aboutsummaryrefslogtreecommitdiff
path: root/fuzzing/fuzzing.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'fuzzing/fuzzing.cpp')
-rw-r--r--fuzzing/fuzzing.cpp551
1 files changed, 551 insertions, 0 deletions
diff --git a/fuzzing/fuzzing.cpp b/fuzzing/fuzzing.cpp
new file mode 100644
index 000000000000..9471a1d0af90
--- /dev/null
+++ b/fuzzing/fuzzing.cpp
@@ -0,0 +1,551 @@
+// -*- C++ -*-
+//===------------------------- fuzzing.cpp -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// A set of routines to use when fuzzing the algorithms in libc++
+// Each one tests a single algorithm.
+//
+// They all have the form of:
+// int `algorithm`(const uint8_t *data, size_t size);
+//
+// They perform the operation, and then check to see if the results are correct.
+// If so, they return zero, and non-zero otherwise.
+//
+// For example, sort calls std::sort, then checks two things:
+// (1) The resulting vector is sorted
+// (2) The resulting vector contains the same elements as the original data.
+
+
+
+#include "fuzzing.h"
+#include <vector>
+#include <algorithm>
+#include <functional>
+#include <regex>
+#include <cassert>
+
+#include <iostream>
+
+// If we had C++14, we could use the four iterator version of is_permutation and equal
+
+namespace fuzzing {
+
+// This is a struct we can use to test the stable_XXX algorithms.
+// perform the operation on the key, then check the order of the payload.
+
+struct stable_test {
+ uint8_t key;
+ size_t payload;
+
+ stable_test(uint8_t k) : key(k), payload(0) {}
+ stable_test(uint8_t k, size_t p) : key(k), payload(p) {}
+ };
+
+void swap(stable_test &lhs, stable_test &rhs)
+{
+ using std::swap;
+ swap(lhs.key, rhs.key);
+ swap(lhs.payload, rhs.payload);
+}
+
+struct key_less
+{
+ bool operator () (const stable_test &lhs, const stable_test &rhs) const
+ {
+ return lhs.key < rhs.key;
+ }
+};
+
+struct payload_less
+{
+ bool operator () (const stable_test &lhs, const stable_test &rhs) const
+ {
+ return lhs.payload < rhs.payload;
+ }
+};
+
+struct total_less
+{
+ bool operator () (const stable_test &lhs, const stable_test &rhs) const
+ {
+ return lhs.key == rhs.key ? lhs.payload < rhs.payload : lhs.key < rhs.key;
+ }
+};
+
+bool operator==(const stable_test &lhs, const stable_test &rhs)
+{
+ return lhs.key == rhs.key && lhs.payload == rhs.payload;
+}
+
+
+template<typename T>
+struct is_even
+{
+ bool operator () (const T &t) const
+ {
+ return t % 2 == 0;
+ }
+};
+
+
+template<>
+struct is_even<stable_test>
+{
+ bool operator () (const stable_test &t) const
+ {
+ return t.key % 2 == 0;
+ }
+};
+
+typedef std::vector<uint8_t> Vec;
+typedef std::vector<stable_test> StableVec;
+
+// == sort ==
+int sort(const uint8_t *data, size_t size)
+{
+ Vec working(data, data + size);
+ std::sort(working.begin(), working.end());
+
+ if (!std::is_sorted(working.begin(), working.end())) return 1;
+ if (!std::is_permutation(data, data + size, working.begin())) return 99;
+ return 0;
+}
+
+
+// == stable_sort ==
+int stable_sort(const uint8_t *data, size_t size)
+{
+ StableVec input;
+ for (size_t i = 0; i < size; ++i)
+ input.push_back(stable_test(data[i], i));
+ StableVec working = input;
+ std::stable_sort(working.begin(), working.end(), key_less());
+
+ if (!std::is_sorted(working.begin(), working.end(), key_less())) return 1;
+ auto iter = working.begin();
+ while (iter != working.end())
+ {
+ auto range = std::equal_range(iter, working.end(), *iter, key_less());
+ if (!std::is_sorted(range.first, range.second, total_less())) return 2;
+ iter = range.second;
+ }
+ if (!std::is_permutation(input.begin(), input.end(), working.begin())) return 99;
+ return 0;
+}
+
+// == partition ==
+int partition(const uint8_t *data, size_t size)
+{
+ Vec working(data, data + size);
+ auto iter = std::partition(working.begin(), working.end(), is_even<uint8_t>());
+
+ if (!std::all_of (working.begin(), iter, is_even<uint8_t>())) return 1;
+ if (!std::none_of(iter, working.end(), is_even<uint8_t>())) return 2;
+ if (!std::is_permutation(data, data + size, working.begin())) return 99;
+ return 0;
+}
+
+
+// == partition_copy ==
+int partition_copy(const uint8_t *data, size_t size)
+{
+ Vec v1, v2;
+ auto iter = std::partition_copy(data, data + size,
+ std::back_inserter<Vec>(v1), std::back_inserter<Vec>(v2),
+ is_even<uint8_t>());
+
+// The two vectors should add up to the original size
+ if (v1.size() + v2.size() != size) return 1;
+
+// All of the even values should be in the first vector, and none in the second
+ if (!std::all_of (v1.begin(), v1.end(), is_even<uint8_t>())) return 2;
+ if (!std::none_of(v2.begin(), v2.end(), is_even<uint8_t>())) return 3;
+
+// Every value in both vectors has to be in the original
+ for (auto v: v1)
+ if (std::find(data, data + size, v) == data + size) return 4;
+
+ for (auto v: v2)
+ if (std::find(data, data + size, v) == data + size) return 5;
+
+ return 0;
+}
+
+// == stable_partition ==
+int stable_partition (const uint8_t *data, size_t size)
+{
+ StableVec input;
+ for (size_t i = 0; i < size; ++i)
+ input.push_back(stable_test(data[i], i));
+ StableVec working = input;
+ auto iter = std::stable_partition(working.begin(), working.end(), is_even<stable_test>());
+
+ if (!std::all_of (working.begin(), iter, is_even<stable_test>())) return 1;
+ if (!std::none_of(iter, working.end(), is_even<stable_test>())) return 2;
+ if (!std::is_sorted(working.begin(), iter, payload_less())) return 3;
+ if (!std::is_sorted(iter, working.end(), payload_less())) return 4;
+ if (!std::is_permutation(input.begin(), input.end(), working.begin())) return 99;
+ return 0;
+}
+
+// == nth_element ==
+// use the first element as a position into the data
+int nth_element (const uint8_t *data, size_t size)
+{
+ if (size <= 1) return 0;
+ const size_t partition_point = data[0] % size;
+ Vec working(data + 1, data + size);
+ const auto partition_iter = working.begin() + partition_point;
+ std::nth_element(working.begin(), partition_iter, working.end());
+
+// nth may be the end iterator, in this case nth_element has no effect.
+ if (partition_iter == working.end())
+ {
+ if (!std::equal(data + 1, data + size, working.begin())) return 98;
+ }
+ else
+ {
+ const uint8_t nth = *partition_iter;
+ if (!std::all_of(working.begin(), partition_iter, [=](uint8_t v) { return v <= nth; }))
+ return 1;
+ if (!std::all_of(partition_iter, working.end(), [=](uint8_t v) { return v >= nth; }))
+ return 2;
+ if (!std::is_permutation(data + 1, data + size, working.begin())) return 99;
+ }
+
+ return 0;
+}
+
+// == partial_sort ==
+// use the first element as a position into the data
+int partial_sort (const uint8_t *data, size_t size)
+{
+ if (size <= 1) return 0;
+ const size_t sort_point = data[0] % size;
+ Vec working(data + 1, data + size);
+ const auto sort_iter = working.begin() + sort_point;
+ std::partial_sort(working.begin(), sort_iter, working.end());
+
+ if (sort_iter != working.end())
+ {
+ const uint8_t nth = *std::min_element(sort_iter, working.end());
+ if (!std::all_of(working.begin(), sort_iter, [=](uint8_t v) { return v <= nth; }))
+ return 1;
+ if (!std::all_of(sort_iter, working.end(), [=](uint8_t v) { return v >= nth; }))
+ return 2;
+ }
+ if (!std::is_sorted(working.begin(), sort_iter)) return 3;
+ if (!std::is_permutation(data + 1, data + size, working.begin())) return 99;
+
+ return 0;
+}
+
+
+// == partial_sort_copy ==
+// use the first element as a count
+int partial_sort_copy (const uint8_t *data, size_t size)
+{
+ if (size <= 1) return 0;
+ const size_t num_results = data[0] % size;
+ Vec results(num_results);
+ (void) std::partial_sort_copy(data + 1, data + size, results.begin(), results.end());
+
+// The results have to be sorted
+ if (!std::is_sorted(results.begin(), results.end())) return 1;
+// All the values in results have to be in the original data
+ for (auto v: results)
+ if (std::find(data + 1, data + size, v) == data + size) return 2;
+
+// The things in results have to be the smallest N in the original data
+ Vec sorted(data + 1, data + size);
+ std::sort(sorted.begin(), sorted.end());
+ if (!std::equal(results.begin(), results.end(), sorted.begin())) return 3;
+ return 0;
+}
+
+// The second sequence has been "uniqued"
+template <typename Iter1, typename Iter2>
+static bool compare_unique(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2)
+{
+ assert(first1 != last1 && first2 != last2);
+ if (*first1 != *first2) return false;
+
+ uint8_t last_value = *first1;
+ ++first1; ++first2;
+ while(first1 != last1 && first2 != last2)
+ {
+ // Skip over dups in the first sequence
+ while (*first1 == last_value)
+ if (++first1 == last1) return false;
+ if (*first1 != *first2) return false;
+ last_value = *first1;
+ ++first1; ++first2;
+ }
+
+// Still stuff left in the 'uniqued' sequence - oops
+ if (first1 == last1 && first2 != last2) return false;
+
+// Still stuff left in the original sequence - better be all the same
+ while (first1 != last1)
+ {
+ if (*first1 != last_value) return false;
+ ++first1;
+ }
+ return true;
+}
+
+// == unique ==
+int unique (const uint8_t *data, size_t size)
+{
+ Vec working(data, data + size);
+ std::sort(working.begin(), working.end());
+ Vec results = working;
+ Vec::iterator new_end = std::unique(results.begin(), results.end());
+ Vec::iterator it; // scratch iterator
+
+// Check the size of the unique'd sequence.
+// it should only be zero if the input sequence was empty.
+ if (results.begin() == new_end)
+ return working.size() == 0 ? 0 : 1;
+
+// 'results' is sorted
+ if (!std::is_sorted(results.begin(), new_end)) return 2;
+
+// All the elements in 'results' must be different
+ it = results.begin();
+ uint8_t prev_value = *it++;
+ for (; it != new_end; ++it)
+ {
+ if (*it == prev_value) return 3;
+ prev_value = *it;
+ }
+
+// Every element in 'results' must be in 'working'
+ for (it = results.begin(); it != new_end; ++it)
+ if (std::find(working.begin(), working.end(), *it) == working.end())
+ return 4;
+
+// Every element in 'working' must be in 'results'
+ for (auto v : working)
+ if (std::find(results.begin(), new_end, v) == new_end)
+ return 5;
+
+ return 0;
+}
+
+// == unique_copy ==
+int unique_copy (const uint8_t *data, size_t size)
+{
+ Vec working(data, data + size);
+ std::sort(working.begin(), working.end());
+ Vec results;
+ (void) std::unique_copy(working.begin(), working.end(),
+ std::back_inserter<Vec>(results));
+ Vec::iterator it; // scratch iterator
+
+// Check the size of the unique'd sequence.
+// it should only be zero if the input sequence was empty.
+ if (results.size() == 0)
+ return working.size() == 0 ? 0 : 1;
+
+// 'results' is sorted
+ if (!std::is_sorted(results.begin(), results.end())) return 2;
+
+// All the elements in 'results' must be different
+ it = results.begin();
+ uint8_t prev_value = *it++;
+ for (; it != results.end(); ++it)
+ {
+ if (*it == prev_value) return 3;
+ prev_value = *it;
+ }
+
+// Every element in 'results' must be in 'working'
+ for (auto v : results)
+ if (std::find(working.begin(), working.end(), v) == working.end())
+ return 4;
+
+// Every element in 'working' must be in 'results'
+ for (auto v : working)
+ if (std::find(results.begin(), results.end(), v) == results.end())
+ return 5;
+
+ return 0;
+}
+
+
+// -- regex fuzzers
+static int regex_helper(const uint8_t *data, size_t size, std::regex::flag_type flag)
+{
+ if (size > 0)
+ {
+ try
+ {
+ std::string s((const char *)data, size);
+ std::regex re(s, flag);
+ return std::regex_match(s, re) ? 1 : 0;
+ }
+ catch (std::regex_error &ex) {}
+ }
+ return 0;
+}
+
+
+int regex_ECMAScript (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::ECMAScript);
+ return 0;
+}
+
+int regex_POSIX (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::basic);
+ return 0;
+}
+
+int regex_extended (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::extended);
+ return 0;
+}
+
+int regex_awk (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::awk);
+ return 0;
+}
+
+int regex_grep (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::grep);
+ return 0;
+}
+
+int regex_egrep (const uint8_t *data, size_t size)
+{
+ (void) regex_helper(data, size, std::regex_constants::egrep);
+ return 0;
+}
+
+// -- heap fuzzers
+int make_heap (const uint8_t *data, size_t size)
+{
+ Vec working(data, data + size);
+ std::make_heap(working.begin(), working.end());
+
+ if (!std::is_heap(working.begin(), working.end())) return 1;
+ if (!std::is_permutation(data, data + size, working.begin())) return 99;
+ return 0;
+}
+
+int push_heap (const uint8_t *data, size_t size)
+{
+ if (size < 2) return 0;
+
+// Make a heap from the first half of the data
+ Vec working(data, data + size);
+ auto iter = working.begin() + (size / 2);
+ std::make_heap(working.begin(), iter);
+ if (!std::is_heap(working.begin(), iter)) return 1;
+
+// Now push the rest onto the heap, one at a time
+ ++iter;
+ for (; iter != working.end(); ++iter) {
+ std::push_heap(working.begin(), iter);
+ if (!std::is_heap(working.begin(), iter)) return 2;
+ }
+
+ if (!std::is_permutation(data, data + size, working.begin())) return 99;
+ return 0;
+}
+
+int pop_heap (const uint8_t *data, size_t size)
+{
+ if (size < 2) return 0;
+ Vec working(data, data + size);
+ std::make_heap(working.begin(), working.end());
+
+// Pop things off, one at a time
+ auto iter = --working.end();
+ while (iter != working.begin()) {
+ std::pop_heap(working.begin(), iter);
+ if (!std::is_heap(working.begin(), --iter)) return 2;
+ }
+
+ return 0;
+}
+
+
+// -- search fuzzers
+int search (const uint8_t *data, size_t size)
+{
+ if (size < 2) return 0;
+
+ const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
+ assert(pat_size <= size - 1);
+ const uint8_t *pat_begin = data + 1;
+ const uint8_t *pat_end = pat_begin + pat_size;
+ const uint8_t *data_end = data + size;
+ assert(pat_end <= data_end);
+// std::cerr << "data[0] = " << size_t(data[0]) << " ";
+// std::cerr << "Pattern size = " << pat_size << "; corpus is " << size - 1 << std::endl;
+ auto it = std::search(pat_end, data_end, pat_begin, pat_end);
+ if (it != data_end) // not found
+ if (!std::equal(pat_begin, pat_end, it))
+ return 1;
+ return 0;
+}
+
+template <typename S>
+static int search_helper (const uint8_t *data, size_t size)
+{
+ if (size < 2) return 0;
+
+ const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
+ const uint8_t *pat_begin = data + 1;
+ const uint8_t *pat_end = pat_begin + pat_size;
+ const uint8_t *data_end = data + size;
+
+ auto it = std::search(pat_end, data_end, S(pat_begin, pat_end));
+ if (it != data_end) // not found
+ if (!std::equal(pat_begin, pat_end, it))
+ return 1;
+ return 0;
+}
+
+// These are still in std::experimental
+// int search_boyer_moore (const uint8_t *data, size_t size)
+// {
+// return search_helper<std::boyer_moore_searcher<const uint8_t *>>(data, size);
+// }
+//
+// int search_boyer_moore_horspool (const uint8_t *data, size_t size)
+// {
+// return search_helper<std::boyer_moore_horspool_searcher<const uint8_t *>>(data, size);
+// }
+
+
+// -- set operation fuzzers
+template <typename S>
+static void set_helper (const uint8_t *data, size_t size, Vec &v1, Vec &v2)
+{
+ assert(size > 1);
+
+ const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
+ const uint8_t *pat_begin = data + 1;
+ const uint8_t *pat_end = pat_begin + pat_size;
+ const uint8_t *data_end = data + size;
+ v1.assign(pat_begin, pat_end);
+ v2.assign(pat_end, data_end);
+
+ std::sort(v1.begin(), v1.end());
+ std::sort(v2.begin(), v2.end());
+}
+
+} // namespace fuzzing