aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp510
1 files changed, 314 insertions, 196 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
index 776ec52e2604..8ffd89ef5ccd 100644
--- a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -139,6 +139,7 @@ namespace {
class PPCDAGToDAGISel : public SelectionDAGISel {
const PPCTargetMachine &TM;
const PPCSubtarget *PPCSubTarget = nullptr;
+ const PPCSubtarget *Subtarget = nullptr;
const PPCTargetLowering *PPCLowering = nullptr;
unsigned GlobalBaseReg = 0;
@@ -150,10 +151,11 @@ namespace {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
- PPCLowering = PPCSubTarget->getTargetLowering();
+ Subtarget = &MF.getSubtarget<PPCSubtarget>();
+ PPCLowering = Subtarget->getTargetLowering();
SelectionDAGISel::runOnMachineFunction(MF);
- if (!PPCSubTarget->isSVR4ABI())
+ if (!Subtarget->isSVR4ABI())
InsertVRSaveCode(MF);
return true;
@@ -204,7 +206,6 @@ namespace {
bool tryBitfieldInsert(SDNode *N);
bool tryBitPermutation(SDNode *N);
bool tryIntCompareInGPR(SDNode *N);
- bool tryAndWithMask(SDNode *N);
// tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
// an X-Form load instruction with the offset being a relocation coming from
@@ -239,7 +240,7 @@ namespace {
/// bit signed displacement.
/// Returns false if it can be represented by [r+imm], which are preferred.
bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 0);
+ return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
}
/// SelectAddrIdx4 - Given the specified address, check to see if it can be
@@ -249,7 +250,8 @@ namespace {
/// displacement must be a multiple of 4.
/// Returns false if it can be represented by [r+imm], which are preferred.
bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 4);
+ return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
+ Align(4));
}
/// SelectAddrIdx16 - Given the specified address, check to see if it can be
@@ -259,7 +261,8 @@ namespace {
/// displacement must be a multiple of 16.
/// Returns false if it can be represented by [r+imm], which are preferred.
bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, 16);
+ return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
+ Align(16));
}
/// SelectAddrIdxOnly - Given the specified address, force it to be
@@ -267,28 +270,29 @@ namespace {
bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
}
-
+
/// SelectAddrImm - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement [r+imm].
/// The last parameter \p 0 means D form has no requirment for 16 bit signed
/// displacement.
bool SelectAddrImm(SDValue N, SDValue &Disp,
SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 0);
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
}
/// SelectAddrImmX4 - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement that is a multiple of
/// 4 (last parameter). Suitable for use by STD and friends.
bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 4);
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
}
/// SelectAddrImmX16 - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement that is a multiple of
/// 16(last parameter). Suitable for use by STXV and friends.
bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, 16);
+ return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
+ Align(16));
}
// Select an address into a single register.
@@ -297,6 +301,10 @@ namespace {
return true;
}
+ bool SelectAddrPCRel(SDValue N, SDValue &Base) {
+ return PPCLowering->SelectAddressPCRel(N, Base);
+ }
+
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions. It is always correct to compute the value into
/// a register. The case of adding a (possibly relocatable) constant to a
@@ -317,7 +325,7 @@ namespace {
case InlineAsm::Constraint_Zy:
// We need to make sure that this one operand does not end up in r0
// (because we might end up lowering this as 0(%op)).
