aboutsummaryrefslogtreecommitdiff
path: root/doc/man3/ASYNC_WAIT_CTX_new.pod
diff options
context:
space:
mode:
Diffstat (limited to 'doc/man3/ASYNC_WAIT_CTX_new.pod')
-rw-r--r--doc/man3/ASYNC_WAIT_CTX_new.pod144
1 files changed, 144 insertions, 0 deletions
diff --git a/doc/man3/ASYNC_WAIT_CTX_new.pod b/doc/man3/ASYNC_WAIT_CTX_new.pod
new file mode 100644
index 000000000000..204280210e04
--- /dev/null
+++ b/doc/man3/ASYNC_WAIT_CTX_new.pod
@@ -0,0 +1,144 @@
+=pod
+
+=head1 NAME
+
+ASYNC_WAIT_CTX_new, ASYNC_WAIT_CTX_free, ASYNC_WAIT_CTX_set_wait_fd,
+ASYNC_WAIT_CTX_get_fd, ASYNC_WAIT_CTX_get_all_fds,
+ASYNC_WAIT_CTX_get_changed_fds, ASYNC_WAIT_CTX_clear_fd - functions to manage
+waiting for asynchronous jobs to complete
+
+=head1 SYNOPSIS
+
+ #include <openssl/async.h>
+
+ ASYNC_WAIT_CTX *ASYNC_WAIT_CTX_new(void);
+ void ASYNC_WAIT_CTX_free(ASYNC_WAIT_CTX *ctx);
+ int ASYNC_WAIT_CTX_set_wait_fd(ASYNC_WAIT_CTX *ctx, const void *key,
+ OSSL_ASYNC_FD fd,
+ void *custom_data,
+ void (*cleanup)(ASYNC_WAIT_CTX *, const void *,
+ OSSL_ASYNC_FD, void *));
+ int ASYNC_WAIT_CTX_get_fd(ASYNC_WAIT_CTX *ctx, const void *key,
+ OSSL_ASYNC_FD *fd, void **custom_data);
+ int ASYNC_WAIT_CTX_get_all_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *fd,
+ size_t *numfds);
+ int ASYNC_WAIT_CTX_get_changed_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *addfd,
+ size_t *numaddfds, OSSL_ASYNC_FD *delfd,
+ size_t *numdelfds);
+ int ASYNC_WAIT_CTX_clear_fd(ASYNC_WAIT_CTX *ctx, const void *key);
+
+
+=head1 DESCRIPTION
+
+For an overview of how asynchronous operations are implemented in OpenSSL see
+L<ASYNC_start_job(3)>. An ASYNC_WAIT_CTX object represents an asynchronous
+"session", i.e. a related set of crypto operations. For example in SSL terms
+this would have a one-to-one correspondence with an SSL connection.
+
+Application code must create an ASYNC_WAIT_CTX using the ASYNC_WAIT_CTX_new()
+function prior to calling ASYNC_start_job() (see L<ASYNC_start_job(3)>). When
+the job is started it is associated with the ASYNC_WAIT_CTX for the duration of
+that job. An ASYNC_WAIT_CTX should only be used for one ASYNC_JOB at any one
+time, but can be reused after an ASYNC_JOB has finished for a subsequent
+ASYNC_JOB. When the session is complete (e.g. the SSL connection is closed),
+application code cleans up with ASYNC_WAIT_CTX_free().
+
+ASYNC_WAIT_CTXs can have "wait" file descriptors associated with them. Calling
+ASYNC_WAIT_CTX_get_all_fds() and passing in a pointer to an ASYNC_WAIT_CTX in
+the B<ctx> parameter will return the wait file descriptors associated with that
+job in B<*fd>. The number of file descriptors returned will be stored in
+B<*numfds>. It is the caller's responsibility to ensure that sufficient memory
+has been allocated in B<*fd> to receive all the file descriptors. Calling
+ASYNC_WAIT_CTX_get_all_fds() with a NULL B<fd> value will return no file
+descriptors but will still populate B<*numfds>. Therefore application code is
+typically expected to call this function twice: once to get the number of fds,
+and then again when sufficient memory has been allocated. If only one
+asynchronous engine is being used then normally this call will only ever return
+one fd. If multiple asynchronous engines are being used then more could be
+returned.
