermediate - register and generate code appropriately. If we need - a scratch register, use REAL_OLDEQUIV since the form of - the insn may depend on the actual address if it is - a MEM. */ - - if (second_reload_reg) - { - if (icode != CODE_FOR_nothing) - { - emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv, - second_reload_reg)); - special = 1; - } - else - { - /* See if we need a scratch register to load the - intermediate register (a tertiary reload). */ - enum insn_code tertiary_icode - = reload_secondary_in_icode[secondary_reload]; - - if (tertiary_icode != CODE_FOR_nothing) - { - rtx third_reload_reg - = reload_reg_rtx[reload_secondary_in_reload[secondary_reload]]; - - emit_insn ((GEN_FCN (tertiary_icode) - (second_reload_reg, real_oldequiv, - third_reload_reg))); - } - else - gen_reload (second_reload_reg, real_oldequiv, - reload_opnum[j], - reload_when_needed[j]); - - oldequiv = second_reload_reg; - } - } - } -#endif - - if (! special && ! rtx_equal_p (reloadreg, oldequiv)) - { - rtx real_oldequiv = oldequiv; - - if ((GET_CODE (oldequiv) == REG - && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER - && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0 - || reg_equiv_constant[REGNO (oldequiv)] != 0)) - || (GET_CODE (oldequiv) == SUBREG - && GET_CODE (SUBREG_REG (oldequiv)) == REG - && (REGNO (SUBREG_REG (oldequiv)) - >= FIRST_PSEUDO_REGISTER) - && ((reg_equiv_memory_loc - [REGNO (SUBREG_REG (oldequiv))] != 0) - || (reg_equiv_constant - [REGNO (SUBREG_REG (oldequiv))] != 0)))) - real_oldequiv = reload_in[j]; - gen_reload (reloadreg, real_oldequiv, reload_opnum[j], - reload_when_needed[j]); - } - - } - - this_reload_insn = get_last_insn (); - /* End this sequence. */ - *where = get_insns (); - end_sequence (); - - /* Update reload_override_in so that delete_address_reloads_1 - can see the actual register usage. */ - if (oldequiv_reg) - reload_override_in[j] = oldequiv; - } - - /* When inheriting a wider reload, we have a MEM in reload_in[j], - e.g. inheriting a SImode output reload for - (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */ - if (optimize && reload_inherited[j] && reload_in[j] - && GET_CODE (reload_in[j]) == MEM - && GET_CODE (reload_in_reg[j]) == MEM - && reload_spill_index[j] >= 0 - && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j])) - { - expect_occurrences - = count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1; - reload_in[j] - = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]]; - } - - /* If we are reloading a register that was recently stored in with an - output-reload, see if we can prove there was - actually no need to store the old value in it. */ - - if (optimize - && (reload_inherited[j] || reload_override_in[j]) - && reload_reg_rtx[j] - && GET_CODE (reload_reg_rtx[j]) == REG - && spill_reg_store[REGNO (reload_reg_rtx[j])] != 0 -#if 0 - /* There doesn't seem to be any reason to restrict this to pseudos - and doing so loses in the case where we are copying from a - register of the wrong class. */ - && REGNO (spill_reg_stored_to[REGNO (reload_reg_rtx[j])]) - >= FIRST_PSEUDO_REGISTER -#endif - /* The insn might have already some references to stackslots - replaced by MEMs, while reload_out_reg still names the - original pseudo. */ - && (dead_or_set_p (insn, - spill_reg_stored_to[REGNO (reload_reg_rtx[j])]) - || rtx_equal_p (spill_reg_stored_to[REGNO (reload_reg_rtx[j])], - reload_out_reg[j]))) - delete_output_reload (insn, j, REGNO (reload_reg_rtx[j])); - - /* Input-reloading is done. Now do output-reloading, - storing the value from the reload-register after the main insn - if reload_out[j] is nonzero. - - ??? At some point we need to support handling output reloads of - JUMP_INSNs or insns that set cc0. */ - - /* If this is an output reload that stores something that is - not loaded in this same reload, see if we can eliminate a previous - store. */ - { - rtx pseudo = reload_out_reg[j]; - - if (pseudo - && GET_CODE (pseudo) == REG - && ! rtx_equal_p (reload_in_reg[j], pseudo) - && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER - && reg_last_reload_reg[REGNO (pseudo)]) - { - int pseudo_no = REGNO (pseudo); - int last_regno = REGNO (reg_last_reload_reg[pseudo_no]); - - /* We don't need to test full validity of last_regno for - inherit here; we only want to know if the store actually - matches the pseudo. */ - if (reg_reloaded_contents[last_regno] == pseudo_no - && spill_reg_store[last_regno] - && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno])) - delete_output_reload (insn, j, last_regno); - } - } - - old = reload_out_reg[j]; - if (old != 0 - && reload_reg_rtx[j] != old - && reload_reg_rtx[j] != 0) - { - register rtx reloadreg = reload_reg_rtx[j]; -#ifdef SECONDARY_OUTPUT_RELOAD_CLASS - register rtx second_reloadreg = 0; -#endif - rtx note, p; - enum machine_mode mode; - int special = 0; - - /* An output operand that dies right away does need a reload, - but need not be copied from it. Show the new location in the - REG_UNUSED note. */ - if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH) - && (note = find_reg_note (insn, REG_UNUSED, old)) != 0) - { - XEXP (note, 0) = reload_reg_rtx[j]; - continue; - } - /* Likewise for a SUBREG of an operand that dies. */ - else if (GET_CODE (old) == SUBREG - && GET_CODE (SUBREG_REG (old)) == REG - && 0 != (note = find_reg_note (insn, REG_UNUSED, - SUBREG_REG (old)))) - { - XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), - reload_reg_rtx[j]); - continue; - } - else if (GET_CODE (old) == SCRATCH) - /* If we aren't optimizing, there won't be a REG_UNUSED note, - but we don't want to make an output reload. */ - continue; - -#if 0 - /* Strip off of OLD any size-increasing SUBREGs such as - (SUBREG:SI foo:QI 0). */ - - while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0 - && (GET_MODE_SIZE (GET_MODE (old)) - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old))))) - old = SUBREG_REG (old); -#endif - - /* If is a JUMP_INSN, we can't support output reloads yet. */ - if (GET_CODE (insn) == JUMP_INSN) - abort (); - - if (reload_when_needed[j] == RELOAD_OTHER) - start_sequence (); - else - push_to_sequence (output_reload_insns[reload_opnum[j]]); - - old = reload_out[j]; - - /* Determine the mode to reload in. - See comments above (for input reloading). */ - - mode = GET_MODE (old); - if (mode == VOIDmode) - { - /* VOIDmode should never happen for an output. */ - if (asm_noperands (PATTERN (insn)) < 0) - /* It's the compiler's fault. */ - fatal_insn ("VOIDmode on an output", insn); - error_for_asm (insn, "output operand is constant in `asm'"); - /* Prevent crash--use something we know is valid. */ - mode = word_mode; - old = gen_rtx_REG (mode, REGNO (reloadreg)); - } - - if (GET_MODE (reloadreg) != mode) - reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); - -#ifdef SECONDARY_OUTPUT_RELOAD_CLASS - - /* If we need two reload regs, set RELOADREG to the intermediate - one, since it will be stored into OLD. We might need a secondary - register only for an input reload, so check again here. */ - - if (reload_secondary_out_reload[j] >= 0) - { - rtx real_old = old; - - if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER - && reg_equiv_mem[REGNO (old)] != 0) - real_old = reg_equiv_mem[REGNO (old)]; - - if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j], - mode, real_old) - != NO_REGS)) - { - second_reloadreg = reloadreg; - reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]]; - - /* See if RELOADREG is to be used as a scratch register - or as an intermediate register. */ - if (reload_secondary_out_icode[j] != CODE_FOR_nothing) - { - emit_insn ((GEN_FCN (reload_secondary_out_icode[j]) - (real_old, second_reloadreg, reloadreg))); - special = 1; - } - else - { - /* See if we need both a scratch and intermediate reload - register. */ - - int secondary_reload = reload_secondary_out_reload[j]; - enum insn_code tertiary_icode - = reload_secondary_out_icode[secondary_reload]; - - if (GET_MODE (reloadreg) != mode) - reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); - - if (tertiary_icode != CODE_FOR_nothing) - { - rtx third_reloadreg - = reload_reg_rtx[reload_secondary_out_reload[secondary_reload]]; - rtx tem; - - /* Copy primary reload reg to secondary reload reg. - (Note that these have been swapped above, then - secondary reload reg to OLD using our insn. */ - - /* If REAL_OLD is a paradoxical SUBREG, remove it - and try to put the opposite SUBREG on - RELOADREG. */ - if (GET_CODE (real_old) == SUBREG - && (GET_MODE_SIZE (GET_MODE (real_old)) - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old)))) - && 0 != (tem = gen_lowpart_common - (GET_MODE (SUBREG_REG (real_old)), - reloadreg))) - real_old = SUBREG_REG (real_old), reloadreg = tem; - - gen_reload (reloadreg, second_reloadreg, - reload_opnum[j], reload_when_needed[j]); - emit_insn ((GEN_FCN (tertiary_icode) - (real_old, reloadreg, third_reloadreg))); - special = 1; - } - - else - /* Copy between the reload regs here and then to - OUT later. */ - - gen_reload (reloadreg, second_reloadreg, - reload_opnum[j], reload_when_needed[j]); - } - } - } -#endif - - /* Output the last reload insn. */ - if (! special) - { - rtx set; - - /* Don't output the last reload if OLD is not the dest of - INSN and is in the src and is clobbered by INSN. */ - if (! flag_expensive_optimizations - || GET_CODE (old) != REG - || !(set = single_set (insn)) - || rtx_equal_p (old, SET_DEST (set)) - || !reg_mentioned_p (old, SET_SRC (set)) - || !regno_clobbered_p (REGNO (old), insn)) - gen_reload (old, reloadreg, reload_opnum[j], - reload_when_needed[j]); - } - - /* Look at all insns we emitted, just to be safe. */ - for (p = get_insns (); p; p = NEXT_INSN (p)) - if (GET_RTX_CLASS (GET_CODE (p)) == 'i') - { - rtx pat = PATTERN (p); - - /* If this output reload doesn't come from a spill reg, - clear any memory of reloaded copies of the pseudo reg. - If this output reload comes from a spill reg, - reg_has_output_reload will make this do nothing. */ - note_stores (pat, forget_old_reloads_1); - - if (reg_mentioned_p (reload_reg_rtx[j], pat)) - { - rtx set = single_set (insn); - if (reload_spill_index[j] < 0 - && set - && SET_SRC (set) == reload_reg_rtx[j]) - { - int src = REGNO (SET_SRC (set)); - - reload_spill_index[j] = src; - SET_HARD_REG_BIT (reg_is_output_reload, src); - if (find_regno_note (insn, REG_DEAD, src)) - SET_HARD_REG_BIT (reg_reloaded_died, src); - } - if (REGNO (reload_reg_rtx[j]) < FIRST_PSEUDO_REGISTER) - { - int s = reload_secondary_out_reload[j]; - set = single_set (p); - /* If this reload copies only to the secondary reload - register, the secondary reload does the actual - store. */ - if (s >= 0 && set == NULL_RTX) - ; /* We can't tell what function the secondary reload - has and where the actual store to the pseudo is - made; leave new_spill_reg_store alone. */ - else if (s >= 0 - && SET_SRC (set) == reload_reg_rtx[j] - && SET_DEST (set) == reload_reg_rtx[s]) - { - /* Usually the next instruction will be the - secondary reload insn; if we can confirm - that it is, setting new_spill_reg_store to - that insn will allow an extra optimization. */ - rtx s_reg = reload_reg_rtx[s]; - rtx next = NEXT_INSN (p); - reload_out[s] = reload_out[j]; - reload_out_reg[s] = reload_out_reg[j]; - set = single_set (next); - if (set && SET_SRC (set) == s_reg - && ! new_spill_reg_store[REGNO (s_reg)]) - { - SET_HARD_REG_BIT (reg_is_output_reload, - REGNO (s_reg)); - new_spill_reg_store[REGNO (s_reg)] = next; - } - } - else - new_spill_reg_store[REGNO (reload_reg_rtx[j])] = p; - } - } - } - - if (reload_when_needed[j] == RELOAD_OTHER) - { - emit_insns (other_output_reload_insns[reload_opnum[j]]); - other_output_reload_insns[reload_opnum[j]] = get_insns (); - } - else - output_reload_insns[reload_opnum[j]] = get_insns (); - - end_sequence (); - } - } - - /* Now write all the insns we made for reloads in the order expected by - the allocation functions. Prior to the insn being reloaded, we write - the following reloads: - - RELOAD_FOR_OTHER_ADDRESS reloads for input addresses. - - RELOAD_OTHER reloads. - - For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed - by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the - RELOAD_FOR_INPUT reload for the operand. - - RELOAD_FOR_OPADDR_ADDRS reloads. - - RELOAD_FOR_OPERAND_ADDRESS reloads. - - After the insn being reloaded, we write the following: - - For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed - by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the - RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output - reloads for the operand. The RELOAD_OTHER output reloads are - output in descending order by reload number. */ - - emit_insns_before (other_input_address_reload_insns, insn); - emit_insns_before (other_input_reload_insns, insn); - - for (j = 0; j < reload_n_operands; j++) - { - emit_insns_before (inpaddr_address_reload_insns[j], insn); - emit_insns_before (input_address_reload_insns[j], insn); - emit_insns_before (input_reload_insns[j], insn); - } - - emit_insns_before (other_operand_reload_insns, insn); - emit_insns_before (operand_reload_insns, insn); - - for (j = 0; j < reload_n_operands; j++) - { - emit_insns_before (outaddr_address_reload_insns[j], following_insn); - emit_insns_before (output_address_reload_insns[j], following_insn); - emit_insns_before (output_reload_insns[j], following_insn); - emit_insns_before (other_output_reload_insns[j], following_insn); - } - - /* Keep basic block info up to date. */ - if (n_basic_blocks) - { - if (BLOCK_HEAD (chain->block) == insn) - BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn); - if (BLOCK_END (chain->block) == insn) - BLOCK_END (chain->block) = PREV_INSN (following_insn); - } - - /* For all the spill regs newly reloaded in this instruction, - record what they were reloaded from, so subsequent instructions - can inherit the reloads. - - Update spill_reg_store for the reloads of this insn. - Copy the elements that were updated in the loop above. */ - - for (j = 0; j < n_reloads; j++) - { - register int r = reload_order[j]; - register int i = reload_spill_index[r]; - - /* If this is a non-inherited input reload from a pseudo, we must - clear any memory of a previous store to the same pseudo. Only do - something if there will not be an output reload for the pseudo - being reloaded. */ - if (reload_in_reg[r] != 0 - && ! (reload_inherited[r] || reload_override_in[r])) - { - rtx reg = reload_in_reg[r]; - - if (GET_CODE (reg) == SUBREG) - reg = SUBREG_REG (reg); - - if (GET_CODE (reg) == REG - && REGNO (reg) >= FIRST_PSEUDO_REGISTER - && ! reg_has_output_reload[REGNO (reg)]) - { - int nregno = REGNO (reg); - - if (reg_last_reload_reg[nregno]) - { - int last_regno = REGNO (reg_last_reload_reg[nregno]); - - if (reg_reloaded_contents[last_regno] == nregno) - spill_reg_store[last_regno] = 0; - } - } - } - - /* I is nonneg if this reload used a register. - If reload_reg_rtx[r] is 0, this is an optional reload - that we opted to ignore. */ - - if (i >= 0 && reload_reg_rtx[r] != 0) - { - int nr - = HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r])); - int k; - int part_reaches_end = 0; - int all_reaches_end = 1; - - /* For a multi register reload, we need to check if all or part - of the value lives to the end. */ - for (k = 0; k < nr; k++) - { - if (reload_reg_reaches_end_p (i + k, reload_opnum[r], - reload_when_needed[r])) - part_reaches_end = 1; - else - all_reaches_end = 0; - } - - /* Ignore reloads that don't reach the end of the insn in - entirety. */ - if (all_reaches_end) - { - /* First, clear out memory of what used to be in this spill reg. - If consecutive registers are used, clear them all. */ - - for (k = 0; k < nr; k++) - CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k); - - /* Maybe the spill reg contains a copy of reload_out. */ - if (reload_out[r] != 0 - && (GET_CODE (reload_out[r]) == REG -#ifdef AUTO_INC_DEC - || ! reload_out_reg[r] -#endif - || GET_CODE (reload_out_reg[r]) == REG)) - { - rtx out = (GET_CODE (reload_out[r]) == REG - ? reload_out[r] - : reload_out_reg[r] - ? reload_out_reg[r] -/* AUTO_INC */ : XEXP (reload_in_reg[r], 0)); - register int nregno = REGNO (out); - int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1 - : HARD_REGNO_NREGS (nregno, - GET_MODE (reload_reg_rtx[r]))); - - spill_reg_store[i] = new_spill_reg_store[i]; - spill_reg_stored_to[i] = out; - reg_last_reload_reg[nregno] = reload_reg_rtx[r]; - - /* If NREGNO is a hard register, it may occupy more than - one register. If it does, say what is in the - rest of the registers assuming that both registers - agree on how many words the object takes. If not, - invalidate the subsequent registers. */ - - if (nregno < FIRST_PSEUDO_REGISTER) - for (k = 1; k < nnr; k++) - reg_last_reload_reg[nregno + k] - = (nr == nnr - ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k], - REGNO (reload_reg_rtx[r]) + k) - : 0); - - /* Now do the inverse operation. */ - for (k = 0; k < nr; k++) - { - CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k); - reg_reloaded_contents[i + k] - = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr - ? nregno - : nregno + k); - reg_reloaded_insn[i + k] = insn; - SET_HARD_REG_BIT (reg_reloaded_valid, i + k); - } - } - - /* Maybe the spill reg contains a copy of reload_in. Only do - something if there will not be an output reload for - the register being reloaded. */ - else if (reload_out_reg[r] == 0 - && reload_in[r] != 0 - && ((GET_CODE (reload_in[r]) == REG - && REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER - && ! reg_has_output_reload[REGNO (reload_in[r])]) - || (GET_CODE (reload_in_reg[r]) == REG - && ! reg_has_output_reload[REGNO (reload_in_reg[r])])) - && ! reg_set_p (reload_reg_rtx[r], PATTERN (insn))) - { - register int nregno; - int nnr; - - if (GET_CODE (reload_in[r]) == REG - && REGNO (reload_in[r]) >= FIRST_PSEUDO_REGISTER) - nregno = REGNO (reload_in[r]); - else if (GET_CODE (reload_in_reg[r]) == REG) - nregno = REGNO (reload_in_reg[r]); - else - nregno = REGNO (XEXP (reload_in_reg[r], 0)); - - nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1 - : HARD_REGNO_NREGS (nregno, - GET_MODE (reload_reg_rtx[r]))); - - reg_last_reload_reg[nregno] = reload_reg_rtx[r]; - - if (nregno < FIRST_PSEUDO_REGISTER) - for (k = 1; k < nnr; k++) - reg_last_reload_reg[nregno + k] - = (nr == nnr - ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k], - REGNO (reload_reg_rtx[r]) + k) - : 0); - - /* Unless we inherited this reload, show we haven't - recently done a store. - Previous stores of inherited auto_inc expressions - also have to be discarded. */ - if (! reload_inherited[r] - || (reload_out[r] && ! reload_out_reg[r])) - spill_reg_store[i] = 0; - - for (k = 0; k < nr; k++) - { - CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k); - reg_reloaded_contents[i + k] - = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr - ? nregno - : nregno + k); - reg_reloaded_insn[i + k] = insn; - SET_HARD_REG_BIT (reg_reloaded_valid, i + k); - } - } - } - - /* However, if part of the reload reaches the end, then we must - invalidate the old info for the part that survives to the end. */ - else if (part_reaches_end) - { - for (k = 0; k < nr; k++) - if (reload_reg_reaches_end_p (i + k, - reload_opnum[r], - reload_when_needed[r])) - CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k); - } - } - - /* The following if-statement was #if 0'd in 1.34 (or before...). - It's reenabled in 1.35 because supposedly nothing else - deals with this problem. */ - - /* If a register gets output-reloaded from a non-spill register, - that invalidates any previous reloaded copy of it. - But forget_old_reloads_1 won't get to see it, because - it thinks only about the original insn. So invalidate it here. */ - if (i < 0 && reload_out[r] != 0 - && (GET_CODE (reload_out[r]) == REG - || (GET_CODE (reload_out[r]) == MEM - && GET_CODE (reload_out_reg[r]) == REG))) - { - rtx out = (GET_CODE (reload_out[r]) == REG - ? reload_out[r] : reload_out_reg[r]); - register int nregno = REGNO (out); - if (nregno >= FIRST_PSEUDO_REGISTER) - { - rtx src_reg, store_insn; - - reg_last_reload_reg[nregno] = 0; - - /* If we can find a hard register that is stored, record - the storing insn so that we may delete this insn with - delete_output_reload. */ - src_reg = reload_reg_rtx[r]; - - /* If this is an optional reload, try to find the source reg - from an input reload. */ - if (! src_reg) - { - rtx set = single_set (insn); - if (set && SET_DEST (set) == reload_out[r]) - { - int k; - - src_reg = SET_SRC (set); - store_insn = insn; - for (k = 0; k < n_reloads; k++) - { - if (reload_in[k] == src_reg) - { - src_reg = reload_reg_rtx[k]; - break; - } - } - } - } - else - store_insn = new_spill_reg_store[REGNO (src_reg)]; - if (src_reg && GET_CODE (src_reg) == REG - && REGNO (src_reg) < FIRST_PSEUDO_REGISTER) - { - int src_regno = REGNO (src_reg); - int nr = HARD_REGNO_NREGS (src_regno, reload_mode[r]); - /* The place where to find a death note varies with - PRESERVE_DEATH_INFO_REGNO_P . The condition is not - necessarily checked exactly in the code that moves - notes, so just check both locations. */ - rtx note = find_regno_note (insn, REG_DEAD, src_regno); - if (! note) - note = find_regno_note (store_insn, REG_DEAD, src_regno); - while (nr-- > 0) - { - spill_reg_store[src_regno + nr] = store_insn; - spill_reg_stored_to[src_regno + nr] = out; - reg_reloaded_contents[src_regno + nr] = nregno; - reg_reloaded_insn[src_regno + nr] = store_insn; - CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr); - SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr); - SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr); - if (note) - SET_HARD_REG_BIT (reg_reloaded_died, src_regno); - else - CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno); - } - reg_last_reload_reg[nregno] = src_reg; - } - } - else - { - int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r])); - - while (num_regs-- > 0) - reg_last_reload_reg[nregno + num_regs] = 0; - } - } - } - IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died); -} - -/* Emit code to perform a reload from IN (which may be a reload register) to - OUT (which may also be a reload register). IN or OUT is from operand - OPNUM with reload type TYPE. - - Returns first insn emitted. */ - -rtx -gen_reload (out, in, opnum, type) - rtx out; - rtx in; - int opnum; - enum reload_type type; -{ - rtx last = get_last_insn (); - rtx tem; - - /* If IN is a paradoxical SUBREG, remove it and try to put the - opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */ - if (GET_CODE (in) == SUBREG - && (GET_MODE_SIZE (GET_MODE (in)) - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))) - && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0) - in = SUBREG_REG (in), out = tem; - else if (GET_CODE (out) == SUBREG - && (GET_MODE_SIZE (GET_MODE (out)) - > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))) - && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0) - out = SUBREG_REG (out), in = tem; - - /* How to do this reload can get quite tricky. Normally, we are being - asked to reload a simple operand, such as a MEM, a constant, or a pseudo - register that didn't get a hard register. In that case we can just - call emit_move_insn. - - We can also be asked to reload a PLUS that adds a register or a MEM to - another register, constant or MEM. This can occur during frame pointer - elimination and while reloading addresses. This case is handled by - trying to emit a single insn to perform the add. If it is not valid, - we use a two insn sequence. - - Finally, we