- const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
+ const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
SDLoc dl(Op);
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
@@ -343,6 +351,13 @@ namespace {
private:
bool trySETCC(SDNode *N);
+ bool tryAsSingleRLDICL(SDNode *N);
+ bool tryAsSingleRLDICR(SDNode *N);
+ bool tryAsSingleRLWINM(SDNode *N);
+ bool tryAsSingleRLWINM8(SDNode *N);
+ bool tryAsSingleRLWIMI(SDNode *N);
+ bool tryAsPairOfRLDICL(SDNode *N);
+ bool tryAsSingleRLDIMI(SDNode *N);
void PeepholePPC64();
void PeepholePPC64ZExt();
@@ -394,7 +409,7 @@ void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
- const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
MachineBasicBlock &EntryBB = *Fn.begin();
DebugLoc dl;
// Emit the following code into the entry block:
@@ -429,7 +444,7 @@ void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
- const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
@@ -437,9 +452,9 @@ SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
DebugLoc dl;
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
- if (PPCSubTarget->isTargetELF()) {
+ if (Subtarget->isTargetELF()) {
GlobalBaseReg = PPC::R30;
- if (!PPCSubTarget->isSecurePlt() &&
+ if (!Subtarget->isSecurePlt() &&
M->getPICLevel() == PICLevel::SmallPIC) {
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
@@ -3788,7 +3803,7 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
Opc = PPC::CMPD;
}
} else if (LHS.getValueType() == MVT::f32) {
- if (PPCSubTarget->hasSPE()) {
+ if (Subtarget->hasSPE()) {
switch (CC) {
default:
case ISD::SETEQ:
@@ -3815,7 +3830,7 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
} else
Opc = PPC::FCMPUS;
} else if (LHS.getValueType() == MVT::f64) {
- if (PPCSubTarget->hasSPE()) {
+ if (Subtarget->hasSPE()) {
switch (CC) {
default:
case ISD::SETEQ:
@@ -3840,10 +3855,10 @@ SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
break;
}
} else
- Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
+ Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
} else {
assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
- assert(PPCSubTarget->hasVSX() && "__float128 requires VSX");
+ assert(Subtarget->hasVSX() && "__float128 requires VSX");
Opc = PPC::XSCMPUQP;
}
return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
@@ -3872,10 +3887,10 @@ static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
case ISD::SETULE:
case ISD::SETLE:
- return UseSPE ? PPC::PRED_LE : PPC::PRED_LE;
+ return PPC::PRED_LE;
case ISD::SETOGT:
case ISD::SETGT:
- return UseSPE ? PPC::PRED_GT : PPC::PRED_GT;
+ return PPC::PRED_GT;
case ISD::SETUGE:
case ISD::SETGE:
return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
@@ -4038,8 +4053,7 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
bool isPPC64 = (PtrVT == MVT::i64);
- if (!PPCSubTarget->useCRBits() &&
- isInt32Immediate(N->getOperand(1), Imm)) {
+ if (!Subtarget->useCRBits() && isInt32Immediate(N->getOperand(1), Imm)) {
// We can codegen setcc op, imm very efficiently compared to a brcond.
// Check for those cases here.
// setcc op, 0
@@ -4128,20 +4142,20 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
// Altivec Vector compare instructions do not set any CR register by default and
// vector compare operations return the same type as the operands.
if (LHS.getValueType().isVector()) {
- if (PPCSubTarget->hasQPX() || PPCSubTarget->hasSPE())
+ if (Subtarget->hasQPX() || Subtarget->hasSPE())
return false;
EVT VecVT = LHS.getValueType();
bool Swap, Negate;
- unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
- PPCSubTarget->hasVSX(), Swap, Negate);
+ unsigned int VCmpInst =
+ getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
if (Swap)
std::swap(LHS, RHS);
EVT ResVT = VecVT.changeVectorElementTypeToInteger();
if (Negate) {
SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
- CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
+ CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
ResVT, VCmp, VCmp);
return true;
}
@@ -4150,7 +4164,7 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
return true;
}
- if (PPCSubTarget->useCRBits())
+ if (Subtarget->useCRBits())
return false;
bool Inv;
@@ -4160,7 +4174,7 @@ bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
// SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
// The correct compare instruction is already set by SelectCC()
- if (PPCSubTarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
+ if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
Idx = 1;
}
@@ -4209,7 +4223,7 @@ bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
// because it is translated to r31 or r1 + slot + offset. We won't know the
// slot number until the stack frame is finalized.
