aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/MachineTraceMetrics.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineTraceMetrics.h')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineTraceMetrics.h341
1 files changed, 341 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineTraceMetrics.h b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.h
new file mode 100644
index 000000000000..c5b86f31dba8
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineTraceMetrics.h
@@ -0,0 +1,341 @@
+//===- lib/CodeGen/MachineTraceMetrics.h - Super-scalar metrics -*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interface for the MachineTraceMetrics analysis pass
+// that estimates CPU resource usage and critical data dependency paths through
+// preferred traces. This is useful for super-scalar CPUs where execution speed
+// can be limited both by data dependencies and by limited execution resources.
+//
+// Out-of-order CPUs will often be executing instructions from multiple basic
+// blocks at the same time. This makes it difficult to estimate the resource
+// usage accurately in a single basic block. Resources can be estimated better
+// by looking at a trace through the current basic block.
+//
+// For every block, the MachineTraceMetrics pass will pick a preferred trace
+// that passes through the block. The trace is chosen based on loop structure,
+// branch probabilities, and resource usage. The intention is to pick likely
+// traces that would be the most affected by code transformations.
+//
+// It is expensive to compute a full arbitrary trace for every block, so to
+// save some computations, traces are chosen to be convergent. This means that
+// if the traces through basic blocks A and B ever cross when moving away from
+// A and B, they never diverge again. This applies in both directions - If the
+// traces meet above A and B, they won't diverge when going further back.
+//
+// Traces tend to align with loops. The trace through a block in an inner loop
+// will begin at the loop entry block and end at a back edge. If there are
+// nested loops, the trace may begin and end at those instead.
+//
+// For each trace, we compute the critical path length, which is the number of
+// cycles required to execute the trace when execution is limited by data
+// dependencies only. We also compute the resource height, which is the number
+// of cycles required to execute all instructions in the trace when ignoring
+// data dependencies.
+//
+// Every instruction in the current block has a slack - the number of cycles
+// execution of the instruction can be delayed without extending the critical
+// path.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MACHINE_TRACE_METRICS_H
+#define LLVM_CODEGEN_MACHINE_TRACE_METRICS_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+
+namespace llvm {
+
+class InstrItineraryData;
+class MachineBasicBlock;
+class MachineInstr;
+class MachineLoop;
+class MachineLoopInfo;
+class MachineRegisterInfo;
+class TargetInstrInfo;
+class TargetRegisterInfo;
+class raw_ostream;
+
+class MachineTraceMetrics : public MachineFunctionPass {
+ const MachineFunction *MF;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const InstrItineraryData *ItinData;
+ const MachineRegisterInfo *MRI;
+ const MachineLoopInfo *Loops;
+
+public:
+ class Ensemble;
+ class Trace;
+ static char ID;
+ MachineTraceMetrics();
+ void getAnalysisUsage(AnalysisUsage&) const;
+ bool runOnMachineFunction(MachineFunction&);
+ void releaseMemory();
+ void verifyAnalysis() const;
+
+ friend class Ensemble;
+ friend class Trace;
+
+ /// Per-basic block information that doesn't depend on the trace through the
+ /// block.
+ struct FixedBlockInfo {
+ /// The number of non-trivial instructions in the block.
+ /// Doesn't count PHI and COPY instructions that are likely to be removed.
+ unsigned InstrCount;
+
+ /// True when the block contains calls.
+ bool HasCalls;
+
+ FixedBlockInfo() : InstrCount(~0u), HasCalls(false) {}
+
+ /// Returns true when resource information for this block has been computed.
+ bool hasResources() const { return InstrCount != ~0u; }
+
+ /// Invalidate resource information.
+ void invalidate() { InstrCount = ~0u; }
+ };
+
+ /// Get the fixed resource information about MBB. Compute it on demand.
+ const FixedBlockInfo *getResources(const MachineBasicBlock*);
+
+ /// A virtual register or regunit required by a basic block or its trace
+ /// successors.
+ struct LiveInReg {
+ /// The virtual register required, or a register unit.
+ unsigned Reg;
+
+ /// For virtual registers: Minimum height of the defining instruction.
+ /// For regunits: Height of the highest user in the trace.
+ unsigned Height;
+
+ LiveInReg(unsigned Reg, unsigned Height = 0) : Reg(Reg), Height(Height) {}
+ };
+
+ /// Per-basic block information that relates to a specific trace through the
+ /// block. Convergent traces means that only one of these is required per
+ /// block in a trace ensemble.
