aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp392
1 files changed, 269 insertions, 123 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
index e22723529f44..e6aa60b324fa 100644
--- a/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
+++ b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
@@ -15,30 +15,30 @@
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
-#include "hwasan.h"
-#include "hwasan_dynamic_shadow.h"
-#include "hwasan_interface_internal.h"
-#include "hwasan_mapping.h"
-#include "hwasan_report.h"
-#include "hwasan_thread.h"
-#include "hwasan_thread_list.h"
-
-#include <dlfcn.h>
-#include <elf.h>
-#include <link.h>
-#include <pthread.h>
-#include <signal.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <sys/resource.h>
-#include <sys/time.h>
-#include <unistd.h>
-#include <unwind.h>
-#include <sys/prctl.h>
-#include <errno.h>
-
-#include "sanitizer_common/sanitizer_common.h"
-#include "sanitizer_common/sanitizer_procmaps.h"
+# include <dlfcn.h>
+# include <elf.h>
+# include <errno.h>
+# include <link.h>
+# include <pthread.h>
+# include <signal.h>
+# include <stdio.h>
+# include <stdlib.h>
+# include <sys/prctl.h>
+# include <sys/resource.h>
+# include <sys/time.h>
+# include <unistd.h>
+# include <unwind.h>
+
+# include "hwasan.h"
+# include "hwasan_dynamic_shadow.h"
+# include "hwasan_interface_internal.h"
+# include "hwasan_mapping.h"
+# include "hwasan_report.h"
+# include "hwasan_thread.h"
+# include "hwasan_thread_list.h"
+# include "sanitizer_common/sanitizer_common.h"
+# include "sanitizer_common/sanitizer_procmaps.h"
+# include "sanitizer_common/sanitizer_stackdepot.h"
// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
//
@@ -50,10 +50,10 @@
// Tested with check-hwasan on x86_64-linux.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
// Tested with check-hwasan on aarch64-linux-android.
-#if !SANITIZER_ANDROID
+# if !SANITIZER_ANDROID
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL uptr __hwasan_tls;
-#endif
+# endif
namespace __hwasan {
@@ -106,19 +106,92 @@ static uptr GetHighMemEnd() {
}
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
- __hwasan_shadow_memory_dynamic_address =
- FindDynamicShadowStart(shadow_size_bytes);
+ if (flags()->fixed_shadow_base != (uptr)-1) {
+ __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
+ } else {
+ __hwasan_shadow_memory_dynamic_address =
+ FindDynamicShadowStart(shadow_size_bytes);
+ }
+}
+
+static void MaybeDieIfNoTaggingAbi(const char *message) {
+ if (!flags()->fail_without_syscall_abi)
+ return;
+ Printf("FATAL: %s\n", message);
+ Die();
+}
+
+# define PR_SET_TAGGED_ADDR_CTRL 55
+# define PR_GET_TAGGED_ADDR_CTRL 56
+# define PR_TAGGED_ADDR_ENABLE (1UL << 0)
+# define ARCH_GET_UNTAG_MASK 0x4001
+# define ARCH_ENABLE_TAGGED_ADDR 0x4002
+# define ARCH_GET_MAX_TAG_BITS 0x4003
+
+static bool CanUseTaggingAbi() {
+# if defined(__x86_64__)
+ unsigned long num_bits = 0;
+ // Check for x86 LAM support. This API is based on a currently unsubmitted
+ // patch to the Linux kernel (as of August 2022) and is thus subject to
+ // change. The patch is here:
+ // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
+ //
+ // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
+ // bits the user can request, or zero if LAM is not supported by the hardware.
+ if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
+ reinterpret_cast<uptr>(&num_bits))))
+ return false;
+ // The platform must provide enough bits for HWASan tags.
+ if (num_bits < kTagBits)
+ return false;
+ return true;
+# else
+ // Check for ARM TBI support.
+ return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
+# endif // __x86_64__
+}
+
+static bool EnableTaggingAbi() {
+# if defined(__x86_64__)
+ // Enable x86 LAM tagging for the process.
+ //
+ // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
+ // tag bits requested by the user does not exceed that provided by the system.
+ // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
+ // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
+ // is not supported by the hardware.
+ if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
+ return false;
+ unsigned long mask = 0;
+ // Make sure the tag bits are where we expect them to be.
+ if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
+ reinterpret_cast<uptr>(&mask))))
+ return false;
+ // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
+ // bits. Therefore these masks must not overlap.
+ if (mask & kAddressTagMask)
+ return false;
+ return true;
+# else
+ // Enable ARM TBI tagging for the process. If for some reason tagging is not
+ // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
+ // -EINVAL.
+ if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
+ PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
+ return false;
+ // Ensure that TBI is enabled.
+ if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
+ PR_TAGGED_ADDR_ENABLE)
+ return false;
+ return true;
+# endif // __x86_64__
}
void InitializeOsSupport() {
-#define PR_SET_TAGGED_ADDR_CTRL 55
-#define PR_GET_TAGGED_ADDR_CTRL 56
-#define PR_TAGGED_ADDR_ENABLE (1UL << 0)
// Check we're running on a kernel that can use the tagged address ABI.
- int local_errno = 0;
- if (internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0),
- &local_errno) &&
- local_errno == EINVAL) {
+ bool has_abi = CanUseTaggingAbi();
+
+ if (!has_abi) {
# if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
// Some older Android kernels have the tagged pointer ABI on
// unconditionally, and hence don't have the tagged-addr prctl while still
@@ -127,46 +200,22 @@ void InitializeOsSupport() {
// case.
return;
# else
- if (flags()->fail_without_syscall_abi) {
- Printf(
- "FATAL: "
- "HWAddressSanitizer requires a kernel with tagged address ABI.\n");
- Die();
- }
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer requires a kernel with tagged address ABI.");
# endif
}
- // Turn on the tagged address ABI.
- if ((internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
- PR_TAGGED_ADDR_ENABLE, 0, 0, 0)) ||
- !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0))) {
-# if defined(__x86_64__) && !defined(HWASAN_ALIASING_MODE)
- // Try the new prctl API for Intel LAM. The API is based on a currently
- // unsubmitted patch to the Linux kernel (as of May 2021) and is thus
- // subject to change. Patch is here:
- // https://lore.kernel.org/linux-mm/20210205151631.43511-12-kirill.shutemov@linux.intel.com/
- int tag_bits = kTagBits;
- int tag_shift = kAddressTagShift;
- if (!internal_iserror(
- internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE,
- reinterpret_cast<unsigned long>(&tag_bits),
- reinterpret_cast<unsigned long>(&tag_shift), 0))) {
- CHECK_EQ(tag_bits, kTagBits);
- CHECK_EQ(tag_shift, kAddressTagShift);
- return;
- }
-# endif // defined(__x86_64__) && !defined(HWASAN_ALIASING_MODE)
- if (flags()->fail_without_syscall_abi) {
- Printf(
- "FATAL: HWAddressSanitizer failed to enable tagged address syscall "
- "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` "
- "configuration.\n");
- Die();
- }
- }
-#undef PR_SET_TAGGED_ADDR_CTRL
-#undef PR_GET_TAGGED_ADDR_CTRL
-#undef PR_TAGGED_ADDR_ENABLE
+ if (EnableTaggingAbi())
+ return;
+
+# if SANITIZER_ANDROID
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
+ "Check the `sysctl abi.tagged_addr_disabled` configuration.");
+# else
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
+# endif
}
bool InitShadow() {
@@ -238,31 +287,18 @@ void InitThreads() {
bool MemIsApp(uptr p) {
// Memory outside the alias range has non-zero tags.
# if !defined(HWASAN_ALIASING_MODE)
- CHECK(GetTagFromPointer(p) == 0);
+ CHECK_EQ(GetTagFromPointer(p), 0);
# endif
- return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd);
+ return (p >= kHighMemStart && p <= kHighMemEnd) ||
+ (p >= kLowMemStart && p <= kLowMemEnd);
}
-void InstallAtExitHandler() {
- atexit(HwasanAtExit);
-}
+void InstallAtExitHandler() { atexit(HwasanAtExit); }
// ---------------------- TSD ---------------- {{{1
-extern "C" void __hwasan_thread_enter() {
- hwasanThreadList().CreateCurrentThread()->InitRandomState();
-}
-
-extern "C" void __hwasan_thread_exit() {
- Thread *t = GetCurrentThread();
- // Make sure that signal handler can not see a stale current thread pointer.
