aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp4871
1 files changed, 4871 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp b/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp
new file mode 100644
index 000000000000..a29040b8c2aa
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp
@@ -0,0 +1,4871 @@
+//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This library implements `print` family of functions in classes like
+// Module, Function, Value, etc. In-memory representation of those classes is
+// converted to IR strings.
+//
+// Note that these routines must be extremely tolerant of various errors in the
+// LLVM code, because it can be used for debugging transformations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSlotTracker.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/TypeFinder.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cctype>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+// Make virtual table appear in this compilation unit.
+AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+using OrderMap = MapVector<const Value *, unsigned>;
+
+using UseListOrderMap =
+ DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
+
+/// Look for a value that might be wrapped as metadata, e.g. a value in a
+/// metadata operand. Returns the input value as-is if it is not wrapped.
+static const Value *skipMetadataWrapper(const Value *V) {
+ if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
+ if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
+ return VAM->getValue();
+ return V;
+}
+
+static void orderValue(const Value *V, OrderMap &OM) {
+ if (OM.lookup(V))
+ return;
+
+ if (const Constant *C = dyn_cast<Constant>(V))
+ if (C->getNumOperands() && !isa<GlobalValue>(C))
+ for (const Value *Op : C->operands())
+ if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+ orderValue(Op, OM);
+
+ // Note: we cannot cache this lookup above, since inserting into the map
+ // changes the map's size, and thus affects the other IDs.
+ unsigned ID = OM.size() + 1;
+ OM[V] = ID;
+}
+
+static OrderMap orderModule(const Module *M) {
+ OrderMap OM;
+
+ for (const GlobalVariable &G : M->globals()) {
+ if (G.hasInitializer())
+ if (!isa<GlobalValue>(G.getInitializer()))
+ orderValue(G.getInitializer(), OM);
+ orderValue(&G, OM);
+ }
+ for (const GlobalAlias &A : M->aliases()) {
+ if (!isa<GlobalValue>(A.getAliasee()))
+ orderValue(A.getAliasee(), OM);
+ orderValue(&A, OM);
+ }
+ for (const GlobalIFunc &I : M->ifuncs()) {
+ if (!isa<GlobalValue>(I.getResolver()))
+ orderValue(I.getResolver(), OM);
+ orderValue(&I, OM);
+ }
+ for (const Function &F : *M) {
+ for (const Use &U : F.operands())
+ if (!isa<GlobalValue>(U.get()))
+ orderValue(U.get(), OM);
+
+ orderValue(&F, OM);
+
+ if (F.isDeclaration())
+ continue;
+
+ for (const Argument &A : F.args())
+ orderValue(&A, OM);
+ for (const BasicBlock &BB : F) {
+ orderValue(&BB, OM);
+ for (const Instruction &I : BB) {
+ for (const Value *Op : I.operands()) {
+ Op = skipMetadataWrapper(Op);
+ if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+ isa<InlineAsm>(*Op))
+ orderValue(Op, OM);
+ }
+ orderValue(&I, OM);
+ }
+ }
+ }
+ return OM;
+}
+
+static std::vector<unsigned>
+predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
+ // Predict use-list order for this one.
+ using Entry = std::pair<const Use *, unsigned>;
+ SmallVector<Entry, 64> List;
+ for (const Use &U : V->uses())
+ // Check if this user will be serialized.
+ if (OM.lookup(U.getUser()))
+ List.push_back(std::make_pair(&U, List.size()));
+
+ if (List.size() < 2)
+ // We may have lost some users.
+ return {};
+
+ // When referencing a value before its declaration, a temporary value is
+ // created, which will later be RAUWed with the actual value. This reverses
+ // the use list. This happens for all values apart from basic blocks.
+ bool GetsReversed = !isa<BasicBlock>(V);
+ if (auto *BA = dyn_cast<BlockAddress>(V))
+ ID = OM.lookup(BA->getBasicBlock());
+ llvm::sort(List, [&](const Entry &L, const Entry &R) {
+ const Use *LU = L.first;
+ const Use *RU = R.first;
+ if (LU == RU)
+ return false;
+
+ auto LID = OM.lookup(LU->getUser());
+ auto RID = OM.lookup(RU->getUser());
+
+ // If ID is 4, then expect: 7 6 5 1 2 3.
+ if (LID < RID) {
+ if (GetsReversed)
+ if (RID <= ID)
+ return true;
+ return false;
+ }
+ if (RID < LID) {
+ if (GetsReversed)
+ if (LID <= ID)
+ return false;
+ return true;
+ }
+
+ // LID and RID are equal, so we have different operands of the same user.
+ // Assume operands are added in order for all instructions.
+ if (GetsReversed)
+ if (LID <= ID)
+ return LU->getOperandNo() < RU->getOperandNo();
+ return LU->getOperandNo() > RU->getOperandNo();
+ });
+
+ if (llvm::is_sorted(List, llvm::less_second()))
+ // Order is already correct.
+ return {};
+
+ // Store the shuffle.
+ std::vector<unsigned> Shuffle(List.size());
+ for (size_t I = 0, E = List.size(); I != E; ++I)
+ Shuffle[I] = List[I].second;
+ return Shuffle;
+}
+
+static UseListOrderMap predictUseListOrder(const Module *M) {
+ OrderMap OM = orderModule(M);
+ UseListOrderMap ULOM;
+ for (const auto &Pair : OM) {
+ const Value *V = Pair.first;
+ if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
+ continue;
+
+ std::vector<unsigned> Shuffle =
+ predictValueUseListOrder(V, Pair.second, OM);
+ if (Shuffle.empty())
+ continue;
+
+ const Function *F = nullptr;
+ if (auto *I = dyn_cast<Instruction>(V))
+ F = I->getFunction();
+ if (auto *A = dyn_cast<Argument>(V))
+ F = A->getParent();
+ if (auto *BB = dyn_cast<BasicBlock>(V))
+ F = BB->getParent();
+ ULOM[F][V] = std::move(Shuffle);
+ }
+ return ULOM;
+}
+
+static const Module *getModuleFromVal(const Value *V) {
+ if (const Argument *MA = dyn_cast<Argument>(V))
+ return MA->getParent() ? MA->getParent()->getParent() : nullptr;
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return BB->getParent() ? BB->getParent()->getParent() : nullptr;
+
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
+ return M ? M->getParent() : nullptr;
+ }
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return GV->getParent();
+
+ if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
+ for (const User *U : MAV->users())
+ if (isa<Instruction>(U))
+ if (const Module *M = getModuleFromVal(U))
+ return M;
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
+ switch (cc) {
+ default: Out << "cc" << cc; break;
+ case CallingConv::Fast: Out << "fastcc"; break;
+ case CallingConv::Cold: Out << "coldcc"; break;
+ case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
+ case CallingConv::AnyReg: Out << "anyregcc"; break;
+ case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
+ case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
+ case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
+ case CallingConv::GHC: Out << "ghccc"; break;
+ case CallingConv::Tail: Out << "tailcc"; break;
+ case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
+ case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
+ case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
+ case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
+ case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
+ case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
+ case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
+ case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
+ case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
+ case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
+ case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
+ case CallingConv::AArch64_SVE_VectorCall:
+ Out << "aarch64_sve_vector_pcs";
+ break;
+ case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
+ case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
+ case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
+ case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
+ case CallingConv::PTX_Device: Out << "ptx_device"; break;
+ case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
+ case CallingConv::Win64: Out << "win64cc"; break;
+ case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
+ case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
+ case CallingConv::Swift: Out << "swiftcc"; break;
+ case CallingConv::SwiftTail: Out << "swifttailcc"; break;
+ case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
+ case CallingConv::HHVM: Out << "hhvmcc"; break;
+ case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
+ case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
+ case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
+ case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
+ case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
+ case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
+ case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
+ case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
+ case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
+ case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
+ }
+}
+
+enum PrefixType {
+ GlobalPrefix,
+ ComdatPrefix,
+ LabelPrefix,
+ LocalPrefix,
+ NoPrefix
+};
+
+void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
+ assert(!Name.empty() && "Cannot get empty name!");
+
+ // Scan the name to see if it needs quotes first.
+ bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
+ if (!NeedsQuotes) {
+ for (unsigned char C : Name) {
+ // By making this unsigned, the value passed in to isalnum will always be
+ // in the range 0-255. This is important when building with MSVC because
+ // its implementation will assert. This situation can arise when dealing
+ // with UTF-8 multibyte characters.
+ if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
+ C != '_') {
+ NeedsQuotes = true;
+ break;
+ }
+ }
+ }
+
+ // If we didn't need any quotes, just write out the name in one blast.
+ if (!NeedsQuotes) {
+ OS << Name;
+ return;
+ }
+
+ // Okay, we need quotes. Output the quotes and escape any scary characters as
+ // needed.
+ OS << '"';
+ printEscapedString(Name, OS);
+ OS << '"';
+}
+
+/// Turn the specified name into an 'LLVM name', which is either prefixed with %
+/// (if the string only contains simple characters) or is surrounded with ""'s
+/// (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
+ switch (Prefix) {
+ case NoPrefix:
+ break;
+ case GlobalPrefix:
+ OS << '@';
+ break;
+ case ComdatPrefix:
+ OS << '$';
+ break;
+ case LabelPrefix:
+ break;
+ case LocalPrefix:
+ OS << '%';
+ break;
+ }
+ printLLVMNameWithoutPrefix(OS, Name);
+}
+
+/// Turn the specified name into an 'LLVM name', which is either prefixed with %
+/// (if the string only contains simple characters) or is surrounded with ""'s
+/// (if it has special chars in it). Print it out.
+static void PrintLLVMName(raw_ostream &OS, const Value *V) {
+ PrintLLVMName(OS, V->getName(),
+ isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
+}
+
+static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
+ Out << ", <";
+ if (isa<ScalableVectorType>(Ty))
+ Out << "vscale x ";
+ Out << Mask.size() << " x i32> ";
+ bool FirstElt = true;
+ if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
+ Out << "zeroinitializer";
+ } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
+ Out << "undef";
+ } else {
+ Out << "<";
+ for (int Elt : Mask) {
+ if (FirstElt)
+ FirstElt = false;
+ else
+ Out << ", ";
+ Out << "i32 ";
+ if (Elt == UndefMaskElem)
+ Out << "undef";
+ else
+ Out << Elt;
+ }
+ Out << ">";
+ }
+}
+
+namespace {
+
+class TypePrinting {
+public:
+ TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
+
+ TypePrinting(const TypePrinting &) = delete;
+ TypePrinting &operator=(const TypePrinting &) = delete;
+
+ /// The named types that are used by the current module.
+ TypeFinder &getNamedTypes();
+
+ /// The numbered types, number to type mapping.
+ std::vector<StructType *> &getNumberedTypes();
+
+ bool empty();
+
+ void print(Type *Ty, raw_ostream &OS);
+
+ void printStructBody(StructType *Ty, raw_ostream &OS);
+
+private:
+ void incorporateTypes();
+
+ /// A module to process lazily when needed. Set to nullptr as soon as used.
+ const Module *DeferredM;
+
+ TypeFinder NamedTypes;
+
+ // The numbered types, along with their value.
+ DenseMap<StructType *, unsigned> Type2Number;
+
+ std::vector<StructType *> NumberedTypes;
+};
+
+} // end anonymous namespace
+
+TypeFinder &TypePrinting::getNamedTypes() {
+ incorporateTypes();
+ return NamedTypes;
+}
+
+std::vector<StructType *> &TypePrinting::getNumberedTypes() {
+ incorporateTypes();
+
+ // We know all the numbers that each type is used and we know that it is a
+ // dense assignment. Convert the map to an index table, if it's not done
+ // already (judging from the sizes):
+ if (NumberedTypes.size() == Type2Number.size())
+ return NumberedTypes;
+
+ NumberedTypes.resize(Type2Number.size());
+ for (const auto &P : Type2Number) {
+ assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
+ assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
+ NumberedTypes[P.second] = P.first;
+ }
+ return NumberedTypes;
+}
+
+bool TypePrinting::empty() {
+ incorporateTypes();
+ return NamedTypes.empty() && Type2Number.empty();
+}
+
+void TypePrinting::incorporateTypes() {
+ if (!DeferredM)
+ return;
+
+ NamedTypes.run(*DeferredM, false);
+ DeferredM = nullptr;
+
+ // The list of struct types we got back includes all the struct types, split
+ // the unnamed ones out to a numbering and remove the anonymous structs.
+ unsigned NextNumber = 0;
+
+ std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
+ for (StructType *STy : NamedTypes) {
+ // Ignore anonymous types.
+ if (STy->isLiteral())
+ continue;
+
+ if (STy->getName().empty())
+ Type2Number[STy] = NextNumber++;
+ else
+ *NextToUse++ = STy;
+ }
+
+ NamedTypes.erase(NextToUse, NamedTypes.end());
+}
+
+/// Write the specified type to the specified raw_ostream, making use of type
+/// names or up references to shorten the type name where possible.
+void TypePrinting::print(Type *Ty, raw_ostream &OS) {
+ switch (Ty->getTypeID()) {
+ case Type::VoidTyID: OS << "void"; return;
+ case Type::HalfTyID: OS << "half"; return;
+ case Type::BFloatTyID: OS << "bfloat"; return;
+ case Type::FloatTyID: OS << "float"; return;
+ case Type::DoubleTyID: OS << "double"; return;
+ case Type::X86_FP80TyID: OS << "x86_fp80"; return;
+ case Type::FP128TyID: OS << "fp128"; return;
+ case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
+ case Type::LabelTyID: OS << "label"; return;
+ case Type::MetadataTyID: OS << "metadata"; return;
+ case Type::X86_MMXTyID: OS << "x86_mmx"; return;
+ case Type::X86_AMXTyID: OS << "x86_amx"; return;
+ case Type::TokenTyID: OS << "token"; return;
+ case Type::IntegerTyID:
+ OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
+ return;
+
+ case Type::FunctionTyID: {
+ FunctionType *FTy = cast<FunctionType>(Ty);
+ print(FTy->getReturnType(), OS);
+ OS << " (";
+ ListSeparator LS;
+ for (Type *Ty : FTy->params()) {
+ OS << LS;
+ print(Ty, OS);
+ }
+ if (FTy->isVarArg())
+ OS << LS << "...";
+ OS << ')';
+ return;
+ }
+ case Type::StructTyID: {
+ StructType *STy = cast<StructType>(Ty);
+
+ if (STy->isLiteral())
+ return printStructBody(STy, OS);
+
+ if (!STy->getName().empty())
+ return PrintLLVMName(OS, STy->getName(), LocalPrefix);
+
+ incorporateTypes();
+ const auto I = Type2Number.find(STy);
+ if (I != Type2Number.end())
+ OS << '%' << I->second;
+ else // Not enumerated, print the hex address.
+ OS << "%\"type " << STy << '\"';
+ return;
+ }
+ case Type::PointerTyID: {
+ PointerType *PTy = cast<PointerType>(Ty);
+ if (PTy->isOpaque()) {
+ OS << "ptr";
+ if (unsigned AddressSpace = PTy->getAddressSpace())
+ OS << " addrspace(" << AddressSpace << ')';
+ return;
+ }
+ print(PTy->getNonOpaquePointerElementType(), OS);
+ if (unsigned AddressSpace = PTy->getAddressSpace())
+ OS << " addrspace(" << AddressSpace << ')';
+ OS << '*';
+ return;
+ }
+ case Type::ArrayTyID: {
+ ArrayType *ATy = cast<ArrayType>(Ty);
+ OS << '[' << ATy->getNumElements() << " x ";
+ print(ATy->getElementType(), OS);
+ OS << ']';
+ return;
+ }
+ case Type::FixedVectorTyID:
+ case Type::ScalableVectorTyID: {
+ VectorType *PTy = cast<VectorType>(Ty);
+ ElementCount EC = PTy->getElementCount();
+ OS << "<";
+ if (EC.isScalable())
+ OS << "vscale x ";
+ OS << EC.getKnownMinValue() << " x ";
+ print(PTy->getElementType(), OS);
+ OS << '>';
+ return;
+ }
+ case Type::DXILPointerTyID:
+ // DXIL pointer types are only handled by the DirectX backend. To avoid
+ // extra dependencies we just print the pointer's address here.
+ OS << "dxil-ptr (" << Ty << ")";
+ return;
+ }
+ llvm_unreachable("Invalid TypeID");
+}
+
+void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
+ if (STy->isOpaque()) {
+ OS << "opaque";
+ return;
+ }
+
+ if (STy->isPacked())
+ OS << '<';
+
+ if (STy->getNumElements() == 0) {
+ OS << "{}";
+ } else {
+ OS << "{ ";
+ ListSeparator LS;
+ for (Type *Ty : STy->elements()) {
+ OS << LS;
+ print(Ty, OS);
+ }
+
+ OS << " }";
+ }
+ if (STy->isPacked())
+ OS << '>';
+}
+
+AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+// SlotTracker Class: Enumerate slot numbers for unnamed values
+//===----------------------------------------------------------------------===//
+/// This class provides computation of slot numbers for LLVM Assembly writing.
