diff options
Diffstat (limited to 'gnu/grep')
| -rw-r--r-- | gnu/grep/AUTHORS | 29 | ||||
| -rw-r--r-- | gnu/grep/COPYING | 339 | ||||
| -rw-r--r-- | gnu/grep/Makefile | 14 | ||||
| -rw-r--r-- | gnu/grep/NEWS | 35 | ||||
| -rw-r--r-- | gnu/grep/PROJECTS | 15 | ||||
| -rw-r--r-- | gnu/grep/README | 28 | ||||
| -rw-r--r-- | gnu/grep/dfa.c | 2525 | ||||
| -rw-r--r-- | gnu/grep/dfa.h | 360 | ||||
| -rw-r--r-- | gnu/grep/getopt.c | 731 | ||||
| -rw-r--r-- | gnu/grep/getopt.h | 129 | ||||
| -rw-r--r-- | gnu/grep/getpagesize.h | 42 | ||||
| -rw-r--r-- | gnu/grep/grep.1 | 375 | ||||
| -rw-r--r-- | gnu/grep/grep.c | 826 | ||||
| -rw-r--r-- | gnu/grep/grep.h | 53 | ||||
| -rw-r--r-- | gnu/grep/kwset.c | 805 | ||||
| -rw-r--r-- | gnu/grep/kwset.h | 69 | ||||
| -rw-r--r-- | gnu/grep/obstack.c | 454 | ||||
| -rw-r--r-- | gnu/grep/obstack.h | 484 | ||||
| -rw-r--r-- | gnu/grep/regex.c | 4987 | ||||
| -rw-r--r-- | gnu/grep/regex.h | 490 | ||||
| -rw-r--r-- | gnu/grep/search.c | 481 | ||||
| -rw-r--r-- | gnu/grep/tests/check.sh | 24 | ||||
| -rw-r--r-- | gnu/grep/tests/khadafy.lines | 32 | ||||
| -rw-r--r-- | gnu/grep/tests/khadafy.regexp | 1 | ||||
| -rw-r--r-- | gnu/grep/tests/scriptgen.awk | 10 | ||||
| -rw-r--r-- | gnu/grep/tests/spencer.tests | 122 |
26 files changed, 0 insertions, 13460 deletions
diff --git a/gnu/grep/AUTHORS b/gnu/grep/AUTHORS deleted file mode 100644 index e3e033b19a02..000000000000 --- a/gnu/grep/AUTHORS +++ /dev/null @@ -1,29 +0,0 @@ -Mike Haertel wrote the main program and the dfa and kwset matchers. - -Arthur David Olson contributed the heuristics for finding fixed substrings -at the end of dfa.c. - -Richard Stallman and Karl Berry wrote the regex backtracking matcher. - -Henry Spencer wrote the original test suite from which grep's was derived. - -Scott Anderson invented the Khadafy test. - -David MacKenzie wrote the automatic configuration software use to -produce the configure script. - -Authors of the replacements for standard library routines are identified -in the corresponding source files. - -The idea of using Boyer-Moore type algorithms to quickly filter out -non-matching text before calling the regexp matcher was originally due -to James Woods. He also contributed some code to early versions of -GNU grep. - -Finally, I would like to thank Andrew Hume for many fascinating discussions -of string searching issues over the years. Hume & Sunday's excellent -paper on fast string searching (AT&T Bell Laboratories CSTR #156) -describes some of the history of the subject, as well as providing -exhaustive performance analysis of various implementation alternatives. -The inner loop of GNU grep is similar to Hume & Sunday's recommended -"Tuned Boyer Moore" inner loop. diff --git a/gnu/grep/COPYING b/gnu/grep/COPYING deleted file mode 100644 index a43ea2126fb6..000000000000 --- a/gnu/grep/COPYING +++ /dev/null @@ -1,339 +0,0 @@ - GNU GENERAL PUBLIC LICENSE - Version 2, June 1991 - - Copyright (C) 1989, 1991 Free Software Foundation, Inc. - 675 Mass Ave, Cambridge, MA 02139, USA - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The licenses for most software are designed to take away your -freedom to share and change it. By contrast, the GNU General Public -License is intended to guarantee your freedom to share and change free -software--to make sure the software is free for all its users. This -General Public License applies to most of the Free Software -Foundation's software and to any other program whose authors commit to -using it. (Some other Free Software Foundation software is covered by -the GNU Library General Public License instead.) You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -this service if you wish), that you receive source code or can get it -if you want it, that you can change the software or use pieces of it -in new free programs; and that you know you can do these things. - - To protect your rights, we need to make restrictions that forbid -anyone to deny you these rights or to ask you to surrender the rights. -These restrictions translate to certain responsibilities for you if you -distribute copies of the software, or if you modify it. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must give the recipients all the rights that -you have. You must make sure that they, too, receive or can get the -source code. And you must show them these terms so they know their -rights. - - We protect your rights with two steps: (1) copyright the software, and -(2) offer you this license which gives you legal permission to copy, -distribute and/or modify the software. - - Also, for each author's protection and ours, we want to make certain -that everyone understands that there is no warranty for this free -software. If the software is modified by someone else and passed on, we -want its recipients to know that what they have is not the original, so -that any problems introduced by others will not reflect on the original -authors' reputations. - - Finally, any free program is threatened constantly by software -patents. We wish to avoid the danger that redistributors of a free -program will individually obtain patent licenses, in effect making the -program proprietary. To prevent this, we have made it clear that any -patent must be licensed for everyone's free use or not licensed at all. - - The precise terms and conditions for copying, distribution and -modification follow. - - GNU GENERAL PUBLIC LICENSE - TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION - - 0. This License applies to any program or other work which contains -a notice placed by the copyright holder saying it may be distributed -under the terms of this General Public License. The "Program", below, -refers to any such program or work, and a "work based on the Program" -means either the Program or any derivative work under copyright law: -that is to say, a work containing the Program or a portion of it, -either verbatim or with modifications and/or translated into another -language. (Hereinafter, translation is included without limitation in -the term "modification".) Each licensee is addressed as "you". - -Activities other than copying, distribution and modification are not -covered by this License; they are outside its scope. The act of -running the Program is not restricted, and the output from the Program -is covered only if its contents constitute a work based on the -Program (independent of having been made by running the Program). -Whether that is true depends on what the Program does. - - 1. You may copy and distribute verbatim copies of the Program's -source code as you receive it, in any medium, provided that you -conspicuously and appropriately publish on each copy an appropriate -copyright notice and