+ struct TraceBlockInfo {
+ /// Trace predecessor, or NULL for the first block in the trace.
+ /// Valid when hasValidDepth().
+ const MachineBasicBlock *Pred;
+
+ /// Trace successor, or NULL for the last block in the trace.
+ /// Valid when hasValidHeight().
+ const MachineBasicBlock *Succ;
+
+ /// The block number of the head of the trace. (When hasValidDepth()).
+ unsigned Head;
+
+ /// The block number of the tail of the trace. (When hasValidHeight()).
+ unsigned Tail;
+
+ /// Accumulated number of instructions in the trace above this block.
+ /// Does not include instructions in this block.
+ unsigned InstrDepth;
+
+ /// Accumulated number of instructions in the trace below this block.
+ /// Includes instructions in this block.
+ unsigned InstrHeight;
+
+ TraceBlockInfo() :
+ Pred(0), Succ(0),
+ InstrDepth(~0u), InstrHeight(~0u),
+ HasValidInstrDepths(false), HasValidInstrHeights(false) {}
+
+ /// Returns true if the depth resources have been computed from the trace
+ /// above this block.
+ bool hasValidDepth() const { return InstrDepth != ~0u; }
+
+ /// Returns true if the height resources have been computed from the trace
+ /// below this block.
+ bool hasValidHeight() const { return InstrHeight != ~0u; }
+
+ /// Invalidate depth resources when some block above this one has changed.
+ void invalidateDepth() { InstrDepth = ~0u; HasValidInstrDepths = false; }
+
+ /// Invalidate height resources when a block below this one has changed.
+ void invalidateHeight() { InstrHeight = ~0u; HasValidInstrHeights = false; }
+
+ // Data-dependency-related information. Per-instruction depth and height
+ // are computed from data dependencies in the current trace, using
+ // itinerary data.
+
+ /// Instruction depths have been computed. This implies hasValidDepth().
+ bool HasValidInstrDepths;
+
+ /// Instruction heights have been computed. This implies hasValidHeight().
+ bool HasValidInstrHeights;
+
+ /// Critical path length. This is the number of cycles in the longest data
+ /// dependency chain through the trace. This is only valid when both
+ /// HasValidInstrDepths and HasValidInstrHeights are set.
+ unsigned CriticalPath;
+
+ /// Live-in registers. These registers are defined above the current block
+ /// and used by this block or a block below it.
+ /// This does not include PHI uses in the current block, but it does
+ /// include PHI uses in deeper blocks.
+ SmallVector<LiveInReg, 4> LiveIns;
+
+ void print(raw_ostream&) const;
+ };
+
+ /// InstrCycles represents the cycle height and depth of an instruction in a
+ /// trace.
+ struct InstrCycles {
+ /// Earliest issue cycle as determined by data dependencies and instruction
+ /// latencies from the beginning of the trace. Data dependencies from
+ /// before the trace are not included.
+ unsigned Depth;
+
+ /// Minimum number of cycles from this instruction is issued to the of the
+ /// trace, as determined by data dependencies and instruction latencies.
+ unsigned Height;
+ };
+
+ /// A trace represents a plausible sequence of executed basic blocks that
+ /// passes through the current basic block one. The Trace class serves as a
+ /// handle to internal cached data structures.
+ class Trace {
+ Ensemble &TE;
+ TraceBlockInfo &TBI;
+
+ unsigned getBlockNum() const { return &TBI - &TE.BlockInfo[0]; }
+
+ public:
+ explicit Trace(Ensemble &te, TraceBlockInfo &tbi) : TE(te), TBI(tbi) {}
+ void print(raw_ostream&) const;
+
+ /// Compute the total number of instructions in the trace.
+ unsigned getInstrCount() const {
+ return TBI.InstrDepth + TBI.InstrHeight;
+ }
+
+ /// Return the resource depth of the top/bottom of the trace center block.
+ /// This is the number of cycles required to execute all instructions from
+ /// the trace head to the trace center block. The resource depth only
+ /// considers execution resources, it ignores data dependencies.
+ /// When Bottom is set, instructions in the trace center block are included.
+ unsigned getResourceDepth(bool Bottom) const;
+
+ /// Return the resource length of the trace. This is the number of cycles
+ /// required to execute the instructions in the trace if they were all
+ /// independent, exposing the maximum instruction-level parallelism.