+///
+class SlotTracker : public AbstractSlotTrackerStorage {
+public:
+ /// ValueMap - A mapping of Values to slot numbers.
+ using ValueMap = DenseMap<const Value *, unsigned>;
+
+private:
+ /// TheModule - The module for which we are holding slot numbers.
+ const Module* TheModule;
+
+ /// TheFunction - The function for which we are holding slot numbers.
+ const Function* TheFunction = nullptr;
+ bool FunctionProcessed = false;
+ bool ShouldInitializeAllMetadata;
+
+ std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
+ ProcessModuleHookFn;
+ std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
+ ProcessFunctionHookFn;
+
+ /// The summary index for which we are holding slot numbers.
+ const ModuleSummaryIndex *TheIndex = nullptr;
+
+ /// mMap - The slot map for the module level data.
+ ValueMap mMap;
+ unsigned mNext = 0;
+
+ /// fMap - The slot map for the function level data.
+ ValueMap fMap;
+ unsigned fNext = 0;
+
+ /// mdnMap - Map for MDNodes.
+ DenseMap<const MDNode*, unsigned> mdnMap;
+ unsigned mdnNext = 0;
+
+ /// asMap - The slot map for attribute sets.
+ DenseMap<AttributeSet, unsigned> asMap;
+ unsigned asNext = 0;
+
+ /// ModulePathMap - The slot map for Module paths used in the summary index.
+ StringMap<unsigned> ModulePathMap;
+ unsigned ModulePathNext = 0;
+
+ /// GUIDMap - The slot map for GUIDs used in the summary index.
+ DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
+ unsigned GUIDNext = 0;
+
+ /// TypeIdMap - The slot map for type ids used in the summary index.
+ StringMap<unsigned> TypeIdMap;
+ unsigned TypeIdNext = 0;
+
+public:
+ /// Construct from a module.
+ ///
+ /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
+ /// functions, giving correct numbering for metadata referenced only from
+ /// within a function (even if no functions have been initialized).
+ explicit SlotTracker(const Module *M,
+ bool ShouldInitializeAllMetadata = false);
+
+ /// Construct from a function, starting out in incorp state.
+ ///
+ /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
+ /// functions, giving correct numbering for metadata referenced only from
+ /// within a function (even if no functions have been initialized).
+ explicit SlotTracker(const Function *F,
+ bool ShouldInitializeAllMetadata = false);
+
+ /// Construct from a module summary index.
+ explicit SlotTracker(const ModuleSummaryIndex *Index);
+
+ SlotTracker(const SlotTracker &) = delete;
+ SlotTracker &operator=(const SlotTracker &) = delete;
+
+ ~SlotTracker() = default;
+
+ void setProcessHook(
+ std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
+ void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
+ const Function *, bool)>);
+
+ unsigned getNextMetadataSlot() override { return mdnNext; }
+
+ void createMetadataSlot(const MDNode *N) override;
+
+ /// Return the slot number of the specified value in it's type
+ /// plane. If something is not in the SlotTracker, return -1.
+ int getLocalSlot(const Value *V);
+ int getGlobalSlot(const GlobalValue *V);
+ int getMetadataSlot(const MDNode *N) override;
+ int getAttributeGroupSlot(AttributeSet AS);
+ int getModulePathSlot(StringRef Path);
+ int getGUIDSlot(GlobalValue::GUID GUID);
+ int getTypeIdSlot(StringRef Id);
+
+ /// If you'd like to deal with a function instead of just a module, use
+ /// this method to get its data into the SlotTracker.
+ void incorporateFunction(const Function *F) {
+ TheFunction = F;
+ FunctionProcessed = false;
+ }
+
+ const Function *getFunction() const { return TheFunction; }
+
+ /// After calling incorporateFunction, use this method to remove the
+ /// most recently incorporated function from the SlotTracker. This
+ /// will reset the state of the machine back to just the module contents.
+ void purgeFunction();
+
+ /// MDNode map iterators.
+ using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
+
+ mdn_iterator mdn_begin() { return mdnMap.begin(); }
+ mdn_iterator mdn_end() { return mdnMap.end(); }
+ unsigned mdn_size() const { return mdnMap.size(); }
+ bool mdn_empty() const { return mdnMap.empty(); }
+
+ /// AttributeSet map iterators.
+ using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
+
+ as_iterator as_begin() { return asMap.begin(); }
+ as_iterator as_end() { return asMap.end(); }
+ unsigned as_size() const { return asMap.size(); }
+ bool as_empty() const { return asMap.empty(); }
+
+ /// GUID map iterators.
+ using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
+
+ /// These functions do the actual initialization.
+ inline void initializeIfNeeded();
+ int initializeIndexIfNeeded();
+
+ // Implementation Details
+private:
+ /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+ void CreateModuleSlot(const GlobalValue *V);
+
+ /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
+ void CreateMetadataSlot(const MDNode *N);
+
+ /// CreateFunctionSlot - Insert the specified Value* into the slot table.
+ void CreateFunctionSlot(const Value *V);
+
+ /// Insert the specified AttributeSet into the slot table.
+ void CreateAttributeSetSlot(AttributeSet AS);
+
+ inline void CreateModulePathSlot(StringRef Path);
+ void CreateGUIDSlot(GlobalValue::GUID GUID);
+ void CreateTypeIdSlot(StringRef Id);
+
+ /// Add all of the module level global variables (and their initializers)
+ /// and function declarations, but not the contents of those functions.
+ void processModule();
+ // Returns number of allocated slots
+ int processIndex();
+
+ /// Add all of the functions arguments, basic blocks, and instructions.
+ void processFunction();
+
+ /// Add the metadata directly attached to a GlobalObject.
+ void processGlobalObjectMetadata(const GlobalObject &GO);
+
+ /// Add all of the metadata from a function.
+ void processFunctionMetadata(const Function &F);
+
+ /// Add all of the metadata from an instruction.
+ void processInstructionMetadata(const Instruction &I);
+};
+
+} // end namespace llvm
+
+ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
+ const Function *F)
+ : M(M), F(F), Machine(&Machine) {}
+
+ModuleSlotTracker::ModuleSlotTracker(const Module *M,
+ bool ShouldInitializeAllMetadata)
+ : ShouldCreateStorage(M),
+ ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
+
+ModuleSlotTracker::~ModuleSlotTracker() = default;
+
+SlotTracker *ModuleSlotTracker::getMachine() {
+ if (!ShouldCreateStorage)
+ return Machine;
+
+ ShouldCreateStorage = false;
+ MachineStorage =
+ std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
+ Machine = MachineStorage.get();
+ if (ProcessModuleHookFn)
+ Machine->setProcessHook(ProcessModuleHookFn);
+ if (ProcessFunctionHookFn)
+ Machine->setProcessHook(ProcessFunctionHookFn);
+ return Machine;
+}
+
+void ModuleSlotTracker::incorporateFunction(const Function &F) {
+ // Using getMachine() may lazily create the slot tracker.
+ if (!getMachine())
+ return;
+
+ // Nothing to do if this is the right function already.
+ if (this->F == &F)
+ return;
+ if (this->F)
+ Machine->purgeFunction();
+ Machine->incorporateFunction(&F);
+ this->F = &F;
+}
+
+int ModuleSlotTracker::getLocalSlot(const Value *V) {
+ assert(F && "No function incorporated");
+ return Machine->getLocalSlot(V);
+}
+
+void ModuleSlotTracker::setProcessHook(
+ std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
+ Fn) {
+ ProcessModuleHookFn = Fn;
+}
+
+void ModuleSlotTracker::setProcessHook(
+ std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
+ Fn) {
+ ProcessFunctionHookFn = Fn;
+}
+
+static SlotTracker *createSlotTracker(const Value *V) {
+ if (const Argument *FA = dyn_cast<Argument>(V))
+ return new SlotTracker(FA->getParent());
+
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ if (I->getParent())
+ return new SlotTracker(I->getParent()->getParent());
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+ return new SlotTracker(BB->getParent());
+
+ if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ return new SlotTracker(GV->getParent());
+
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
+ return new SlotTracker(GA->getParent());
+
+ if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
+ return new SlotTracker(GIF->getParent());
+
+ if (const Function *Func = dyn_cast<Function>(V))
+ return new SlotTracker(Func);
+
+ return nullptr;
+}
+
+#if 0
+#define ST_DEBUG(X) dbgs() << X
+#else
+#define ST_DEBUG(X)
+#endif
+
+// Module level constructor. Causes the contents of the Module (sans functions)
+// to be added to the slot table.
+SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
+ : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
+
+// Function level constructor. Causes the contents of the Module and the one
+// function provided to be added to the slot table.
+SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
+ : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
+ ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
+
+SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
+ : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
+
+inline void SlotTracker::initializeIfNeeded() {
+ if (TheModule) {
+ processModule();
+ TheModule = nullptr; ///< Prevent re-processing next time we're called.
+ }
+
+ if (TheFunction && !FunctionProcessed)
+ processFunction();
+}
+
+int SlotTracker::initializeIndexIfNeeded() {
+ if (!TheIndex)
+ return 0;
+ int NumSlots = processIndex();
+ TheIndex = nullptr; ///< Prevent re-processing next time we're called.
+ return NumSlots;
+}
+
+// Iterate through all the global variables, functions, and global
+// variable initializers and create slots for them.
+void SlotTracker::processModule() {
+ ST_DEBUG("begin processModule!\n");
+
+ // Add all of the unnamed global variables to the value table.
+ for (const GlobalVariable &Var : TheModule->globals()) {
+ if (!Var.hasName())
+ CreateModuleSlot(&Var);
+ processGlobalObjectMetadata(Var);
+ auto Attrs = Var.getAttributes();
+ if (Attrs.hasAttributes())
+ CreateAttributeSetSlot(Attrs);
+ }
+
+ for (const GlobalAlias &A : TheModule->aliases()) {
+ if (!A.hasName())
+ CreateModuleSlot(&A);
+ }
+
+ for (const GlobalIFunc &I : TheModule->ifuncs()) {
+ if (!I.hasName())
+ CreateModuleSlot(&I);
+ }
+
+ // Add metadata used by named metadata.
+ for (const NamedMDNode &NMD : TheModule->named_metadata()) {
+ for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
+ CreateMetadataSlot(NMD.getOperand(i));
+ }
+
+ for (const Function &F : *TheModule) {
+ if (!F.hasName())
+ // Add all the unnamed functions to the table.
+ CreateModuleSlot(&F);
+
+ if (ShouldInitializeAllMetadata)
+ processFunctionMetadata(F);
+
+ // Add all the function attributes to the table.
+ // FIXME: Add attributes of other objects?
+ AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
+ if (FnAttrs.hasAttributes())
+ CreateAttributeSetSlot(FnAttrs);
+ }
+
+ if (ProcessModuleHookFn)
+ ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
+
+ ST_DEBUG("end processModule!\n");
+}
+
+// Process the arguments, basic blocks, and instructions of a function.
+void SlotTracker::processFunction() {
+ ST_DEBUG("begin processFunction!\n");
+ fNext = 0;
+
+ // Process function metadata if it wasn't hit at the module-level.
+ if (!ShouldInitializeAllMetadata)
+ processFunctionMetadata(*TheFunction);
+
+ // Add all the function arguments with no names.
+ for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
+ AE = TheFunction->arg_end(); AI != AE; ++AI)
+ if (!AI->hasName())
+ CreateFunctionSlot(&*AI);
+
+ ST_DEBUG("Inserting Instructions:\n");
+
+ // Add all of the basic blocks and instructions with no names.
+ for (auto &BB : *TheFunction) {
+ if (!BB.hasName())
+ CreateFunctionSlot(&BB);
+
+ for (auto &I : BB) {
+ if (!I.getType()->isVoidTy() && !I.hasName())
+ CreateFunctionSlot(&I);
+
+ // We allow direct calls to any llvm.foo function here, because the
+ // target may not be linked into the optimizer.
+ if (const auto *Call = dyn_cast<CallBase>(&I)) {
+ // Add all the call attributes to the table.
+ AttributeSet Attrs = Call->getAttributes().getFnAttrs();
+ if (Attrs.hasAttributes())
+ CreateAttributeSetSlot(Attrs);
+ }
+ }
+ }
+
+ if (ProcessFunctionHookFn)
+ ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
+
+ FunctionProcessed = true;
+
+ ST_DEBUG("end processFunction!\n");
+}
+
+// Iterate through all the GUID in the index and create slots for them.
+int SlotTracker::processIndex() {
+ ST_DEBUG("begin processIndex!\n");
+ assert(TheIndex);
+
+ // The first block of slots are just the module ids, which start at 0 and are
+ // assigned consecutively. Since the StringMap iteration order isn't
+ // guaranteed, use a std::map to order by module ID before assigning slots.
+ std::map<uint64_t, StringRef> ModuleIdToPathMap;
+ for (auto &ModPath : TheIndex->modulePaths())
+ ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
+ for (auto &ModPair : ModuleIdToPathMap)
+ CreateModulePathSlot(ModPair.second);
+
+ // Start numbering the GUIDs after the module ids.
+ GUIDNext = ModulePathNext;
+
+ for (auto &GlobalList : *TheIndex)
+ CreateGUIDSlot(GlobalList.first);
+
+ for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
+ CreateGUIDSlot(GlobalValue::getGUID(TId.first));
+
+ // Start numbering the TypeIds after the GUIDs.
+ TypeIdNext = GUIDNext;
+ for (const auto &TID : TheIndex->typeIds())
+ CreateTypeIdSlot(TID.second.first);
+
+ ST_DEBUG("end processIndex!\n");
+ return TypeIdNext;
+}
+
+void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ GO.getAllMetadata(MDs);
+ for (auto &MD : MDs)
+ CreateMetadataSlot(MD.second);
+}
+
+void SlotTracker::processFunctionMetadata(const Function &F) {
+ processGlobalObjectMetadata(F);
+ for (auto &BB : F) {
+ for (auto &I : BB)
+ processInstructionMetadata(I);
+ }
+}
+
+void SlotTracker::processInstructionMetadata(const Instruction &I) {
+ // Process metadata used directly by intrinsics.
+ if (const CallInst *CI = dyn_cast<CallInst>(&I))
+ if (Function *F = CI->getCalledFunction())
+ if (F->isIntrinsic())
+ for (auto &Op : I.operands())
+ if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
+ if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
+ CreateMetadataSlot(N);
+
+ // Process metadata attached to this instruction.
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ I.getAllMetadata(MDs);
+ for (auto &MD : MDs)
+ CreateMetadataSlot(MD.second);
+}
+
+/// Clean up after incorporating a function. This is the only way to get out of
+/// the function incorporation state that affects get*Slot/Create*Slot. Function
+/// incorporation state is indicated by TheFunction != 0.
+void SlotTracker::purgeFunction() {
+ ST_DEBUG("begin purgeFunction!\n");
+ fMap.clear(); // Simply discard the function level map
+ TheFunction = nullptr;
+ FunctionProcessed = false;
+ ST_DEBUG("end purgeFunction!\n");
+}
+
+/// getGlobalSlot - Get the slot number of a global value.
+int SlotTracker::getGlobalSlot(const GlobalValue *V) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIfNeeded();
+
+ // Find the value in the module map
+ ValueMap::iterator MI = mMap.find(V);
+ return MI == mMap.end() ? -1 : (int)MI->second;
+}
+
+void SlotTracker::setProcessHook(
+ std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
+ Fn) {
+ ProcessModuleHookFn = Fn;
+}
+
+void SlotTracker::setProcessHook(
+ std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
+ Fn) {
+ ProcessFunctionHookFn = Fn;
+}
+
+/// getMetadataSlot - Get the slot number of a MDNode.
+void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
+
+/// getMetadataSlot - Get the slot number of a MDNode.
+int SlotTracker::getMetadataSlot(const MDNode *N) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIfNeeded();
+
+ // Find the MDNode in the module map
+ mdn_iterator MI = mdnMap.find(N);
+ return MI == mdnMap.end() ? -1 : (int)MI->second;
+}
+
+/// getLocalSlot - Get the slot number for a value that is local to a function.
+int SlotTracker::getLocalSlot(const Value *V) {
+ assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
+
+ // Check for uninitialized state and do lazy initialization.
+ initializeIfNeeded();
+
+ ValueMap::iterator FI = fMap.find(V);
+ return FI == fMap.end() ? -1 : (int)FI->second;
+}
+
+int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIfNeeded();
+
+ // Find the AttributeSet in the module map.
+ as_iterator AI = asMap.find(AS);
+ return AI == asMap.end() ? -1 : (int)AI->second;
+}
+
+int SlotTracker::getModulePathSlot(StringRef Path) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIndexIfNeeded();
+
+ // Find the Module path in the map
+ auto I = ModulePathMap.find(Path);
+ return I == ModulePathMap.end() ? -1 : (int)I->second;
+}
+
+int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIndexIfNeeded();
+
+ // Find the GUID in the map
+ guid_iterator I = GUIDMap.find(GUID);
+ return I == GUIDMap.end() ? -1 : (int)I->second;
+}
+
+int SlotTracker::getTypeIdSlot(StringRef Id) {
+ // Check for uninitialized state and do lazy initialization.