could be called to handle an 'o' constraint by putting - an address into a register. In that case, we first try to do this - with a named pattern of "reload_load_address". If no such pattern - exists, we just emit a SET insn and hope for the best (it will normally - be valid on machines that use 'o'). - - This entire process is made complex because reload will never - process the insns we generate here and so we must ensure that - they will fit their constraints and also by the fact that parts of - IN might be being reloaded separately and replaced with spill registers. - Because of this, we are, in some sense, just guessing the right approach - here. The one listed above seems to work. - - ??? At some point, this whole thing needs to be rethought. */ - - if (GET_CODE (in) == PLUS - && (GET_CODE (XEXP (in, 0)) == REG - || GET_CODE (XEXP (in, 0)) == SUBREG - || GET_CODE (XEXP (in, 0)) == MEM) - && (GET_CODE (XEXP (in, 1)) == REG - || GET_CODE (XEXP (in, 1)) == SUBREG - || CONSTANT_P (XEXP (in, 1)) - || GET_CODE (XEXP (in, 1)) == MEM)) - { - /* We need to compute the sum of a register or a MEM and another - register, constant, or MEM, and put it into the reload - register. The best possible way of doing this is if the machine - has a three-operand ADD insn that accepts the required operands. - - The simplest approach is to try to generate such an insn and see if it - is recognized and matches its constraints. If so, it can be used. - - It might be better not to actually emit the insn unless it is valid, - but we need to pass the insn as an operand to `recog' and - `extract_insn' and it is simpler to emit and then delete the insn if - not valid than to dummy things up. */ - - rtx op0, op1, tem, insn; - int code; - - op0 = find_replacement (&XEXP (in, 0)); - op1 = find_replacement (&XEXP (in, 1)); - - /* Since constraint checking is strict, commutativity won't be - checked, so we need to do that here to avoid spurious failure - if the add instruction is two-address and the second operand - of the add is the same as the reload reg, which is frequently - the case. If the insn would be A = B + A, rearrange it so - it will be A = A + B as constrain_operands expects. */ - - if (GET_CODE (XEXP (in, 1)) == REG - && REGNO (out) == REGNO (XEXP (in, 1))) - tem = op0, op0 = op1, op1 = tem; - - if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1)) - in = gen_rtx_PLUS (GET_MODE (in), op0, op1); - - insn = emit_insn (gen_rtx_SET (VOIDmode, out, in)); - code = recog_memoized (insn); - - if (code >= 0) - { - extract_insn (insn); - /* We want constrain operands to treat this insn strictly in - its validity determination, i.e., the way it would after reload - has completed. */ - if (constrain_operands (1)) - return insn; - } - - delete_insns_since (last); - - /* If that failed, we must use a conservative two-insn sequence. - use move to copy constant, MEM, or pseudo register to the reload - register since "move" will be able to handle an arbitrary operand, - unlike add which can't, in general. Then add the registers. - - If there is another way to do this for a specific machine, a - DEFINE_PEEPHOLE should be specified that recognizes the sequence - we emit below. */ - - code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code; - - if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG - || (GET_CODE (op1) == REG - && REGNO (op1) >= FIRST_PSEUDO_REGISTER) - || (code != CODE_FOR_nothing - && ! (*insn_operand_predicate[code][2]) (op1, insn_operand_mode[code][2]))) - tem = op0, op0 = op1, op1 = tem; - - gen_reload (out, op0, opnum, type); - - /* If OP0 and OP1 are the same, we can use OUT for OP1. - This fixes a problem on the 32K where the stack pointer cannot - be used as an operand of an add insn. */ - - if (rtx_equal_p (op0, op1)) - op1 = out; - - insn = emit_insn (gen_add2_insn (out, op1)); - - /* If that failed, copy the address register to the reload register. - Then add the constant to the reload register. */ - - code = recog_memoized (insn); - - if (code >= 0) - { - extract_insn (insn); - /* We want constrain operands to treat this insn strictly in - its validity determination, i.e., the way it would after reload - has completed. */ - if (constrain_operands (1)) - { - /* Add a REG_EQUIV note so that find_equiv_reg can find it. */ - REG_NOTES (insn) - = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn)); - return insn; - } - } - - delete_insns_since (last); - - gen_reload (out, op1, opnum, type); - insn = emit_insn (gen_add2_insn (out, op0)); - REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn)); - } - -#ifdef SECONDARY_MEMORY_NEEDED - /* If we need a memory location to do the move, do it that way. */ - else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER - && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER - && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)), - REGNO_REG_CLASS (REGNO (out)), - GET_MODE (out))) - { - /* Get the memory to use and rewrite both registers to its mode. */ - rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type); - - if (GET_MODE (loc) != GET_MODE (out)) - out = gen_rtx_REG (GET_MODE (loc), REGNO (out)); - - if (GET_MODE (loc) != GET_MODE (in)) - in = gen_rtx_REG (GET_MODE (loc), REGNO (in)); - - gen_reload (loc, in, opnum, type); - gen_reload (out, loc, opnum, type); - } -#endif - - /* If IN is a simple operand, use gen_move_insn. */ - else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG) - emit_insn (gen_move_insn (out, in)); - -#ifdef HAVE_reload_load_address - else if (HAVE_reload_load_address) - emit_insn (gen_reload_load_address (out, in)); -#endif - - /* Otherwise, just write (set OUT IN) and hope for the best. */ - else - emit_insn (gen_rtx_SET (VOIDmode, out, in)); - - /* Return the first insn emitted. - We can not just return get_last_insn, because there may have - been multiple instructions emitted. Also note that gen_move_insn may - emit more than one insn itself, so we can not assume that there is one - insn emitted per emit_insn_before call. */ - - return last ? NEXT_INSN (last) : get_insns (); -} - -/* Delete a previously made output-reload - whose result we now believe is not needed. - First we double-check. - - INSN is the insn now being processed. - LAST_RELOAD_REG is the hard register number for which we want to delete - the last output reload. - J is the reload-number that originally used REG. The caller has made - certain that reload J doesn't use REG any longer for input. */ - -static void -delete_output_reload (insn, j, last_reload_reg) - rtx insn; - int j; - int last_reload_reg; -{ - rtx output_reload_insn = spill_reg_store[last_reload_reg]; - rtx reg = spill_reg_stored_to[last_reload_reg]; - int k; - int n_occurrences; - int n_inherited = 0; - register rtx i1; - rtx substed; - - /* Get the raw pseudo-register referred to. */ - - while (GET_CODE (reg) == SUBREG) - reg = SUBREG_REG (reg); - substed = reg_equiv_memory_loc[REGNO (reg)]; - - /* This is unsafe if the operand occurs more often in the current - insn than it is inherited. */ - for (k = n_reloads - 1; k >= 0; k--) - { - rtx reg2 = reload_in[k]; - if (! reg2) - continue; - if (GET_CODE (reg2) == MEM || reload_override_in[k]) - reg2 = reload_in_reg[k]; -#ifdef AUTO_INC_DEC - if (reload_out[k] && ! reload_out_reg[k]) - reg2 = XEXP (reload_in_reg[k], 0); -#endif - while (GET_CODE (reg2) == SUBREG) - reg2 = SUBREG_REG (reg2); - if (rtx_equal_p (reg2, reg)) - { - if (reload_inherited[k] || reload_override_in[k] || k == j) - { - n_inherited++; - reg2 = reload_out_reg[k]; - if (! reg2) - continue; - while (GET_CODE (reg2) == SUBREG) - reg2 = XEXP (reg2, 0); - if (rtx_equal_p (reg2, reg)) - n_inherited++; - } - else - return; - } - } - n_occurrences = count_occurrences (PATTERN (insn), reg); - if (substed) - n_occurrences += count_occurrences (PATTERN (insn), substed); - if (n_occurrences > n_inherited) - return; - - /* If the pseudo-reg we are reloading is no longer referenced - anywhere between the store into it and here, - and no jumps or labels intervene, then the value can get - here through the reload reg alone. - Otherwise, give up--return. */ - for (i1 = NEXT_INSN (output_reload_insn); - i1 != insn; i1 = NEXT_INSN (i1)) - { - if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN) - return; - if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN) - && reg_mentioned_p (reg, PATTERN (i1))) - { - /* If this is USE in front of INSN, we only have to check that - there are no more references than accounted for by inheritance. */ - while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE) - { - n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0; - i1 = NEXT_INSN (i1); - } - if (n_occurrences <= n_inherited && i1 == insn) - break; - return; - } - } - - /* The caller has already checked that REG dies or is set in INSN. - It has also checked that we are optimizing, and thus some inaccurancies - in the debugging information are acceptable. - So we could just delete output_reload_insn. - But in some cases we can improve the debugging information without - sacrificing optimization - maybe even improving the code: - See if the pseudo reg has been completely replaced - with reload regs. If so, delete the store insn - and forget we had a stack slot for the pseudo. */ - if (reload_out[j] != reload_in[j] - && REG_N_DEATHS (REGNO (reg)) == 1 - && REG_N_SETS (REGNO (reg)) == 1 - && REG_BASIC_BLOCK (REGNO (reg)) >= 0 - && find_regno_note (insn, REG_DEAD, REGNO (reg))) - { - rtx i2; - - /* We know that it was used only between here - and the beginning of the current basic block. - (We also know that the last use before INSN was - the output reload we are thinking of deleting, but never mind that.) - Search that range; see if any ref remains. */ - for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) - { - rtx set = single_set (i2); - - /* Uses which just store in the pseudo don't count, - since if they are the only uses, they are dead. */ - if (set != 0 && SET_DEST (set) == reg) - continue; - if (GET_CODE (i2) == CODE_LABEL - || GET_CODE (i2) == JUMP_INSN) - break; - if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN) - && reg_mentioned_p (reg, PATTERN (i2))) - { - /* Some other ref remains; just delete the output reload we - know to be dead. */ - delete_address_reloads (output_reload_insn, insn); - PUT_CODE (output_reload_insn, NOTE); - NOTE_SOURCE_FILE (output_reload_insn) = 0; - NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED; - return; - } - } - - /* Delete the now-dead stores into this pseudo. */ - for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) - { - rtx set = single_set (i2); - - if (set != 0 && SET_DEST (set) == reg) - { - delete_address_reloads (i2, insn); - /* This might be a basic block head, - thus don't use delete_insn. */ - PUT_CODE (i2, NOTE); - NOTE_SOURCE_FILE (i2) = 0; - NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED; - } - if (GET_CODE (i2) == CODE_LABEL - || GET_CODE (i2) == JUMP_INSN) - break; - } - - /* For the debugging info, - say the pseudo lives in this reload reg. */ - reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]); - alter_reg (REGNO (reg), -1); - } - delete_address_reloads (output_reload_insn, insn); - PUT_CODE (output_reload_insn, NOTE); - NOTE_SOURCE_FILE (output_reload_insn) = 0; - NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED; - -} - -/* We are going to delete DEAD_INSN. Recursively delete loads of - reload registers used in DEAD_INSN that are not used till CURRENT_INSN. - CURRENT_INSN is being reloaded, so we have to check its reloads too. */ -static void -delete_address_reloads (dead_insn, current_insn) - rtx dead_insn, current_insn; -{ - rtx set = single_set (dead_insn); - rtx set2, dst, prev, next; - if (set) - { - rtx dst = SET_DEST (set); - if (GET_CODE (dst) == MEM) - delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn); - } - /* If we deleted the store from a reloaded post_{in,de}c expression, - we can delete the matching adds. */ - prev = PREV_INSN (dead_insn); - next = NEXT_INSN (dead_insn); - if (! prev || ! next) - return; - set = single_set (next); - set2 = single_set (prev); - if (! set || ! set2 - || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS - || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT - || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT) - return; - dst = SET_DEST (set); - if (! rtx_equal_p (dst, SET_DEST (set2)) - || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0)) - || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0)) - || (INTVAL (XEXP (SET_SRC (set), 1)) - != - INTVAL (XEXP (SET_SRC (set2), 1)))) - return; - delete_insn (prev); - delete_insn (next); -} - -/* Subfunction of delete_address_reloads: process registers found in X. */ -static void -delete_address_reloads_1 (dead_insn, x, current_insn) - rtx dead_insn, x, current_insn; -{ - rtx prev, set, dst, i2; - int i, j; - enum rtx_code code = GET_CODE (x); - - if (code != REG) - { - char *fmt= GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn); - else if (fmt[i] == 'E') - { - for (j = XVECLEN (x, i) - 1; j >=0; j--) - delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j), - current_insn); - } - } - return; - } - - if (spill_reg_order[REGNO (x)] < 0) - return; - - /* Scan backwards for the insn that sets x. This might be a way back due - to inheritance. */ - for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev)) - { - code = GET_CODE (prev); - if (code == CODE_LABEL || code == JUMP_INSN) - return; - if (GET_RTX_CLASS (code) != 'i') - continue; - if (reg_set_p (x, PATTERN (prev))) - break; - if (reg_referenced_p (x, PATTERN (prev))) - return; - } - if (! prev || INSN_UID (prev) < reload_first_uid) - return; - /* Check that PREV only sets the reload register. */ - set = single_set (prev); - if (! set) - return; - dst = SET_DEST (set); - if (GET_CODE (dst) != REG - || ! rtx_equal_p (dst, x)) - return; - if (! reg_set_p (dst, PATTERN (dead_insn))) - { - /* Check if DST was used in a later insn - - it might have been inherited. */ - for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2)) - { - if (GET_CODE (i2) == CODE_LABEL) - break; - if (GET_RTX_CLASS (GET_CODE (i2)) != 'i') - continue; - if (reg_referenced_p (dst, PATTERN (i2))) - { - /* If there is a reference to the register in the current insn, - it might be loaded in a non-inherited reload. If no other - reload uses it, that means the register is set before - referenced. */ - if (i2 == current_insn) - { - for (j = n_reloads - 1; j >= 0; j--) - if ((reload_reg_rtx[j] == dst && reload_inherited[j]) - || reload_override_in[j] == dst) - return; - for (j = n_reloads - 1; j >= 0; j--) - if (reload_in[j] && reload_reg_rtx[j] == dst) - break; - if (j >= 0) - break; - } - return; - } - if (GET_CODE (i2) == JUMP_INSN) - break; - /* If DST is still live at CURRENT_INSN, check if it is used for - any reload. Note that even if CURRENT_INSN sets DST, we still - have to check the reloads. */ - if (i2 == current_insn) - { - for (j = n_reloads - 1; j >= 0; j--) - if ((reload_reg_rtx[j] == dst && reload_inherited[j]) - || reload_override_in[j] == dst) - return; - /* ??? We can't finish the loop here, because dst might be - allocated to a pseudo in this block if no reload in this - block needs any of the clsses containing DST - see - spill_hard_reg. There is no easy way to tell this, so we - have to scan till the end of the basic block. */ - } - if (reg_set_p (dst, PATTERN (i2))) - break; - } - } - delete_address_reloads_1 (prev, SET_SRC (set), current_insn); - reg_reloaded_contents[REGNO (dst)] = -1; - /* Can't use delete_insn here because PREV might be a basic block head. */ - PUT_CODE (prev, NOTE); - NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (prev) = 0; -} - -/* Output reload-insns to reload VALUE into RELOADREG. - VALUE is an autoincrement or autodecrement RTX whose operand - is a register or memory location; - so reloading involves incrementing that location. - IN is either identical to VALUE, or some cheaper place to reload from. - - INC_AMOUNT is the number to increment or decrement by (always positive). - This cannot be deduced from VALUE. - - Return the instruction that stores into RELOADREG. */ - -static rtx -inc_for_reload (reloadreg, in, value, inc_amount) - rtx reloadreg; - rtx in, value; - int inc_amount; -{ - /* REG or MEM to be copied and incremented. */ - rtx incloc = XEXP (value, 0); - /* Nonzero if increment after copying. */ - int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC); - rtx last; - rtx inc; - rtx add_insn; - int code; - rtx store; - rtx real_in = in == value ? XEXP (in, 0) : in; - - /* No hard register is equivalent to this register after - inc/dec operation. If REG_LAST_RELOAD_REG were non-zero, - we could inc/dec that register as well (maybe even using it for - the source), but I'm not sure it's worth worrying about. */ - if (GET_CODE (incloc) == REG) - reg_last_reload_reg[REGNO (incloc)] = 0; - - if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC) - inc_amount = - inc_amount; - - inc = GEN_INT (inc_amount); - - /* If this is post-increment, first copy the location to the reload reg. */ - if (post && real_in != reloadreg) - emit_insn (gen_move_insn (reloadreg, real_in)); - - if (in == value) - { - /* See if we can directly increment INCLOC. Use a method similar to - that in gen_reload. */ - - last = get_last_insn (); - add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc, - gen_rtx_PLUS (GET_MODE (incloc), - incloc, inc))); - - code = recog_memoized (add_insn); - if (code >= 0) - { - extract_insn (add_insn); - if (constrain_operands (1)) - { - /* If this is a pre-increment and we have incremented the value - where it lives, copy the incremented value to RELOADREG to - be used as an address. */ - - if (! post) - emit_insn (gen_move_insn (reloadreg, incloc)); - - return add_insn; - } - } - delete_insns_since (last); - } - - /* If couldn't do the increment directly, must increment in RELOADREG. - The way we do this depends on whether this is pre- or post-increment. - For pre-increment, copy INCLOC to the reload register, increment it - there, then save back. */ - - if (! post) - { - if (in != reloadreg) - emit_insn (gen_move_insn (reloadreg, real_in)); - emit_insn (gen_add2_insn (reloadreg, inc)); - store = emit_insn (gen_move_insn (incloc, reloadreg)); - } - else - { - /* Postincrement. - Because this might be a jump insn or a compare, and because RELOADREG - may not be available after the insn in an input reload, we must do - the incrementation before the insn being reloaded for. - - We have already copied IN to RELOADREG. Increment the copy in - RELOADREG, save that back, then decrement RELOADREG so it has - the original value. */ - - emit_insn (gen_add2_insn (reloadreg, inc)); - store = emit_insn (gen_move_insn (incloc, reloadreg)); - emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount))); - } - - return store; -} - -/* Return 1 if we are certain that the constraint-string STRING allows - the hard register REG. Return 0 if we can't be sure of this. */ - -static int -constraint_accepts_reg_p (string, reg) - const char *string; - rtx reg; -{ - int value = 0; - int regno = true_regnum (reg); - int c; - - /* Initialize for first alternative. */ - value = 0; - /* Check that each alternative contains `g' or `r'. */ - while (1) - switch (c = *string++) - { - case 0: - /* If an alternative lacks `g' or `r', we lose. */ - return value; - case ',': - /* If an alternative lacks `g' or `r', we lose. */ - if (value == 0) - return 0; - /* Initialize for next alternative. */ - value = 0; - break; - case 'g': - case 'r': - /* Any general reg wins for this alternative. */ - if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno)) - value = 1; - break; - default: - /* Any reg in specified class wins for this alternative. */ - { - enum reg_class class = REG_CLASS_FROM_LETTER (c); - - if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)) - value = 1; - } - } -} - -/* Return the number of places FIND appears within X, but don't count - an occurrence if some SET_DEST is FIND. */ - -int -count_occurrences (x, find) - register rtx x, find; -{ - register int i, j; - register enum rtx_code code; - register char *format_ptr; - int count; - - if (x == find) - return 1; - if (x == 0) - return 0; - - code = GET_CODE (x); - - switch (code) - { - case REG: - case QUEUED: - case CONST_INT: - case CONST_DOUBLE: - case SYMBOL_REF: - case CODE_LABEL: - case PC: - case CC0: - return 0; - - case MEM: - if (GET_CODE (find) == MEM && rtx_equal_p (x, find)) - return 1; - break; - case SET: - if (SET_DEST (x) == find) - return count_occurrences (SET_SRC (x), find); - break; - - default: - break; - } - - format_ptr = GET_RTX_FORMAT (code); - count = 0; - - for (i = 0; i < GET_RTX_LENGTH (code); i++) - { - switch (*format_ptr++) - { - case 'e': - count += count_occurrences (XEXP (x, i), find); - break; - - case 'E': - if (XVEC (x, i) != NULL) - { - for (j = 0; j < XVECLEN (x, i); j++) - count += count_occurrences (XVECEXP (x, i, j), find); - } - break; - } - } - return count; -} - -/* This array holds values which are equivalent to a hard register - during reload_cse_regs. Each array element is an EXPR_LIST of - values. Each time a hard register is set, we set the corresponding - array element to the value. Each time a hard register is copied - into memory, we add the memory location to the corresponding array - element. We don't store values or memory addresses with side - effects in this array. - - If the value is a CONST_INT, then the mode of the containing - EXPR_LIST is the mode in which that CONST_INT was referenced. - - We sometimes clobber a specific entry in a list. In that case, we - just set XEXP (list-entry, 0) to 0. */ - -static rtx *reg_values; - -/* This is a preallocated REG rtx which we use as a temporary in - reload_cse_invalidate_regno, so that we don't need to allocate a - new one each time through a loop in that function. */ - -static rtx invalidate_regno_rtx; - -/* Invalidate any entries in reg_values which depend on REGNO, - including those for REGNO itself. This is called if REGNO is - changing. If CLOBBER is true, then always forget anything we - currently know about REGNO. MODE is the mode of the assignment to - REGNO, which is used to determine how many hard registers are being - changed. If MODE is VOIDmode, then only REGNO is being changed; - this is used when invalidating call clobbered registers across a - call. */ - -static void -reload_cse_invalidate_regno (regno, mode, clobber) - int regno; - enum machine_mode mode; - int clobber; -{ - int endregno; - register int i; - - /* Our callers don't always go through true_regnum; we may see a - pseudo-register here from a CLOBBER or the like. We probably - won't ever see a pseudo-register that has a real register number, - for we check anyhow for safety. */ - if (regno >= FIRST_PSEUDO_REGISTER) - regno = reg_renumber[regno]; - if (regno < 0) - return; - - if (mode == VOIDmode) - endregno = regno + 1; - else - endregno = regno + HARD_REGNO_NREGS (regno, mode); - - if (clobber) - for (i = regno; i < endregno; i++) - reg_values[i] = 0; - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - rtx x; - - for (x = reg_values[i]; x; x = XEXP (x, 1)) - { - if (XEXP (x, 0) != 0 - && refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR)) - { - /* If this is the only entry on the list, clear - reg_values[i]. Otherwise, just clear this entry on - the list. */ - if (XEXP (x, 1) == 0 && x == reg_values[i]) - { - reg_values[i] = 0; - break; - } - XEXP (x, 0) = 0; - } - } - } - - /* We must look at