+ ///
+ /// Any blocks in Extrablocks are included as if they were part of the
+ /// trace.
+ unsigned getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks =
+ ArrayRef<const MachineBasicBlock*>()) const;
+
+ /// Return the length of the (data dependency) critical path through the
+ /// trace.
+ unsigned getCriticalPath() const { return TBI.CriticalPath; }
+
+ /// Return the depth and height of MI. The depth is only valid for
+ /// instructions in or above the trace center block. The height is only
+ /// valid for instructions in or below the trace center block.
+ InstrCycles getInstrCycles(const MachineInstr *MI) const {
+ return TE.Cycles.lookup(MI);
+ }
+
+ /// Return the slack of MI. This is the number of cycles MI can be delayed
+ /// before the critical path becomes longer.
+ /// MI must be an instruction in the trace center block.
+ unsigned getInstrSlack(const MachineInstr *MI) const;
+
+ /// Return the Depth of a PHI instruction in a trace center block successor.
+ /// The PHI does not have to be part of the trace.
+ unsigned getPHIDepth(const MachineInstr *PHI) const;
+ };
+
+ /// A trace ensemble is a collection of traces selected using the same
+ /// strategy, for example 'minimum resource height'. There is one trace for
+ /// every block in the function.
+ class Ensemble {
+ SmallVector<TraceBlockInfo, 4> BlockInfo;
+ DenseMap<const MachineInstr*, InstrCycles> Cycles;
+ friend class Trace;
+
+ void computeTrace(const MachineBasicBlock*);
+ void computeDepthResources(const MachineBasicBlock*);
+ void computeHeightResources(const MachineBasicBlock*);
+ unsigned computeCrossBlockCriticalPath(const TraceBlockInfo&);
+ void computeInstrDepths(const MachineBasicBlock*);
+ void computeInstrHeights(const MachineBasicBlock*);
+ void addLiveIns(const MachineInstr *DefMI,
+ ArrayRef<const MachineBasicBlock*> Trace);
+
+ protected:
+ MachineTraceMetrics &MTM;
+ virtual const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) =0;
+ virtual const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) =0;
+ explicit Ensemble(MachineTraceMetrics*);
+ const MachineLoop *getLoopFor(const MachineBasicBlock*) const;
+ const TraceBlockInfo *getDepthResources(const MachineBasicBlock*) const;
+ const TraceBlockInfo *getHeightResources(const MachineBasicBlock*) const;
+
+ public:
+ virtual ~Ensemble();
+ virtual const char *getName() const =0;
+ void print(raw_ostream&) const;
+ void invalidate(const MachineBasicBlock *MBB);
+ void verify() const;
+
+ /// Get the trace that passes through MBB.
+ /// The trace is computed on demand.
+ Trace getTrace(const MachineBasicBlock *MBB);
+ };
+
+ /// Strategies for selecting traces.
+ enum Strategy {
+ /// Select the trace through a block that has the fewest instructions.
+ TS_MinInstrCount,
+
+ TS_NumStrategies
+ };
+
+ /// Get the trace ensemble representing the given trace selection strategy.
+ /// The returned Ensemble object is owned by the MachineTraceMetrics analysis,
+ /// and valid for the lifetime of the analysis pass.
+ Ensemble *getEnsemble(Strategy);
+
+ /// Invalidate cached information about MBB. This must be called *before* MBB
+ /// is erased, or the CFG is otherwise changed.
+ ///
+ /// This invalidates per-block information about resource usage for MBB only,
+ /// and it invalidates per-trace information for any trace that passes
+ /// through MBB.
+ ///
+ /// Call Ensemble::getTrace() again to update any trace handles.
+ void invalidate(const MachineBasicBlock *MBB);
+
+private:
+ // One entry per basic block, indexed by block number.
+ SmallVector<FixedBlockInfo, 4> BlockInfo;
+
+ // One ensemble per strategy.
+ Ensemble* Ensembles[TS_NumStrategies];
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS,
+ const MachineTraceMetrics::Trace &Tr) {
+ Tr.print(OS);
+ return OS;
+}
+
+inline raw_ostream &operator<<(raw_ostream &OS,
+ const MachineTraceMetrics::Ensemble &En) {
+ En.print(OS);
+ return OS;
+}
+} // end namespace llvm
+
+#endif