const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
- unsigned SlotAlign = MFI.getObjectAlignment(FI->getIndex());
+ unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
if ((SlotAlign % Val) != 0)
return false;
@@ -4241,13 +4255,10 @@ static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
SDValue TrueRes = N->getOperand(2);
SDValue FalseRes = N->getOperand(3);
ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
- if (!TrueConst)
+ if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
+ N->getSimpleValueType(0) != MVT::i32))
return false;
- assert((N->getSimpleValueType(0) == MVT::i64 ||
- N->getSimpleValueType(0) == MVT::i32) &&
- "Expecting either i64 or i32 here.");
-
// We are looking for any of:
// (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
// (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
@@ -4371,142 +4382,251 @@ static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
return true;
}
-bool PPCDAGToDAGISel::tryAndWithMask(SDNode *N) {
- if (N->getOpcode() != ISD::AND)
+bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ unsigned Imm;
+ if (!isInt32Immediate(N->getOperand(1), Imm))
return false;
SDLoc dl(N);
SDValue Val = N->getOperand(0);
- unsigned Imm, Imm2, SH, MB, ME;
- uint64_t Imm64;
-
+ unsigned SH, MB, ME;
// If this is an and of a value rotated between 0 and 31 bits and then and'd
// with a mask, emit rlwinm
- if (isInt32Immediate(N->getOperand(1), Imm) &&
- isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
- SDValue Val = N->getOperand(0).getOperand(0);
- SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
+ if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
+ Val = Val.getOperand(0);
+ SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
+ getI32Imm(ME, dl)};
CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
return true;
}
// If this is just a masked value where the input is not handled, and
// is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
- if (isInt32Immediate(N->getOperand(1), Imm)) {
- if (isRunOfOnes(Imm, MB, ME) &&
- N->getOperand(0).getOpcode() != ISD::ROTL) {
- SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- // AND X, 0 -> 0, not "rlwinm 32".
- if (Imm == 0) {
- ReplaceUses(SDValue(N, 0), N->getOperand(1));
- return true;
- }
+ if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
+ SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
+ getI32Imm(ME, dl)};
+ CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
+ return true;
+ }
- // ISD::OR doesn't get all the bitfield insertion fun.
- // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
- // bitfield insert.
- if (N->getOperand(0).getOpcode() == ISD::OR &&
- isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
- // The idea here is to check whether this is equivalent to:
- // (c1 & m) | (x & ~m)
- // where m is a run-of-ones mask. The logic here is that, for each bit in
- // c1 and c2:
- // - if both are 1, then the output will be 1.
- // - if both are 0, then the output will be 0.
- // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
- // come from x.
- // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
- // be 0.
- // If that last condition is never the case, then we can form m from the
- // bits that are the same between c1 and c2.
- unsigned MB, ME;
- if (isRunOfOnes(~(Imm^Imm2), MB, ME) && !(~Imm & Imm2)) {
- SDValue Ops[] = { N->getOperand(0).getOperand(0),
- N->getOperand(0).getOperand(1),
- getI32Imm(0, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
- ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
- return true;
- }
- }
- } else if (isInt64Immediate(N->getOperand(1).getNode(), Imm64)) {
- // If this is a 64-bit zero-extension mask, emit rldicl.
- if (isMask_64(Imm64)) {
- MB = 64 - countTrailingOnes(Imm64);
- SH = 0;
-
- if (Val.getOpcode() == ISD::ANY_EXTEND) {
- auto Op0 = Val.getOperand(0);
- if ( Op0.getOpcode() == ISD::SRL &&
- isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
-
- auto ResultType = Val.getNode()->getValueType(0);
- auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
- ResultType);
- SDValue IDVal (ImDef, 0);
-
- Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
- ResultType, IDVal, Op0.getOperand(0),
- getI32Imm(1, dl)), 0);
- SH = 64 - Imm;
- }
- }
+ // AND X, 0 -> 0, not "rlwinm 32".
+ if (Imm == 0) {
+ ReplaceUses(SDValue(N, 0), N->getOperand(1));
+ return true;
+ }
- // If the operand is a logical right shift, we can fold it into this
- // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
- // for n <= mb. The right shift is really a left rotate followed by a
- // mask, and this mask is a more-restrictive sub-mask of the mask implied
- // by the shift.
- if (Val.getOpcode() == ISD::SRL &&
- isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
- assert(Imm < 64 && "Illegal shift amount");
- Val = Val.getOperand(0);
- SH = 64 - Imm;
- }
+ return false;
+}
- SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
- return true;
- } else if (isMask_64(~Imm64)) {
- // If this is a negated 64-bit zero-extension mask,
- // i.e. the immediate is a sequence of ones from most significant side
- // and all zero for reminder, we should use rldicr.