earlier registers, in case REGNO is part of a - multi word value but is not the first register. If an earlier - register has a value in a mode which overlaps REGNO, then we must - invalidate that earlier register. Note that we do not need to - check REGNO or later registers (we must not check REGNO itself, - because we would incorrectly conclude that there was a conflict). */ - - for (i = 0; i < regno; i++) - { - rtx x; - - for (x = reg_values[i]; x; x = XEXP (x, 1)) - { - if (XEXP (x, 0) != 0) - { - PUT_MODE (invalidate_regno_rtx, GET_MODE (x)); - REGNO (invalidate_regno_rtx) = i; - if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx, - NULL_PTR)) - { - reload_cse_invalidate_regno (i, VOIDmode, 1); - break; - } - } - } - } -} - -/* The memory at address MEM_BASE is being changed. - Return whether this change will invalidate VAL. */ - -static int -reload_cse_mem_conflict_p (mem_base, val) - rtx mem_base; - rtx val; -{ - enum rtx_code code; - char *fmt; - int i; - - code = GET_CODE (val); - switch (code) - { - /* Get rid of a few simple cases quickly. */ - case REG: - case PC: - case CC0: - case SCRATCH: - case CONST: - case CONST_INT: - case CONST_DOUBLE: - case SYMBOL_REF: - case LABEL_REF: - return 0; - - case MEM: - if (GET_MODE (mem_base) == BLKmode - || GET_MODE (val) == BLKmode) - return 1; - if (anti_dependence (val, mem_base)) - return 1; - /* The address may contain nested MEMs. */ - break; - - default: - break; - } - - fmt = GET_RTX_FORMAT (code); - - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - { - if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i))) - return 1; - } - else if (fmt[i] == 'E') - { - int j; - - for (j = 0; j < XVECLEN (val, i); j++) - if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j))) - return 1; - } - } - - return 0; -} - -/* Invalidate any entries in reg_values which are changed because of a - store to MEM_RTX. If this is called because of a non-const call - instruction, MEM_RTX is (mem:BLK const0_rtx). */ - -static void -reload_cse_invalidate_mem (mem_rtx) - rtx mem_rtx; -{ - register int i; - - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - rtx x; - - for (x = reg_values[i]; x; x = XEXP (x, 1)) - { - if (XEXP (x, 0) != 0 - && reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0))) - { - /* If this is the only entry on the list, clear - reg_values[i]. Otherwise, just clear this entry on - the list. */ - if (XEXP (x, 1) == 0 && x == reg_values[i]) - { - reg_values[i] = 0; - break; - } - XEXP (x, 0) = 0; - } - } - } -} - -/* Invalidate DEST, which is being assigned to or clobbered. The - second parameter exists so that this function can be passed to - note_stores; it is ignored. */ - -static void -reload_cse_invalidate_rtx (dest, ignore) - rtx dest; - rtx ignore ATTRIBUTE_UNUSED; -{ - while (GET_CODE (dest) == STRICT_LOW_PART - || GET_CODE (dest) == SIGN_EXTRACT - || GET_CODE (dest) == ZERO_EXTRACT - || GET_CODE (dest) == SUBREG) - dest = XEXP (dest, 0); - - if (GET_CODE (dest) == REG) - reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1); - else if (GET_CODE (dest) == MEM) - reload_cse_invalidate_mem (dest); -} - -/* Do a very simple CSE pass over the hard registers. - - This function detects no-op moves where we happened to assign two - different pseudo-registers to the same hard register, and then - copied one to the other. Reload will generate a useless - instruction copying a register to itself. - - This function also detects cases where we load a value from memory - into two different registers, and (if memory is more expensive than - registers) changes it to simply copy the first register into the - second register. - - Another optimization is performed that scans the operands of each - instruction to see whether the value is already available in a - hard register. It then replaces the operand with the hard register - if possible, much like an optional reload would. */ - -static void -reload_cse_regs_1 (first) - rtx first; -{ - char *firstobj; - rtx callmem; - register int i; - rtx insn; - - init_alias_analysis (); - - reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx)); - bzero ((char *)reg_values, FIRST_PSEUDO_REGISTER * sizeof (rtx)); - - /* Create our EXPR_LIST structures on reload_obstack, so that we can - free them when we are done. */ - push_obstacks (&reload_obstack, &reload_obstack); - firstobj = (char *) obstack_alloc (&reload_obstack, 0); - - /* We pass this to reload_cse_invalidate_mem to invalidate all of - memory for a non-const call instruction. */ - callmem = gen_rtx_MEM (BLKmode, const0_rtx); - - /* This is used in reload_cse_invalidate_regno to avoid consing a - new REG in a loop in that function. */ - invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0); - - for (insn = first; insn; insn = NEXT_INSN (insn)) - { - rtx body; - - if (GET_CODE (insn) == CODE_LABEL) - { - /* Forget all the register values at a code label. We don't - try to do anything clever around jumps. */ - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - reg_values[i] = 0; - - continue; - } - -#ifdef NON_SAVING_SETJMP - if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE - && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) - { - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - reg_values[i] = 0; - - continue; - } -#endif - - if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') - continue; - - /* If this is a call instruction, forget anything stored in a - call clobbered register, or, if this is not a const call, in - memory. */ - if (GET_CODE (insn) == CALL_INSN) - { - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - if (call_used_regs[i]) - reload_cse_invalidate_regno (i, VOIDmode, 1); - - if (! CONST_CALL_P (insn)) - reload_cse_invalidate_mem (callmem); - } - - - /* Forget all the register values at a volatile asm. */ - if (GET_CODE (insn) == INSN - && GET_CODE (PATTERN (insn)) == ASM_OPERANDS - && MEM_VOLATILE_P (PATTERN (insn))) - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - reg_values[i] = 0; - - body = PATTERN (insn); - if (GET_CODE (body) == SET) - { - int count = 0; - if (reload_cse_noop_set_p (body, insn)) - { - /* If this sets the return value of the function, we must keep - a USE around, in case this is in a different basic block - than the final USE. Otherwise, we could loose important - register lifeness information on SMALL_REGISTER_CLASSES - machines, where return registers might be used as spills: - subsequent passes assume that spill registers are dead at - the end of a basic block. */ - if (REG_FUNCTION_VALUE_P (SET_DEST (body))) - { - pop_obstacks (); - PATTERN (insn) = gen_rtx_USE (VOIDmode, SET_DEST (body)); - INSN_CODE (insn) = -1; - REG_NOTES (insn) = NULL_RTX; - push_obstacks (&reload_obstack, &reload_obstack); - } - else - { - PUT_CODE (insn, NOTE); - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (insn) = 0; - } - - /* We're done with this insn. */ - continue; - } - - /* It's not a no-op, but we can try to simplify it. */ - count += reload_cse_simplify_set (body, insn); - - if (count > 0) - apply_change_group (); - else - reload_cse_simplify_operands (insn); - - reload_cse_record_set (body, body); - } - else if (GET_CODE (body) == PARALLEL) - { - int count = 0; - rtx value = NULL_RTX; - - /* If every action in a PARALLEL is a noop, we can delete - the entire PARALLEL. */ - for (i = XVECLEN (body, 0) - 1; i >= 0; --i) - { - rtx part = XVECEXP (body, 0, i); - if (GET_CODE (part) == SET) - { - if (! reload_cse_noop_set_p (part, insn)) - break; - if (REG_FUNCTION_VALUE_P (SET_DEST (part))) - { - if (value) - break; - value = SET_DEST (part); - } - } - else if (GET_CODE (part) != CLOBBER) - break; - } - if (i < 0) - { - if (value) - { - pop_obstacks (); - PATTERN (insn) = gen_rtx_USE (VOIDmode, value); - INSN_CODE (insn) = -1; - REG_NOTES (insn) = NULL_RTX; - push_obstacks (&reload_obstack, &reload_obstack); - } - else - { - PUT_CODE (insn, NOTE); - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (insn) = 0; - } - - /* We're done with this insn. */ - continue; - } - - /* It's not a no-op, but we can try to simplify it. */ - for (i = XVECLEN (body, 0) - 1; i >= 0; --i) - if (GET_CODE (XVECEXP (body, 0, i)) == SET) - count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn); - - if (count > 0) - apply_change_group (); - else - reload_cse_simplify_operands (insn); - - /* Look through the PARALLEL and record the values being - set, if possible. Also handle any CLOBBERs. */ - for (i = XVECLEN (body, 0) - 1; i >= 0; --i) - { - rtx x = XVECEXP (body, 0, i); - - if (GET_CODE (x) == SET) - reload_cse_record_set (x, body); - else - note_stores (x, reload_cse_invalidate_rtx); - } - } - else - note_stores (body, reload_cse_invalidate_rtx); - -#ifdef AUTO_INC_DEC - /* Clobber any registers which appear in REG_INC notes. We - could keep track of the changes to their values, but it is - unlikely to help. */ - { - rtx x; - - for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) - if (REG_NOTE_KIND (x) == REG_INC) - reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX); - } -#endif - - /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only - after we have processed the insn. */ - if (GET_CODE (insn) == CALL_INSN) - { - rtx x; - - for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) - if (GET_CODE (XEXP (x, 0)) == CLOBBER) - reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX); - } - } - - /* Free all the temporary structures we created, and go back to the - regular obstacks. */ - obstack_free (&reload_obstack, firstobj); - pop_obstacks (); -} - -/* Call cse / combine like post-reload optimization phases. - FIRST is the first instruction. */ -void -reload_cse_regs (first) - rtx first; -{ - reload_cse_regs_1 (first); - reload_combine (); - reload_cse_move2add (first); - if (flag_expensive_optimizations) - reload_cse_regs_1 (first); -} - -/* Return whether the values known for REGNO are equal to VAL. MODE - is the mode of the object that VAL is being copied to; this matters - if VAL is a CONST_INT. */ - -static int -reload_cse_regno_equal_p (regno, val, mode) - int regno; - rtx val; - enum machine_mode mode; -{ - rtx x; - - if (val == 0) - return 0; - - for (x = reg_values[regno]; x; x = XEXP (x, 1)) - if (XEXP (x, 0) != 0 - && rtx_equal_p (XEXP (x, 0), val) - && (! flag_float_store || GET_CODE (XEXP (x, 0)) != MEM - || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT) - && (GET_CODE (val) != CONST_INT - || mode == GET_MODE (x) - || (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)) - /* On a big endian machine if the value spans more than - one register then this register holds the high part of - it and we can't use it. - - ??? We should also compare with the high part of the - value. */ - && !