disclaimer of warranty; keep intact all the -notices that refer to this License and to the absence of any warranty; -and give any other recipients of the Program a copy of this License -along with the Program. - -You may charge a fee for the physical act of transferring a copy, and -you may at your option offer warranty protection in exchange for a fee. - - 2. You may modify your copy or copies of the Program or any portion -of it, thus forming a work based on the Program, and copy and -distribute such modifications or work under the terms of Section 1 -above, provided that you also meet all of these conditions: - - a) You must cause the modified files to carry prominent notices - stating that you changed the files and the date of any change. - - b) You must cause any work that you distribute or publish, that in - whole or in part contains or is derived from the Program or any - part thereof, to be licensed as a whole at no charge to all third - parties under the terms of this License. - - c) If the modified program normally reads commands interactively - when run, you must cause it, when started running for such - interactive use in the most ordinary way, to print or display an - announcement including an appropriate copyright notice and a - notice that there is no warranty (or else, saying that you provide - a warranty) and that users may redistribute the program under - these conditions, and telling the user how to view a copy of this - License. (Exception: if the Program itself is interactive but - does not normally print such an announcement, your work based on - the Program is not required to print an announcement.) - -These requirements apply to the modified work as a whole. If -identifiable sections of that work are not derived from the Program, -and can be reasonably considered independent and separate works in -themselves, then this License, and its terms, do not apply to those -sections when you distribute them as separate works. But when you -distribute the same sections as part of a whole which is a work based -on the Program, the distribution of the whole must be on the terms of -this License, whose permissions for other licensees extend to the -entire whole, and thus to each and every part regardless of who wrote it. - -Thus, it is not the intent of this section to claim rights or contest -your rights to work written entirely by you; rather, the intent is to -exercise the right to control the distribution of derivative or -collective works based on the Program. - -In addition, mere aggregation of another work not based on the Program -with the Program (or with a work based on the Program) on a volume of -a storage or distribution medium does not bring the other work under -the scope of this License. - - 3. You may copy and distribute the Program (or a work based on it, -under Section 2) in object code or executable form under the terms of -Sections 1 and 2 above provided that you also do one of the following: - - a) Accompany it with the complete corresponding machine-readable - source code, which must be distributed under the terms of Sections - 1 and 2 above on a medium customarily used for software interchange; or, - - b) Accompany it with a written offer, valid for at least three - years, to give any third party, for a charge no more than your - cost of physically performing source distribution, a complete - machine-readable copy of the corresponding source code, to be - distributed under the terms of Sections 1 and 2 above on a medium - customarily used for software interchange; or, - - c) Accompany it with the information you received as to the offer - to distribute corresponding source code. (This alternative is - allowed only for noncommercial distribution and only if you - received the program in object code or executable form with such - an offer, in accord with Subsection b above.) - -The source code for a work means the preferred form of the work for -making modifications to it. For an executable work, complete source -code means all the source code for all modules it contains, plus any -associated interface definition files, plus the scripts used to -control compilation and installation of the executable. However, as a -special exception, the source code distributed need not include -anything that is normally distributed (in either source or binary -form) with the major components (compiler, kernel, and so on) of the -operating system on which the executable runs, unless that component -itself accompanies the executable. - -If distribution of executable or object code is made by offering -access to copy from a designated place, then offering equivalent -access to copy the source code from the same place counts as -distribution of the source code, even though third parties are not -compelled to copy the source along with the object code. - - 4. You may not copy, modify, sublicense, or distribute the Program -except as expressly provided under this License. Any attempt -otherwise to copy, modify, sublicense or distribute the Program is -void, and will automatically terminate your rights under this License. -However, parties who have received copies, or rights, from you under -this License will not have their licenses terminated so long as such -parties remain in full compliance. - - 5. You are not required to accept this License, since you have not -signed it. However, nothing else grants you permission to modify or -distribute the Program or its derivative works. These actions are -prohibited by law if you do not accept this License. Therefore, by -modifying or distributing the Program (or any work based on the -Program), you indicate your acceptance of this License to do so, and -all its terms and conditions for copying, distributing or modifying -the Program or works based on it. - - 6. Each time you redistribute the Program (or any work based on the -Program), the recipient automatically receives a license from the -original licensor to copy, distribute or modify the Program subject to -these terms and conditions. You may not impose any further -restrictions on the recipients' exercise of the rights granted herein. -You are not responsible for enforcing compliance by third parties to -this License. - - 7. If, as a consequence of a court judgment or allegation of patent -infringement or for any other reason (not limited to patent issues), -conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot -distribute so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you -may not distribute the Program at all. For example, if a patent -license would not permit royalty-free redistribution of the Program by -all those who receive copies directly or indirectly through you, then -the only way