+ initializeIndexIfNeeded();
+
+ // Find the TypeId string in the map
+ auto I = TypeIdMap.find(Id);
+ return I == TypeIdMap.end() ? -1 : (int)I->second;
+}
+
+/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
+void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
+ assert(V && "Can't insert a null Value into SlotTracker!");
+ assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
+ assert(!V->hasName() && "Doesn't need a slot!");
+
+ unsigned DestSlot = mNext++;
+ mMap[V] = DestSlot;
+
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [");
+ // G = Global, F = Function, A = Alias, I = IFunc, o = other
+ ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
+ (isa<Function>(V) ? 'F' :
+ (isa<GlobalAlias>(V) ? 'A' :
+ (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
+}
+
+/// CreateSlot - Create a new slot for the specified value if it has no name.
+void SlotTracker::CreateFunctionSlot(const Value *V) {
+ assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
+
+ unsigned DestSlot = fNext++;
+ fMap[V] = DestSlot;
+
+ // G = Global, F = Function, o = other
+ ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
+ DestSlot << " [o]\n");
+}
+
+/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
+void SlotTracker::CreateMetadataSlot(const MDNode *N) {
+ assert(N && "Can't insert a null Value into SlotTracker!");
+
+ // Don't make slots for DIExpressions or DIArgLists. We just print them inline
+ // everywhere.
+ if (isa<DIExpression>(N) || isa<DIArgList>(N))
+ return;
+
+ unsigned DestSlot = mdnNext;
+ if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
+ return;
+ ++mdnNext;
+
+ // Recursively add any MDNodes referenced by operands.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
+ CreateMetadataSlot(Op);
+}
+
+void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
+ assert(AS.hasAttributes() && "Doesn't need a slot!");
+
+ as_iterator I = asMap.find(AS);
+ if (I != asMap.end())
+ return;
+
+ unsigned DestSlot = asNext++;
+ asMap[AS] = DestSlot;
+}
+
+/// Create a new slot for the specified Module
+void SlotTracker::CreateModulePathSlot(StringRef Path) {
+ ModulePathMap[Path] = ModulePathNext++;
+}
+
+/// Create a new slot for the specified GUID
+void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
+ GUIDMap[GUID] = GUIDNext++;
+}
+
+/// Create a new slot for the specified Id
+void SlotTracker::CreateTypeIdSlot(StringRef Id) {
+ TypeIdMap[Id] = TypeIdNext++;
+}
+
+namespace {
+/// Common instances used by most of the printer functions.
+struct AsmWriterContext {
+ TypePrinting *TypePrinter = nullptr;
+ SlotTracker *Machine = nullptr;
+ const Module *Context = nullptr;
+
+ AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
+ : TypePrinter(TP), Machine(ST), Context(M) {}
+
+ static AsmWriterContext &getEmpty() {
+ static AsmWriterContext EmptyCtx(nullptr, nullptr);
+ return EmptyCtx;
+ }
+
+ /// A callback that will be triggered when the underlying printer
+ /// prints a Metadata as operand.
+ virtual void onWriteMetadataAsOperand(const Metadata *) {}
+
+ virtual ~AsmWriterContext() = default;
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// AsmWriter Implementation
+//===----------------------------------------------------------------------===//
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ AsmWriterContext &WriterCtx);
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ AsmWriterContext &WriterCtx,
+ bool FromValue = false);
+
+static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
+ if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
+ Out << FPO->getFastMathFlags();
+
+ if (const OverflowingBinaryOperator *OBO =
+ dyn_cast<OverflowingBinaryOperator>(U)) {
+ if (OBO->hasNoUnsignedWrap())
+ Out << " nuw";
+ if (OBO->hasNoSignedWrap())
+ Out << " nsw";
+ } else if (const PossiblyExactOperator *Div =
+ dyn_cast<PossiblyExactOperator>(U)) {
+ if (Div->isExact())
+ Out << " exact";
+ } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+ if (GEP->isInBounds())
+ Out << " inbounds";
+ }
+}
+
+static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
+ AsmWriterContext &WriterCtx) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
+ if (CI->getType()->isIntegerTy(1)) {
+ Out << (CI->getZExtValue() ? "true" : "false");
+ return;
+ }
+ Out << CI->getValue();
+ return;
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+ const APFloat &APF = CFP->getValueAPF();
+ if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
+ &APF.getSemantics() == &APFloat::IEEEdouble()) {
+ // We would like to output the FP constant value in exponential notation,
+ // but we cannot do this if doing so will lose precision. Check here to
+ // make sure that we only output it in exponential format if we can parse
+ // the value back and get the same value.
+ //
+ bool ignored;
+ bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
+ bool isInf = APF.isInfinity();
+ bool isNaN = APF.isNaN();
+ if (!isInf && !isNaN) {
+ double Val = APF.convertToDouble();
+ SmallString<128> StrVal;
+ APF.toString(StrVal, 6, 0, false);
+ // Check to make sure that the stringized number is not some string like
+ // "Inf" or NaN, that atof will accept, but the lexer will not. Check
+ // that the string matches the "[-+]?[0-9]" regex.
+ //
+ assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
+ isDigit(StrVal[1]))) &&
+ "[-+]?[0-9] regex does not match!");
+ // Reparse stringized version!
+ if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
+ Out << StrVal;
+ return;
+ }
+ }
+ // Otherwise we could not reparse it to exactly the same value, so we must
+ // output the string in hexadecimal format! Note that loading and storing
+ // floating point types changes the bits of NaNs on some hosts, notably
+ // x86, so we must not use these types.
+ static_assert(sizeof(double) == sizeof(uint64_t),
+ "assuming that double is 64 bits!");
+ APFloat apf = APF;
+ // Floats are represented in ASCII IR as double, convert.
+ // FIXME: We should allow 32-bit hex float and remove this.
+ if (!isDouble) {
+ // A signaling NaN is quieted on conversion, so we need to recreate the
+ // expected value after convert (quiet bit of the payload is clear).
+ bool IsSNAN = apf.isSignaling();
+ apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
+ &ignored);
+ if (IsSNAN) {
+ APInt Payload = apf.bitcastToAPInt();
+ apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
+ &Payload);
+ }
+ }
+ Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
+ return;
+ }
+
+ // Either half, bfloat or some form of long double.
+ // These appear as a magic letter identifying the type, then a
+ // fixed number of hex digits.
+ Out << "0x";
+ APInt API = APF.bitcastToAPInt();
+ if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
+ Out << 'K';
+ Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
+ /*Upper=*/true);
+ Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
+ /*Upper=*/true);
+ return;
+ } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
+ Out << 'L';
+ Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
+ /*Upper=*/true);
+ Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
+ /*Upper=*/true);
+ } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
+ Out << 'M';
+ Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
+ /*Upper=*/true);
+ Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
+ /*Upper=*/true);
+ } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
+ Out << 'H';
+ Out << format_hex_no_prefix(API.getZExtValue(), 4,
+ /*Upper=*/true);
+ } else if (&APF.getSemantics() == &APFloat::BFloat()) {
+ Out << 'R';
+ Out << format_hex_no_prefix(API.getZExtValue(), 4,
+ /*Upper=*/true);
+ } else
+ llvm_unreachable("Unsupported floating point type");
+ return;
+ }
+
+ if (isa<ConstantAggregateZero>(CV)) {
+ Out << "zeroinitializer";
+ return;
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
+ Out << "blockaddress(";
+ WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
+ Out << ", ";
+ WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
+ Out << ")";
+ return;
+ }
+
+ if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
+ Out << "dso_local_equivalent ";
+ WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
+ return;
+ }
+
+ if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
+ Out << "no_cfi ";
+ WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
+ return;
+ }
+
+ if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+ Type *ETy = CA->getType()->getElementType();
+ Out << '[';
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
+ for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+ Out << ", ";
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
+ }
+ Out << ']';
+ return;
+ }
+
+ if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
+ // As a special case, print the array as a string if it is an array of
+ // i8 with ConstantInt values.
+ if (CA->isString()) {
+ Out << "c\"";
+ printEscapedString(CA->getAsString(), Out);
+ Out << '"';
+ return;
+ }
+
+ Type *ETy = CA->getType()->getElementType();
+ Out << '[';
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
+ for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
+ }
+ Out << ']';
+ return;
+ }
+
+ if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+ if (CS->getType()->isPacked())
+ Out << '<';
+ Out << '{';
+ unsigned N = CS->getNumOperands();
+ if (N) {
+ Out << ' ';
+ WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
+
+ for (unsigned i = 1; i < N; i++) {
+ Out << ", ";
+ WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
+ Out << ' ';
+
+ WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
+ }
+ Out << ' ';
+ }
+
+ Out << '}';
+ if (CS->getType()->isPacked())
+ Out << '>';
+ return;
+ }
+
+ if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
+ auto *CVVTy = cast<FixedVectorType>(CV->getType());
+ Type *ETy = CVVTy->getElementType();
+ Out << '<';
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
+ for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
+ Out << ", ";
+ WriterCtx.TypePrinter->print(ETy, Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
+ }
+ Out << '>';
+ return;
+ }
+
+ if (isa<ConstantPointerNull>(CV)) {
+ Out << "null";
+ return;
+ }
+
+ if (isa<ConstantTokenNone>(CV)) {
+ Out << "none";
+ return;
+ }
+
+ if (isa<PoisonValue>(CV)) {
+ Out << "poison";
+ return;
+ }
+
+ if (isa<UndefValue>(CV)) {
+ Out << "undef";
+ return;
+ }
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+ Out << CE->getOpcodeName();
+ WriteOptimizationInfo(Out, CE);
+ if (CE->isCompare())
+ Out << ' ' << CmpInst::getPredicateName(
+ static_cast<CmpInst::Predicate>(CE->getPredicate()));
+ Out << " (";
+
+ Optional<unsigned> InRangeOp;
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
+ WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
+ Out << ", ";
+ InRangeOp = GEP->getInRangeIndex();
+ if (InRangeOp)
+ ++*InRangeOp;
+ }
+
+ for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+ if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
+ Out << "inrange ";
+ WriterCtx.TypePrinter->print((*OI)->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, *OI, WriterCtx);
+ if (OI+1 != CE->op_end())
+ Out << ", ";
+ }
+
+ if (CE->isCast()) {
+ Out << " to ";
+ WriterCtx.TypePrinter->print(CE->getType(), Out);
+ }
+
+ if (CE->getOpcode() == Instruction::ShuffleVector)
+ PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
+
+ Out << ')';
+ return;
+ }
+
+ Out << "<placeholder or erroneous Constant>";
+}
+
+static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
+ AsmWriterContext &WriterCtx) {
+ Out << "!{";
+ for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
+ const Metadata *MD = Node->getOperand(mi);
+ if (!MD)
+ Out << "null";
+ else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
+ Value *V = MDV->getValue();
+ WriterCtx.TypePrinter->print(V->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, V, WriterCtx);
+ } else {
+ WriteAsOperandInternal(Out, MD, WriterCtx);
+ WriterCtx.onWriteMetadataAsOperand(MD);
+ }
+ if (mi + 1 != me)
+ Out << ", ";
+ }
+
+ Out << "}";
+}
+
+namespace {
+
+struct FieldSeparator {
+ bool Skip = true;
+ const char *Sep;
+
+ FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
+};
+
+raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
+ if (FS.Skip) {
+ FS.Skip = false;
+ return OS;
+ }
+ return OS << FS.Sep;
+}
+
+struct MDFieldPrinter {
+ raw_ostream &Out;
+ FieldSeparator FS;
+ AsmWriterContext &WriterCtx;
+
+ explicit MDFieldPrinter(raw_ostream &Out)
+ : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
+ MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
+ : Out(Out), WriterCtx(Ctx) {}
+
+ void printTag(const DINode *N);
+ void printMacinfoType(const DIMacroNode *N);
+ void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
+ void printString(StringRef Name, StringRef Value,
+ bool ShouldSkipEmpty = true);
+ void printMetadata(StringRef Name, const Metadata *MD,
+ bool ShouldSkipNull = true);
+ template <class IntTy>
+ void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
+ void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
+ bool ShouldSkipZero);
+ void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
+ void printDIFlags(StringRef Name, DINode::DIFlags Flags);
+ void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
+ template <class IntTy, class Stringifier>
+ void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
+ bool ShouldSkipZero = true);
+ void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
+ void printNameTableKind(StringRef Name,
+ DICompileUnit::DebugNameTableKind NTK);
+};
+
+} // end anonymous namespace
+
+void MDFieldPrinter::printTag(const DINode *N) {
+ Out << FS << "tag: ";
+ auto Tag = dwarf::TagString(N->getTag());
+ if (!Tag.empty())
+ Out << Tag;
+ else
+ Out << N->getTag();
+}
+
+void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
+ Out << FS << "type: ";
+ auto Type = dwarf::MacinfoString(N->getMacinfoType());
+ if (!Type.empty())
+ Out << Type;
+ else
+ Out << N->getMacinfoType();
+}
+
+void MDFieldPrinter::printChecksum(
+ const DIFile::ChecksumInfo<StringRef> &Checksum) {
+ Out << FS << "checksumkind: " << Checksum.getKindAsString();
+ printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
+}
+
+void MDFieldPrinter::printString(StringRef Name, StringRef Value,
+ bool ShouldSkipEmpty) {
+ if (ShouldSkipEmpty && Value.empty())
+ return;
+
+ Out << FS << Name << ": \"";
+ printEscapedString(Value, Out);
+ Out << "\"";
+}
+
+static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
+ AsmWriterContext &WriterCtx) {
+ if (!MD) {
+ Out << "null";
+ return;
+ }
+ WriteAsOperandInternal(Out, MD, WriterCtx);
+ WriterCtx.onWriteMetadataAsOperand(MD);
+}
+
+void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
+ bool ShouldSkipNull) {
+ if (ShouldSkipNull && !MD)
+ return;
+
+ Out << FS << Name << ": ";
+ writeMetadataAsOperand(Out, MD, WriterCtx);
+}
+
+template <class IntTy>
+void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
+ if (ShouldSkipZero && !Int)
+ return;
+
+ Out << FS << Name << ": " << Int;
+}
+
+void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
+ bool IsUnsigned, bool ShouldSkipZero) {
+ if (ShouldSkipZero && Int.isZero())
+ return;
+
+ Out << FS << Name << ": ";
+ Int.print(Out, !IsUnsigned);
+}
+
+void MDFieldPrinter::printBool(StringRef Name, bool Value,
+ Optional<bool> Default) {
+ if (Default && Value == *Default)
+ return;
+ Out << FS << Name << ": " << (Value ? "true" : "false");
+}
+
+void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
+ if (!Flags)
+ return;
+
+ Out << FS << Name << ": ";
+
+ SmallVector<DINode::DIFlags, 8> SplitFlags;
+ auto Extra = DINode::splitFlags(Flags, SplitFlags);
+
+ FieldSeparator FlagsFS(" | ");
+ for (auto F : SplitFlags) {
+ auto StringF = DINode::getFlagString(F);
+ assert(!StringF.empty() && "Expected valid flag");
+ Out << FlagsFS << StringF;
+ }
+ if (Extra || SplitFlags.empty())
+ Out << FlagsFS << Extra;
+}
+
+void MDFieldPrinter::printDISPFlags(StringRef Name,
+ DISubprogram::DISPFlags Flags) {
+ // Always print this field, because no flags in the IR at all will be
+ // interpreted as old-style isDefinition: true.
+ Out << FS << Name << ": ";
+
+ if (!Flags) {
+ Out << 0;
+ return;
+ }
+
+ SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
+ auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
+
+ FieldSeparator FlagsFS(" | ");
+ for (auto F : SplitFlags) {
+ auto StringF = DISubprogram::getFlagString(F);
+ assert(!StringF.empty() && "Expected valid flag");
+ Out << FlagsFS << StringF;
+ }
+ if (Extra || SplitFlags.empty())
+ Out << FlagsFS << Extra;
+}
+
+void MDFieldPrinter::printEmissionKind(StringRef Name,
+ DICompileUnit::DebugEmissionKind EK) {
+ Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
+}
+
+void MDFieldPrinter::printNameTableKind(StringRef Name,
+ DICompileUnit::DebugNameTableKind NTK) {
+ if (NTK == DICompileUnit::DebugNameTableKind::Default)
+ return;
+ Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
+}
+
+template <class IntTy, class Stringifier>
+void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
+ Stringifier toString, bool ShouldSkipZero) {
+ if (!Value)
+ return;
+
+ Out << FS << Name << ": ";
+ auto S = toString(Value);
+ if (!S.empty())
+ Out << S;
+ else
+ Out << Value;
+}
+
+static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!GenericDINode(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printTag(N);
+ Printer.printString("header", N->getHeader());
+ if (N->getNumDwarfOperands()) {
+ Out << Printer.FS << "operands: {";
+ FieldSeparator IFS;
+ for (auto &I : N->dwarf_operands()) {
+ Out << IFS;
+ writeMetadataAsOperand(Out, I, WriterCtx);
+ }
+ Out << "}";
+ }
+ Out << ")";
+}
+
+static void writeDILocation(raw_ostream &Out, const DILocation *DL,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DILocation(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ // Always output the line, since 0 is a relevant and important value for it.
+ Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
+ Printer.printInt("column", DL->getColumn());
+ Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
+ Printer.printBool("isImplicitCode", DL->isImplicitCode(),
+ /* Default */ false);
+ Out << ")";
+}
+
+static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DISubrange(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+
+ auto *Count = N->getRawCountNode();
+ if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
+ auto *CV = cast<ConstantInt>(CE->getValue());
+ Printer.printInt("count", CV->getSExtValue(),
+ /* ShouldSkipZero */ false);
+ } else
+ Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
+
+ // A lowerBound of constant 0 should not be skipped, since it is different
+ // from an unspecified lower bound (= nullptr).
+ auto *LBound = N->getRawLowerBound();
+ if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
+ auto *LV = cast<ConstantInt>(LE->getValue());
+ Printer.printInt("lowerBound", LV->getSExtValue(),
+ /* ShouldSkipZero */ false);
+ } else
+ Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
+
+ auto *UBound = N->getRawUpperBound();
+ if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
+ auto *UV = cast<ConstantInt>(UE->getValue());
+ Printer.printInt("upperBound", UV->getSExtValue(),
+ /* ShouldSkipZero */ false);
+ } else
+ Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
+
+ auto *Stride = N->getRawStride();
+ if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
+ auto *SV = cast<ConstantInt>(SE->getValue());
+ Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
+ } else
+ Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
+
+ Out << ")";
+}
+
+static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIGenericSubrange(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+
+ auto IsConstant = [&](Metadata *Bound) -> bool {
+ if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
+ return BE->isConstant() &&
+ DIExpression::SignedOrUnsignedConstant::SignedConstant ==
+ *BE->isConstant();
+ }
+ return false;
+ };
+
+ auto GetConstant = [&](Metadata *Bound) -> int64_t {
+ assert(IsConstant(Bound) && "Expected constant");
+ auto *BE = dyn_cast_or_null<DIExpression>(Bound);
+ return static_cast<int64_t>(BE->getElement(1));
+ };
+
+ auto *Count = N->getRawCountNode();
+ if (IsConstant(Count))
+ Printer.printInt("count", GetConstant(Count),
+ /* ShouldSkipZero */ false);
+ else
+ Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
+
+ auto *LBound = N->getRawLowerBound();
+ if (IsConstant(LBound))
+ Printer.printInt("lowerBound", GetConstant(LBound),
+ /* ShouldSkipZero */ false);
+ else
+ Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
+
+ auto *UBound = N->getRawUpperBound();
+ if (IsConstant(UBound))
+ Printer.printInt("upperBound", GetConstant(UBound),
+ /* ShouldSkipZero */ false);
+ else
+ Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
+
+ auto *Stride = N->getRawStride();
+ if (IsConstant(Stride))
+ Printer.printInt("stride", GetConstant(Stride),
+ /* ShouldSkipZero */ false);
+ else
+ Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
+
+ Out << ")";
+}
+
+static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
+ AsmWriterContext &) {
+ Out << "!DIEnumerator(";
+ MDFieldPrinter Printer(Out);
+ Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
+ Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
+ /*ShouldSkipZero=*/false);
+ if (N->isUnsigned())
+ Printer.printBool("isUnsigned", true);
+ Out << ")";
+}
+
+static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
+ AsmWriterContext &) {
+ Out << "!DIBasicType(";
+ MDFieldPrinter Printer(Out);
+ if (N->getTag() != dwarf::DW_TAG_base_type)
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printDwarfEnum("encoding", N->getEncoding(),
+ dwarf::AttributeEncodingString);
+ Printer.printDIFlags("flags", N->getFlags());
+ Out << ")";
+}
+
+static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIStringType(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ if (N->getTag() != dwarf::DW_TAG_string_type)
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("stringLength", N->getRawStringLength());
+ Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
+ Printer.printMetadata("stringLocationExpression",
+ N->getRawStringLocationExp());
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printDwarfEnum("encoding", N->getEncoding(),
+ dwarf::AttributeEncodingString);
+ Out << ")";
+}
+
+static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIDerivedType(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("baseType", N->getRawBaseType(),
+ /* ShouldSkipNull */ false);
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printInt("offset", N->getOffsetInBits());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printMetadata("extraData", N->getRawExtraData());
+ if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
+ Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
+ /* ShouldSkipZero */ false);
+ Printer.printMetadata("annotations", N->getRawAnnotations());
+ Out << ")";
+}
+
+static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DICompositeType(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("baseType", N->getRawBaseType());
+ Printer.printInt("size", N->getSizeInBits());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printInt("offset", N->getOffsetInBits());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printMetadata("elements", N->getRawElements());
+ Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
+ dwarf::LanguageString);
+ Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
+ Printer.printMetadata("templateParams", N->getRawTemplateParams());
+ Printer.printString("identifier", N->getIdentifier());
+ Printer.printMetadata("discriminator", N->getRawDiscriminator());
+ Printer.printMetadata("dataLocation", N->getRawDataLocation());
+ Printer.printMetadata("associated", N->getRawAssociated());
+ Printer.printMetadata("allocated", N->getRawAllocated());
+ if (auto *RankConst = N->getRankConst())
+ Printer.printInt("rank", RankConst->getSExtValue(),
+ /* ShouldSkipZero */ false);
+ else
+ Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
+ Printer.printMetadata("annotations", N->getRawAnnotations());
+ Out << ")";
+}
+
+static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DISubroutineType(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
+ Printer.printMetadata("types", N->getRawTypeArray(),
+ /* ShouldSkipNull */ false);
+ Out << ")";
+}
+
+static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
+ Out << "!DIFile(";
+ MDFieldPrinter Printer(Out);
+ Printer.printString("filename", N->getFilename(),
+ /* ShouldSkipEmpty */ false);
+ Printer.printString("directory", N->getDirectory(),
+ /* ShouldSkipEmpty */ false);
+ // Print all values for checksum together, or not at all.
+ if (N->getChecksum())
+ Printer.printChecksum(*N->getChecksum());
+ Printer.printString("source", N->getSource().value_or(StringRef()),
+ /* ShouldSkipEmpty */ true);
+ Out << ")";
+}
+
+static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DICompileUnit(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printDwarfEnum("language", N->getSourceLanguage(),
+ dwarf::LanguageString, /* ShouldSkipZero */ false);
+ Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
+ Printer.printString("producer", N->getProducer());
+ Printer.printBool("isOptimized", N->isOptimized());
+ Printer.printString("flags", N->getFlags());
+ Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
+ /* ShouldSkipZero */ false);
+ Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
+ Printer.printEmissionKind("emissionKind", N->getEmissionKind());
+ Printer.printMetadata("enums", N->getRawEnumTypes());
+ Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
+ Printer.printMetadata("globals", N->getRawGlobalVariables());
+ Printer.printMetadata("imports", N->getRawImportedEntities());
+ Printer.printMetadata("macros", N->getRawMacros());
+ Printer.printInt("dwoId", N->getDWOId());
+ Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
+ Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
+ false);
+ Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
+ Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
+ Printer.printString("sysroot", N->getSysRoot());
+ Printer.printString("sdk", N->getSDK());
+ Out << ")";
+}
+
+static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DISubprogram(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printString("linkageName", N->getLinkageName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printInt("scopeLine", N->getScopeLine());
+ Printer.printMetadata("containingType", N->getRawContainingType());
+ if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
+ N->getVirtualIndex() != 0)
+ Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
+ Printer.printInt("thisAdjustment", N->getThisAdjustment());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printDISPFlags("spFlags", N->getSPFlags());
+ Printer.printMetadata("unit", N->getRawUnit());
+ Printer.printMetadata("templateParams", N->getRawTemplateParams());
+ Printer.printMetadata("declaration", N->getRawDeclaration());
+ Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
+ Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
+ Printer.printMetadata("annotations", N->getRawAnnotations());
+ Printer.printString("targetFuncName", N->getTargetFuncName());
+ Out << ")";
+}
+
+static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DILexicalBlock(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printInt("column", N->getColumn());
+ Out << ")";
+}
+
+static void writeDILexicalBlockFile(raw_ostream &Out,
+ const DILexicalBlockFile *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DILexicalBlockFile(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("discriminator", N->getDiscriminator(),
+ /* ShouldSkipZero */ false);
+ Out << ")";
+}
+
+static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DINamespace(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printBool("exportSymbols", N->getExportSymbols(), false);
+ Out << ")";
+}
+
+static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DICommonBlock(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("scope", N->getRawScope(), false);
+ Printer.printMetadata("declaration", N->getRawDecl(), false);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLineNo());
+ Out << ")";
+}
+
+static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIMacro(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMacinfoType(N);
+ Printer.printInt("line", N->getLine());
+ Printer.printString("name", N->getName());
+ Printer.printString("value", N->getValue());
+ Out << ")";
+}
+
+static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIMacroFile(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("nodes", N->getRawElements());
+ Out << ")";
+}
+
+static void writeDIModule(raw_ostream &Out, const DIModule *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIModule(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printString("name", N->getName());
+ Printer.printString("configMacros", N->getConfigurationMacros());
+ Printer.printString("includePath", N->getIncludePath());
+ Printer.printString("apinotes", N->getAPINotesFile());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLineNo());
+ Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
+ Out << ")";
+}
+
+static void writeDITemplateTypeParameter(raw_ostream &Out,
+ const DITemplateTypeParameter *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DITemplateTypeParameter(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
+ Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
+ Out << ")";
+}
+
+static void writeDITemplateValueParameter(raw_ostream &Out,
+ const DITemplateValueParameter *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DITemplateValueParameter(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
+ Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
+ Out << ")";
+}
+
+static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIGlobalVariable(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printString("linkageName", N->getLinkageName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printBool("isLocal", N->isLocalToUnit());
+ Printer.printBool("isDefinition", N->isDefinition());
+ Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
+ Printer.printMetadata("templateParams", N->getRawTemplateParams());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printMetadata("annotations", N->getRawAnnotations());
+ Out << ")";
+}
+
+static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DILocalVariable(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printInt("arg", N->getArg());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("type", N->getRawType());
+ Printer.printDIFlags("flags", N->getFlags());
+ Printer.printInt("align", N->getAlignInBits());
+ Printer.printMetadata("annotations", N->getRawAnnotations());
+ Out << ")";
+}
+
+static void writeDILabel(raw_ostream &Out, const DILabel *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DILabel(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Out << ")";
+}
+
+static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIExpression(";
+ FieldSeparator FS;
+ if (N->isValid()) {
+ for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
+ auto OpStr = dwarf::OperationEncodingString(Op.getOp());
+ assert(!OpStr.empty() && "Expected valid opcode");
+
+ Out << FS << OpStr;
+ if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
+ Out << FS << Op.getArg(0);
+ Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
+ } else {
+ for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
+ Out << FS << Op.getArg(A);
+ }
+ }
+ } else {
+ for (const auto &I : N->getElements())
+ Out << FS << I;
+ }
+ Out << ")";
+}
+
+static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
+ AsmWriterContext &WriterCtx,
+ bool FromValue = false) {
+ assert(FromValue &&
+ "Unexpected DIArgList metadata outside of value argument");
+ Out << "!DIArgList(";
+ FieldSeparator FS;
+ MDFieldPrinter Printer(Out, WriterCtx);
+ for (Metadata *Arg : N->getArgs()) {
+ Out << FS;
+ WriteAsOperandInternal(Out, Arg, WriterCtx, true);
+ }
+ Out << ")";
+}
+
+static void writeDIGlobalVariableExpression(raw_ostream &Out,
+ const DIGlobalVariableExpression *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIGlobalVariableExpression(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printMetadata("var", N->getVariable());
+ Printer.printMetadata("expr", N->getExpression());
+ Out << ")";
+}
+
+static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIObjCProperty(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printString("setter", N->getSetterName());
+ Printer.printString("getter", N->getGetterName());
+ Printer.printInt("attributes", N->getAttributes());
+ Printer.printMetadata("type", N->getRawType());
+ Out << ")";
+}
+
+static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
+ AsmWriterContext &WriterCtx) {
+ Out << "!DIImportedEntity(";
+ MDFieldPrinter Printer(Out, WriterCtx);
+ Printer.printTag(N);
+ Printer.printString("name", N->getName());
+ Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
+ Printer.printMetadata("entity", N->getRawEntity());
+ Printer.printMetadata("file", N->getRawFile());
+ Printer.printInt("line", N->getLine());
+ Printer.printMetadata("elements", N->getRawElements());
+ Out << ")";
+}
+
+static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
+ AsmWriterContext &Ctx) {
+ if (Node->isDistinct())
+ Out << "distinct ";
+ else if (Node->isTemporary())
+ Out << "<temporary!> "; // Handle broken code.
+
+ switch (Node->getMetadataID()) {
+ default:
+ llvm_unreachable("Expected uniquable MDNode");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ write##CLASS(Out, cast<CLASS>(Node), Ctx); \
+ break;
+#include "llvm/IR/Metadata.def"
+ }
+}
+
+// Full implementation of printing a Value as an operand with support for
+// TypePrinting, etc.
+static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
+ AsmWriterContext &WriterCtx) {
+ if (V->hasName()) {
+ PrintLLVMName(Out, V);
+ return;
+ }
+
+ const Constant *CV = dyn_cast<Constant>(V);
+ if (CV && !isa<GlobalValue>(CV)) {
+ assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
+ WriteConstantInternal(Out, CV, WriterCtx);
+ return;
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Out << "asm ";
+ if (IA->hasSideEffects())
+ Out << "sideeffect ";
+ if (IA->isAlignStack())
+ Out << "alignstack ";
+ // We don't emit the AD_ATT dialect as it's the assumed default.
+ if (IA->getDialect() == InlineAsm::AD_Intel)
+ Out << "inteldialect ";
+ if (IA->canThrow())
+ Out << "unwind ";
+ Out << '"';
+ printEscapedString(IA->getAsmString(), Out);
+ Out << "\", \"";
+ printEscapedString(IA->getConstraintString(), Out);
+ Out << '"';
+ return;
+ }
+
+ if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
+ WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
+ /* FromValue */ true);
+ return;
+ }
+
+ char Prefix = '%';
+ int Slot;
+ auto *Machine = WriterCtx.Machine;
+ // If we have a SlotTracker, use it.
+ if (Machine) {
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+
+ // If the local value didn't succeed, then we may be referring to a value
+ // from a different function. Translate it, as this can happen when using
+ // address of blocks.
+ if (Slot == -1)
+ if ((Machine = createSlotTracker(V))) {
+ Slot = Machine->getLocalSlot(V);
+ delete Machine;
+ }
+ }
+ } else if ((Machine = createSlotTracker(V))) {
+ // Otherwise, create one to get the # and then destroy it.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ Slot = Machine->getGlobalSlot(GV);
+ Prefix = '@';
+ } else {
+ Slot = Machine->getLocalSlot(V);
+ }
+ delete Machine;
+ Machine = nullptr;
+ } else {
+ Slot = -1;
+ }
+
+ if (Slot != -1)
+ Out << Prefix << Slot;
+ else
+ Out << "<badref>";
+}
+
+static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
+ AsmWriterContext &WriterCtx,
+ bool FromValue) {
+ // Write DIExpressions and DIArgLists inline when used as a value. Improves
+ // readability of debug info intrinsics.
+ if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
+ writeDIExpression(Out, Expr, WriterCtx);
+ return;
+ }
+ if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
+ writeDIArgList(Out, ArgList, WriterCtx, FromValue);
+ return;
+ }
+
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ std::unique_ptr<SlotTracker> MachineStorage;
+ SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine);
+ if (!WriterCtx.Machine) {
+ MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
+ WriterCtx.Machine = MachineStorage.get();
+ }
+ int Slot = WriterCtx.Machine->getMetadataSlot(N);
+ if (Slot == -1) {
+ if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
+ writeDILocation(Out, Loc, WriterCtx);
+ return;
+ }
+ // Give the pointer value instead of "badref", since this comes up all
+ // the time when debugging.
+ Out << "<" << N << ">";
+ } else
+ Out << '!' << Slot;
+ return;
+ }
+
+ if (const MDString *MDS = dyn_cast<MDString>(MD)) {
+ Out << "!\"";
+ printEscapedString(MDS->getString(), Out);
+ Out << '"';
+ return;
+ }
+
+ auto *V = cast<ValueAsMetadata>(MD);
+ assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
+ assert((FromValue || !isa<LocalAsMetadata>(V)) &&
+ "Unexpected function-local metadata outside of value argument");
+
+ WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
+ Out << ' ';
+ WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
+}
+
+namespace {
+
+class AssemblyWriter {
+ formatted_raw_ostream &Out;
+ const Module *TheModule = nullptr;
+ const ModuleSummaryIndex *TheIndex = nullptr;
+ std::unique_ptr<SlotTracker> SlotTrackerStorage;
+ SlotTracker &Machine;
+ TypePrinting TypePrinter;
+ AssemblyAnnotationWriter *AnnotationWriter = nullptr;
+ SetVector<const Comdat *> Comdats;
+ bool IsForDebug;
+ bool ShouldPreserveUseListOrder;
+ UseListOrderMap UseListOrders;
+ SmallVector<StringRef, 8> MDNames;
+ /// Synchronization scope names registered with LLVMContext.
+ SmallVector<StringRef, 8> SSNs;
+ DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
+
+public:
+ /// Construct an AssemblyWriter with an external SlotTracker
+ AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
+ AssemblyAnnotationWriter *AAW, bool IsForDebug,
+ bool ShouldPreserveUseListOrder = false);
+
+ AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
+ const ModuleSummaryIndex *Index, bool IsForDebug);
+
+ AsmWriterContext getContext() {
+ return AsmWriterContext(&TypePrinter, &Machine, TheModule);
+ }
+
+ void printMDNodeBody(const MDNode *MD);
+ void printNamedMDNode(const NamedMDNode *NMD);
+
+ void printModule(const Module *M);
+
+ void writeOperand(const Value *Op, bool PrintType);
+ void writeParamOperand(const Value *Operand, AttributeSet Attrs);
+ void writeOperandBundles(const CallBase *Call);
+ void writeSyncScope(const LLVMContext &Context,
+ SyncScope::ID SSID);
+ void writeAtomic(const LLVMContext &Context,
+ AtomicOrdering Ordering,
+ SyncScope::ID SSID);
+ void writeAtomicCmpXchg(const LLVMContext &Context,
+ AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SyncScope::ID SSID);
+
+ void writeAllMDNodes();
+ void writeMDNode(unsigned Slot, const MDNode *Node);
+ void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
+ void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
+ void writeAllAttributeGroups();
+
+ void printTypeIdentities();
+ void printGlobal(const GlobalVariable *GV);
+ void printAlias(const GlobalAlias *GA);
+ void printIFunc(const GlobalIFunc *GI);
+ void printComdat(const Comdat *C);
+ void printFunction(const Function *F);
+ void printArgument(const Argument *FA, AttributeSet Attrs);
+ void printBasicBlock(const BasicBlock *BB);
+ void printInstructionLine(const Instruction &I);
+ void printInstruction(const Instruction &I);
+
+ void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
+ void printUseLists(const Function *F);
+
+ void printModuleSummaryIndex();
+ void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
+ void printSummary(const GlobalValueSummary &Summary);
+ void printAliasSummary(const AliasSummary *AS);
+ void printGlobalVarSummary(const GlobalVarSummary *GS);
+ void printFunctionSummary(const FunctionSummary *FS);
+ void printTypeIdSummary(const TypeIdSummary &TIS);
+ void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
+ void printTypeTestResolution(const TypeTestResolution &TTRes);
+ void printArgs(const std::vector<uint64_t> &Args);
+ void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
+ void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
+ void printVFuncId(const FunctionSummary::VFuncId VFId);
+ void
+ printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
+ const char *Tag);
+ void
+ printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
+ const char *Tag);
+
+private:
+ /// Print out metadata attachments.
+ void printMetadataAttachments(
+ const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
+ StringRef Separator);
+
+ // printInfoComment - Print a little comment after the instruction indicating
+ // which slot it occupies.
+ void printInfoComment(const Value &V);
+
+ // printGCRelocateComment - print comment after call to the gc.relocate
+ // intrinsic indicating base and derived pointer names.
+ void printGCRelocateComment(const GCRelocateInst &Relocate);
+};
+
+} // end anonymous namespace
+
+AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
+ const Module *M, AssemblyAnnotationWriter *AAW,
+ bool IsForDebug, bool ShouldPreserveUseListOrder)
+ : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
+ IsForDebug(IsForDebug),
+ ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
+ if (!TheModule)
+ return;
+ for (const GlobalObject &GO : TheModule->global_objects())
+ if (const Comdat *C = GO.getComdat())
+ Comdats.insert(C);
+}
+
+AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
+ const ModuleSummaryIndex *Index, bool IsForDebug)
+ : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
+ IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
+
+void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
+ if (!Operand) {
+ Out << "<null operand!>";
+ return;
+ }
+ if (PrintType) {
+ TypePrinter.print(Operand->getType(), Out);
+ Out << ' ';
+ }
+ auto WriterCtx = getContext();
+ WriteAsOperandInternal(Out, Operand, WriterCtx);
+}
+
+void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
+ SyncScope::ID SSID) {
+ switch (SSID) {
+ case SyncScope::System: {
+ break;
+ }
+ default: {
+ if (SSNs.empty())
+ Context.getSyncScopeNames(SSNs);
+
+ Out << " syncscope(\"";
+ printEscapedString(SSNs[SSID], Out);
+ Out << "\")";
+ break;
+ }
+ }
+}
+
+void AssemblyWriter::writeAtomic(const LLVMContext &Context,
+ AtomicOrdering Ordering,
+ SyncScope::ID SSID) {
+ if (Ordering == AtomicOrdering::NotAtomic)
+ return;
+
+ writeSyncScope(Context, SSID);
+ Out << " " << toIRString(Ordering);
+}
+
+void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
+ AtomicOrdering SuccessOrdering,
+ AtomicOrdering FailureOrdering,
+ SyncScope::ID SSID) {
+ assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
+ FailureOrdering != AtomicOrdering::NotAtomic);
+
+ writeSyncScope(Context, SSID);
+ Out << " " << toIRString(SuccessOrdering);
+ Out << " " << toIRString(FailureOrdering);
+}
+
+void AssemblyWriter::writeParamOperand(const Value *Operand,
+ AttributeSet Attrs) {
+ if (!Operand) {
+ Out << "<null operand!>";
+ return;
+ }
+
+ // Print the type
+ TypePrinter.print(Operand->getType(), Out);
+ // Print parameter attributes list
+ if (Attrs.hasAttributes()) {
+ Out << ' ';
+ writeAttributeSet(Attrs);
+ }
+ Out << ' ';
+ // Print the operand
+ auto WriterCtx = getContext();
+ WriteAsOperandInternal(Out, Operand, WriterCtx);
+}
+
+void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
+ if (!Call->hasOperandBundles())
+ return;
+
+ Out << " [ ";
+
+ bool FirstBundle = true;
+ for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
+ OperandBundleUse BU = Call->getOperandBundleAt(i);
+
+ if (!FirstBundle)
+ Out << ", ";
+ FirstBundle = false;
+
+ Out << '"';
+ printEscapedString(BU.getTagName(), Out);
+ Out << '"';
+
+ Out << '(';
+
+ bool FirstInput = true;
+ auto WriterCtx = getContext();
+ for (const auto &Input : BU.Inputs) {
+ if (!FirstInput)
+ Out << ", ";
+ FirstInput = false;
+
+ TypePrinter.print(Input->getType(), Out);
+ Out << " ";
+ WriteAsOperandInternal(Out, Input, WriterCtx);
+ }
+
+ Out << ')';
+ }
+
+ Out << " ]";
+}
+
+void AssemblyWriter::printModule(const Module *M) {
+ Machine.initializeIfNeeded();
+
+ if (ShouldPreserveUseListOrder)
+ UseListOrders = predictUseListOrder(M);
+
+ if (!M->getModuleIdentifier().empty() &&
+ // Don't print the ID if it will start a new line (which would
+ // require a comment char before it).
+ M->getModuleIdentifier().find('\n') == std::string::npos)
+ Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
+
+ if (!M->getSourceFileName().empty()) {
+ Out << "source_filename = \"";
+ printEscapedString(M->getSourceFileName(), Out);
+ Out << "\"\n";
+ }
+
+ const std::string &DL = M->getDataLayoutStr();
+ if (!DL.empty())
+ Out << "target datalayout = \"" << DL << "\"\n";
+ if (!M->getTargetTriple().empty())
+ Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
+
+ if (!M->getModuleInlineAsm().empty()) {
+ Out << '\n';
+
+ // Split the string into lines, to make it easier to read the .ll file.
+ StringRef Asm = M->getModuleInlineAsm();
+ do {
+ StringRef Front;
+ std::tie(Front, Asm) = Asm.split('\n');
+
+ // We found a newline, print the portion of the asm string from the
+ // last newline up to this newline.
+ Out << "module asm \"";
+ printEscapedString(Front, Out);
+ Out << "\"\n";
+ } while (!Asm.empty());
+ }
+
+ printTypeIdentities();
+
+ // Output all comdats.
+ if (!Comdats.empty())
+ Out << '\n';
+ for (const Comdat *C : Comdats) {
+ printComdat(C);
+ if (C != Comdats.back())
+ Out << '\n';
+ }
+
+ // Output all globals.
+ if (!M->global_empty()) Out << '\n';
+ for (const GlobalVariable &GV : M->globals()) {
+ printGlobal(&GV); Out << '\n';
+ }
+
+ // Output all aliases.
+ if (!M->alias_empty()) Out << "\n";
+ for (const GlobalAlias &GA : M->aliases())
+ printAlias(&GA);
+
+ // Output all ifuncs.
+ if (!M->ifunc_empty()) Out << "\n";
+ for (const GlobalIFunc &GI : M->ifuncs())
+ printIFunc(&GI);
+
+ // Output all of the functions.
+ for (const Function &F : *M) {
+ Out << '\n';
+ printFunction(&F);
+ }
+
+ // Output global use-lists.
+ printUseLists(nullptr);
+
+ // Output all attribute groups.
+ if (!Machine.as_empty()) {
+ Out << '\n';
+ writeAllAttributeGroups();
+ }
+
+ // Output named metadata.
+ if (!M->named_metadata_empty()) Out << '\n';
+
+ for (const NamedMDNode &Node : M->named_metadata())
+ printNamedMDNode(&Node);
+
+ // Output metadata.
+ if (!Machine.mdn_empty()) {
+ Out << '\n';
+ writeAllMDNodes();
+ }
+}
+
+void AssemblyWriter::printModuleSummaryIndex() {
+ assert(TheIndex);
+ int NumSlots = Machine.initializeIndexIfNeeded();
+
+ Out << "\n";
+
+ // Print module path entries. To print in order, add paths to a vector
+ // indexed by module slot.
+ std::vector<std::pair<std::string, ModuleHash>> moduleVec;
+ std::string RegularLTOModuleName =
+ ModuleSummaryIndex::getRegularLTOModuleName();
+ moduleVec.resize(TheIndex->modulePaths().size());
+ for (auto &ModPath : TheIndex->modulePaths())
+ moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
+ // A module id of -1 is a special entry for a regular LTO module created
+ // during the thin link.
+ ModPath.second.first == -1u ? RegularLTOModuleName
+ : (std::string)std::string(ModPath.first()),
+ ModPath.second.second);
+
+ unsigned i = 0;
+ for (auto &ModPair : moduleVec) {
+ Out << "^" << i++ << " = module: (";
+ Out << "path: \"";
+ printEscapedString(ModPair.first, Out);
+ Out << "\", hash: (";
+ FieldSeparator FS;
+ for (auto Hash : ModPair.second)
+ Out << FS << Hash;
+ Out << "))\n";
+ }
+
+ // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
+ // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
+ for (auto &GlobalList : *TheIndex) {
+ auto GUID = GlobalList.first;
+ for (auto &Summary : GlobalList.second.SummaryList)
+ SummaryToGUIDMap[Summary.get()] = GUID;
+ }
+
+ // Print the global value summary entries.
+ for (auto &GlobalList : *TheIndex) {
+ auto GUID = GlobalList.first;
+ auto VI = TheIndex->getValueInfo(GlobalList);
+ printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
+ }
+
+ // Print the TypeIdMap entries.
+ for (const auto &TID : TheIndex->typeIds()) {
+ Out << "^" << Machine.getTypeIdSlot(TID.second.first)
+ << " = typeid: (name: \"" << TID.second.first << "\"";
+ printTypeIdSummary(TID.second.second);
+ Out << ") ; guid = " << TID.first << "\n";
+ }
+
+ // Print the TypeIdCompatibleVtableMap entries.
+ for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
+ auto GUID = GlobalValue::getGUID(TId.first);
+ Out << "^" << Machine.getGUIDSlot(GUID)
+ << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
+ printTypeIdCompatibleVtableSummary(TId.second);
+ Out << ") ; guid = " << GUID << "\n";
+ }
+
+ // Don't emit flags when it's not really needed (value is zero by default).
+ if (TheIndex->getFlags()) {
+ Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
+ ++NumSlots;
+ }
+
+ Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
+ << "\n";
+}
+
+static const char *
+getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
+ switch (K) {
+ case WholeProgramDevirtResolution::Indir:
+ return "indir";
+ case WholeProgramDevirtResolution::SingleImpl:
+ return "singleImpl";
+ case WholeProgramDevirtResolution::BranchFunnel:
+ return "branchFunnel";
+ }
+ llvm_unreachable("invalid WholeProgramDevirtResolution kind");
+}
+
+static const char *getWholeProgDevirtResByArgKindName(
+ WholeProgramDevirtResolution::ByArg::Kind K) {
+ switch (K) {
+ case WholeProgramDevirtResolution::ByArg::Indir:
+ return "indir";
+ case WholeProgramDevirtResolution::ByArg::UniformRetVal:
+ return "uniformRetVal";
+ case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
+ return "uniqueRetVal";
+ case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
+ return "virtualConstProp";
+ }
+ llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
+}
+
+static const char *getTTResKindName(TypeTestResolution::Kind K) {
+ switch (K) {
+ case TypeTestResolution::Unknown:
+ return "unknown";
+ case TypeTestResolution::Unsat:
+ return "unsat";
+ case TypeTestResolution::ByteArray:
+ return "byteArray";
+ case TypeTestResolution::Inline:
+ return "inline";
+ case TypeTestResolution::Single:
+ return "single";
+ case TypeTestResolution::AllOnes:
+ return "allOnes";
+ }
+ llvm_unreachable("invalid TypeTestResolution kind");
+}
+
+void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
+ Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
+ << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
+
+ // The following fields are only used if the target does not support the use
+ // of absolute symbols to store constants. Print only if non-zero.
+ if (TTRes.AlignLog2)
+ Out << ", alignLog2: " << TTRes.AlignLog2;
+ if (TTRes.SizeM1)
+ Out << ", sizeM1: " << TTRes.SizeM1;
+ if (TTRes.BitMask)
+ // BitMask is uint8_t which causes it to print the corresponding char.
+ Out << ", bitMask: " << (unsigned)TTRes.BitMask;
+ if (TTRes.InlineBits)
+ Out << ", inlineBits: " << TTRes.InlineBits;
+
+ Out << ")";
+}
+
+void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
+ Out << ", summary: (";
+ printTypeTestResolution(TIS.TTRes);
+ if (!TIS.WPDRes.empty()) {
+ Out << ", wpdResolutions: (";
+ FieldSeparator FS;
+ for (auto &WPDRes : TIS.WPDRes) {
+ Out << FS;
+ Out << "(offset: " << WPDRes.first << ", ";
+ printWPDRes(WPDRes.second);
+ Out << ")";
+ }
+ Out << ")";
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printTypeIdCompatibleVtableSummary(
+ const TypeIdCompatibleVtableInfo &TI) {
+ Out << ", summary: (";
+ FieldSeparator FS;
+ for (auto &P : TI) {
+ Out << FS;
+ Out << "(offset: " << P.AddressPointOffset << ", ";
+ Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
+ Out << ")";
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
+ Out << "args: (";
+ FieldSeparator FS;
+ for (auto arg : Args) {
+ Out << FS;
+ Out << arg;
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
+ Out << "wpdRes: (kind: ";
+ Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
+
+ if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
+ Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
+
+ if (!WPDRes.ResByArg.empty()) {
+ Out << ", resByArg: (";
+ FieldSeparator FS;
+ for (auto &ResByArg : WPDRes.ResByArg) {
+ Out << FS;
+ printArgs(ResByArg.first);
+ Out << ", byArg: (kind: ";
+ Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
+ if (ResByArg.second.TheKind ==
+ WholeProgramDevirtResolution::ByArg::UniformRetVal ||
+ ResByArg.second.TheKind ==
+ WholeProgramDevirtResolution::ByArg::UniqueRetVal)
+ Out << ", info: " << ResByArg.second.Info;
+
+ // The following fields are only used if the target does not support the
+ // use of absolute symbols to store constants. Print only if non-zero.
+ if (ResByArg.second.Byte || ResByArg.second.Bit)
+ Out << ", byte: " << ResByArg.second.Byte
+ << ", bit: " << ResByArg.second.Bit;
+
+ Out << ")";
+ }
+ Out << ")";
+ }
+ Out << ")";
+}
+
+static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
+ switch (SK) {
+ case GlobalValueSummary::AliasKind:
+ return "alias";
+ case GlobalValueSummary::FunctionKind:
+ return "function";
+ case GlobalValueSummary::GlobalVarKind:
+ return "variable";
+ }
+ llvm_unreachable("invalid summary kind");
+}
+
+void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
+ Out << ", aliasee: ";
+ // The indexes emitted for distributed backends may not include the
+ // aliasee summary (only if it is being imported directly). Handle
+ // that case by just emitting "null" as the aliasee.
+ if (AS->hasAliasee())
+ Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
+ else
+ Out << "null";
+}
+
+void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
+ auto VTableFuncs = GS->vTableFuncs();
+ Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
+ << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
+ << "constant: " << GS->VarFlags.Constant;
+ if (!VTableFuncs.empty())
+ Out << ", "
+ << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
+ Out << ")";
+
+ if (!VTableFuncs.empty()) {
+ Out << ", vTableFuncs: (";
+ FieldSeparator FS;
+ for (auto &P : VTableFuncs) {
+ Out << FS;
+ Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
+ << ", offset: " << P.VTableOffset;
+ Out << ")";
+ }
+ Out << ")";
+ }
+}
+
+static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
+ switch (LT) {
+ case GlobalValue::ExternalLinkage:
+ return "external";
+ case GlobalValue::PrivateLinkage:
+ return "private";
+ case GlobalValue::InternalLinkage:
+ return "internal";
+ case GlobalValue::LinkOnceAnyLinkage:
+ return "linkonce";
+ case GlobalValue::LinkOnceODRLinkage:
+ return "linkonce_odr";
+ case GlobalValue::WeakAnyLinkage:
+ return "weak";
+ case GlobalValue::WeakODRLinkage:
+ return "weak_odr";
+ case GlobalValue::CommonLinkage:
+ return "common";
+ case GlobalValue::AppendingLinkage:
+ return "appending";
+ case GlobalValue::ExternalWeakLinkage:
+ return "extern_weak";
+ case GlobalValue::AvailableExternallyLinkage:
+ return "available_externally";
+ }
+ llvm_unreachable("invalid linkage");
+}
+
+// When printing the linkage types in IR where the ExternalLinkage is
+// not printed, and other linkage types are expected to be printed with
+// a space after the name.
+static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
+ if (LT == GlobalValue::ExternalLinkage)
+ return "";
+ return getLinkageName(LT) + " ";
+}
+
+static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
+ switch (Vis) {
+ case GlobalValue::DefaultVisibility:
+ return "default";
+ case GlobalValue::HiddenVisibility:
+ return "hidden";
+ case GlobalValue::ProtectedVisibility:
+ return "protected";
+ }
+ llvm_unreachable("invalid visibility");
+}
+
+void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
+ Out << ", insts: " << FS->instCount();
+ if (FS->fflags().anyFlagSet())
+ Out << ", " << FS->fflags();
+
+ if (!FS->calls().empty()) {
+ Out << ", calls: (";
+ FieldSeparator IFS;
+ for (auto &Call : FS->calls()) {
+ Out << IFS;
+ Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
+ if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
+ Out << ", hotness: " << getHotnessName(Call.second.getHotness());
+ else if (Call.second.RelBlockFreq)
+ Out << ", relbf: " << Call.second.RelBlockFreq;
+ Out << ")";
+ }
+ Out << ")";
+ }
+
+ if (const auto *TIdInfo = FS->getTypeIdInfo())
+ printTypeIdInfo(*TIdInfo);
+
+ auto PrintRange = [&](const ConstantRange &Range) {
+ Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
+ };
+
+ if (!FS->paramAccesses().empty()) {
+ Out << ", params: (";
+ FieldSeparator IFS;
+ for (auto &PS : FS->paramAccesses()) {
+ Out << IFS;
+ Out << "(param: " << PS.ParamNo;
+ Out << ", offset: ";
+ PrintRange(PS.Use);
+ if (!PS.Calls.empty()) {
+ Out << ", calls: (";
+ FieldSeparator IFS;
+ for (auto &Call : PS.Calls) {
+ Out << IFS;
+ Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
+ Out << ", param: " << Call.ParamNo;
+ Out << ", offset: ";
+ PrintRange(Call.Offsets);
+ Out << ")";
+ }
+ Out << ")";
+ }
+ Out << ")";
+ }
+ Out << ")";
+ }
+}
+
+void AssemblyWriter::printTypeIdInfo(
+ const FunctionSummary::TypeIdInfo &TIDInfo) {
+ Out << ", typeIdInfo: (";
+ FieldSeparator TIDFS;
+ if (!TIDInfo.TypeTests.empty()) {
+ Out << TIDFS;
+ Out << "typeTests: (";
+ FieldSeparator FS;
+ for (auto &GUID : TIDInfo.TypeTests) {
+ auto TidIter = TheIndex->typeIds().equal_range(GUID);
+ if (TidIter.first == TidIter.second) {
+ Out << FS;
+ Out << GUID;
+ continue;
+ }
+ // Print all type id that correspond to this GUID.
+ for (auto It = TidIter.first; It != TidIter.second; ++It) {
+ Out << FS;
+ auto Slot = Machine.getTypeIdSlot(It->second.first);
+ assert(Slot != -1);
+ Out << "^" << Slot;
+ }
+ }
+ Out << ")";
+ }
+ if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
+ Out << TIDFS;
+ printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
+ }
+ if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
+ Out << TIDFS;
+ printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
+ }
+ if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
+ Out << TIDFS;
+ printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
+ "typeTestAssumeConstVCalls");
+ }
+ if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
+ Out << TIDFS;
+ printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
+ "typeCheckedLoadConstVCalls");
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
+ auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
+ if (TidIter.first == TidIter.second) {
+ Out << "vFuncId: (";
+ Out << "guid: " << VFId.GUID;
+ Out << ", offset: " << VFId.Offset;
+ Out << ")";
+ return;
+ }
+ // Print all type id that correspond to this GUID.
+ FieldSeparator FS;
+ for (auto It = TidIter.first; It != TidIter.second; ++It) {
+ Out << FS;
+ Out << "vFuncId: (";
+ auto Slot = Machine.getTypeIdSlot(It->second.first);
+ assert(Slot != -1);
+ Out << "^" << Slot;
+ Out << ", offset: " << VFId.Offset;
+ Out << ")";
+ }
+}
+
+void AssemblyWriter::printNonConstVCalls(
+ const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
+ Out << Tag << ": (";
+ FieldSeparator FS;
+ for (auto &VFuncId : VCallList) {
+ Out << FS;
+ printVFuncId(VFuncId);
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printConstVCalls(
+ const std::vector<FunctionSummary::ConstVCall> &VCallList,
+ const char *Tag) {
+ Out << Tag << ": (";
+ FieldSeparator FS;
+ for (auto &ConstVCall : VCallList) {
+ Out << FS;
+ Out << "(";
+ printVFuncId(ConstVCall.VFunc);
+ if (!ConstVCall.Args.empty()) {
+ Out << ", ";
+ printArgs(ConstVCall.Args);
+ }
+ Out << ")";
+ }
+ Out << ")";
+}
+
+void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
+ GlobalValueSummary::GVFlags GVFlags = Summary.flags();
+ GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
+ Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
+ Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
+ << ", flags: (";
+ Out << "linkage: " << getLinkageName(LT);
+ Out << ", visibility: "
+ << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
+ Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
+ Out << ", live: " << GVFlags.Live;
+ Out << ", dsoLocal: " << GVFlags.DSOLocal;
+ Out << ", canAutoHide: " << GVFlags.CanAutoHide;
+ Out << ")";
+
+ if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
+ printAliasSummary(cast<AliasSummary>(&Summary));
+ else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
+ printFunctionSummary(cast<FunctionSummary>(&Summary));
+ else
+ printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
+
+ auto RefList = Summary.refs();
+ if (!RefList.empty()) {
+ Out << ", refs: (";
+ FieldSeparator FS;
+ for (auto &Ref : RefList) {
+ Out << FS;
+ if (Ref.isReadOnly())
+ Out << "readonly ";
+ else if (Ref.isWriteOnly())
+ Out << "writeonly ";
+ Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
+ }
+ Out << ")";
+ }
+
+ Out << ")";
+}
+
+void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
+ Out << "^" << Slot << " = gv: (";
+ if (!VI.name().empty())
+ Out << "name: \"" << VI.name() << "\"";
+ else
+ Out << "guid: " << VI.getGUID();
+ if (!VI.getSummaryList().empty()) {
+ Out << ", summaries: (";
+ FieldSeparator FS;
+ for (auto &Summary : VI.getSummaryList()) {
+ Out << FS;
+ printSummary(*Summary);
+ }
+ Out << ")";
+ }
+ Out << ")";
+ if (!VI.name().empty())
+ Out << " ; guid = " << VI.getGUID();
+ Out << "\n";
+}
+
+static void printMetadataIdentifier(StringRef Name,
+ formatted_raw_ostream &Out) {
+ if (Name.empty()) {
+ Out << "<empty name> ";
+ } else {
+ if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
+ Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
+ Out << Name[0];
+ else
+ Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
+ for (unsigned i = 1, e = Name.size(); i != e; ++i) {
+ unsigned char C = Name[i];
+ if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
+ C == '.' || C == '_')
+ Out << C;
+ else
+ Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
+ }
+ }
+}
+
+void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
+ Out << '!';
+ printMetadataIdentifier(NMD->getName(), Out);
+ Out << " = !{";
+ for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
+ if (i)
+ Out << ", ";
+
+ // Write DIExpressions inline.
+ // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
+ MDNode *Op = NMD->getOperand(i);
+ assert(!isa<DIArgList>(Op) &&
+ "DIArgLists should not appear in NamedMDNodes");
+ if (auto *Expr = dyn_cast<DIExpression>(Op)) {
+ writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
+ continue;
+ }
+
+ int Slot = Machine.getMetadataSlot(Op);
+ if (Slot == -1)
+ Out << "<badref>";
+ else
+ Out << '!' << Slot;
+ }
+ Out << "}\n";
+}
+
+static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
+ formatted_raw_ostream &Out) {
+ switch (Vis) {
+ case GlobalValue::DefaultVisibility: break;
+ case GlobalValue::HiddenVisibility: Out << "hidden "; break;
+ case GlobalValue::ProtectedVisibility: Out << "protected "; break;
+ }
+}
+
+static void PrintDSOLocation(const GlobalValue &GV,
+ formatted_raw_ostream &Out) {
+ if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
+ Out << "dso_local ";
+}
+
+static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
+ formatted_raw_ostream &Out) {
+ switch (SCT) {
+ case GlobalValue::DefaultStorageClass: break;
+ case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
+ case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
+ }
+}
+
+static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
+ formatted_raw_ostream &Out) {
+ switch (TLM) {
+ case GlobalVariable::NotThreadLocal:
+ break;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ Out << "thread_local ";
+ break;
+ case GlobalVariable::LocalDynamicTLSModel:
+ Out << "thread_local(localdynamic) ";
+ break;
+ case GlobalVariable::InitialExecTLSModel:
+ Out << "thread_local(initialexec) ";
+ break;
+ case GlobalVariable::LocalExecTLSModel:
+ Out << "thread_local(localexec) ";
+ break;
+ }
+}
+
+static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
+ switch (UA) {
+ case GlobalVariable::UnnamedAddr::None:
+ return "";
+ case GlobalVariable::UnnamedAddr::Local:
+ return "local_unnamed_addr";
+ case GlobalVariable::UnnamedAddr::Global:
+ return "unnamed_addr";
+ }
+ llvm_unreachable("Unknown UnnamedAddr");
+}
+
+static void maybePrintComdat(formatted_raw_ostream &Out,
+ const GlobalObject &GO) {
+ const Comdat *C = GO.getComdat();
+ if (!C)
+ return;
+
+ if (isa<GlobalVariable>(GO))
+ Out << ',';
+ Out << " comdat";
+
+ if (GO.getName() == C->getName())
+ return;
+
+ Out << '(';
+ PrintLLVMName(Out, C->getName(), ComdatPrefix);
+ Out << ')';
+}
+
+void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
+ if (GV->isMaterializable())
+ Out << "; Materializable\n";
+
+ AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
+ WriteAsOperandInternal(Out, GV, WriterCtx);
+ Out << " = ";
+
+ if (!GV->hasInitializer() && GV->hasExternalLinkage())
+ Out << "external ";
+
+ Out << getLinkageNameWithSpace(GV->getLinkage());
+ PrintDSOLocation(*GV, Out);
+ PrintVisibility(GV->getVisibility(), Out);
+ PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
+ PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
+ StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
+ if (!UA.empty())
+ Out << UA << ' ';
+
+ if (unsigned AddressSpace = GV->getType()->getAddressSpace())
+ Out << "addrspace(" << AddressSpace << ") ";
+ if (GV->isExternallyInitialized()) Out << "externally_initialized ";
+ Out << (GV->isConstant() ? "constant " : "global ");
+ TypePrinter.print(GV->getValueType(), Out);
+
+ if (GV->hasInitializer()) {
+ Out << ' ';
+ writeOperand(GV->getInitializer(), false);
+ }
+
+ if (GV->hasSection()) {
+ Out << ", section \"";
+ printEscapedString(GV->getSection(), Out);
+ Out << '"';
+ }
+ if (GV->hasPartition()) {
+ Out << ", partition \"";
+ printEscapedString(GV->getPartition(), Out);
+ Out << '"';
+ }
+
+ using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
+ if (GV->hasSanitizerMetadata()) {
+ SanitizerMetadata MD = GV->getSanitizerMetadata();
+ if (MD.NoAddress)
+ Out << ", no_sanitize_address";
+ if (MD.NoHWAddress)
+ Out << ", no_sanitize_hwaddress";
+ if (MD.Memtag)
+ Out << ", sanitize_memtag";
+ if (MD.IsDynInit)
+ Out << ", sanitize_address_dyninit";
+ }
+
+ maybePrintComdat(Out, *GV);
+ if (MaybeAlign A = GV->getAlign())
+ Out << ", align " << A->value();
+
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ GV->getAllMetadata(MDs);
+ printMetadataAttachments(MDs, ", ");
+
+ auto Attrs = GV->getAttributes();
+ if (Attrs.hasAttributes())
+ Out << " #" << Machine.getAttributeGroupSlot(Attrs);
+
+ printInfoComment(*GV);
+}
+
+void AssemblyWriter::printAlias(const GlobalAlias *GA) {
+ if (GA->isMaterializable())
+ Out << "; Materializable\n";
+
+ AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
+ WriteAsOperandInternal(Out, GA, WriterCtx);
+ Out << " = ";
+
+ Out << getLinkageNameWithSpace(GA->getLinkage());
+ PrintDSOLocation(*GA, Out);
+ PrintVisibility(GA->getVisibility(), Out);
+ PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
+ PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
+ StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
+ if (!UA.empty())
+ Out << UA << ' ';
+
+ Out << "alias ";
+
+ TypePrinter.print(GA->getValueType(), Out);
+ Out << ", ";
+
+ if (const Constant *Aliasee = GA->getAliasee()) {
+ writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
+ } else {
+ TypePrinter.print(GA->getType(), Out);
+ Out << " <<NULL ALIASEE>>";
+ }
+
+ if (GA->hasPartition()) {
+ Out << ", partition \"";
+ printEscapedString(GA->getPartition(), Out);
+ Out << '"';
+ }
+
+ printInfoComment(*GA);
+ Out << '\n';
+}
+
+void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
+ if (GI->isMaterializable())
+ Out << "; Materializable\n";
+
+ AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
+ WriteAsOperandInternal(Out, GI, WriterCtx);
+ Out << " = ";
+
+ Out << getLinkageNameWithSpace(GI->getLinkage());
+ PrintDSOLocation(*GI, Out);
+ PrintVisibility(GI->getVisibility(), Out);
+
+ Out << "ifunc ";
+
+ TypePrinter.print(GI->getValueType(), Out);
+ Out << ", ";
+
+ if (const Constant *Resolver = GI->getResolver()) {
+ writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
+ } else {
+ TypePrinter.print(GI->getType(), Out);
+ Out << " <<NULL RESOLVER>>";
+ }
+
+ if (GI->hasPartition()) {
+ Out << ", partition \"";
+ printEscapedString(GI->getPartition(), Out);
+ Out << '"';
+ }
+
+ printInfoComment(*GI);
+ Out << '\n';
+}
+
+void AssemblyWriter::printComdat(const Comdat *C) {
+ C->print(Out);
+}
+
+void AssemblyWriter::printTypeIdentities() {
+ if (TypePrinter.empty())
+ return;
+
+ Out << '\n';
+
+ // Emit all numbered types.
+ auto &NumberedTypes = TypePrinter.getNumberedTypes();
+ for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
+ Out << '%' << I << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %2 = type %2
+ TypePrinter.printStructBody(NumberedTypes[I], Out);
+ Out << '\n';
+ }
+
+ auto &NamedTypes = TypePrinter.getNamedTypes();
+ for (StructType *NamedType : NamedTypes) {
+ PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
+ Out << " = type ";
+
+ // Make sure we print out at least one level of the type structure, so
+ // that we do not get %FILE = type %FILE
+ TypePrinter.printStructBody(NamedType, Out);
+ Out << '\n';
+ }
+}
+
+/// printFunction - Print all aspects of a function.
