aboutsummaryrefslogtreecommitdiff
path: root/doc/man3/ASYNC_start_job.pod
diff options
context:
space:
mode:
Diffstat (limited to 'doc/man3/ASYNC_start_job.pod')
-rw-r--r--doc/man3/ASYNC_start_job.pod331
1 files changed, 331 insertions, 0 deletions
diff --git a/doc/man3/ASYNC_start_job.pod b/doc/man3/ASYNC_start_job.pod
new file mode 100644
index 000000000000..21b77a96b95e
--- /dev/null
+++ b/doc/man3/ASYNC_start_job.pod
@@ -0,0 +1,331 @@
+=pod
+
+=head1 NAME
+
+ASYNC_get_wait_ctx,
+ASYNC_init_thread, ASYNC_cleanup_thread, ASYNC_start_job, ASYNC_pause_job,
+ASYNC_get_current_job, ASYNC_block_pause, ASYNC_unblock_pause, ASYNC_is_capable
+- asynchronous job management functions
+
+=head1 SYNOPSIS
+
+ #include <openssl/async.h>
+
+ int ASYNC_init_thread(size_t max_size, size_t init_size);
+ void ASYNC_cleanup_thread(void);
+
+ int ASYNC_start_job(ASYNC_JOB **job, ASYNC_WAIT_CTX *ctx, int *ret,
+ int (*func)(void *), void *args, size_t size);
+ int ASYNC_pause_job(void);
+
+ ASYNC_JOB *ASYNC_get_current_job(void);
+ ASYNC_WAIT_CTX *ASYNC_get_wait_ctx(ASYNC_JOB *job);
+ void ASYNC_block_pause(void);
+ void ASYNC_unblock_pause(void);
+
+ int ASYNC_is_capable(void);
+
+=head1 DESCRIPTION
+
+OpenSSL implements asynchronous capabilities through an ASYNC_JOB. This
+represents code that can be started and executes until some event occurs. At
+that point the code can be paused and control returns to user code until some
+subsequent event indicates that the job can be resumed.
+
+The creation of an ASYNC_JOB is a relatively expensive operation. Therefore, for
+efficiency reasons, jobs can be created up front and reused many times. They are
+held in a pool until they are needed, at which point they are removed from the
+pool, used, and then returned to the pool when the job completes. If the user
+application is multi-threaded, then ASYNC_init_thread() may be called for each
+thread that will initiate asynchronous jobs. Before
+user code exits per-thread resources need to be cleaned up. This will normally
+occur automatically (see L<OPENSSL_init_crypto(3)>) but may be explicitly
+initiated by using ASYNC_cleanup_thread(). No asynchronous jobs must be
+outstanding for the thread when ASYNC_cleanup_thread() is called. Failing to
+ensure this will result in memory leaks.
+
+The B<max_size> argument limits the number of ASYNC_JOBs that will be held in
+the pool. If B<max_size> is set to 0 then no upper limit is set. When an
+ASYNC_JOB is needed but there are none available in the pool already then one
+will be automatically created, as long as the total of ASYNC_JOBs managed by the
+pool does not exceed B<max_size>. When the pool is first initialised
+B<init_size> ASYNC_JOBs will be created immediately. If ASYNC_init_thread() is
+not called before the pool is first used then it will be called automatically
+with a B<max_size> of 0 (no upper limit) and an B<init_size> of 0 (no ASYNC_JOBs
+created up front).
+
+An asynchronous job is started by calling the ASYNC_start_job() function.
+Initially B<*job> should be NULL. B<ctx> should point to an ASYNC_WAIT_CTX
+object created through the L<ASYNC_WAIT_CTX_new(3)> function. B<ret> should
+point to a location where the return value of the asynchronous function should
+be stored on completion of the job. B<func> represents the function that should
+be started asynchronously. The data pointed to by B<args> and of size B<size>
+will be copied and then passed as an argument to B<func> when the job starts.
+ASYNC_start_job will return one of the following values:
+
+=over 4
+
+=item B<ASYNC_ERR>
+
+An error occurred trying to start the job. Check the OpenSSL error queue (e.g.
+see L<ERR_print_errors(3)>) for more details.
+
+=item B<ASYNC_NO_JOBS>
+
+There are no jobs currently available in the pool. This call can be retried
+again at a later time.
+
+=item B<ASYNC_PAUSE>
+
+The job was successfully started but was "paused" before it completed (see
+ASYNC_pause_job() below). A handle to the job is placed in B<*job>. Other work
+can be performed (if desired) and the job restarted at a later time. To restart
+a job call ASYNC_start_job() again passing the job handle in B<*job>. The
+B<func>, B<args> and B<size> parameters will be ignored when restarting a job.