(WORDS_BIG_ENDIAN - && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1) - && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), - GET_MODE_BITSIZE (GET_MODE (x)))))) - return 1; - - return 0; -} - -/* See whether a single set is a noop. SET is the set instruction we - are should check, and INSN is the instruction from which it came. */ - -static int -reload_cse_noop_set_p (set, insn) - rtx set; - rtx insn; -{ - rtx src, dest; - enum machine_mode dest_mode; - int dreg, sreg; - int ret; - - src = SET_SRC (set); - dest = SET_DEST (set); - dest_mode = GET_MODE (dest); - - if (side_effects_p (src)) - return 0; - - dreg = true_regnum (dest); - sreg = true_regnum (src); - - /* Check for setting a register to itself. In this case, we don't - have to worry about REG_DEAD notes. */ - if (dreg >= 0 && dreg == sreg) - return 1; - - ret = 0; - if (dreg >= 0) - { - /* Check for setting a register to itself. */ - if (dreg == sreg) - ret = 1; - - /* Check for setting a register to a value which we already know - is in the register. */ - else if (reload_cse_regno_equal_p (dreg, src, dest_mode)) - ret = 1; - - /* Check for setting a register DREG to another register SREG - where SREG is equal to a value which is already in DREG. */ - else if (sreg >= 0) - { - rtx x; - - for (x = reg_values[sreg]; x; x = XEXP (x, 1)) - { - rtx tmp; - - if (XEXP (x, 0) == 0) - continue; - - if (dest_mode == GET_MODE (x)) - tmp = XEXP (x, 0); - else if (GET_MODE_BITSIZE (dest_mode) - < GET_MODE_BITSIZE (GET_MODE (x))) - tmp = gen_lowpart_common (dest_mode, XEXP (x, 0)); - else - continue; - - if (tmp - && reload_cse_regno_equal_p (dreg, tmp, dest_mode)) - { - ret = 1; - break; - } - } - } - } - else if (GET_CODE (dest) == MEM) - { - /* Check for storing a register to memory when we know that the - register is equivalent to the memory location. */ - if (sreg >= 0 - && reload_cse_regno_equal_p (sreg, dest, dest_mode) - && ! side_effects_p (dest)) - ret = 1; - } - - return ret; -} - -/* Try to simplify a single SET instruction. SET is the set pattern. - INSN is the instruction it came from. - This function only handles one case: if we set a register to a value - which is not a register, we try to find that value in some other register - and change the set into a register copy. */ - -static int -reload_cse_simplify_set (set, insn) - rtx set; - rtx insn; -{ - int dreg; - rtx src; - enum machine_mode dest_mode; - enum reg_class dclass; - register int i; - - dreg = true_regnum (SET_DEST (set)); - if (dreg < 0) - return 0; - - src = SET_SRC (set); - if (side_effects_p (src) || true_regnum (src) >= 0) - return 0; - - dclass = REGNO_REG_CLASS (dreg); - - /* If memory loads are cheaper than register copies, don't change them. */ - if (GET_CODE (src) == MEM - && MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2) - return 0; - - /* If the constant is cheaper than a register, don't change it. */ - if (CONSTANT_P (src) - && rtx_cost (src, SET) < 2) - return 0; - - dest_mode = GET_MODE (SET_DEST (set)); - for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) - { - if (i != dreg - && REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2 - && reload_cse_regno_equal_p (i, src, dest_mode)) - { - int validated; - - /* Pop back to the real obstacks while changing the insn. */ - pop_obstacks (); - - validated = validate_change (insn, &SET_SRC (set), - gen_rtx_REG (dest_mode, i), 1); - - /* Go back to the obstack we are using for temporary - storage. */ - push_obstacks (&reload_obstack, &reload_obstack); - - if (validated) - return 1; - } - } - return 0; -} - -/* Try to replace operands in INSN with equivalent values that are already - in registers. This can be viewed as optional reloading. - - For each non-register operand in the insn, see if any hard regs are - known to be equivalent to that operand. Record the alternatives which - can accept these hard registers. Among all alternatives, select the - ones which are better or equal to the one currently matching, where - "better" is in terms of '?' and '!' constraints. Among the remaining - alternatives, select the one which replaces most operands with - hard registers. */ - -static int -reload_cse_simplify_operands (insn) - rtx insn; -{ -#ifdef REGISTER_CONSTRAINTS - int i,j; - - const char *constraints[MAX_RECOG_OPERANDS]; - - /* Vector recording how bad an alternative is. */ - int *alternative_reject; - /* Vector recording how many registers can be introduced by choosing - this alternative. */ - int *alternative_nregs; - /* Array of vectors recording, for each operand and each alternative, - which hard register to substitute, or -1 if the operand should be - left as it is. */ - int *op_alt_regno[MAX_RECOG_OPERANDS]; - /* Array of alternatives, sorted in order of decreasing desirability. */ - int *alternative_order; - rtx reg = gen_rtx_REG (VOIDmode, -1); - - extract_insn (insn); - - if (recog_n_alternatives == 0 || recog_n_operands == 0) - return 0; - - /* Figure out which alternative currently matches. */ - if (! constrain_operands (1)) - fatal_insn_not_found (insn); - - alternative_reject = (int *) alloca (recog_n_alternatives * sizeof (int)); - alternative_nregs = (int *) alloca (recog_n_alternatives * sizeof (int)); - alternative_order = (int *) alloca (recog_n_alternatives * sizeof (int)); - bzero ((char *)alternative_reject, recog_n_alternatives * sizeof (int)); - bzero ((char *)alternative_nregs, recog_n_alternatives * sizeof (int)); - - for (i = 0; i < recog_n_operands; i++) - { - enum machine_mode mode; - int regno; - const char *p; - - op_alt_regno[i] = (int *) alloca (recog_n_alternatives * sizeof (int)); - for (j = 0; j < recog_n_alternatives; j++) - op_alt_regno[i][j] = -1; - - p = constraints[i] = recog_constraints[i]; - mode = recog_operand_mode[i]; - - /* Add the reject values for each alternative given by the constraints - for this operand. */ - j = 0; - while (*p != '\0') - { - char c = *p++; - if (c == ',') - j++; - else if (c == '?') - alternative_reject[j] += 3; - else if (c == '!') - alternative_reject[j] += 300; - } - - /* We won't change operands which are already registers. We - also don't want to modify output operands. */ - regno = true_regnum (recog_operand[i]); - if (regno >= 0 - || constraints[i][0] == '=' - || constraints[i][0] == '+') - continue; - - for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) - { - int class = (int) NO_REGS; - - if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode)) - continue; - - REGNO (reg) = regno; - PUT_MODE (reg, mode); - - /* We found a register equal to this operand. Now look for all - alternatives that can accept this register and have not been - assigned a register they can use yet. */ - j = 0; - p = constraints[i]; - for (;;) - { - char c = *p++; - - switch (c) - { - case '=': case '+': case '?': - case '#': case '&': case '!': - case '*': case '%': - case '0': case '1': case '2': case '3': case '4': - case 'm': case '<': case '>': case 'V': case 'o': - case 'E': case 'F': case 'G': case 'H': - case 's': case 'i': case 'n': - case 'I': case 'J': case 'K': case 'L': - case 'M': case 'N': case 'O': case 'P': -#ifdef EXTRA_CONSTRAINT - case 'Q': case 'R': case 'S': case 'T': case 'U': -#endif - case 'p': case 'X': - /* These don't say anything we care about. */ - break; - - case 'g': case 'r': - class = reg_class_subunion[(int) class][(int) GENERAL_REGS]; - break; - - default: - class - = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)]; - break; - - case ',': case '\0': - /* See if REGNO fits this alternative, and set it up as the - replacement register if we don't have one for this - alternative yet and the operand being replaced is not - a cheap CONST_INT. */ - if (op_alt_regno[i][j] == -1 - && reg_fits_class_p (reg, class, 0, mode) - && (GET_CODE (recog_operand[i]) != CONST_INT - || rtx_cost (recog_operand[i], SET) > rtx_cost (reg, SET))) - { - alternative_nregs[j]++; - op_alt_regno[i][j] = regno; - } - j++; - break; - } - - if (c == '\0') - break; - } - } - } - - /* Record all alternatives which are better or equal to the currently - matching one in the alternative_order array. */ - for (i = j = 0; i < recog_n_alternatives; i++) - if (alternative_reject[i] <= alternative_reject[which_alternative]) - alternative_order[j++] = i; - recog_n_alternatives = j; - - /* Sort it. Given a small number of alternatives, a dumb algorithm - won't hurt too much. */ - for (i = 0; i < recog_n_alternatives - 1; i++) - { - int best = i; - int best_reject = alternative_reject[alternative_order[i]]; - int best_nregs = alternative_nregs[alternative_order[i]]; - int tmp; - - for (j = i + 1; j < recog_n_alternatives; j++) - { - int this_reject = alternative_reject[alternative_order[j]]; - int this_nregs = alternative_nregs[alternative_order[j]]; - - if (this_reject < best_reject - || (this_reject == best_reject && this_nregs < best_nregs)) - { - best = j; - best_reject = this_reject; - best_nregs = this_nregs; - } - } - - tmp = alternative_order[best]; - alternative_order[best] = alternative_order[i]; - alternative_order[i] = tmp; - } - - /* Substitute the operands as determined by op_alt_regno for the best - alternative. */ - j = alternative_order[0]; - - /* Pop back to the real obstacks while changing the insn. */ - pop_obstacks (); - - for (i = 0; i < recog_n_operands; i++) - { - enum machine_mode mode = recog_operand_mode[i]; - if (op_alt_regno[i][j] == -1) - continue; - - validate_change (insn, recog_operand_loc[i], - gen_rtx_REG (mode, op_alt_regno[i][j]), 1); - } - - for (i = recog_n_dups - 1; i >= 0; i--) - { - int op = recog_dup_num[i]; - enum machine_mode mode = recog_operand_mode[op]; - - if (op_alt_regno[op][j] == -1) - continue; - - validate_change (insn, recog_dup_loc[i], - gen_rtx_REG (mode, op_alt_regno[op][j]), 1); - } - - /* Go back to the obstack we are using for temporary - storage. */ - push_obstacks (&reload_obstack, &reload_obstack); - - return apply_change_group (); -#else - return 0; -#endif -} - -/* These two variables are used to pass information from - reload_cse_record_set to reload_cse_check_clobber. */ - -static int reload_cse_check_clobbered; -static rtx reload_cse_check_src; - -/* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set - RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The - second argument, which is passed by note_stores, is ignored. */ - -static void -reload_cse_check_clobber (dest, ignore) - rtx dest; - rtx ignore ATTRIBUTE_UNUSED; -{ - if (reg_overlap_mentioned_p (dest, reload_cse_check_src)) - reload_cse_check_clobbered = 1; -} - -/* Record the result of a SET instruction. SET is the set pattern. - BODY is the pattern of the insn that it came from. */ - -static void -reload_cse_record_set (set, body) - rtx set; - rtx body; -{ - rtx dest, src, x; - int dreg, sreg; - enum machine_mode dest_mode; - - dest = SET_DEST (set); - src = SET_SRC (set); - dreg = true_regnum (dest); - sreg = true_regnum (src); - dest_mode = GET_MODE (dest); - - /* Some machines don't define AUTO_INC_DEC, but they still use push - instructions. We need to catch that case here in order to - invalidate the stack pointer correctly. Note that invalidating - the stack pointer is different from invalidating DEST. */ - x = dest; - while (GET_CODE (x) == SUBREG - || GET_CODE (x) == ZERO_EXTRACT - || GET_CODE (x) == SIGN_EXTRACT - || GET_CODE (x) == STRICT_LOW_PART) - x = XEXP (x, 0); - if (push_operand (x, GET_MODE (x))) - { - reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX); - reload_cse_invalidate_rtx (dest, NULL_RTX); - return; - } - - /* We can only handle an assignment to a register, or a store of a - register to a memory location. For other cases, we just clobber - the destination. We also have to just clobber if there are side - effects in SRC or DEST. */ - if ((dreg < 0 && GET_CODE (dest) != MEM) - || side_effects_p (src) - || side_effects_p (dest)) - { - reload_cse_invalidate_rtx (dest, NULL_RTX); - return; - } - -#ifdef HAVE_cc0 - /* We don't try to handle values involving CC, because it's a pain - to keep track of when they have to be invalidated. */ - if (reg_mentioned_p (cc0_rtx, src) - || reg_mentioned_p (cc0_rtx, dest)) - { - reload_cse_invalidate_rtx (dest, NULL_RTX); - return; - } -#endif - - /* If BODY is a PARALLEL, then we need to see whether the source of - SET is clobbered by some other instruction in the PARALLEL. */ - if (GET_CODE (body) == PARALLEL) - { - int i; - - for (i = XVECLEN (body, 0) - 1; i >= 0; --i) - { - rtx x; - - x = XVECEXP (body, 0, i); - if (x == set) - continue; - - reload_cse_check_clobbered = 0; - reload_cse_check_src = src; - note_stores (x, reload_cse_check_clobber); - if (reload_cse_check_clobbered) - { - reload_cse_invalidate_rtx (dest, NULL_RTX); - return; - } - } - } - - if (dreg >= 0) - { - int i; - - /* This is an assignment to a register. Update the value we - have stored for the register. */ - if (sreg >= 0) - { - rtx x; - - /* This is a copy from one register to another. Any values - which were valid for SREG are now valid for DREG. If the - mode changes, we use gen_lowpart_common to extract only - the part of the value that is copied. */ - reg_values[dreg] = 0; - for (x = reg_values[sreg]; x; x = XEXP (x, 1)) - { - rtx tmp; - - if (XEXP (x, 0) == 0) - continue; - if (dest_mode == GET_MODE (XEXP (x, 0))) - tmp = XEXP (x, 0); - else if (GET_MODE_BITSIZE (dest_mode) - > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))) - continue; - else - tmp = gen_lowpart_common (dest_mode, XEXP (x, 0)); - if (tmp) - reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp, - reg_values[dreg]); - } - } - else - reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX); - - /* We've changed DREG, so invalidate any values held by other - registers that depend upon it. */ - reload_cse_invalidate_regno (dreg, dest_mode, 0); - - /* If this assignment changes more than one hard register, - forget anything we know about the others. */ - for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++) - reg_values[dreg + i] = 0; - } - else if (GET_CODE (dest) == MEM) - { - /* Invalidate conflicting memory locations. */ - reload_cse_invalidate_mem (dest); - - /* If we're storing a register to memory, add DEST to the list - in REG_VALUES. */ - if (sreg >= 0 && ! side_effects_p (dest)) - reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest, - reg_values[sreg]); - } - else - { - /* We should have bailed out earlier. */ - abort (); - } -} - -/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg - addressing now. - This code might also be useful when reload gave up on reg+reg addresssing - because of clashes between the return register and INDEX_REG_CLASS. */ - -/* The maximum number of uses of a register we can keep track of to - replace them with reg+reg addressing. */ -#define RELOAD_COMBINE_MAX_USES 6 - -/* INSN is the insn where a register has ben used, and USEP points to the - location of the register within the rtl. */ -struct reg_use { rtx insn, *usep; }; - -/* If the register is used in some unknown fashion, USE_INDEX is negative. - If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID - indicates where it becomes live again. - Otherwise, USE_INDEX is the index of the last encountered use of the - register (which is first among these we have seen since we scan backwards), - OFFSET contains the constant offset that is added to the register in - all encountered uses, and USE_RUID indicates the first encountered, i.e. - last, of these uses. - STORE_RUID is always meaningful if we only want to use a value in a - register in a different place: it denotes the next insn in the insn - stream (i.e. the last ecountered) that sets or clobbers the register. */ -static struct - { - struct reg_use reg_use[RELOAD_COMBINE_MAX_USES]; - int use_index; - rtx offset; - int store_ruid; - int use_ruid; - } reg_state[FIRST_PSEUDO_REGISTER]; - -/* Reverse linear uid. This is increased in reload_combine while scanning - the instructions from last to first. It is used to set last_label_ruid - and the store_ruid / use_ruid fields in reg_state. */ -static int reload_combine_ruid; - -#define LABEL_LIVE(LABEL) \ - (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno]) - -static void -reload_combine () -{ - rtx insn, set; - int first_index_reg = 1, last_index_reg = 0; - int i; - int last_label_ruid; - int min_labelno, n_labels; - HARD_REG_SET ever_live_at_start, *label_live; - - /* If reg+reg can be used in offsetable memory adresses, the main chunk of - reload has already used it where appropriate, so there is no use in - trying to generate it now. */ - if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS) - return; - - /* To avoid wasting too much time later searching for an index register, - determine the minimum and maximum index register numbers. */ - for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) - { - if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)) - { - if (! last_index_reg) - last_index_reg = i; - first_index_reg = i; - } - } - /* If no index register is available, we can quit now. */ - if (first_index_reg > last_index_reg) - return; - - /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime - information is a bit fuzzy immediately after reload, but it's - still good enough to determine which registers are live at a jump - destination. */ - min_labelno = get_first_label_num (); - n_labels = max_label_num () - min_labelno; - label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET)); - CLEAR_HARD_REG_SET (ever_live_at_start); - for (i = n_basic_blocks - 1; i >= 0; i--) - { - insn = BLOCK_HEAD (i); - if (GET_CODE (insn) == CODE_LABEL) - { - HARD_REG_SET live; - - REG_SET_TO_HARD_REG_SET (live, BASIC_BLOCK (i)->global_live_at_start); - compute_use_by_pseudos (&live, BASIC_BLOCK (i)->global_live_at_start); - COPY_HARD_REG_SET (LABEL_LIVE (insn), live); - IOR_HARD_REG_SET (ever_live_at_start, live); - } - } - - /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */ - last_label_ruid = reload_combine_ruid = 0; - for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) - { - reg_state[i].store_ruid = reload_combine_ruid; - if (fixed_regs[i]) - reg_state[i].use_index = -1; - else - reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; - } - - for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) - { - rtx note; - - /* We cannot do our optimization across labels. Invalidating all the use - information we have would be costly, so we just note where the label - is and then later disable any optimization that would cross it. */ - if (GET_CODE (insn) == CODE_LABEL) - last_label_ruid = reload_combine_ruid; - if (GET_CODE (insn) == BARRIER) - { - for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) - reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; - } - if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') - continue; - reload_combine_ruid++; - - /* Look for (set (REGX) (CONST_INT)) - (set (REGX) (PLUS (REGX) (REGY))) - ... - ... (MEM (REGX)) ... - and convert it to - (set (REGZ) (CONST_INT)) - ... - ... (MEM (PLUS (REGZ) (REGY)))... . - - First, check that we have (set (REGX) (PLUS (REGX) (REGY))) - and that we know all uses of REGX before it dies. */ - set = single_set (insn); - if (set != NULL_RTX - && GET_CODE (SET_DEST (set)) == REG - && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)), - GET_MODE (SET_DEST (set))) - == 1) - && GET_CODE (SET_SRC (set)) == PLUS - && GET_CODE (XEXP (SET_SRC (set), 1)) == REG - && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set)) - && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid) - { - rtx reg = SET_DEST (set); - rtx plus = SET_SRC (set); - rtx base = XEXP (plus, 1); - rtx prev = prev_nonnote_insn (insn); - rtx prev_set = prev ? single_set (prev) : NULL_RTX; - int regno = REGNO (reg); - rtx const_reg; - rtx reg_sum = NULL_RTX; - - /* Now, we need an index register. - We'll set index_reg to this index register, const_reg to the - register that is to be loaded with the constant - (denoted as REGZ in the substitution illustration above), - and reg_sum to the register-register that we want to use to - substitute uses of REG (typically in MEMs) with. - First check REG and BASE for being index registers; - we can use them even if they are not dead. */ - if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno) - || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], - REGNO (base))) - { - const_reg = reg; - reg_sum = plus; - } - else - { - /* Otherwise, look for a free index register. Since we have - checked above that neiter REG nor BASE are index registers, - if we find anything at all, it will be different from these - two registers. */ - for (i = first_index_reg; i <= last_index_reg; i++) - { - if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i) - && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES - && reg_state[i].store_ruid <= reg_state[regno].use_ruid - && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1) - { - rtx index_reg = gen_rtx_REG (GET_MODE (reg), i); - const_reg = index_reg; - reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base); - break; - } - } - } - /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that - (REGY), i.e. BASE, is not clobbered before the last use we'll - create. */ - if (prev_set - && GET_CODE (SET_SRC (prev_set)) == CONST_INT - && rtx_equal_p (SET_DEST (prev_set), reg) - && reg_state[regno].use_index >= 0 - && reg_state[REGNO (base)].store_ruid <= reg_state[regno].use_ruid - && reg_sum) - { - int i; - - /* Change destination register and - if necessary - the - constant value in PREV, the constant loading instruction. */ - validate_change (prev, &SET_DEST (prev_set), const_reg, 1); - if (reg_state[regno].offset != const0_rtx) - validate_change (prev, - &SET_SRC (prev_set), - GEN_INT (INTVAL (SET_SRC (prev_set)) - + INTVAL (reg_state[regno].offset)), - 1); - /* Now for every use of REG that we have recorded, replace REG - with REG_SUM. */ - for (i = reg_state[regno].use_index; - i < RELOAD_COMBINE_MAX_USES; i++) - validate_change (reg_state[regno].reg_use[i].insn, - reg_state[regno].reg_use[i].usep, - reg_sum, 1); - - if (apply_change_group ()) - { - rtx *np; - - /* Delete the reg-reg addition. */ - PUT_CODE (insn, NOTE); - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (insn) = 0; - - if (reg_state[regno].offset != const0_rtx) - { - /* Previous REG_EQUIV / REG_EQUAL notes for PREV - are now invalid. */ - for (np = ®_NOTES (prev); *np; ) - { - if (REG_NOTE_KIND (*np) == REG_EQUAL - || REG_NOTE_KIND (*np) == REG_EQUIV) - *np = XEXP (*np, 1); - else - np = &XEXP (*np, 1); - } - } - reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES; - reg_state[REGNO (const_reg)].store_ruid = reload_combine_ruid; - continue; - } - } - } - note_stores (PATTERN (insn), reload_combine_note_store); - if (GET_CODE (insn) == CALL_INSN) - { - rtx link; - - for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) - { - if (call_used_regs[i]) - { - reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; - reg_state[i].store_ruid = reload_combine_ruid; - } - } - for (link = CALL_INSN_FUNCTION_USAGE (insn); link; - link = XEXP (link, 1)) - { - rtx use = XEXP (link, 0); - int regno = REGNO (XEXP (use, 0)); - if (GET_CODE (use) == CLOBBER) - { - reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES; - reg_state[regno].store_ruid = reload_combine_ruid; - } - else - reg_state[regno].use_index = -1; - } - } - if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) != RETURN) - { - /* Non-spill registers might be used at the call destination in - some unknown fashion, so we have to mark the unknown use. */ - HARD_REG_SET *live; - if ((condjump_p (insn) || condjump_in_parallel_p (insn)) - && JUMP_LABEL (insn)) - live = &LABEL_LIVE (JUMP_LABEL (insn)); - else - live = &ever_live_at_start; - for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) - { - if (TEST_HARD_REG_BIT (*live, i)) - reg_state[i].use_index = -1; - } - } - reload_combine_note_use (&PATTERN (insn), insn); - for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) - { - if (REG_NOTE_KIND (note) == REG_INC - && GET_CODE (XEXP (note, 0)) == REG) - { - int regno = REGNO (XEXP (note, 0)); - - reg_state[regno].store_ruid = reload_combine_ruid; - reg_state[regno].use_index = -1; - } - } - } - free (label_live); -} - -/* Check if DST is a register or a subreg of a register; if it is, - update reg_state[regno].store_ruid and reg_state[regno].use_index - accordingly. Called via note_stores from reload_combine. */ -static void -reload_combine_note_store (dst, set) - rtx dst, set; -{ - int regno = 0; - int i; - unsigned size = GET_MODE_SIZE (GET_MODE (dst)); - - if (GET_CODE (dst) == SUBREG) - { - regno = SUBREG_WORD (dst); - dst = SUBREG_REG (dst); - } - if (GET_CODE (dst) != REG) - return; - regno += REGNO (dst); - - /* note_stores might have stripped a STRICT_LOW_PART, so we have to be - careful with registers / register parts that are not full words. - - Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */ - if (GET_CODE (set) != SET - || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT - || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT - || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART) - { - for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--) - { - reg_state[i].use_index = -1; - reg_state[i].store_ruid = reload_combine_ruid; - } - } - else - { - for (i = (size - 1) / UNITS_PER_WORD + regno; i >= regno; i--) - { - reg_state[i].store_ruid = reload_combine_ruid; - reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; - } - } -} - -/* XP points to a piece of rtl that has to be checked for any uses of - registers. - *XP is the pattern of INSN, or a part of it. - Called from reload_combine, and recursively by itself. */ -static void -reload_combine_note_use (xp, insn) - rtx *xp, insn; -{ - rtx x = *xp; - enum rtx_code code = x->code; - char *fmt; - int i, j; - rtx offset = const0_rtx; /* For the REG case below. */ - - switch (code) - { - case SET: - if (GET_CODE (SET_DEST (x)) == REG) - { - reload_combine_note_use (&SET_SRC (x), insn); - return; - } - break; - - case CLOBBER: - if (GET_CODE (SET_DEST (x)) == REG) - return; - break; - - case PLUS: - /* We are interested in (plus (reg) (const_int)) . */ - if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT) - break; - offset = XEXP (x, 1); - x = XEXP (x, 0); - /* Fall through. */ - case REG: - { - int regno = REGNO (x); - int use_index; - - /* Some spurious USEs of pseudo registers might remain. - Just ignore them. */ - if (regno >= FIRST_PSEUDO_REGISTER) - return; - - /* If this register is already used in some unknown fashion, we - can't do anything. - If we decrement the index from zero to -1, we can't store more - uses, so this register becomes used in an unknown fashion. */ - use_index = --reg_state[regno].use_index; - if (use_index < 0) - return; - - if (use_index != RELOAD_COMBINE_MAX_USES - 1) - { - /* We have found another use for a register that is already - used later. Check if the offsets match; if not, mark the - register as used in an unknown fashion. */ - if (! rtx_equal_p (offset, reg_state[regno].offset)) - { - reg_state[regno].use_index = -1; - return; - } - } - else - { - /* This is the first use of this register we have seen since we - marked it as dead. */ - reg_state[regno].offset = offset; - reg_state[regno].use_ruid = reload_combine_ruid; - } - reg_state[regno].reg_use[use_index].insn = insn; - reg_state[regno].reg_use[use_index].usep = xp; - return; - } - - default: - break; - } - - /* Recursively process the components of X. */ - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - reload_combine_note_use (&XEXP (x, i), insn); - else if (fmt[i] == 'E') - { - for (j = XVECLEN (x, i) - 1; j >= 0; j--) - reload_combine_note_use (&XVECEXP (x, i, j), insn); - } - } -} - -/* See if we can reduce the cost of a constant by replacing a move with - an add. */ -/* We cannot do our optimization across labels. Invalidating all the - information about register contents we have would be costly, so we - use last_label_luid (local variable of reload_cse_move2add) to note - where the label is and then later disable any optimization that would - cross it. - reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if - reg_set_luid[n] is larger than last_label_luid[n] . */ -static int reg_set_luid[FIRST_PSEUDO_REGISTER]; -/* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] / - reg_mode[n] to be valid. - If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n - has been set to reg_offset[n] in mode reg_mode[n] . - If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative, - register n has been set to the sum of reg_offset[n] and register - reg_base_reg[n], calculated in mode reg_mode[n] . */ -static rtx reg_offset[FIRST_PSEUDO_REGISTER]; -static int reg_base_reg[FIRST_PSEUDO_REGISTER]; -static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER]; -/* move2add_luid is linearily increased while scanning the instructions - from first to last. It is used to set reg_set_luid in - reload_cse_move2add and move2add_note_store. */ -static int move2add_luid; - -/* Generate a CONST_INT and force it in the range of MODE. */ -static rtx -gen_mode_int (mode, value) - enum machine_mode mode; - HOST_WIDE_INT value; -{ - HOST_WIDE_INT cval = value & GET_MODE_MASK (mode); - int width = GET_MODE_BITSIZE (mode); - - /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number, - sign extend it. */ - if (width > 0 && width < HOST_BITS_PER_WIDE_INT - && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0) - cval |= (HOST_WIDE_INT) -1 << width; - - return GEN_INT (cval); -} - -static void -reload_cse_move2add (first) - rtx first; -{ - int i; - rtx insn; - int last_label_luid; - - for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--) - reg_set_luid[i] = 0; - - last_label_luid = 0; - move2add_luid = 1; - for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++) - { - rtx pat, note; - - if (GET_CODE (insn) == CODE_LABEL) - last_label_luid = move2add_luid; - if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') - continue; - pat = PATTERN (insn); - /* For simplicity, we only perform this optimization on - straightforward SETs. */ - if (GET_CODE (pat) == SET - && GET_CODE (SET_DEST (pat)) == REG) - { - rtx reg = SET_DEST (pat); - int regno = REGNO (reg); - rtx src = SET_SRC (pat); - - /* Check if we have valid information on the contents of this - register in the mode of REG. */ - /* ??? We don't know how zero / sign extension is handled, hence - we can't go from a narrower to a wider mode. */ - if (reg_set_luid[regno] > last_label_luid - && (GET_MODE_SIZE (GET_MODE (reg)) - <= GET_MODE_SIZE (reg_mode[regno])) - && GET_CODE (reg_offset[regno]) == CONST_INT) - { - /* Try to transform (set (REGX) (CONST_INT A)) - ... - (set (REGX) (CONST_INT B)) - to - (set (REGX) (CONST_INT A)) - ... - (set (REGX) (plus (REGX) (CONST_INT B-A))) */ - - if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0) - { - int success = 0; - rtx new_src - = gen_mode_int (GET_MODE (reg), - INTVAL (src) - INTVAL (reg_offset[regno])); - /* (set (reg) (plus (reg) (const_int 0))) is not canonical; - use (set (reg) (reg)) instead. - We don't delete this insn, nor do we convert it into a - note, to avoid losing register notes or the return - value flag. jump2 already knowns how to get rid of - no-op moves. */ - if (new_src == const0_rtx) - success = validate_change (insn, &SET_SRC (pat), reg, 0); - else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET) - && have_add2_insn (GET_MODE (reg))) - success = validate_change (insn, &PATTERN (insn), - gen_add2_insn (reg, new_src), 0); - reg_set_luid[regno] = move2add_luid; - reg_mode[regno] = GET_MODE (reg); - reg_offset[regno] = src; - continue; - } - - /* Try to transform (set (REGX) (REGY)) - (set (REGX) (PLUS (REGX) (CONST_INT A))) - ... - (set (REGX) (REGY)) - (set (REGX) (PLUS (REGX) (CONST_INT B))) - to - (REGX) (REGY)) - (set (REGX) (PLUS (REGX) (CONST_INT A))) - ... - (set (REGX) (plus (REGX) (CONST_INT B-A))) */ - else if (GET_CODE (src) == REG - && reg_base_reg[regno] == REGNO (src) - && reg_set_luid[regno] > reg_set_luid[REGNO (src)]) - { - rtx next = next_nonnote_insn (insn); - rtx set; - if (next) - set = single_set (next); - if (next - && set - && SET_DEST (set) == reg - && GET_CODE (SET_SRC (set)) == PLUS - && XEXP (SET_SRC (set), 0) == reg - && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT) - { - rtx src3 = XEXP (SET_SRC (set), 1); - rtx new_src - = gen_mode_int (GET_MODE (reg), - INTVAL (src3) - - INTVAL (reg_offset[regno])); - int success = 0; - - if (new_src == const0_rtx) - /* See above why we create (set (reg) (reg)) here. */ - success - = validate_change (next, &SET_SRC (set), reg, 0); - else if ((rtx_cost (new_src, PLUS) - < 2 + rtx_cost (src3, SET)) - && have_add2_insn (GET_MODE (reg))) - success - = validate_change (next, &PATTERN (next), - gen_add2_insn (reg, new_src), 0); - if (success) - { - /* INSN might be the first insn in a basic block - if the preceding insn is a conditional jump - or a possible-throwing call. */ - PUT_CODE (insn, NOTE); - NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; - NOTE_SOURCE_FILE (insn) = 0; - } - insn = next; - reg_set_luid[regno] = move2add_luid; - reg_mode[regno] = GET_MODE (reg); - reg_offset[regno] = src3; - continue; - } - } - } - } - - for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) - { - if (REG_NOTE_KIND (note) == REG_INC - && GET_CODE (XEXP (note, 0)) == REG) - { - /* Indicate that this register has been recently written to, - but the exact contents are not available. */ - int regno = REGNO (XEXP (note, 0)); - if (regno < FIRST_PSEUDO_REGISTER) - { - reg_set_luid[regno] = move2add_luid; - reg_offset[regno] = note; - } - } - } - note_stores (PATTERN (insn), move2add_note_store); - /* If this is a CALL_INSN, all call used registers are stored with - unknown values. */ - if (GET_CODE (insn) == CALL_INSN) - { - for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--) - { - if (call_used_regs[i]) - { - reg_set_luid[i] = move2add_luid; - reg_offset[i] = insn; /* Invalidate contents. */ - } - } - } - } -} - -/* SET is a SET or CLOBBER that sets DST. - Update reg_set_luid, reg_offset and reg_base_reg accordingly. - Called from reload_cse_move2add via note_stores. */ -static void -move2add_note_store (dst, set) - rtx dst, set; -{ - int regno = 0; - int i; - - enum machine_mode mode = GET_MODE (dst); - if (GET_CODE (dst) == SUBREG) - { - regno = SUBREG_WORD (dst); - dst = SUBREG_REG (dst); - } - if (GET_CODE (dst) != REG) - return; - - regno += REGNO (dst); - - if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET - && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT - && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT - && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART) - { - rtx src = SET_SRC (set); - - reg_mode[regno] = mode; - switch (GET_CODE (src)) - { - case PLUS: - { - rtx src0 = XEXP (src, 0); - if (GET_CODE (src0) == REG) - { - if (REGNO (src0) != regno - || reg_offset[regno] != const0_rtx) - { - reg_base_reg[regno] = REGNO (src0); - reg_set_luid[regno] = move2add_luid; - } - reg_offset[regno] = XEXP (src, 1); - break; - } - reg_set_luid[regno] = move2add_luid; - reg_offset[regno] = set; /* Invalidate contents. */ - break; - } - - case REG: - reg_base_reg[regno] = REGNO (SET_SRC (set)); - reg_offset[regno] = const0_rtx; - reg_set_luid[regno] = move2add_luid; - break; - - default: - reg_base_reg[regno] = -1; - reg_offset[regno] = SET_SRC (set); - reg_set_luid[regno] = move2add_luid; - break; - } - } - else - { - for (i = regno + HARD_REGNO_NREGS (regno, mode) - 1; i >= regno; i--) - { - /* Indicate that this register has been recently written to, - but the exact contents are not available. */ - reg_set_luid[i] = move2add_luid; - reg_offset[i] = dst; - } - } -} - -#ifdef AUTO_INC_DEC -static void -add_auto_inc_notes (insn, x) - rtx insn; - rtx x; -{ - enum rtx_code code = GET_CODE (x); - char *fmt; - int i, j; - - if (code == MEM && auto_inc_p (XEXP (x, 0))) - { - REG_NOTES (insn) - = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn)); - return; - } - - /* Scan all the operand sub-expressions. */ - fmt = GET_RTX_FORMAT (code); - for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) - { - if (fmt[i] == 'e') - add_auto_inc_notes (insn, XEXP (x, i)); - else if (fmt[i] == 'E') - for (j = XVECLEN (x, i) - 1; j >= 0; j--) - add_auto_inc_notes (insn, XVECEXP (x, i, j)); - } -} -#endif |