- atomic_signal_fence(memory_order_seq_cst);
- if (t)
- hwasanThreadList().ReleaseThread(t);
-}
-
-#if HWASAN_WITH_INTERCEPTORS
+# if HWASAN_WITH_INTERCEPTORS
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;
@@ -286,22 +322,18 @@ void HwasanTSDInit() {
tsd_key_inited = true;
CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
}
-#else
+# else
void HwasanTSDInit() {}
void HwasanTSDThreadInit() {}
-#endif
+# endif
-#if SANITIZER_ANDROID
-uptr *GetCurrentThreadLongPtr() {
- return (uptr *)get_android_tls_ptr();
-}
-#else
-uptr *GetCurrentThreadLongPtr() {
- return &__hwasan_tls;
-}
-#endif
+# if SANITIZER_ANDROID
+uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
+# else
+uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
+# endif
-#if SANITIZER_ANDROID
+# if SANITIZER_ANDROID
void AndroidTestTlsSlot() {
uptr kMagicValue = 0x010203040A0B0C0D;
uptr *tls_ptr = GetCurrentThreadLongPtr();
@@ -316,9 +348,9 @@ void AndroidTestTlsSlot() {
}
*tls_ptr = old_value;
}
-#else
+# else
void AndroidTestTlsSlot() {}
-#endif
+# endif
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
// Access type is passed in a platform dependent way (see below) and encoded
@@ -326,32 +358,32 @@ static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
// log2(access_size), and 0xF, which means that access size is passed via
// platform dependent register (see below).
-#if defined(__aarch64__)
+# if defined(__aarch64__)
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
// access size is stored in X1 register. Access address is always in X0
// register.
uptr pc = (uptr)info->si_addr;
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
if ((code & 0xff00) != 0x900)
- return AccessInfo{}; // Not ours.
+ return AccessInfo{}; // Not ours.
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.regs[0];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
- return AccessInfo{}; // Not ours.
+ return AccessInfo{}; // Not ours.
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
-#elif defined(__x86_64__)
+# elif defined(__x86_64__)
// Access type is encoded in the instruction following INT3 as
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
// RSI register. Access address is always in RDI register.
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
- uint8_t *nop = (uint8_t*)pc;
- if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
+ uint8_t *nop = (uint8_t *)pc;
+ if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
*(nop + 3) < 0x40)
- return AccessInfo{}; // Not ours.
+ return AccessInfo{}; // Not ours.
const unsigned code = *(nop + 3);
const bool is_store = code & 0x10;
@@ -359,13 +391,54 @@ static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
- return AccessInfo{}; // Not ours.
+ return AccessInfo{}; // Not ours.
const uptr size =
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
-#else
-# error Unsupported architecture
-#endif
+# elif SANITIZER_RISCV64
+ // Access type is encoded in the instruction following EBREAK as
+ // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
+ // X11 register. Access address is always in X10 register.
+ uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
+ uint8_t byte1 = *((u8 *)(pc + 0));
+ uint8_t byte2 = *((u8 *)(pc + 1));
+ uint8_t byte3 = *((u8 *)(pc + 2));
+ uint8_t byte4 = *((u8 *)(pc + 3));
+ uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ bool isFaultShort = false;
+ bool isEbreak = (ebreak == 0x100073);
+ bool isShortEbreak = false;
+# if defined(__riscv_compressed)
+ isFaultShort = ((ebreak & 0x3) != 0x3);
+ isShortEbreak = ((ebreak & 0xffff) == 0x9002);
+# endif
+ // faulted insn is not ebreak, not our case
+ if (!(isEbreak || isShortEbreak))
+ return AccessInfo{};
+ // advance pc to point after ebreak and reconstruct addi instruction
+ pc += isFaultShort ? 2 : 4;
+ byte1 = *((u8 *)(pc + 0));
+ byte2 = *((u8 *)(pc + 1));
+ byte3 = *((u8 *)(pc + 2));
+ byte4 = *((u8 *)(pc + 3));
+ // reconstruct instruction
+ uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ // check if this is really 32 bit instruction
+ // code is encoded in top 12 bits, since instruction is supposed to be with
+ // imm
+ const unsigned code = (instr >> 20) & 0xffff;
+ const uptr addr = uc->uc_mcontext.__gregs[10];
+ const bool is_store = code & 0x10;
+ const bool recover = code & 0x20;
+ const unsigned size_log = code & 0xf;
+ if (size_log > 4 && size_log != 0xf)
+ return AccessInfo{}; // Not our case
+ const uptr size =
+ size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
+
+# else
+# error Unsupported architecture
+# endif
return AccessInfo{addr, size, is_store, !is_store, recover};
}
@@ -378,12 +451,25 @@ static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
SignalContext sig{info, uc};
HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
-#if defined(__aarch64__)
+# if defined(__aarch64__)
uc->uc_mcontext.pc += 4;
-#elif defined(__x86_64__)
-#else
-# error Unsupported architecture
-#endif
+# elif defined(__x86_64__)
+# elif SANITIZER_RISCV64
+ // pc points to EBREAK which is 2 bytes long
+ uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
+ uint8_t byte1 = (uint8_t)(*(exception_source + 0));
+ uint8_t byte2 = (uint8_t)(*(exception_source + 1));
+ uint8_t byte3 = (uint8_t)(*(exception_source + 2));
+ uint8_t byte4 = (uint8_t)(*(exception_source + 3));
+ uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ bool isFaultShort = false;
+# if defined(__riscv_compressed)
+ isFaultShort = ((faulted & 0x3) != 0x3);
+# endif
+ uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
+# else
+# error Unsupported architecture
+# endif
return true;
}
@@ -396,7 +482,7 @@ static void OnStackUnwind(const SignalContext &sig, const void *,
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
// Probably a tag mismatch.
if (signo == SIGTRAP)
- if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context))
+ if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
return;
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
@@ -435,6 +521,66 @@ uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
return AddTagToPointer(p, tag);
}
-} // namespace __hwasan
+static void BeforeFork() {
+ if (CAN_SANITIZE_LEAKS) {
+ __lsan::LockGlobal();
+ }
+ // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
+ // stuff we need.
+ __lsan::LockThreads();
+ __lsan::LockAllocator();
+ StackDepotLockBeforeFork();
+}
+
+static void AfterFork(bool fork_child) {
+ StackDepotUnlockAfterFork(fork_child);
+ // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
+ // the stuff we need.
+ __lsan::UnlockAllocator();
+ __lsan::UnlockThreads();
+ if (CAN_SANITIZE_LEAKS) {
+ __lsan::UnlockGlobal();
+ }
+}
+
+void HwasanInstallAtForkHandler() {
+ pthread_atfork(
+ &BeforeFork, []() { AfterFork(/* fork_child= */ false); },
+ []() { AfterFork(/* fork_child= */ true); });
+}
+
+void InstallAtExitCheckLeaks() {
+ if (CAN_SANITIZE_LEAKS) {
+ if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
+ if (flags()->halt_on_error)
+ Atexit(__lsan::DoLeakCheck);
+ else
+ Atexit(__lsan::DoRecoverableLeakCheckVoid);
+ }
+ }
+}
+
+} // namespace __hwasan
+
+using namespace __hwasan;
+
+extern "C" void __hwasan_thread_enter() {
+ hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
+}
+
+extern "C" void __hwasan_thread_exit() {
+ Thread *t = GetCurrentThread();
+ // Make sure that signal handler can not see a stale current thread pointer.
+ atomic_signal_fence(memory_order_seq_cst);
+ if (t) {
+ // Block async signals on the thread as the handler can be instrumented.
+ // After this point instrumented code can't access essential data from TLS
+ // and will crash.
+ // Bionic already calls __hwasan_thread_exit with blocked signals.
+ if (SANITIZER_GLIBC)
+ BlockSignals();
+ hwasanThreadList().ReleaseThread(t);
+ }
+}
-#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
+#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD