aboutsummaryrefslogtreecommitdiff
path: root/docs/Bugpoint.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/Bugpoint.rst')
-rw-r--r--docs/Bugpoint.rst218
1 files changed, 218 insertions, 0 deletions
diff --git a/docs/Bugpoint.rst b/docs/Bugpoint.rst
new file mode 100644
index 000000000000..9ccf0cc2d9d6
--- /dev/null
+++ b/docs/Bugpoint.rst
@@ -0,0 +1,218 @@
+.. _bugpoint:
+
+====================================
+LLVM bugpoint tool: design and usage
+====================================
+
+.. contents::
+ :local:
+
+Description
+===========
+
+``bugpoint`` narrows down the source of problems in LLVM tools and passes. It
+can be used to debug three types of failures: optimizer crashes, miscompilations
+by optimizers, or bad native code generation (including problems in the static
+and JIT compilers). It aims to reduce large test cases to small, useful ones.
+For example, if ``opt`` crashes while optimizing a file, it will identify the
+optimization (or combination of optimizations) that causes the crash, and reduce
+the file down to a small example which triggers the crash.
+
+For detailed case scenarios, such as debugging ``opt``, or one of the LLVM code
+generators, see `How To Submit a Bug Report document <HowToSubmitABug.html>`_.
+
+Design Philosophy
+=================
+
+``bugpoint`` is designed to be a useful tool without requiring any hooks into
+the LLVM infrastructure at all. It works with any and all LLVM passes and code
+generators, and does not need to "know" how they work. Because of this, it may
+appear to do stupid things or miss obvious simplifications. ``bugpoint`` is
+also designed to trade off programmer time for computer time in the
+compiler-debugging process; consequently, it may take a long period of
+(unattended) time to reduce a test case, but we feel it is still worth it. Note
+that ``bugpoint`` is generally very quick unless debugging a miscompilation
+where each test of the program (which requires executing it) takes a long time.
+
+Automatic Debugger Selection
+----------------------------
+
+``bugpoint`` reads each ``.bc`` or ``.ll`` file specified on the command line
+and links them together into a single module, called the test program. If any
+LLVM passes are specified on the command line, it runs these passes on the test
+program. If any of the passes crash, or if they produce malformed output (which
+causes the verifier to abort), ``bugpoint`` starts the `crash debugger`_.
+
+Otherwise, if the ``-output`` option was not specified, ``bugpoint`` runs the
+test program with the "safe" backend (which is assumed to generate good code) to
+generate a reference output. Once ``bugpoint`` has a reference output for the
+test program, it tries executing it with the selected code generator. If the
+selected code generator crashes, ``bugpoint`` starts the `crash debugger`_ on
+the code generator. Otherwise, if the resulting output differs from the
+reference output, it assumes the difference resulted from a code generator
+failure, and starts the `code generator debugger`_.
+
+Finally, if the output of the selected code generator matches the reference
+output, ``bugpoint`` runs the test program after all of the LLVM passes have
+been applied to it. If its output differs from the reference output, it assumes
+the difference resulted from a failure in one of the LLVM passes, and enters the
+`miscompilation debugger`_. Otherwise, there is no problem ``bugpoint`` can
+debug.
+
+.. _crash debugger:
+
+Crash debugger
+--------------
+
+If an optimizer or code generator crashes, ``bugpoint`` will try as hard as it
+can to reduce the list of passes (for optimizer crashes) and the size of the
+test program. First, ``bugpoint`` figures out which combination of optimizer
+passes triggers the bug. This is useful when debugging a problem exposed by
+``opt``, for example, because it runs over 38 passes.
+
+Next, ``bugpoint`` tries removing functions from the test program, to reduce its
+size. Usually it is able to reduce a test program to a single function, when
+debugging intraprocedural optimizations. Once the number of functions has been
+reduced, it attempts to delete various edges in the control flow graph, to
+reduce the size of the function as much as possible. Finally, ``bugpoint``
+deletes any individual LLVM instructions whose absence does not eliminate the
+failure. At the end, ``bugpoint`` should tell you what passes crash, give you a
+bitcode file, and give you instructions on how to reproduce the failure with
+``opt`` or ``llc``.
+
+.. _code generator debugger:
+
+Code generator debugger
+-----------------------
+
+The code generator debugger attempts to narrow down the amount of code that is
+being miscompiled by the selected code generator. To do this, it takes the test
+program and partitions it into two pieces: one piece which it compiles with the
+"safe" backend (into a shared object), and one piece which it runs with either
+the JIT or the static LLC compiler. It uses several techniques to reduce the
+amount of code pushed through the LLVM code generator, to reduce the potential
+scope of the problem. After it is finished, it emits two bitcode files (called
+"test" [to be compiled with the code generator] and "safe" [to be compiled with
+the "safe" backend], respectively), and instructions for reproducing the
+problem. The code generator debugger assumes that the "safe" backend produces
+good code.
+
+.. _miscompilation debugger:
+
+Miscompilation debugger
+-----------------------
+
+The miscompilation debugger works similarly to the code generator debugger. It
+works by splitting the test program into two pieces, running the optimizations
+specified on one piece, linking the two pieces back together, and then executing
+the result. It attempts to narrow down the list of passes to the one (or few)
+which are causing the miscompilation, then reduce the portion of the test
+program which is being miscompiled. The miscompilation debugger assumes that
+the selected code generator is working properly.
+
+Advice for using bugpoint
+=========================
+
+``bugpoint`` can be a remarkably useful tool, but it sometimes works in
+non-obvious ways. Here are some hints and tips:
+
+* In the code generator and miscompilation debuggers, ``bugpoint`` only works
+ with programs that have deterministic output. Thus, if the program outputs
+ ``argv[0]``, the date, time, or any other "random" data, ``bugpoint`` may
+ misinterpret differences in these data, when output, as the result of a
+ miscompilation. Programs should be temporarily modified to disable outputs
+ that are likely to vary from run to run.
+
+* In the code generator and miscompilation debuggers, debugging will go faster
+ if you manually modify the program or its inputs to reduce the runtime, but
+ still exhibit the problem.
+
+* ``bugpoint`` is extremely useful when working on a new optimization: it helps
+ track down regressions quickly. To avoid having to relink ``bugpoint`` every
+ time you change your optimization however, have ``bugpoint`` dynamically load
+ your optimization with the ``-load`` option.
+
+* ``bugpoint`` can generate a lot of output and run for a long period of time.
+ It is often useful to capture the output of the program to file. For example,
+ in the C shell, you can run:
+
+ .. code-block:: bash
+
+ bugpoint ... |& tee bugpoint.log
+
+ to get a copy of ``bugpoint``'s output in the file ``bugpoint.log``, as well
+ as on your terminal.
+
+* ``bugpoint`` cannot debug problems with the LLVM linker. If ``bugpoint``
+ crashes before you see its "All input ok" message, you might try ``llvm-link
+ -v`` on the same set of input files. If that also crashes, you may be
+ experiencing a linker bug.
+
+* ``bugpoint`` is useful for proactively finding bugs in LLVM. Invoking
+ ``bugpoint`` with the ``-find-bugs`` option will cause the list of specified
+ optimizations to be randomized and applied to the program. This process will
+ repeat until a bug is found or the user kills ``bugpoint``.
+
+What to do when bugpoint isn't enough
+=====================================
+
+Sometimes, ``bugpoint`` is not enough. In particular, InstCombine and
+TargetLowering both have visitor structured code with lots of potential
+transformations. If the process of using bugpoint has left you with still too
+much code to figure out and the problem seems to be in instcombine, the
+following steps may help. These same techniques are useful with TargetLowering
+as well.
+
+Turn on ``-debug-only=instcombine`` and see which transformations within
+instcombine are firing by selecting out lines with "``IC``" in them.
+
+At this point, you have a decision to make. Is the number of transformations
+small enough to step through them using a debugger? If so, then try that.
+
+If there are too many transformations, then a source modification approach may
+be helpful. In this approach, you can modify the source code of instcombine to
+disable just those transformations that are being performed on your test input
+and perform a binary search over the set of transformations. One set of places
+to modify are the "``visit*``" methods of ``InstCombiner`` (*e.g.*
+``visitICmpInst``) by adding a "``return false``" as the first line of the
+method.
+
+If that still doesn't remove enough, then change the caller of
+``InstCombiner::DoOneIteration``, ``InstCombiner::runOnFunction`` to limit the
+number of iterations.
+
+You may also find it useful to use "``-stats``" now to see what parts of
+instcombine are firing. This can guide where to put additional reporting code.
+
+At this point, if the amount of transformations is still too large, then
+inserting code to limit whether or not to execute the body of the code in the
+visit function can be helpful. Add a static counter which is incremented on
+every invocation of the function. Then add code which simply returns false on
+desired ranges. For example:
+
+.. code-block:: c++
+
+
+ static int calledCount = 0;
+ calledCount++;
+ DEBUG(if (calledCount < 212) return false);
+ DEBUG(if (calledCount > 217) return false);
+ DEBUG(if (calledCount == 213) return false);
+ DEBUG(if (calledCount == 214) return false);
+ DEBUG(if (calledCount == 215) return false);
+ DEBUG(if (calledCount == 216) return false);
+ DEBUG(dbgs() << "visitXOR calledCount: " << calledCount << "\n");
+ DEBUG(dbgs() << "I: "; I->dump());
+
+could be added to ``visitXOR`` to limit ``visitXor`` to being applied only to
+calls 212 and 217. This is from an actual test case and raises an important
+point---a simple binary search may not be sufficient, as transformations that
+interact may require isolating more than one call. In TargetLowering, use
+``return SDNode();`` instead of ``return false;``.
+
+Now that that the number of transformations is down to a manageable number, try
+examining the output to see if you can figure out which transformations are
+being done. If that can be figured out, then do the usual debugging. If which
+code corresponds to the transformation being performed isn't obvious, set a
+breakpoint after the call count based disabling and step through the code.
+Alternatively, you can use "``printf``" style debugging to report waypoints.