- MB = 63 - countTrailingOnes(~Imm64);
- SH = 0;
- SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
- return true;
- }
+bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ uint64_t Imm64;
+ if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
+ return false;
- // It is not 16-bit imm that means we need two instructions at least if
- // using "and" instruction. Try to exploit it with rotate mask instructions.
- if (isRunOfOnes64(Imm64, MB, ME)) {
- if (MB >= 32 && MB <= ME) {
- // MB ME
- // +----------------------+
- // |xxxxxxxxxxx00011111000|
- // +----------------------+
- // 0 32 64
- // We can only do it if the MB is larger than 32 and MB <= ME
- // as RLWINM will replace the content of [0 - 32) with [32 - 64) even
- // we didn't rotate it.
- SDValue Ops[] = { Val, getI64Imm(0, dl), getI64Imm(MB - 32, dl),
- getI64Imm(ME - 32, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
- return true;
- }
- // TODO - handle it with rldicl + rldicl
- }
+ unsigned MB, ME;
+ if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
+ // MB ME
+ // +----------------------+
+ // |xxxxxxxxxxx00011111000|
+ // +----------------------+
+ // 0 32 64
+ // We can only do it if the MB is larger than 32 and MB <= ME
+ // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
+ // we didn't rotate it.
+ SDLoc dl(N);
+ SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
+ getI64Imm(ME - 32, dl)};
+ CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
+ return true;
+ }
+
+ return false;
+}
+
+bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ uint64_t Imm64;
+ if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
+ return false;
+
+ // Do nothing if it is 16-bit imm as the pattern in the .td file handle
+ // it well with "andi.".
+ if (isUInt<16>(Imm64))
+ return false;
+
+ SDLoc Loc(N);
+ SDValue Val = N->getOperand(0);
+
+ // Optimized with two rldicl's as follows:
+ // Add missing bits on left to the mask and check that the mask is a
+ // wrapped run of ones, i.e.
+ // Change pattern |0001111100000011111111|
+ // to |1111111100000011111111|.
+ unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
+ if (NumOfLeadingZeros != 0)
+ Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
+
+ unsigned MB, ME;
+ if (!isRunOfOnes64(Imm64, MB, ME))
+ return false;
+
+ // ME MB MB-ME+63
+ // +----------------------+ +----------------------+
+ // |1111111100000011111111| -> |0000001111111111111111|
+ // +----------------------+ +----------------------+
+ // 0 63 0 63
+ // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
+ unsigned OnesOnLeft = ME + 1;
+ unsigned ZerosInBetween = (MB - ME + 63) & 63;
+ // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
+ // on the left the bits that are already zeros in the mask.
+ Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
+ getI64Imm(OnesOnLeft, Loc),
+ getI64Imm(ZerosInBetween, Loc)),
+ 0);
+ // MB-ME+63 ME MB
+ // +----------------------+ +----------------------+
+ // |0000001111111111111111| -> |0001111100000011111111|
+ // +----------------------+ +----------------------+
+ // 0 63 0 63
+ // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
+ // left the number of ones we previously added.
+ SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
+ getI64Imm(NumOfLeadingZeros, Loc)};
+ CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
+ return true;
+}
+
+bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ unsigned Imm;
+ if (!isInt32Immediate(N->getOperand(1), Imm))
+ return false;
+
+ SDValue Val = N->getOperand(0);
+ unsigned Imm2;
+ // ISD::OR doesn't get all the bitfield insertion fun.
+ // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
+ // bitfield insert.
+ if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
+ return false;
+
+ // The idea here is to check whether this is equivalent to:
+ // (c1 & m) | (x & ~m)
+ // where m is a run-of-ones mask. The logic here is that, for each bit in
+ // c1 and c2:
+ // - if both are 1, then the output will be 1.
+ // - if both are 0, then the output will be 0.
+ // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
+ // come from x.
+ // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
+ // be 0.
+ // If that last condition is never the case, then we can form m from the
+ // bits that are the same between c1 and c2.
+ unsigned MB, ME;
+ if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
+ SDLoc dl(N);
+ SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
+ getI32Imm(MB, dl), getI32Imm(ME, dl)};
+ ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
+ return true;
}
return false;
}
+bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ uint64_t Imm64;
+ if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
+ return false;
+
+ // If this is a 64-bit zero-extension mask, emit rldicl.