+
+The function ASYNC_WAIT_CTX_get_changed_fds() can be used to detect if any fds
+have changed since the last call time ASYNC_start_job() returned an ASYNC_PAUSE
+result (or since the ASYNC_WAIT_CTX was created if no ASYNC_PAUSE result has
+been received). The B<numaddfds> and B<numdelfds> parameters will be populated
+with the number of fds added or deleted respectively. B<*addfd> and B<*delfd>
+will be populated with the list of added and deleted fds respectively. Similarly
+to ASYNC_WAIT_CTX_get_all_fds() either of these can be NULL, but if they are not
+NULL then the caller is responsible for ensuring sufficient memory is allocated.
+
+Implementors of async aware code (e.g. engines) are encouraged to return a
+stable fd for the lifetime of the ASYNC_WAIT_CTX in order to reduce the "churn"
+of regularly changing fds - although no guarantees of this are provided to
+applications.
+
+Applications can wait for the file descriptor to be ready for "read" using a
+system function call such as select or poll (being ready for "read" indicates
+that the job should be resumed). If no file descriptor is made available then an
+application will have to periodically "poll" the job by attempting to restart it
+to see if it is ready to continue.
+
+Async aware code (e.g. engines) can get the current ASYNC_WAIT_CTX from the job
+via L<ASYNC_get_wait_ctx(3)> and provide a file descriptor to use for waiting
+on by calling ASYNC_WAIT_CTX_set_wait_fd(). Typically this would be done by an
+engine immediately prior to calling ASYNC_pause_job() and not by end user code.
+An existing association with a file descriptor can be obtained using
+ASYNC_WAIT_CTX_get_fd() and cleared using ASYNC_WAIT_CTX_clear_fd(). Both of
+these functions requires a B<key> value which is unique to the async aware
+code. This could be any unique value but a good candidate might be the
+B<ENGINE *> for the engine. The B<custom_data> parameter can be any value, and
+will be returned in a subsequent call to ASYNC_WAIT_CTX_get_fd(). The
+ASYNC_WAIT_CTX_set_wait_fd() function also expects a pointer to a "cleanup"
+routine. This can be NULL but if provided will automatically get called when
+the ASYNC_WAIT_CTX is freed, and gives the engine the opportunity to close the
+fd or any other resources. Note: The "cleanup" routine does not get called if
+the fd is cleared directly via a call to ASYNC_WAIT_CTX_clear_fd().
+
+An example of typical usage might be an async capable engine. User code would
+initiate cryptographic operations. The engine would initiate those operations
+asynchronously and then call ASYNC_WAIT_CTX_set_wait_fd() followed by
+ASYNC_pause_job() to return control to the user code. The user code can then
+perform other tasks or wait for the job to be ready by calling "select" or other
+similar function on the wait file descriptor. The engine can signal to the user
+code that the job should be resumed by making the wait file descriptor
+"readable". Once resumed the engine should clear the wake signal on the wait
+file descriptor.
+
+=head1 RETURN VALUES
+
+ASYNC_WAIT_CTX_new() returns a pointer to the newly allocated ASYNC_WAIT_CTX or
+NULL on error.
+
+ASYNC_WAIT_CTX_set_wait_fd, ASYNC_WAIT_CTX_get_fd, ASYNC_WAIT_CTX_get_all_fds,
+ASYNC_WAIT_CTX_get_changed_fds and ASYNC_WAIT_CTX_clear_fd all return 1 on
+success or 0 on error.
+
+=head1 NOTES
+
+On Windows platforms the openssl/async.h header is dependent on some
+of the types customarily made available by including windows.h. The
+application developer is likely to require control over when the latter
+is included, commonly as one of the first included headers. Therefore
+it is defined as an application developer's responsibility to include
+windows.h prior to async.h.
+
+=head1 SEE ALSO
+
+L<crypto(7)>, L<ASYNC_start_job(3)>
+
+=head1 HISTORY
+
+ASYNC_WAIT_CTX_new, ASYNC_WAIT_CTX_free, ASYNC_WAIT_CTX_set_wait_fd,
+ASYNC_WAIT_CTX_get_fd, ASYNC_WAIT_CTX_get_all_fds,
+ASYNC_WAIT_CTX_get_changed_fds, ASYNC_WAIT_CTX_clear_fd were first added to
+OpenSSL 1.1.0.
+
+=head1 COPYRIGHT
+
+Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
+
+Licensed under the OpenSSL license (the "License"). You may not use
+this file except in compliance with the License. You can obtain a copy
+in the file LICENSE in the source distribution or at
+L<https://www.openssl.org/source/license.html>.
+
+=cut