you could satisfy both it and this License would be to -refrain entirely from distribution of the Program. - -If any portion of this section is held invalid or unenforceable under -any particular circumstance, the balance of the section is intended to -apply and the section as a whole is intended to apply in other -circumstances. - -It is not the purpose of this section to induce you to infringe any -patents or other property right claims or to contest validity of any -such claims; this section has the sole purpose of protecting the -integrity of the free software distribution system, which is -implemented by public license practices. Many people have made -generous contributions to the wide range of software distributed -through that system in reliance on consistent application of that -system; it is up to the author/donor to decide if he or she is willing -to distribute software through any other system and a licensee cannot -impose that choice. - -This section is intended to make thoroughly clear what is believed to -be a consequence of the rest of this License. - - 8. If the distribution and/or use of the Program is restricted in -certain countries either by patents or by copyrighted interfaces, the -original copyright holder who places the Program under this License -may add an explicit geographical distribution limitation excluding -those countries, so that distribution is permitted only in or among -countries not thus excluded. In such case, this License incorporates -the limitation as if written in the body of this License. - - 9. The Free Software Foundation may publish revised and/or new versions -of the General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - -Each version is given a distinguishing version number. If the Program -specifies a version number of this License which applies to it and "any -later version", you have the option of following the terms and conditions -either of that version or of any later version published by the Free -Software Foundation. If the Program does not specify a version number of -this License, you may choose any version ever published by the Free Software -Foundation. - - 10. If you wish to incorporate parts of the Program into other free -programs whose distribution conditions are different, write to the author -to ask for permission. For software which is copyrighted by the Free -Software Foundation, write to the Free Software Foundation; we sometimes -make exceptions for this. Our decision will be guided by the two goals -of preserving the free status of all derivatives of our free software and -of promoting the sharing and reuse of software generally. - - NO WARRANTY - - 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY -FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN -OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES -PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED -OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF -MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS -TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE -PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, -REPAIR OR CORRECTION. - - 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR -REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, -INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING -OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED -TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY -YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER -PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE -POSSIBILITY OF SUCH DAMAGES. - - END OF TERMS AND CONDITIONS - - Appendix: How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -convey the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - <one line to give the program's name and a brief idea of what it does.> - Copyright (C) 19yy <name of author> - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - -Also add information on how to contact you by electronic and paper mail. - -If the program is interactive, make it output a short notice like this -when it starts in an interactive mode: - - Gnomovision version 69, Copyright (C) 19yy name of author - Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, the commands you use may -be called something other than `show w' and `show c'; they could even be -mouse-clicks or menu items--whatever suits your program. - -You should also get your employer (if you work as a programmer) or your -school, if any, to sign a "copyright disclaimer" for the program, if -necessary. Here is a sample; alter the names: - - Yoyodyne, Inc., hereby disclaims all copyright interest in the program - `Gnomovision' (which makes passes at compilers) written by James Hacker. - - <signature of Ty Coon>, 1 April 1989 - Ty Coon, President of Vice - -This General Public License does not permit incorporating your program into -proprietary programs. If your program is a subroutine library, you may -consider it more useful to permit linking proprietary applications with the -library. If this is what you want to do, use the GNU Library General -Public License instead of this License. diff --git a/gnu/grep/Makefile b/gnu/grep/Makefile deleted file mode 100644 index c8d491588091..000000000000 --- a/gnu/grep/Makefile +++ /dev/null @@ -1,14 +0,0 @@ -PROG= grep -SRCS= dfa.c grep.c getopt.c kwset.c obstack.c regex.c search.c -CFLAGS+=-DGREP -DHAVE_STRING_H=1 -DHAVE_SYS_PARAM_H=1 -DHAVE_UNISTD_H=1 \ - -DHAVE_GETPAGESIZE=1 -DHAVE_MEMCHR=1 -DHAVE_STRERROR=1 \ - -DHAVE_VALLOC=1 - -LINKS+= ${BINDIR}/grep ${BINDIR}/egrep \ - ${BINDIR}/grep ${BINDIR}/fgrep -MLINKS= grep.1 egrep.1 grep.1 fgrep.1 - -check: all - sh ${.CURDIR}/tests/check.sh ${.CURDIR}/tests - -.include <bsd.prog.mk> diff --git a/gnu/grep/NEWS b/gnu/grep/NEWS deleted file mode 100644 index eb0b513d6cc6..000000000000 --- a/gnu/grep/NEWS +++ /dev/null @@ -1,35 +0,0 @@ -Version 2.0: - -The most important user visible change is that egrep and fgrep have -disappeared as separate programs into the single grep program mandated -by POSIX 1003.2. New options -G, -E, and -F have been added, -selecting grep, egrep, and fgrep behavior respectively. For -compatibility with historical practice, hard links named egrep and -fgrep are also provided. See the manual page for details. - -In addition, the regular expression facilities described in Posix -draft 11.2 are now supported, except for internationalization features -related to locale-dependent collating sequence information. - -There is a new option, -L, which is like -l except it lists -files which don't contain matches. The reason this option was -added is because '-l -v' doesn't do what you expect. - -Performance has been improved; the amount of improvement is platform -dependent, but (for example) grep 2.0 typically runs at least 30% faster -than grep 1.6 on a DECstation using the MIPS compiler. Where possible, -grep now uses mmap() for file input; on a Sun 4 running SunOS 4.1 this -may cut system time by as much as half, for a total reduction in running -time by nearly 50%. On machines that don't use mmap(), the buffering -code has been rewritten to choose more favorable alignments and buffer -sizes for read(). - -Portability has been substantially cleaned up, and an automatic -configure script is now provided. - -The internals have changed in ways too numerous to mention. -People brave enough to reuse the DFA matcher in other programs -will now have their bravery amply "rewarded", for the interface -to that file has been completely changed. Some changes were -necessary to track the evolution of the regex package, and since -I was changing it anyway I decided to do a general cleanup. diff --git a/gnu/grep/PROJECTS b/gnu/grep/PROJECTS deleted file mode 100644 index 67e9a2aad6ab..000000000000 --- a/gnu/grep/PROJECTS +++ /dev/null @@ -1,15 +0,0 @@ -Write Texinfo documentation for grep. The manual page would be a good -place to start, but Info documents are also supposed to contain a -tutorial and examples. - -Fix the DFA matcher to never use exponential space. (Fortunately, these -cases are rare.) - -Improve the performance of the regex backtracking matcher. This matcher -is agonizingly slow, and is responsible for grep sometimes being slower -than Unix grep when backreferences are used. - -Provide support for the Posix [= =] and [. .] constructs. This is -difficult because it requires locale-dependent details of the character -set and collating sequence, but Posix does not standardize any method -for accessing this information! diff --git a/gnu/grep/README b/gnu/grep/README deleted file mode 100644 index bc34a859063d..000000000000 --- a/gnu/grep/README +++ /dev/null @@ -1,28 +0,0 @@ -This is GNU grep 2.0, the "fastest grep in the west" (we hope). All -bugs reported in previous releases have been fixed. Many exciting new -bugs have probably been introduced in this major revision. - -GNU grep is provided "as is" with no warranty. The exact terms -under which you may use and (re)distribute this program are detailed -in the GNU General Public License, in the file COPYING. - -GNU grep is based on a fast lazy-state deterministic matcher (about -twice as fast as stock Unix egrep) hybridized with a Boyer-Moore-Gosper -search for a fixed string that eliminates impossible text from being -considered by the full regexp matcher without necessarily having to -look at every character. The result is typically many times faster -than Unix grep or egrep. (Regular expressions containing backreferencing -will run more slowly, however.) - -See the file AUTHORS for a list of authors and other contributors. - -See the file INSTALL for compilation and installation instructions. - -See the file MANIFEST for a list of files in this distribution. - -See the file NEWS for a description of major changes in this release. - -See the file PROJECTS if you want to be mentioned in AUTHORS. - -Send bug reports to bug-gnu-utils@prep.ai.mit.edu. Be sure to -include the word "grep" in your Subject: header field. diff --git a/gnu/grep/dfa.c b/gnu/grep/dfa.c deleted file mode 100644 index fc649af0cbe5..000000000000 --- a/gnu/grep/dfa.c +++ /dev/null @@ -1,2525 +0,0 @@ -/* dfa.c - deterministic extended regexp routines for GNU - Copyright (C) 1988 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* Written June, 1988 by Mike Haertel - Modified July, 1988 by Arthur David Olson to assist BMG speedups */ - -#include <assert.h> -#include <ctype.h> -#include <stdio.h> - -#ifdef STDC_HEADERS -#include <stdlib.h> -#else -#include <sys/types.h> -extern char *calloc(), *malloc(), *realloc(); -extern void free(); -#endif - -#if defined(HAVE_STRING_H) || defined(STDC_HEADERS) -#include <string.h> -#undef index -#define index strchr -#else -#include <strings.h> -#endif - -#ifndef isgraph -#define isgraph(C) (isprint(C) && !isspace(C)) -#endif - -#ifdef isascii -#define ISALPHA(C) (isascii(C) && isalpha(C)) -#define ISUPPER(C) (isascii(C) && isupper(C)) -#define ISLOWER(C) (isascii(C) && islower(C)) -#define ISDIGIT(C) (isascii(C) && isdigit(C)) -#define ISXDIGIT(C) (isascii(C) && isxdigit(C)) -#define ISSPACE(C) (isascii(C) && isspace(C)) -#define ISPUNCT(C) (isascii(C) && ispunct(C)) -#define ISALNUM(C) (isascii(C) && isalnum(C)) -#define ISPRINT(C) (isascii(C) && isprint(C)) -#define ISGRAPH(C) (isascii(C) && isgraph(C)) -#define ISCNTRL(C) (isascii(C) && iscntrl(C)) -#else -#define ISALPHA(C) isalpha(C) -#define ISUPPER(C) isupper(C) -#define ISLOWER(C) islower(C) -#define ISDIGIT(C) isdigit(C) -#define ISXDIGIT(C) isxdigit(C) -#define ISSPACE(C) isspace(C) -#define ISPUNCT(C) ispunct(C) -#define ISALNUM(C) isalnum(C) -#define ISPRINT(C) isprint(C) -#define ISGRAPH(C) isgraph(C) -#define ISCNTRL(C) iscntrl(C) -#endif - -#include "dfa.h" -#include "regex.h" - -#if __STDC__ -typedef void *ptr_t; -#else -typedef char *ptr_t; -#endif - -static void dfamust(); - -static ptr_t -xcalloc(n, s) - int n; - size_t s; -{ - ptr_t r = calloc(n, s); - - if (!r) - dfaerror("Memory exhausted"); - return r; -} - -static ptr_t -xmalloc(n) - size_t n; -{ - ptr_t r = malloc(n); - - assert(n != 0); - if (!r) - dfaerror("Memory exhausted"); - return r; -} - -static ptr_t -xrealloc(p, n) - ptr_t p; - size_t n; -{ - ptr_t r = realloc(p, n); - - assert(n != 0); - if (!r) - dfaerror("Memory exhausted"); - return r; -} - -#define CALLOC(p, t, n) ((p) = (t *) xcalloc((n), sizeof (t))) -#define MALLOC(p, t, n) ((p) = (t *) xmalloc((n) * sizeof (t))) -#define REALLOC(p, t, n) ((p) = (t *) xrealloc((ptr_t) (p), (n) * sizeof (t))) - -/* Reallocate an array of type t if nalloc is too small for index. */ -#define REALLOC_IF_NECESSARY(p, t, nalloc, index) \ - if ((index) >= (nalloc)) \ - { \ - while ((index) >= (nalloc)) \ - (nalloc) *= 2; \ - REALLOC(p, t, nalloc); \ - } - -#ifdef DEBUG - -static void -prtok(t) - token t; -{ - char *s; - - if (t < 0) - fprintf(stderr, "END"); - else if (t < NOTCHAR) - fprintf(stderr, "%c", t); - else - { - switch (t) - { - case EMPTY: s = "EMPTY"; break; - case BACKREF: s = "BACKREF"; break; - case BEGLINE: s = "BEGLINE"; break; - case ENDLINE: s = "ENDLINE"; break; - case BEGWORD: s = "BEGWORD"; break; - case ENDWORD: s = "ENDWORD"; break; - case LIMWORD: s = "LIMWORD"; break; - case NOTLIMWORD: s = "NOTLIMWORD"; break; - case QMARK: s = "QMARK"; break; - case STAR: s = "STAR"; break; - case PLUS: s = "PLUS"; break; - case CAT: s = "CAT"; break; - case OR: s = "OR"; break; - case ORTOP: s = "ORTOP"; break; - case