+When restarting a job ASYNC_start_job() B<must> be called from the same thread
+that the job was originally started from.
+
+=item B<ASYNC_FINISH>
+
+The job completed. B<*job> will be NULL and the return value from B<func> will
+be placed in B<*ret>.
+
+=back
+
+At any one time there can be a maximum of one job actively running per thread
+(you can have many that are paused). ASYNC_get_current_job() can be used to get
+a pointer to the currently executing ASYNC_JOB. If no job is currently executing
+then this will return NULL.
+
+If executing within the context of a job (i.e. having been called directly or
+indirectly by the function "func" passed as an argument to ASYNC_start_job())
+then ASYNC_pause_job() will immediately return control to the calling
+application with ASYNC_PAUSE returned from the ASYNC_start_job() call. A
+subsequent call to ASYNC_start_job passing in the relevant ASYNC_JOB in the
+B<*job> parameter will resume execution from the ASYNC_pause_job() call. If
+ASYNC_pause_job() is called whilst not within the context of a job then no
+action is taken and ASYNC_pause_job() returns immediately.
+
+ASYNC_get_wait_ctx() can be used to get a pointer to the ASYNC_WAIT_CTX
+for the B<job>. ASYNC_WAIT_CTXs can have a "wait" file descriptor associated
+with them. Applications can wait for the file descriptor to be ready for "read"
+using a system function call such as select or poll (being ready for "read"
+indicates that the job should be resumed). If no file descriptor is made
+available then an application will have to periodically "poll" the job by
+attempting to restart it to see if it is ready to continue.
+
+An example of typical usage might be an async capable engine. User code would
+initiate cryptographic operations. The engine would initiate those operations
+asynchronously and then call L<ASYNC_WAIT_CTX_set_wait_fd(3)> followed by
+ASYNC_pause_job() to return control to the user code. The user code can then
+perform other tasks or wait for the job to be ready by calling "select" or other
+similar function on the wait file descriptor. The engine can signal to the user
+code that the job should be resumed by making the wait file descriptor
+"readable". Once resumed the engine should clear the wake signal on the wait
+file descriptor.
+
+The ASYNC_block_pause() function will prevent the currently active job from
+pausing. The block will remain in place until a subsequent call to
+ASYNC_unblock_pause(). These functions can be nested, e.g. if you call
+ASYNC_block_pause() twice then you must call ASYNC_unblock_pause() twice in
+order to re-enable pausing. If these functions are called while there is no
+currently active job then they have no effect. This functionality can be useful
+to avoid deadlock scenarios. For example during the execution of an ASYNC_JOB an
+application acquires a lock. It then calls some cryptographic function which
+invokes ASYNC_pause_job(). This returns control back to the code that created
+the ASYNC_JOB. If that code then attempts to acquire the same lock before
+resuming the original job then a deadlock can occur. By calling
+ASYNC_block_pause() immediately after acquiring the lock and
+ASYNC_unblock_pause() immediately before releasing it then this situation cannot
+occur.
+
+Some platforms cannot support async operations. The ASYNC_is_capable() function
+can be used to detect whether the current platform is async capable or not.
+
+=head1 RETURN VALUES
+
+ASYNC_init_thread returns 1 on success or 0 otherwise.
+
+ASYNC_start_job returns one of ASYNC_ERR, ASYNC_NO_JOBS, ASYNC_PAUSE or
+ASYNC_FINISH as described above.
+
+ASYNC_pause_job returns 0 if an error occurred or 1 on success. If called when
+not within the context of an ASYNC_JOB then this is counted as success so 1 is
+returned.
+
+ASYNC_get_current_job returns a pointer to the currently executing ASYNC_JOB or
+NULL if not within the context of a job.
+
+ASYNC_get_wait_ctx() returns a pointer to the ASYNC_WAIT_CTX for the job.
+
+ASYNC_is_capable() returns 1 if the current platform is async capable or 0
+otherwise.
+
+=head1 NOTES
+
+On Windows platforms the openssl/async.h header is dependent on some
+of the types customarily made available by including windows.h. The
+application developer is likely to require control over when the latter
+is included, commonly as one of the first included headers. Therefore
+it is defined as an application developer's responsibility to include
+windows.h prior to async.h.