+void AssemblyWriter::printFunction(const Function *F) {
+ if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
+
+ if (F->isMaterializable())
+ Out << "; Materializable\n";
+
+ const AttributeList &Attrs = F->getAttributes();
+ if (Attrs.hasFnAttrs()) {
+ AttributeSet AS = Attrs.getFnAttrs();
+ std::string AttrStr;
+
+ for (const Attribute &Attr : AS) {
+ if (!Attr.isStringAttribute()) {
+ if (!AttrStr.empty()) AttrStr += ' ';
+ AttrStr += Attr.getAsString();
+ }
+ }
+
+ if (!AttrStr.empty())
+ Out << "; Function Attrs: " << AttrStr << '\n';
+ }
+
+ Machine.incorporateFunction(F);
+
+ if (F->isDeclaration()) {
+ Out << "declare";
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F->getAllMetadata(MDs);
+ printMetadataAttachments(MDs, " ");
+ Out << ' ';
+ } else
+ Out << "define ";
+
+ Out << getLinkageNameWithSpace(F->getLinkage());
+ PrintDSOLocation(*F, Out);
+ PrintVisibility(F->getVisibility(), Out);
+ PrintDLLStorageClass(F->getDLLStorageClass(), Out);
+
+ // Print the calling convention.
+ if (F->getCallingConv() != CallingConv::C) {
+ PrintCallingConv(F->getCallingConv(), Out);
+ Out << " ";
+ }
+
+ FunctionType *FT = F->getFunctionType();
+ if (Attrs.hasRetAttrs())
+ Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
+ TypePrinter.print(F->getReturnType(), Out);
+ AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
+ Out << ' ';
+ WriteAsOperandInternal(Out, F, WriterCtx);
+ Out << '(';
+
+ // Loop over the arguments, printing them...
+ if (F->isDeclaration() && !IsForDebug) {
+ // We're only interested in the type here - don't print argument names.
+ for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (I)
+ Out << ", ";
+ // Output type...
+ TypePrinter.print(FT->getParamType(I), Out);
+
+ AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
+ if (ArgAttrs.hasAttributes()) {
+ Out << ' ';
+ writeAttributeSet(ArgAttrs);
+ }
+ }
+ } else {
+ // The arguments are meaningful here, print them in detail.
+ for (const Argument &Arg : F->args()) {
+ // Insert commas as we go... the first arg doesn't get a comma
+ if (Arg.getArgNo() != 0)
+ Out << ", ";
+ printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
+ }
+ }
+
+ // Finish printing arguments...
+ if (FT->isVarArg()) {
+ if (FT->getNumParams()) Out << ", ";
+ Out << "..."; // Output varargs portion of signature!
+ }
+ Out << ')';
+ StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
+ if (!UA.empty())
+ Out << ' ' << UA;
+ // We print the function address space if it is non-zero or if we are writing
+ // a module with a non-zero program address space or if there is no valid
+ // Module* so that the file can be parsed without the datalayout string.
+ const Module *Mod = F->getParent();
+ if (F->getAddressSpace() != 0 || !Mod ||
+ Mod->getDataLayout().getProgramAddressSpace() != 0)
+ Out << " addrspace(" << F->getAddressSpace() << ")";
+ if (Attrs.hasFnAttrs())
+ Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
+ if (F->hasSection()) {
+ Out << " section \"";
+ printEscapedString(F->getSection(), Out);
+ Out << '"';
+ }
+ if (F->hasPartition()) {
+ Out << " partition \"";
+ printEscapedString(F->getPartition(), Out);
+ Out << '"';
+ }
+ maybePrintComdat(Out, *F);
+ if (MaybeAlign A = F->getAlign())
+ Out << " align " << A->value();
+ if (F->hasGC())
+ Out << " gc \"" << F->getGC() << '"';
+ if (F->hasPrefixData()) {
+ Out << " prefix ";
+ writeOperand(F->getPrefixData(), true);
+ }
+ if (F->hasPrologueData()) {
+ Out << " prologue ";
+ writeOperand(F->getPrologueData(), true);
+ }
+ if (F->hasPersonalityFn()) {
+ Out << " personality ";
+ writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
+ }
+
+ if (F->isDeclaration()) {
+ Out << '\n';
+ } else {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F->getAllMetadata(MDs);
+ printMetadataAttachments(MDs, " ");
+
+ Out << " {";
+ // Output all of the function's basic blocks.
+ for (const BasicBlock &BB : *F)
+ printBasicBlock(&BB);
+
+ // Output the function's use-lists.
+ printUseLists(F);
+
+ Out << "}\n";
+ }
+
+ Machine.purgeFunction();
+}
+
+/// printArgument - This member is called for every argument that is passed into
+/// the function. Simply print it out
+void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
+ // Output type...
+ TypePrinter.print(Arg->getType(), Out);
+
+ // Output parameter attributes list
+ if (Attrs.hasAttributes()) {
+ Out << ' ';
+ writeAttributeSet(Attrs);
+ }
+
+ // Output name, if available...
+ if (Arg->hasName()) {
+ Out << ' ';
+ PrintLLVMName(Out, Arg);
+ } else {
+ int Slot = Machine.getLocalSlot(Arg);
+ assert(Slot != -1 && "expect argument in function here");
+ Out << " %" << Slot;
+ }
+}
+
+/// printBasicBlock - This member is called for each basic block in a method.
+void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
+ bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
+ if (BB->hasName()) { // Print out the label if it exists...
+ Out << "\n";
+ PrintLLVMName(Out, BB->getName(), LabelPrefix);
+ Out << ':';
+ } else if (!IsEntryBlock) {
+ Out << "\n";
+ int Slot = Machine.getLocalSlot(BB);
+ if (Slot != -1)
+ Out << Slot << ":";
+ else
+ Out << "<badref>:";
+ }
+
+ if (!IsEntryBlock) {
+ // Output predecessors for the block.
+ Out.PadToColumn(50);
+ Out << ";";
+ const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ if (PI == PE) {
+ Out << " No predecessors!";
+ } else {
+ Out << " preds = ";
+ writeOperand(*PI, false);
+ for (++PI; PI != PE; ++PI) {
+ Out << ", ";
+ writeOperand(*PI, false);
+ }
+ }
+ }
+
+ Out << "\n";
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
+
+ // Output all of the instructions in the basic block...
+ for (const Instruction &I : *BB) {
+ printInstructionLine(I);
+ }
+
+ if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
+}
+
+/// printInstructionLine - Print an instruction and a newline character.
+void AssemblyWriter::printInstructionLine(const Instruction &I) {
+ printInstruction(I);
+ Out << '\n';
+}
+
+/// printGCRelocateComment - print comment after call to the gc.relocate
+/// intrinsic indicating base and derived pointer names.
+void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
+ Out << " ; (";
+ writeOperand(Relocate.getBasePtr(), false);
+ Out << ", ";
+ writeOperand(Relocate.getDerivedPtr(), false);
+ Out << ")";
+}
+
+/// printInfoComment - Print a little comment after the instruction indicating
+/// which slot it occupies.
+void AssemblyWriter::printInfoComment(const Value &V) {
+ if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
+ printGCRelocateComment(*Relocate);
+
+ if (AnnotationWriter)
+ AnnotationWriter->printInfoComment(V, Out);
+}
+
+static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
+ raw_ostream &Out) {
+ // We print the address space of the call if it is non-zero.
+ unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
+ bool PrintAddrSpace = CallAddrSpace != 0;
+ if (!PrintAddrSpace) {
+ const Module *Mod = getModuleFromVal(I);
+ // We also print it if it is zero but not equal to the program address space
+ // or if we can't find a valid Module* to make it possible to parse
+ // the resulting file even without a datalayout string.
+ if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
+ PrintAddrSpace = true;
+ }
+ if (PrintAddrSpace)
+ Out << " addrspace(" << CallAddrSpace << ")";
+}
+
+// This member is called for each Instruction in a function..
+void AssemblyWriter::printInstruction(const Instruction &I) {
+ if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
+
+ // Print out indentation for an instruction.
+ Out << " ";
+
+ // Print out name if it exists...
+ if (I.hasName()) {
+ PrintLLVMName(Out, &I);
+ Out << " = ";
+ } else if (!I.getType()->isVoidTy()) {
+ // Print out the def slot taken.
+ int SlotNum = Machine.getLocalSlot(&I);
+ if (SlotNum == -1)
+ Out << "<badref> = ";
+ else
+ Out << '%' << SlotNum << " = ";
+ }
+
+ if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ if (CI->isMustTailCall())
+ Out << "musttail ";
+ else if (CI->isTailCall())
+ Out << "tail ";
+ else if (CI->isNoTailCall())
+ Out << "notail ";
+ }
+
+ // Print out the opcode...
+ Out << I.getOpcodeName();
+
+ // If this is an atomic load or store, print out the atomic marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
+ Out << " atomic";
+
+ if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
+ Out << " weak";
+
+ // If this is a volatile operation, print out the volatile marker.
+ if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
+ (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
+ (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
+ (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
+ Out << " volatile";
+
+ // Print out optimization information.
+ WriteOptimizationInfo(Out, &I);
+
+ // Print out the compare instruction predicates
+ if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
+ Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
+
+ // Print out the atomicrmw operation
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
+ Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
+
+ // Print out the type of the operands...
+ const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
+
+ // Special case conditional branches to swizzle the condition out to the front
+ if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
+ const BranchInst &BI(cast<BranchInst>(I));
+ Out << ' ';
+ writeOperand(BI.getCondition(), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(0), true);
+ Out << ", ";
+ writeOperand(BI.getSuccessor(1), true);
+
+ } else if (isa<SwitchInst>(I)) {
+ const SwitchInst& SI(cast<SwitchInst>(I));
+ // Special case switch instruction to get formatting nice and correct.
+ Out << ' ';
+ writeOperand(SI.getCondition(), true);
+ Out << ", ";
+ writeOperand(SI.getDefaultDest(), true);
+ Out << " [";
+ for (auto Case : SI.cases()) {
+ Out << "\n ";
+ writeOperand(Case.getCaseValue(), true);
+ Out << ", ";
+ writeOperand(Case.getCaseSuccessor(), true);
+ }
+ Out << "\n ]";
+ } else if (isa<IndirectBrInst>(I)) {
+ // Special case indirectbr instruction to get formatting nice and correct.
+ Out << ' ';
+ writeOperand(Operand, true);
+ Out << ", [";
+
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+ if (i != 1)
+ Out << ", ";
+ writeOperand(I.getOperand(i), true);
+ }
+ Out << ']';
+ } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
+ Out << ' ';
+ TypePrinter.print(I.getType(), Out);
+ Out << ' ';
+
+ for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
+ if (op) Out << ", ";
+ Out << "[ ";
+ writeOperand(PN->getIncomingValue(op), false); Out << ", ";
+ writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
+ }
+ } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true);
+ for (unsigned i : EVI->indices())
+ Out << ", " << i;
+ } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
+ Out << ' ';
+ writeOperand(I.getOperand(0), true); Out << ", ";
+ writeOperand(I.getOperand(1), true);
+ for (unsigned i : IVI->indices())
+ Out << ", " << i;
+ } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(I.getType(), Out);
+ if (LPI->isCleanup() || LPI->getNumClauses() != 0)
+ Out << '\n';
+
+ if (LPI->isCleanup())
+ Out << " cleanup";
+
+ for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
+ if (i != 0 || LPI->isCleanup()) Out << "\n";
+ if (LPI->isCatch(i))
+ Out << " catch ";
+ else
+ Out << " filter ";
+
+ writeOperand(LPI->getClause(i), true);
+ }
+ } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
+ Out << " within ";
+ writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
+ Out << " [";
+ unsigned Op = 0;
+ for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
+ if (Op > 0)
+ Out << ", ";
+ writeOperand(PadBB, /*PrintType=*/true);
+ ++Op;
+ }
+ Out << "] unwind ";
+ if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
+ writeOperand(UnwindDest, /*PrintType=*/true);
+ else
+ Out << "to caller";
+ } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
+ Out << " within ";
+ writeOperand(FPI->getParentPad(), /*PrintType=*/false);
+ Out << " [";
+ for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
+ ++Op) {
+ if (Op > 0)
+ Out << ", ";
+ writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
+ }
+ Out << ']';
+ } else if (isa<ReturnInst>(I) && !Operand) {
+ Out << " void";
+ } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
+ Out << " from ";
+ writeOperand(CRI->getOperand(0), /*PrintType=*/false);
+
+ Out << " to ";
+ writeOperand(CRI->getOperand(1), /*PrintType=*/true);
+ } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
+ Out << " from ";
+ writeOperand(CRI->getOperand(0), /*PrintType=*/false);
+
+ Out << " unwind ";
+ if (CRI->hasUnwindDest())
+ writeOperand(CRI->getOperand(1), /*PrintType=*/true);
+ else
+ Out << "to caller";
+ } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Print the calling convention being used.
+ if (CI->getCallingConv() != CallingConv::C) {
+ Out << " ";
+ PrintCallingConv(CI->getCallingConv(), Out);
+ }
+
+ Operand = CI->getCalledOperand();
+ FunctionType *FTy = CI->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+ const AttributeList &PAL = CI->getAttributes();
+
+ if (PAL.hasRetAttrs())
+ Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
+
+ // Only print addrspace(N) if necessary:
+ maybePrintCallAddrSpace(Operand, &I, Out);
+
+ // If possible, print out the short form of the call instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ Out << '(';
+ for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
+ if (op > 0)
+ Out << ", ";
+ writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
+ }
+
+ // Emit an ellipsis if this is a musttail call in a vararg function. This
+ // is only to aid readability, musttail calls forward varargs by default.
+ if (CI->isMustTailCall() && CI->getParent() &&
+ CI->getParent()->getParent() &&
+ CI->getParent()->getParent()->isVarArg())
+ Out << ", ...";
+
+ Out << ')';
+ if (PAL.hasFnAttrs())
+ Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
+
+ writeOperandBundles(CI);
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+ Operand = II->getCalledOperand();
+ FunctionType *FTy = II->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+ const AttributeList &PAL = II->getAttributes();
+
+ // Print the calling convention being used.
+ if (II->getCallingConv() != CallingConv::C) {
+ Out << " ";
+ PrintCallingConv(II->getCallingConv(), Out);
+ }
+
+ if (PAL.hasRetAttrs())
+ Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
+
+ // Only print addrspace(N) if necessary:
+ maybePrintCallAddrSpace(Operand, &I, Out);
+
+ // If possible, print out the short form of the invoke instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ Out << '(';
+ for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
+ if (op)
+ Out << ", ";
+ writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
+ }
+
+ Out << ')';
+ if (PAL.hasFnAttrs())
+ Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
+
+ writeOperandBundles(II);
+
+ Out << "\n to ";
+ writeOperand(II->getNormalDest(), true);
+ Out << " unwind ";
+ writeOperand(II->getUnwindDest(), true);
+ } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
+ Operand = CBI->getCalledOperand();
+ FunctionType *FTy = CBI->getFunctionType();
+ Type *RetTy = FTy->getReturnType();
+ const AttributeList &PAL = CBI->getAttributes();
+
+ // Print the calling convention being used.
+ if (CBI->getCallingConv() != CallingConv::C) {
+ Out << " ";
+ PrintCallingConv(CBI->getCallingConv(), Out);
+ }
+
+ if (PAL.hasRetAttrs())
+ Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
+
+ // If possible, print out the short form of the callbr instruction. We can
+ // only do this if the first argument is a pointer to a nonvararg function,
+ // and if the return type is not a pointer to a function.
+ //
+ Out << ' ';
+ TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
+ Out << ' ';
+ writeOperand(Operand, false);
+ Out << '(';
+ for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
+ if (op)
+ Out << ", ";
+ writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
+ }
+
+ Out << ')';
+ if (PAL.hasFnAttrs())
+ Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
+
+ writeOperandBundles(CBI);
+
+ Out << "\n to ";
+ writeOperand(CBI->getDefaultDest(), true);
+ Out << " [";
+ for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
+ if (i != 0)
+ Out << ", ";
+ writeOperand(CBI->getIndirectDest(i), true);
+ }
+ Out << ']';
+ } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
+ Out << ' ';
+ if (AI->isUsedWithInAlloca())
+ Out << "inalloca ";
+ if (AI->isSwiftError())
+ Out << "swifterror ";
+ TypePrinter.print(AI->getAllocatedType(), Out);
+
+ // Explicitly write the array size if the code is broken, if it's an array
+ // allocation, or if the type is not canonical for scalar allocations. The
+ // latter case prevents the type from mutating when round-tripping through
+ // assembly.