+ unsigned MB = 64 - countTrailingOnes(Imm64);
+ unsigned SH = 0;
+ unsigned Imm;
+ SDValue Val = N->getOperand(0);
+ SDLoc dl(N);
+
+ if (Val.getOpcode() == ISD::ANY_EXTEND) {
+ auto Op0 = Val.getOperand(0);
+ if (Op0.getOpcode() == ISD::SRL &&
+ isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
+
+ auto ResultType = Val.getNode()->getValueType(0);
+ auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
+ SDValue IDVal(ImDef, 0);
+
+ Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
+ IDVal, Op0.getOperand(0),
+ getI32Imm(1, dl)),
+ 0);
+ SH = 64 - Imm;
+ }
+ }
+
+ // If the operand is a logical right shift, we can fold it into this
+ // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
+ // for n <= mb. The right shift is really a left rotate followed by a
+ // mask, and this mask is a more-restrictive sub-mask of the mask implied
+ // by the shift.
+ if (Val.getOpcode() == ISD::SRL &&
+ isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
+ assert(Imm < 64 && "Illegal shift amount");
+ Val = Val.getOperand(0);
+ SH = 64 - Imm;
+ }
+
+ SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
+ CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
+ return true;
+}
+
+bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
+ assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
+ uint64_t Imm64;
+ if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
+ !isMask_64(~Imm64))
+ return false;
+
+ // If this is a negated 64-bit zero-extension mask,
+ // i.e. the immediate is a sequence of ones from most significant side
+ // and all zero for reminder, we should use rldicr.
+ unsigned MB = 63 - countTrailingOnes(~Imm64);
+ unsigned SH = 0;
+ SDLoc dl(N);
+ SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
+ CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
+ return true;
+}
+
+bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
+ assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
+ uint64_t Imm64;
+ unsigned MB, ME;
+ SDValue N0 = N->getOperand(0);
+
+ // We won't get fewer instructions if the imm is 32-bit integer.
+ // rldimi requires the imm to have consecutive ones with both sides zero.
+ // Also, make sure the first Op has only one use, otherwise this may increase
+ // register pressure since rldimi is destructive.
+ if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
+ isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
+ return false;
+
+ unsigned SH = 63 - ME;
+ SDLoc Dl(N);
+ // Use select64Imm for making LI instr instead of directly putting Imm64
+ SDValue Ops[] = {
+ N->getOperand(0),
+ SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
+ getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
+ CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
+ return true;
+}
+
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
void PPCDAGToDAGISel::Select(SDNode *N) {
@@ -4551,7 +4671,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case PPCISD::ADDI_TLSGD_L_ADDR: {
const Module *Mod = MF->getFunction().getParent();
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
- !PPCSubTarget->isSecurePlt() || !PPCSubTarget->isTargetELF() ||
+ !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
Mod->getPICLevel() == PICLevel::SmallPIC)
break;
// Attach global base pointer on GETtlsADDR32 node in order to
@@ -4560,8 +4680,8 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
} break;
case PPCISD::CALL: {
if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
- !TM.isPositionIndependent() || !PPCSubTarget->isSecurePlt() ||
- !PPCSubTarget->isTargetELF())
+ !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
+ !Subtarget->isTargetELF())
break;
SDValue Op = N->getOperand(1);
@@ -4625,7 +4745,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case ISD::STORE: {
// Change TLS initial-exec D-form stores to X-form stores.
StoreSDNode *ST = cast<StoreSDNode>(N);
- if (EnableTLSOpt && PPCSubTarget->isELFv2ABI() &&
+ if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
ST->getAddressingMode() != ISD::PRE_INC)
if (tryTLSXFormStore(ST))
return;
@@ -4639,7 +4759,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
// Normal loads are handled by code generated from the .td file.
if (LD->getAddressingMode() != ISD::PRE_INC) {
// Change TLS initial-exec D-form loads to X-form loads.
- if (EnableTLSOpt && PPCSubTarget->isELFv2ABI())
+ if (EnableTLSOpt && Subtarget->isELFv2ABI())
if (tryTLSXFormLoad(LD))
return;
break;
@@ -4730,7 +4850,8 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case ISD::AND:
// If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
- if (tryAndWithMask(N))
+ if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
+ tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
return;
// Other cases are autogenerated.