+
+=head1 EXAMPLE
+
+The following example demonstrates how to use most of the core async APIs:
+
+ #ifdef _WIN32
+ # include <windows.h>
+ #endif
+ #include <stdio.h>
+ #include <unistd.h>
+ #include <openssl/async.h>
+ #include <openssl/crypto.h>
+
+ int unique = 0;
+
+ void cleanup(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD r, void *vw)
+ {
+ OSSL_ASYNC_FD *w = (OSSL_ASYNC_FD *)vw;
+
+ close(r);
+ close(*w);
+ OPENSSL_free(w);
+ }
+
+ int jobfunc(void *arg)
+ {
+ ASYNC_JOB *currjob;
+ unsigned char *msg;
+ int pipefds[2] = {0, 0};
+ OSSL_ASYNC_FD *wptr;
+ char buf = 'X';
+
+ currjob = ASYNC_get_current_job();
+ if (currjob != NULL) {
+ printf("Executing within a job\n");
+ } else {
+ printf("Not executing within a job - should not happen\n");
+ return 0;
+ }
+
+ msg = (unsigned char *)arg;
+ printf("Passed in message is: %s\n", msg);
+
+ if (pipe(pipefds) != 0) {
+ printf("Failed to create pipe\n");
+ return 0;
+ }
+ wptr = OPENSSL_malloc(sizeof(OSSL_ASYNC_FD));
+ if (wptr == NULL) {
+ printf("Failed to malloc\n");
+ return 0;
+ }
+ *wptr = pipefds[1];
+ ASYNC_WAIT_CTX_set_wait_fd(ASYNC_get_wait_ctx(currjob), &unique,
+ pipefds[0], wptr, cleanup);
+
+ /*
+ * Normally some external event would cause this to happen at some
+ * later point - but we do it here for demo purposes, i.e.
+ * immediately signalling that the job is ready to be woken up after
+ * we return to main via ASYNC_pause_job().
+ */
+ write(pipefds[1], &buf, 1);
+
+ /* Return control back to main */
+ ASYNC_pause_job();
+
+ /* Clear the wake signal */
+ read(pipefds[0], &buf, 1);
+
+ printf ("Resumed the job after a pause\n");
+
+ return 1;
+ }
+
+ int main(void)
+ {
+ ASYNC_JOB *job = NULL;
+ ASYNC_WAIT_CTX *ctx = NULL;
+ int ret;
+ OSSL_ASYNC_FD waitfd;
+ fd_set waitfdset;
+ size_t numfds;
+ unsigned char msg[13] = "Hello world!";
+
+ printf("Starting...\n");
+
+ ctx = ASYNC_WAIT_CTX_new();
+ if (ctx == NULL) {
+ printf("Failed to create ASYNC_WAIT_CTX\n");
+ abort();
+ }
+
+ for (;;) {
+ switch (ASYNC_start_job(&job, ctx, &ret, jobfunc, msg, sizeof(msg))) {
+ case ASYNC_ERR:
+ case ASYNC_NO_JOBS:
+ printf("An error occurred\n");
+ goto end;
+ case ASYNC_PAUSE:
+ printf("Job was paused\n");
+ break;
+ case ASYNC_FINISH:
+ printf("Job finished with return value %d\n", ret);
+ goto end;
+ }
+
+ /* Wait for the job to be woken */
+ printf("Waiting for the job to be woken up\n");
+
+ if (!ASYNC_WAIT_CTX_get_all_fds(ctx, NULL, &numfds)
+ || numfds > 1) {
+ printf("Unexpected number of fds\n");
+ abort();
+ }
+ ASYNC_WAIT_CTX_get_all_fds(ctx, &waitfd, &numfds);
+ FD_ZERO(&waitfdset);
+ FD_SET(waitfd, &waitfdset);
+ select(waitfd + 1, &waitfdset, NULL, NULL, NULL);
+ }
+
+ end:
+ ASYNC_WAIT_CTX_free(ctx);
+ printf("Finishing\n");
+
+ return 0;
+ }
+
+The expected output from executing the above example program is:
+
+ Starting...
+ Executing within a job
+ Passed in message is: Hello world!
+ Job was paused
+ Waiting for the job to be woken up
+ Resumed the job after a pause
+ Job finished with return value 1
+ Finishing
+
+=head1 SEE ALSO
+
+L<crypto(7)>, L<ERR_print_errors(3)>
+
+=head1 HISTORY
+
+ASYNC_init_thread, ASYNC_cleanup_thread,
+ASYNC_start_job, ASYNC_pause_job, ASYNC_get_current_job, ASYNC_get_wait_ctx(),
+ASYNC_block_pause(), ASYNC_unblock_pause() and ASYNC_is_capable() were first
+added to OpenSSL 1.1.0.
+
+=head1 COPYRIGHT
+
+Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
+
+Licensed under the OpenSSL license (the "License"). You may not use
+this file except in compliance with the License. You can obtain a copy
+in the file LICENSE in the source distribution or at
+L<https://www.openssl.org/source/license.html>.
+
+=cut