LPAREN: s = "LPAREN"; break; - case RPAREN: s = "RPAREN"; break; - default: s = "CSET"; break; - } - fprintf(stderr, "%s", s); - } -} -#endif /* DEBUG */ - -/* Stuff pertaining to charclasses. */ - -static int -tstbit(b, c) - int b; - charclass c; -{ - return c[b / INTBITS] & 1 << b % INTBITS; -} - -static void -setbit(b, c) - int b; - charclass c; -{ - c[b / INTBITS] |= 1 << b % INTBITS; -} - -static void -clrbit(b, c) - int b; - charclass c; -{ - c[b / INTBITS] &= ~(1 << b % INTBITS); -} - -static void -copyset(src, dst) - charclass src; - charclass dst; -{ - int i; - - for (i = 0; i < CHARCLASS_INTS; ++i) - dst[i] = src[i]; -} - -static void -zeroset(s) - charclass s; -{ - int i; - - for (i = 0; i < CHARCLASS_INTS; ++i) - s[i] = 0; -} - -static void -notset(s) - charclass s; -{ - int i; - - for (i = 0; i < CHARCLASS_INTS; ++i) - s[i] = ~s[i]; -} - -static int -equal(s1, s2) - charclass s1; - charclass s2; -{ - int i; - - for (i = 0; i < CHARCLASS_INTS; ++i) - if (s1[i] != s2[i]) - return 0; - return 1; -} - -/* A pointer to the current dfa is kept here during parsing. */ -static struct dfa *dfa; - -/* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */ -static int -charclass_index(s) - charclass s; -{ - int i; - - for (i = 0; i < dfa->cindex; ++i) - if (equal(s, dfa->charclasses[i])) - return i; - REALLOC_IF_NECESSARY(dfa->charclasses, charclass, dfa->calloc, dfa->cindex); - ++dfa->cindex; - copyset(s, dfa->charclasses[i]); - return i; -} - -/* Syntax bits controlling the behavior of the lexical analyzer. */ -static int syntax_bits, syntax_bits_set; - -/* Flag for case-folding letters into sets. */ -static int case_fold; - -/* Entry point to set syntax options. */ -void -dfasyntax(bits, fold) - int bits; - int fold; -{ - syntax_bits_set = 1; - syntax_bits = bits; - case_fold = fold; -} - -/* Lexical analyzer. All the dross that deals with the obnoxious - GNU Regex syntax bits is located here. The poor, suffering - reader is referred to the GNU Regex documentation for the - meaning of the @#%!@#%^!@ syntax bits. */ - -static char *lexstart; /* Pointer to beginning of input string. */ -static char *lexptr; /* Pointer to next input character. */ -static lexleft; /* Number of characters remaining. */ -static token lasttok; /* Previous token returned; initially END. */ -static int laststart; /* True if we're separated from beginning or (, | - only by zero-width characters. */ -static int parens; /* Count of outstanding left parens. */ -static int minrep, maxrep; /* Repeat counts for {m,n}. */ - -/* Note that characters become unsigned here. */ -#define FETCH(c, eoferr) \ - { \ - if (! lexleft) \ - if (eoferr != 0) \ - dfaerror(eoferr); \ - else \ - return END; \ - (c) = (unsigned char) *lexptr++; \ - --lexleft; \ - } - -#define FUNC(F, P) static int F(c) int c; { return P(c); } - -FUNC(is_alpha, ISALPHA) -FUNC(is_upper, ISUPPER) -FUNC(is_lower, ISLOWER) -FUNC(is_digit, ISDIGIT) -FUNC(is_xdigit, ISXDIGIT) -FUNC(is_space, ISSPACE) -FUNC(is_punct, ISPUNCT) -FUNC(is_alnum, ISALNUM) -FUNC(is_print, ISPRINT) -FUNC(is_graph, ISGRAPH) -FUNC(is_cntrl, ISCNTRL) - -/* The following list maps the names of the Posix named character classes - to predicate functions that determine whether a given character is in - the class. The leading [ has already been eaten by the lexical analyzer. */ -static struct { - char *name; - int (*pred)(); -} prednames[] = { - ":alpha:]", is_alpha, - ":upper:]", is_upper, - ":lower:]", is_lower, - ":digit:]", is_digit, - ":xdigit:]", is_xdigit, - ":space:]", is_space, - ":punct:]", is_punct, - ":alnum:]", is_alnum, - ":print:]", is_print, - ":graph:]", is_graph, - ":cntrl:]", is_cntrl, - 0 -}; - -static int -looking_at(s) - char *s; -{ - int len; - - len = strlen(s); - if (lexleft < len) - return 0; - return strncmp(s, lexptr, len) == 0; -} - -static token -lex() -{ - token c, c1, c2; - int backslash = 0, invert; - charclass ccl; - int i; - - /* Basic plan: We fetch a character. If it's a backslash, - we set the backslash flag and go through the loop again. - On the plus side, this avoids having a duplicate of the - main switch inside the backslash case. On the minus side, - it means that just about every case begins with - "if (backslash) ...". */ - for (i = 0; i < 2; ++i) - { - FETCH(c, 0); - switch (c) - { - case '\\': - if (backslash) - goto normal_char; - if (lexleft == 0) - dfaerror("Unfinished \\ escape"); - backslash = 1; - break; - - case '^': - if (backslash) - goto normal_char; - if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS - || lasttok == END - || lasttok == LPAREN - || lasttok == OR) - return lasttok = BEGLINE; - goto normal_char; - - case '$': - if (backslash) - goto normal_char; - if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS - || lexleft == 0 - || (syntax_bits & RE_NO_BK_PARENS - ? lexleft > 0 && *lexptr == ')' - : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')') - || (syntax_bits & RE_NO_BK_VBAR - ? lexleft > 0 && *lexptr == '|' - : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|') - || ((syntax_bits & RE_NEWLINE_ALT) - && lexleft > 0 && *lexptr == '\n')) - return lasttok = ENDLINE; - goto normal_char; - - case '1': - case '2': - case '3': - case '4': - case '5': - case '6': - case '7': - case '8': - case '9': - if (backslash && !(syntax_bits & RE_NO_BK_REFS)) - { - laststart = 0; - return lasttok = BACKREF; - } - goto normal_char; - - case '<': - if (backslash) - return lasttok = BEGWORD; - goto normal_char; - - case '>': - if (backslash) - return lasttok = ENDWORD; - goto normal_char; - - case 'b': - if (backslash) - return lasttok = LIMWORD; - goto normal_char; - - case 'B': - if (backslash) - return lasttok = NOTLIMWORD; - goto normal_char; - - case '?': - if (syntax_bits & RE_LIMITED_OPS) - goto normal_char; - if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0)) - goto normal_char; - if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) - goto normal_char; - return lasttok = QMARK; - - case '*': - if (backslash) - goto normal_char; - if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) - goto normal_char; - return lasttok = STAR; - - case '+': - if (syntax_bits & RE_LIMITED_OPS) - goto normal_char; - if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0)) - goto normal_char; - if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart) - goto normal_char; - return lasttok = PLUS; - - case '{': - if (!