@@ -4753,10 +4874,15 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
}
}
+ // If this is 'or' against an imm with consecutive ones and both sides zero,
+ // try to emit rldimi
+ if (tryAsSingleRLDIMI(N))
+ return;
+
// OR with a 32-bit immediate can be handled by ori + oris
// without creating an immediate in a GPR.
uint64_t Imm64 = 0;
- bool IsPPC64 = PPCSubTarget->isPPC64();
+ bool IsPPC64 = Subtarget->isPPC64();
if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
(Imm64 & ~0xFFFFFFFFuLL) == 0) {
// If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
@@ -4779,7 +4905,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
// XOR with a 32-bit immediate can be handled by xori + xoris
// without creating an immediate in a GPR.
uint64_t Imm64 = 0;
- bool IsPPC64 = PPCSubTarget->isPPC64();
+ bool IsPPC64 = Subtarget->isPPC64();
if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
(Imm64 & ~0xFFFFFFFFuLL) == 0) {
// If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
@@ -4866,11 +4992,10 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
bool isPPC64 = (PtrVT == MVT::i64);
// If this is a select of i1 operands, we'll pattern match it.
- if (PPCSubTarget->useCRBits() &&
- N->getOperand(0).getValueType() == MVT::i1)
+ if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
break;
- if (PPCSubTarget->isISA3_0() && PPCSubTarget->isPPC64()) {
+ if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
bool NeedSwapOps = false;
bool IsUnCmp = false;
if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
@@ -4945,7 +5070,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
}
unsigned BROpc =
- getPredicateForSetCC(CC, N->getOperand(0).getValueType(), PPCSubTarget);
+ getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
unsigned SelectCCOp;
if (N->getValueType(0) == MVT::i32)
@@ -4953,28 +5078,28 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
else if (N->getValueType(0) == MVT::i64)
SelectCCOp = PPC::SELECT_CC_I8;
else if (N->getValueType(0) == MVT::f32) {
- if (PPCSubTarget->hasP8Vector())
+ if (Subtarget->hasP8Vector())
SelectCCOp = PPC::SELECT_CC_VSSRC;
- else if (PPCSubTarget->hasSPE())
+ else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE4;
else
SelectCCOp = PPC::SELECT_CC_F4;
} else if (N->getValueType(0) == MVT::f64) {
- if (PPCSubTarget->hasVSX())
+ if (Subtarget->hasVSX())
SelectCCOp = PPC::SELECT_CC_VSFRC;
- else if (PPCSubTarget->hasSPE())
+ else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE;
else
SelectCCOp = PPC::SELECT_CC_F8;
} else if (N->getValueType(0) == MVT::f128)
SelectCCOp = PPC::SELECT_CC_F16;
- else if (PPCSubTarget->hasSPE())
+ else if (Subtarget->hasSPE())
SelectCCOp = PPC::SELECT_CC_SPE;
- else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
+ else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
SelectCCOp = PPC::SELECT_CC_QFRC;
- else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
+ else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
SelectCCOp = PPC::SELECT_CC_QSRC;
- else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
+ else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
SelectCCOp = PPC::SELECT_CC_QBRC;
else if (N->getValueType(0) == MVT::v2f64 ||
N->getValueType(0) == MVT::v2i64)
@@ -4988,8 +5113,8 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
return;
}
case ISD::VECTOR_SHUFFLE:
- if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
- N->getValueType(0) == MVT::v2i64)) {
+ if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
+ N->getValueType(0) == MVT::v2i64)) {
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
@@ -5024,7 +5149,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
// For little endian, we must swap the input operands and adjust
// the mask elements (reverse and invert them).