+ if (!AI->getArraySize() || AI->isArrayAllocation() ||
+ !AI->getArraySize()->getType()->isIntegerTy(32)) {
+ Out << ", ";
+ writeOperand(AI->getArraySize(), true);
+ }
+ if (MaybeAlign A = AI->getAlign()) {
+ Out << ", align " << A->value();
+ }
+
+ unsigned AddrSpace = AI->getType()->getAddressSpace();
+ if (AddrSpace != 0) {
+ Out << ", addrspace(" << AddrSpace << ')';
+ }
+ } else if (isa<CastInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << " to ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (isa<VAArgInst>(I)) {
+ if (Operand) {
+ Out << ' ';
+ writeOperand(Operand, true); // Work with broken code
+ }
+ Out << ", ";
+ TypePrinter.print(I.getType(), Out);
+ } else if (Operand) { // Print the normal way.
+ if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(GEP->getSourceElementType(), Out);
+ Out << ',';
+ } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
+ Out << ' ';
+ TypePrinter.print(LI->getType(), Out);
+ Out << ',';
+ }
+
+ // PrintAllTypes - Instructions who have operands of all the same type
+ // omit the type from all but the first operand. If the instruction has
+ // different type operands (for example br), then they are all printed.
+ bool PrintAllTypes = false;
+ Type *TheType = Operand->getType();
+
+ // Select, Store, ShuffleVector and CmpXchg always print all types.
+ if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
+ isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I)) {
+ PrintAllTypes = true;
+ } else {
+ for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+ Operand = I.getOperand(i);
+ // note that Operand shouldn't be null, but the test helps make dump()
+ // more tolerant of malformed IR
+ if (Operand && Operand->getType() != TheType) {
+ PrintAllTypes = true; // We have differing types! Print them all!
+ break;
+ }
+ }
+ }
+
+ if (!PrintAllTypes) {
+ Out << ' ';
+ TypePrinter.print(TheType, Out);
+ }
+
+ Out << ' ';
+ for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+ if (i) Out << ", ";
+ writeOperand(I.getOperand(i), PrintAllTypes);
+ }
+ }
+
+ // Print atomic ordering/alignment for memory operations
+ if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (LI->isAtomic())
+ writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
+ if (MaybeAlign A = LI->getAlign())
+ Out << ", align " << A->value();
+ } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ if (SI->isAtomic())
+ writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
+ if (MaybeAlign A = SI->getAlign())
+ Out << ", align " << A->value();
+ } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
+ writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
+ CXI->getFailureOrdering(), CXI->getSyncScopeID());
+ Out << ", align " << CXI->getAlign().value();
+ } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
+ writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
+ RMWI->getSyncScopeID());
+ Out << ", align " << RMWI->getAlign().value();
+ } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
+ writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
+ } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
+ PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
+ }
+
+ // Print Metadata info.
+ SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
+ I.getAllMetadata(InstMD);
+ printMetadataAttachments(InstMD, ", ");
+
+ // Print a nice comment.
+ printInfoComment(I);
+}
+
+void AssemblyWriter::printMetadataAttachments(
+ const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
+ StringRef Separator) {
+ if (MDs.empty())
+ return;
+
+ if (MDNames.empty())
+ MDs[0].second->getContext().getMDKindNames(MDNames);
+
+ auto WriterCtx = getContext();
+ for (const auto &I : MDs) {
+ unsigned Kind = I.first;
+ Out << Separator;
+ if (Kind < MDNames.size()) {
+ Out << "!";
+ printMetadataIdentifier(MDNames[Kind], Out);
+ } else
+ Out << "!<unknown kind #" << Kind << ">";
+ Out << ' ';
+ WriteAsOperandInternal(Out, I.second, WriterCtx);
+ }
+}
+
+void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
+ Out << '!' << Slot << " = ";
+ printMDNodeBody(Node);
+ Out << "\n";
+}
+
+void AssemblyWriter::writeAllMDNodes() {
+ SmallVector<const MDNode *, 16> Nodes;
+ Nodes.resize(Machine.mdn_size());
+ for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
+ Nodes[I.second] = cast<MDNode>(I.first);
+
+ for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
+ writeMDNode(i, Nodes[i]);
+ }
+}
+
+void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
+ auto WriterCtx = getContext();
+ WriteMDNodeBodyInternal(Out, Node, WriterCtx);
+}
+
+void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
+ if (!Attr.isTypeAttribute()) {
+ Out << Attr.getAsString(InAttrGroup);
+ return;
+ }
+
+ Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
+ if (Type *Ty = Attr.getValueAsType()) {
+ Out << '(';
+ TypePrinter.print(Ty, Out);
+ Out << ')';
+ }
+}
+
+void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
+ bool InAttrGroup) {
+ bool FirstAttr = true;
+ for (const auto &Attr : AttrSet) {
+ if (!FirstAttr)
+ Out << ' ';
+ writeAttribute(Attr, InAttrGroup);
+ FirstAttr = false;
+ }
+}
+
+void AssemblyWriter::writeAllAttributeGroups() {
+ std::vector<std::pair<AttributeSet, unsigned>> asVec;
+ asVec.resize(Machine.as_size());
+
+ for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
+ asVec[I.second] = I;
+
+ for (const auto &I : asVec)
+ Out << "attributes #" << I.second << " = { "
+ << I.first.getAsString(true) << " }\n";
+}
+
+void AssemblyWriter::printUseListOrder(const Value *V,
+ const std::vector<unsigned> &Shuffle) {
+ bool IsInFunction = Machine.getFunction();
+ if (IsInFunction)
+ Out << " ";
+
+ Out << "uselistorder";
+ if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
+ Out << "_bb ";
+ writeOperand(BB->getParent(), false);
+ Out << ", ";
+ writeOperand(BB, false);
+ } else {
+ Out << " ";
+ writeOperand(V, true);
+ }
+ Out << ", { ";
+
+ assert(Shuffle.size() >= 2 && "Shuffle too small");
+ Out << Shuffle[0];
+ for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
+ Out << ", " << Shuffle[I];
+ Out << " }\n";
+}
+
+void AssemblyWriter::printUseLists(const Function *F) {
+ auto It = UseListOrders.find(F);
+ if (It == UseListOrders.end())
+ return;
+
+ Out << "\n; uselistorder directives\n";
+ for (const auto &Pair : It->second)
+ printUseListOrder(Pair.first, Pair.second);
+}
+
+//===----------------------------------------------------------------------===//
+// External Interface declarations
+//===----------------------------------------------------------------------===//
+
+void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder,
+ bool IsForDebug) const {
+ SlotTracker SlotTable(this->getParent());
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
+ IsForDebug,
+ ShouldPreserveUseListOrder);
+ W.printFunction(this);
+}
+
+void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder,
+ bool IsForDebug) const {
+ SlotTracker SlotTable(this->getParent());
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
+ IsForDebug,
+ ShouldPreserveUseListOrder);
+ W.printBasicBlock(this);
+}
+
+void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
+ bool ShouldPreserveUseListOrder, bool IsForDebug) const {
+ SlotTracker SlotTable(this);
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
+ ShouldPreserveUseListOrder);
+ W.printModule(this);
+}
+
+void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
+ SlotTracker SlotTable(getParent());
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
+ W.printNamedMDNode(this);
+}
+
+void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
+ bool IsForDebug) const {
+ Optional<SlotTracker> LocalST;
+ SlotTracker *SlotTable;
+ if (auto *ST = MST.getMachine())
+ SlotTable = ST;
+ else {
+ LocalST.emplace(getParent());
+ SlotTable = &*LocalST;
+ }
+
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
+ W.printNamedMDNode(this);
+}
+
+void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
+ PrintLLVMName(ROS, getName(), ComdatPrefix);
+ ROS << " = comdat ";
+
+ switch (getSelectionKind()) {
+ case Comdat::Any:
+ ROS << "any";
+ break;
+ case Comdat::ExactMatch:
+ ROS << "exactmatch";
+ break;
+ case Comdat::Largest:
+ ROS << "largest";
+ break;
+ case Comdat::NoDeduplicate:
+ ROS << "nodeduplicate";
+ break;
+ case Comdat::SameSize:
+ ROS << "samesize";
+ break;
+ }
+
+ ROS << '\n';
+}
+
+void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
+ TypePrinting TP;
+ TP.print(const_cast<Type*>(this), OS);
+
+ if (NoDetails)
+ return;
+
+ // If the type is a named struct type, print the body as well.
+ if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
+ if (!STy->isLiteral()) {
+ OS << " = type ";
+ TP.printStructBody(STy, OS);
+ }
+}
+
+static bool isReferencingMDNode(const Instruction &I) {
+ if (const auto *CI = dyn_cast<CallInst>(&I))
+ if (Function *F = CI->getCalledFunction())
+ if (F->isIntrinsic())
+ for (auto &Op : I.operands())
+ if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
+ if (isa<MDNode>(V->getMetadata()))
+ return true;
+ return false;
+}
+
+void Value::print(raw_ostream &ROS, bool IsForDebug) const {
+ bool ShouldInitializeAllMetadata = false;
+ if (auto *I = dyn_cast<Instruction>(this))
+ ShouldInitializeAllMetadata = isReferencingMDNode(*I);
+ else if (isa<Function>(this) || isa<MetadataAsValue>(this))
+ ShouldInitializeAllMetadata = true;
+
+ ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
+ print(ROS, MST, IsForDebug);
+}
+
+void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
+ bool IsForDebug) const {
+ formatted_raw_ostream OS(ROS);
+ SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
+ SlotTracker &SlotTable =
+ MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
+ auto incorporateFunction = [&](const Function *F) {
+ if (F)
+ MST.incorporateFunction(*F);
+ };
+
+ if (const Instruction *I = dyn_cast<Instruction>(this)) {
+ incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
+ AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
+ W.printInstruction(*I);
+ } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
+ incorporateFunction(BB->getParent());
+ AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
+ W.printBasicBlock(BB);
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
+ AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
+ if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
+ W.printGlobal(V);
+ else if (const Function *F = dyn_cast<Function>(GV))
+ W.printFunction(F);
+ else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
+ W.printAlias(A);
+ else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
+ W.printIFunc(I);
+ else
+ llvm_unreachable("Unknown GlobalValue to print out!");
+ } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
+ V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
+ } else if (const Constant *C = dyn_cast<Constant>(this)) {
+ TypePrinting TypePrinter;
+ TypePrinter.print(C->getType(), OS);
+ OS << ' ';
+ AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
+ WriteConstantInternal(OS, C, WriterCtx);
+ } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
+ this->printAsOperand(OS, /* PrintType */ true, MST);
+ } else {
+ llvm_unreachable("Unknown value to print out!");
+ }
+}
+
+/// Print without a type, skipping the TypePrinting object.
+///
+/// \return \c true iff printing was successful.
+static bool printWithoutType(const Value &V, raw_ostream &O,
+ SlotTracker *Machine, const Module *M) {
+ if (V.hasName() || isa<GlobalValue>(V) ||
+ (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
+ AsmWriterContext WriterCtx(nullptr, Machine, M);
+ WriteAsOperandInternal(O, &V, WriterCtx);
+ return true;
+ }
+ return false;
+}
+
+static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
+ ModuleSlotTracker &MST) {
+ TypePrinting TypePrinter(MST.getModule());
+ if (PrintType) {
+ TypePrinter.print(V.getType(), O);
+ O << ' ';
+ }
+
+ AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
+ WriteAsOperandInternal(O, &V, WriterCtx);
+}
+
+void Value::printAsOperand(raw_ostream &O, bool PrintType,
+ const Module *M) const {
+ if (!M)
+ M = getModuleFromVal(this);
+
+ if (!PrintType)
+ if (printWithoutType(*this, O, nullptr, M))
+ return;
+
+ SlotTracker Machine(
+ M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
+ ModuleSlotTracker MST(Machine, M);
+ printAsOperandImpl(*this, O, PrintType, MST);
+}
+
+void Value::printAsOperand(raw_ostream &O, bool PrintType,
+ ModuleSlotTracker &MST) const {
+ if (!PrintType)
+ if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
+ return;
+
+ printAsOperandImpl(*this, O, PrintType, MST);
+}
+
+/// Recursive version of printMetadataImpl.
+static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
+ AsmWriterContext &WriterCtx) {
+ formatted_raw_ostream OS(ROS);
+ WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
+
+ auto *N = dyn_cast<MDNode>(&MD);
+ if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
+ return;
+
+ OS << " = ";
+ WriteMDNodeBodyInternal(OS, N, WriterCtx);
+}
+
+namespace {
+struct MDTreeAsmWriterContext : public AsmWriterContext {
+ unsigned Level;
+ // {Level, Printed string}
+ using EntryTy = std::pair<unsigned, std::string>;
+ SmallVector<EntryTy, 4> Buffer;
+
+ // Used to break the cycle in case there is any.
+ SmallPtrSet<const Metadata *, 4> Visited;
+
+ raw_ostream &MainOS;
+
+ MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
+ raw_ostream &OS, const Metadata *InitMD)
+ : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
+
+ void onWriteMetadataAsOperand(const Metadata *MD) override {
+ if (!Visited.insert(MD).second)
+ return;
+
+ std::string Str;
+ raw_string_ostream SS(Str);
+ ++Level;
+ // A placeholder entry to memorize the correct
+ // position in buffer.
+ Buffer.emplace_back(std::make_pair(Level, ""));
+ unsigned InsertIdx = Buffer.size() - 1;
+
+ printMetadataImplRec(SS, *MD, *this);
+ Buffer[InsertIdx].second = std::move(SS.str());
+ --Level;
+ }
+
+ ~MDTreeAsmWriterContext() {
+ for (const auto &Entry : Buffer) {
+ MainOS << "\n";
+ unsigned NumIndent = Entry.first * 2U;
+ MainOS.indent(NumIndent) << Entry.second;
+ }
+ }
+};
+} // end anonymous namespace
+
+static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
+ ModuleSlotTracker &MST, const Module *M,
+ bool OnlyAsOperand, bool PrintAsTree = false) {
+ formatted_raw_ostream OS(ROS);
+
+ TypePrinting TypePrinter(M);
+
+ std::unique_ptr<AsmWriterContext> WriterCtx;
+ if (PrintAsTree && !OnlyAsOperand)
+ WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
+ &TypePrinter, MST.getMachine(), M, OS, &MD);
+ else
+ WriterCtx =
+ std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
+
+ WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
+
+ auto *N = dyn_cast<MDNode>(&MD);
+ if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
+ return;
+
+ OS << " = ";
+ WriteMDNodeBodyInternal(OS, N, *WriterCtx);
+}
+
+void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
+ ModuleSlotTracker MST(M, isa<MDNode>(this));
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
+}
+
+void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
+ const Module *M) const {
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
+}
+
+void Metadata::print(raw_ostream &OS, const Module *M,
+ bool /*IsForDebug*/) const {
+ ModuleSlotTracker MST(M, isa<MDNode>(this));
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
+}
+
+void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
+ const Module *M, bool /*IsForDebug*/) const {
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
+}
+
+void MDNode::printTree(raw_ostream &OS, const Module *M) const {
+ ModuleSlotTracker MST(M, true);
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
+ /*PrintAsTree=*/true);
+}
+
+void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
+ const Module *M) const {
+ printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
+ /*PrintAsTree=*/true);
+}
+
+void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
+ SlotTracker SlotTable(this);
+ formatted_raw_ostream OS(ROS);
+ AssemblyWriter W(OS, SlotTable, this, IsForDebug);
+ W.printModuleSummaryIndex();
+}
+
+void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
+ unsigned UB) const {
+ SlotTracker *ST = MachineStorage.get();
+ if (!ST)
+ return;
+
+ for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
+ if (I.second >= LB && I.second < UB)
+ L.push_back(std::make_pair(I.second, I.first));
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+// Value::dump - allow easy printing of Values from the debugger.
+LLVM_DUMP_METHOD
+void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
+
+// Type::dump - allow easy printing of Types from the debugger.
+LLVM_DUMP_METHOD
+void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
+
+// Module::dump() - Allow printing of Modules from the debugger.
+LLVM_DUMP_METHOD
+void Module::dump() const {
+ print(dbgs(), nullptr,
+ /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
+}
+
+// Allow printing of Comdats from the debugger.
+LLVM_DUMP_METHOD
+void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
+
+// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
+LLVM_DUMP_METHOD
+void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
+
+LLVM_DUMP_METHOD
+void Metadata::dump() const { dump(nullptr); }
+
+LLVM_DUMP_METHOD
+void Metadata::dump(const Module *M) const {
+ print(dbgs(), M, /*IsForDebug=*/true);
+ dbgs() << '\n';
+}
+
+LLVM_DUMP_METHOD
+void MDNode::dumpTree() const { dumpTree(nullptr); }
+
+LLVM_DUMP_METHOD
+void MDNode::dumpTree(const Module *M) const {
+ printTree(dbgs(), M);
+ dbgs() << '\n';
+}
+
+// Allow printing of ModuleSummaryIndex from the debugger.
+LLVM_DUMP_METHOD
+void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
+#endif