(syntax_bits & RE_INTERVALS)) - goto normal_char; - if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0)) - goto normal_char; - minrep = maxrep = 0; - /* Cases: - {M} - exact count - {M,} - minimum count, maximum is infinity - {,M} - 0 through M - {M,N} - M through N */ - FETCH(c, "unfinished repeat count"); - if (ISDIGIT(c)) - { - minrep = c - '0'; - for (;;) - { - FETCH(c, "unfinished repeat count"); - if (!ISDIGIT(c)) - break; - minrep = 10 * minrep + c - '0'; - } - } - else if (c != ',') - dfaerror("malformed repeat count"); - if (c == ',') - for (;;) - { - FETCH(c, "unfinished repeat count"); - if (!ISDIGIT(c)) - break; - maxrep = 10 * maxrep + c - '0'; - } - else - maxrep = minrep; - if (!(syntax_bits & RE_NO_BK_BRACES)) - { - if (c != '\\') - dfaerror("malformed repeat count"); - FETCH(c, "unfinished repeat count"); - } - if (c != '}') - dfaerror("malformed repeat count"); - laststart = 0; - return lasttok = REPMN; - - case '|': - if (syntax_bits & RE_LIMITED_OPS) - goto normal_char; - if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0)) - goto normal_char; - laststart = 1; - return lasttok = OR; - - case '\n': - if (syntax_bits & RE_LIMITED_OPS - || backslash - || !(syntax_bits & RE_NEWLINE_ALT)) - goto normal_char; - laststart = 1; - return lasttok = OR; - - case '(': - if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0)) - goto normal_char; - ++parens; - laststart = 1; - return lasttok = LPAREN; - - case ')': - if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0)) - goto normal_char; - if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD) - goto normal_char; - --parens; - laststart = 0; - return lasttok = RPAREN; - - case '.': - if (backslash) - goto normal_char; - zeroset(ccl); - notset(ccl); - if (!(syntax_bits & RE_DOT_NEWLINE)) - clrbit('\n', ccl); - if (syntax_bits & RE_DOT_NOT_NULL) - clrbit('\0', ccl); - laststart = 0; - return lasttok = CSET + charclass_index(ccl); - - case 'w': - case 'W': - if (!backslash) - goto normal_char; - zeroset(ccl); - for (c2 = 0; c2 < NOTCHAR; ++c2) - if (ISALNUM(c2)) - setbit(c2, ccl); - if (c == 'W') - notset(ccl); - laststart = 0; - return lasttok = CSET + charclass_index(ccl); - - case '[': - if (backslash) - goto normal_char; - zeroset(ccl); - FETCH(c, "Unbalanced ["); - if (c == '^') - { - FETCH(c, "Unbalanced ["); - invert = 1; - } - else - invert = 0; - do - { - /* Nobody ever said this had to be fast. :-) - Note that if we're looking at some other [:...:] - construct, we just treat it as a bunch of ordinary - characters. We can do this because we assume - regex has checked for syntax errors before - dfa is ever called. */ - if (c == '[' && (syntax_bits & RE_CHAR_CLASSES)) - for (c1 = 0; prednames[c1].name; ++c1) - if (looking_at(prednames[c1].name)) - { - for (c2 = 0; c2 < NOTCHAR; ++c2) - if ((*prednames[c1].pred)(c2)) - setbit(c2, ccl); - lexptr += strlen(prednames[c1].name); - lexleft -= strlen(prednames[c1].name); - FETCH(c1, "Unbalanced ["); - goto skip; - } - if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS)) - FETCH(c, "Unbalanced ["); - FETCH(c1, "Unbalanced ["); - if (c1 == '-') - { - FETCH(c2, "Unbalanced ["); - if (c2 == ']') - { - /* In the case [x-], the - is an ordinary hyphen, - which is left in c1, the lookahead character. */ - --lexptr; - ++lexleft; - c2 = c; - } - else - { - if (c2 == '\\' - && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS)) - FETCH(c2, "Unbalanced ["); - FETCH(c1, "Unbalanced ["); - } - } - else - c2 = c; - while (c <= c2) - { - setbit(c, ccl); - if (case_fold) - if (ISUPPER(c)) - setbit(tolower(c), ccl); - else if (ISLOWER(c)) - setbit(toupper(c), ccl); - ++c; - } - skip: - ; - } - while ((c = c1) != ']'); - if (invert) - { - notset(ccl); - if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE) - clrbit('\n', ccl); - } - laststart = 0; - return lasttok = CSET + charclass_index(ccl); - - default: - normal_char: - laststart = 0; - if (case_fold && ISALPHA(c)) - { - zeroset(ccl); - setbit(c, ccl); - if (isupper(c)) - setbit(tolower(c), ccl); - else - setbit(toupper(c), ccl); - return lasttok = CSET + charclass_index(ccl); - } - return c; - } - } - - /* The above loop should consume at most a backslash - and some other character. */ - abort(); -} - -/* Recursive descent parser for regular expressions. */ - -static token tok; /* Lookahead token. */ -static depth; /* Current depth of a hypothetical stack - holding deferred productions. This is - used to determine the depth that will be - required of the real stack later on in - dfaanalyze(). */ - -/* Add the given token to the parse tree, maintaining the depth count and - updating the maximum depth if necessary. */ -static void -addtok(t) - token t; -{ - REALLOC_IF_NECESSARY(dfa->tokens, token, dfa->talloc, dfa->tindex); - dfa->tokens[dfa->tindex++] = t; - - switch (t) - { - case QMARK: - case STAR: - case PLUS: - break; - - case CAT: - case OR: - case ORTOP: - --depth; - break; - - default: - ++dfa->nleaves; - case EMPTY: - ++depth; - break; - } - if (depth > dfa->depth) - dfa->depth = depth; -} - -/* The grammar understood by the parser is as follows. - - regexp: - regexp OR branch - branch - - branch: - branch closure - closure - - closure: - closure QMARK - closure STAR - closure PLUS - atom - - atom: - <normal character> - CSET - BACKREF - BEGLINE - ENDLINE - BEGWORD - ENDWORD - LIMWORD - NOTLIMWORD - <empty> - - The parser builds a parse tree in postfix form in an array of tokens. */ - -#if __STDC__ -static void regexp(int); -#else -static void regexp(); -#endif - -static void -atom() -{ - if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF - || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD - || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD) - { - addtok(tok); - tok = lex(); - } - else if (tok == LPAREN) - { - tok = lex(); - regexp(0); - if (tok != RPAREN) - dfaerror("Unbalanced ("); - tok = lex(); - } - else - addtok(EMPTY); -} - -/* Return the number of tokens in the given subexpression. */ -static int -nsubtoks(tindex) -{ - int ntoks1; - - switch (dfa->tokens[tindex - 1]) - { - default: - return 1; - case QMARK: - case STAR: - case PLUS: - return 1 + nsubtoks(tindex - 1); - case CAT: - case OR: - case ORTOP: - ntoks1 = nsubtoks(tindex - 1); - return 1 + ntoks1 + nsubtoks(tindex - 1 - ntoks1); - } -} - -/* Copy the given subexpression to the top of the tree. */ -static void -copytoks(tindex, ntokens) - int tindex, ntokens; -{ - int i; - - for (i = 0; i < ntokens; ++i) - addtok(dfa->tokens[tindex + i]); -} - -static void -closure() -{ - int tindex, ntokens, i; - - atom(); - while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN) - if (tok == REPMN) - { - ntokens = nsubtoks(dfa->tindex); - tindex = dfa->tindex - ntokens; - if (maxrep == 0) - addtok(PLUS); - if (minrep == 0) - addtok(QMARK); - for (i = 1; i < minrep; ++i) - { - copytoks(tindex, ntokens); - addtok(CAT); - } - for (; i < maxrep; ++i) - { - copytoks(tindex, ntokens); - addtok(QMARK); - addtok(CAT); - } - tok = lex(); - } - else - { - addtok(tok); - tok = lex(); - } -} - -static