- if (PPCSubTarget->isLittleEndian()) {
+ if (Subtarget->isLittleEndian()) {
std::swap(Op1, Op2);
unsigned tmp = DM[0];
DM[0] = 1 - DM[1];
@@ -5041,7 +5166,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
break;
case PPCISD::BDNZ:
case PPCISD::BDZ: {
- bool IsPPC64 = PPCSubTarget->isPPC64();
+ bool IsPPC64 = Subtarget->isPPC64();
SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
@@ -5069,7 +5194,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
case ISD::BR_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
unsigned PCC =
- getPredicateForSetCC(CC, N->getOperand(2).getValueType(), PPCSubTarget);
+ getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
if (N->getOperand(2).getValueType() == MVT::i1) {
unsigned Opc;
@@ -5122,11 +5247,9 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
return;
}
case PPCISD::TOC_ENTRY: {
- const bool isPPC64 = PPCSubTarget->isPPC64();
- const bool isELFABI = PPCSubTarget->isSVR4ABI();
- const bool isAIXABI = PPCSubTarget->isAIXABI();
-
- assert(!PPCSubTarget->isDarwin() && "TOC is an ELF/XCOFF construct");
+ const bool isPPC64 = Subtarget->isPPC64();
+ const bool isELFABI = Subtarget->isSVR4ABI();
+ const bool isAIXABI = Subtarget->isAIXABI();
// PowerPC only support small, medium and large code model.
const CodeModel::Model CModel = TM.getCodeModel();
@@ -5177,7 +5300,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
// or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
// generate two instructions as described below. The first source operand
// is a symbol reference. If it must be toc-referenced according to
- // PPCSubTarget, we generate:
+ // Subtarget, we generate:
// [32-bit AIX]
// LWZtocL(@sym, ADDIStocHA(%r2, @sym))
// [64-bit ELF/AIX]
@@ -5209,7 +5332,7 @@ void PPCDAGToDAGISel::Select(SDNode *N) {
}
case PPCISD::PPC32_PICGOT:
// Generate a PIC-safe GOT reference.
- assert(PPCSubTarget->is32BitELFABI() &&
+ assert(Subtarget->is32BitELFABI() &&
"PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
PPCLowering->getPointerTy(CurDAG->getDataLayout()),
@@ -5306,7 +5429,7 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
"Only OR nodes are supported for CMPB");
SDValue Res;
- if (!PPCSubTarget->hasCMPB())
+ if (!Subtarget->hasCMPB())
return Res;
if (N->getValueType(0) != MVT::i32 &&
@@ -5517,7 +5640,7 @@ SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
// only one instruction (like a zero or one), then we should fold in those
// operations with the select.
void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
- if (!PPCSubTarget->useCRBits())
+ if (!Subtarget->useCRBits())
return;
if (N->getOpcode() != ISD::ZERO_EXTEND &&
@@ -5549,8 +5672,7 @@ void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
- User->getValueType(0),
- O0.getNode(), O1.getNode());
+ User->getValueType(0), {O0, O1});
};
// FIXME: When the semantics of the interaction between select and undef
@@ -6259,7 +6381,7 @@ static bool PeepholePPC64ZExtGather(SDValue Op32,
}
void PPCDAGToDAGISel::PeepholePPC64ZExt() {
- if (!PPCSubTarget->isPPC64())
+ if (!Subtarget->isPPC64())
return;
// When we zero-extend from i32 to i64, we use a pattern like this:
@@ -6428,10 +6550,6 @@ void PPCDAGToDAGISel::PeepholePPC64ZExt() {
}
void PPCDAGToDAGISel::PeepholePPC64() {
- // These optimizations are currently supported only for 64-bit SVR4.
- if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
- return;
-
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
while (Position != CurDAG->allnodes_begin()) {
@@ -6544,7 +6662,8 @@ void PPCDAGToDAGISel::PeepholePPC64() {
int MaxDisplacement = 7;
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
const GlobalValue *GV = GA->getGlobal();
- MaxDisplacement = std::min((int) GV->getAlignment() - 1, MaxDisplacement);
+ Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
+ MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
}
bool UpdateHBase = false;
@@ -6610,10 +6729,10 @@ void PPCDAGToDAGISel::PeepholePPC64() {
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
SDLoc dl(GA);
const GlobalValue *GV = GA->getGlobal();
+ Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
// We can't perform this optimization for data whose alignment
// is insufficient for the instruction encoding.
- if (GV->getAlignment() < 4 &&
- (RequiresMod4Offset || (Offset % 4) != 0)) {
+ if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
continue;
}
@@ -6621,8 +6740,7 @@ void PPCDAGToDAGISel::PeepholePPC64() {
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
const Constant *C = CP->getConstVal();
- ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
- CP->getAlignment(),
+ ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
Offset, Flags);
}
}