void -branch() -{ - closure(); - while (tok != RPAREN && tok != OR && tok >= 0) - { - closure(); - addtok(CAT); - } -} - -static void -regexp(toplevel) - int toplevel; -{ - branch(); - while (tok == OR) - { - tok = lex(); - branch(); - if (toplevel) - addtok(ORTOP); - else - addtok(OR); - } -} - -/* Main entry point for the parser. S is a string to be parsed, len is the - length of the string, so s can include NUL characters. D is a pointer to - the struct dfa to parse into. */ -void -dfaparse(s, len, d) - char *s; - size_t len; - struct dfa *d; - -{ - dfa = d; - lexstart = lexptr = s; - lexleft = len; - lasttok = END; - laststart = 1; - parens = 0; - - if (! syntax_bits_set) - dfaerror("No syntax specified"); - - tok = lex(); - depth = d->depth; - - regexp(1); - - if (tok != END) - dfaerror("Unbalanced )"); - - addtok(END - d->nregexps); - addtok(CAT); - - if (d->nregexps) - addtok(ORTOP); - - ++d->nregexps; -} - -/* Some primitives for operating on sets of positions. */ - -/* Copy one set to another; the destination must be large enough. */ -static void -copy(src, dst) - position_set *src; - position_set *dst; -{ - int i; - - for (i = 0; i < src->nelem; ++i) - dst->elems[i] = src->elems[i]; - dst->nelem = src->nelem; -} - -/* Insert a position in a set. Position sets are maintained in sorted - order according to index. If position already exists in the set with - the same index then their constraints are logically or'd together. - S->elems must point to an array large enough to hold the resulting set. */ -static void -insert(p, s) - position p; - position_set *s; -{ - int i; - position t1, t2; - - for (i = 0; i < s->nelem && p.index < s->elems[i].index; ++i) - ; - if (i < s->nelem && p.index == s->elems[i].index) - s->elems[i].constraint |= p.constraint; - else - { - t1 = p; - ++s->nelem; - while (i < s->nelem) - { - t2 = s->elems[i]; - s->elems[i++] = t1; - t1 = t2; - } - } -} - -/* Merge two sets of positions into a third. The result is exactly as if - the positions of both sets were inserted into an initially empty set. */ -static void -merge(s1, s2, m) - position_set *s1; - position_set *s2; - position_set *m; -{ - int i = 0, j = 0; - - m->nelem = 0; - while (i < s1->nelem && j < s2->nelem) - if (s1->elems[i].index > s2->elems[j].index) - m->elems[m->nelem++] = s1->elems[i++]; - else if (s1->elems[i].index < s2->elems[j].index) - m->elems[m->nelem++] = s2->elems[j++]; - else - { - m->elems[m->nelem] = s1->elems[i++]; - m->elems[m->nelem++].constraint |= s2->elems[j++].constraint; - } - while (i < s1->nelem) - m->elems[m->nelem++] = s1->elems[i++]; - while (j < s2->nelem) - m->elems[m->nelem++] = s2->elems[j++]; -} - -/* Delete a position from a set. */ -static void -delete(p, s) - position p; - position_set *s; -{ - int i; - - for (i = 0; i < s->nelem; ++i) - if (p.index == s->elems[i].index) - break; - if (i < s->nelem) - for (--s->nelem; i < s->nelem; ++i) - s->elems[i] = s->elems[i + 1]; -} - -/* Find the index of the state corresponding to the given position set with - the given preceding context, or create a new state if there is no such - state. Newline and letter tell whether we got here on a newline or - letter, respectively. */ -static int -state_index(d, s, newline, letter) - struct dfa *d; - position_set *s; - int newline; - int letter; -{ - int hash = 0; - int constraint; - int i, j; - - newline = newline ? 1 : 0; - letter = letter ? 1 : 0; - - for (i = 0; i < s->nelem; ++i) - hash ^= s->elems[i].index + s->elems[i].constraint; - - /* Try to find a state that exactly matches the proposed one. */ - for (i = 0; i < d->sindex; ++i) - { - if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem - || newline != d->states[i].newline || letter != d->states[i].letter) - continue; - for (j = 0; j < s->nelem; ++j) - if (s->elems[j].constraint - != d->states[i].elems.elems[j].constraint - || s->elems[j].index != d->states[i].elems.elems[j].index) - break; - if (j == s->nelem) - return i; - } - - /* We'll have to create a new state. */ - REALLOC_IF_NECESSARY(d->states, dfa_state, d->salloc, d->sindex); - d->states[i].hash = hash; - MALLOC(d->states[i].elems.elems, position, s->nelem); - copy(s, &d->states[i].elems); - d->states[i].newline = newline; - d->states[i].letter = letter; - d->states[i].backref = 0; - d->states[i].constraint = 0; - d->states[i].first_end = 0; - for (j = 0; j < s->nelem; ++j) - if (d->tokens[s->elems[j].index] < 0) - { - constraint = s->elems[j].constraint; - if (SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 0) - || SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 1) - || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 0) - || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 1)) - d->states[i].constraint |= constraint; - if (! d->states[i].first_end) - d->states[i].first_end = d->tokens[s->elems[j].index]; - } - else if (d->tokens[s->elems[j].index] == BACKREF) - { - d->states[i].constraint = NO_CONSTRAINT; - d->states[i].backref = 1; - } - - ++d->sindex; - - return i; -} - -/* Find the epsilon closure of a set of positions. If any position of the set - contains a symbol that matches the empty string in some context, replace - that position with the elements of its follow labeled with an appropriate - constraint. Repeat exhaustively until no funny positions are left. - S->elems must be large enough to hold the result. */ -void -epsclosure(s, d) - position_set *s; - struct dfa *d; -{ - int i, j; - int *visited; - position p, old; - - MALLOC(visited, int, d->tindex); - for (i = 0; i < d->tindex; ++i) - visited[i] = 0; - - for (i = 0; i < s->nelem; ++i) - if (d->tokens[s->elems[i].index] >= NOTCHAR - && d->tokens[s->elems[i].index] != BACKREF - && d->tokens[s->elems[i].index] < CSET) - { - old = s->elems[i]; - p.constraint = old.constraint; - delete(s->elems[i], s); - if (visited[old.index]) - { - --i; - continue; - } - visited[old.index] = 1; - switch (d->tokens[old.index]) - { - case BEGLINE: - p.constraint &= BEGLINE_CONSTRAINT; - break; - case ENDLINE: - p.constraint &= ENDLINE_CONSTRAINT; - break; - case BEGWORD: - p.constraint &= BEGWORD_CONSTRAINT; - break; - case ENDWORD: - p.constraint &= ENDWORD_CONSTRAINT; - break; - case LIMWORD: - p.constraint &= LIMWORD_CONSTRAINT; - break; - case NOTLIMWORD: - p.constraint &= NOTLIMWORD_CONSTRAINT; - break; - default: - break; - } - for (j = 0; j < d->follows[old.index].nelem; ++j) - { - p.index = d->follows[old.index].elems[j].index; - insert(p, s); - } - /* Force rescan to start at the beginning. */ - i = -1; - } - - free(visited); -} - -/* Perform bottom-up analysis on the parse tree, computing various functions. - Note that at this point, we're pretending constructs like \< are real - characters rather than constraints on what can follow them. - - Nullable: A node is nullable if it is at the root of a regexp that can - match the empty string. - * EMPTY leaves are nullable. - * No other leaf is nullable. - * A QMARK or STAR node is nullable. - * A PLUS node is nullable if its argument is nullable. - * A CAT node is nullable if both its arguments are nullable. - * An OR node is nullable if either argument is nullable. - - Firstpos: The firstpos of a node is the set of positions (nonempty leaves) - that could correspond to the first character of a string matching the - regexp rooted at the given node. - * EMPTY leaves have empty firstpos. - * The firstpos of a nonempty leaf is that leaf itself. - * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its - argument. - * The firstpos of a CAT node is the firstpos of the left argument, union - the firstpos of the right if the left argument is nullable. - * The firstpos of an OR node is the union of firstpos of each argument. - - Lastpos: The lastpos of a node is the set of positions that could - correspond to the last character of a string matching the regexp at - the given node. - * EMPTY leaves have empty lastpos. - * The lastpos of a nonempty leaf is that leaf itself. - * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its - argument. - * The lastpos of a CAT node is the lastpos of its right argument, union - the lastpos of the left if the right argument is nullable. - * The lastpos of an OR node is the union of the lastpos of each argument. - - Follow: The follow of a position is the set of positions that could - correspond to the character following a character matching the node in - a string matching the regexp. At this point we consider special symbols - that match the empty string in some context to be just normal characters. - Later, if we find that a special symbol is in a follow set, we will - replace it with the elements of its follow, labeled with an appropriate - constraint. - * Every node in the firstpos of the argument of a STAR or PLUS node is in - the follow of every node in the lastpos. - * Every node in the firstpos of the second argument of a CAT node is in - the follow of every node in the lastpos of the first argument. - - Because of the postfix representation of the parse tree, the depth-first - analysis is conveniently done by a linear scan with the aid of a stack. - Sets are stored as arrays of the elements, obeying a stack-like allocation - scheme; the number of elements in each set deeper in the stack can be - used to determine the address of a particular set's array. */ -void -dfaanalyze(d, searchflag) - struct dfa *d; - int searchflag; -{ - int *nullable; /* Nullable stack. */ - int *nfirstpos; /* Element count stack for firstpos sets. */ - position *firstpos; /* Array where firstpos elements are stored. */ - int *nlastpos; /* Element count stack for lastpos sets. */ - position *lastpos; /* Array where lastpos elements are stored. */ - int *nalloc; /* Sizes of arrays allocated to follow sets. */ - position_set tmp; /* Temporary set for merging sets. */ - position_set merged; /* Result of merging sets. */ - int wants_newline; /* True if some position wants newline info. */ - int *o_nullable; - int *o_nfirst, *o_nlast; - position *o_firstpos, *o_lastpos; - int i, j; - position *pos; - -#ifdef DEBUG - fprintf(stderr, "dfaanalyze:\n"); - for (i = 0; i < d->tindex; ++i) - { - fprintf(stderr, " %d:", i); - prtok(d->tokens[i]); - } - putc('\n', stderr); -#endif - - d->searchflag = searchflag; - - MALLOC(nullable, int, d->depth); - o_nullable = nullable; - MALLOC(nfirstpos, int, d->depth); - o_nfirst = nfirstpos; - MALLOC(firstpos, position, d->nleaves); - o_firstpos = firstpos, firstpos += d->nleaves; - MALLOC(nlastpos, int, d->depth); - o_nlast = nlastpos; - MALLOC(lastpos, position, d->nleaves); - o_lastpos = lastpos, lastpos += d->nleaves; - MALLOC(nalloc, int, d->tindex); - for (i = 0; i < d->tindex; ++i) - nalloc[i] = 0; - MALLOC(merged.elems, position, d->nleaves); - - CALLOC(d->follows, position_set, d->tindex); - - for (i = 0; i < d->tindex; ++i) -#ifdef DEBUG - { /* Nonsyntactic #ifdef goo... */ -#endif - switch (d->tokens[i]) - { - case EMPTY: - /* The empty set is nullable. */ - *nullable++ = 1; - - /* The firstpos and lastpos of the empty leaf are both empty. */ - *nfirstpos++ = *nlastpos++ = 0; - break; - - case STAR: - case PLUS: - /* Every element in the firstpos of the argument is in the follow - of every element in the lastpos. */ - tmp.nelem = nfirstpos[-1]; - tmp.elems = firstpos; - pos = lastpos; - for (j = 0; j < nlastpos[-1]; ++j) - { - merge(&tmp, &d->follows[pos[j].index], &merged); - REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position, - nalloc[pos[j].index], merged.nelem - 1); - copy(&merged, &d->follows[pos[j].index]); - } - - case QMARK: - /* A QMARK or STAR node is automatically nullable. */ - if (d->tokens[i] != PLUS) - nullable[-1] = 1; - break; - - case CAT: - /* Every element in the firstpos of the second argument is in the - follow of every element in the lastpos of the first argument. */ - tmp.nelem = nfirstpos[-1]; - tmp.elems = firstpos; - pos = lastpos + nlastpos[-1]; - for (j = 0; j < nlastpos[-2]; ++j) - { - merge(&tmp, &d->follows[pos[j].index], &merged); - REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position, - nalloc[pos[j].index], merged.nelem - 1); - copy(&merged, &d->follows[pos[j].index]); - } - - /* The firstpos of a CAT node is the firstpos of the first argument, - union that of the second argument if the first is nullable. */ - if (nullable[-2]) - nfirstpos[-2] += nfirstpos[-1]; - else - firstpos += nfirstpos[-1]; - --nfirstpos; - - /* The lastpos of a CAT node is the lastpos of the second argument, - union that of the first argument if the second is nullable. */ - if (nullable[-1]) - nlastpos[-2] += nlastpos[-1]; - else - { - pos = lastpos + nlastpos[-2]; - for (j = nlastpos[-1] - 1; j >= 0; --j) - pos[j] = lastpos[j]; - lastpos += nlastpos[-2]; - nlastpos[-2] = nlastpos[-1]; - } - --nlastpos; - - /* A CAT node is nullable if both arguments are nullable. */ - nullable[-2] = nullable[-1] && nullable[-2]; - --nullable; - break; - - case OR: - case ORTOP: - /* The firstpos is the union of the firstpos of each argument. */ - nfirstpos[-2] += nfirstpos[-1]; - --nfirstpos; - - /* The lastpos is the union of the lastpos of each argument. */ - nlastpos[-2] += nlastpos[-1]; - --nlastpos; - - /* An OR node is nullable if either argument is nullable. */ - nullable[-2] = nullable[-1] || nullable[-2]; - --nullable; - break; - - default: - /* Anything else is a nonempty position. (Note that special - constructs like \< are treated as nonempty strings here; - an "epsilon closure" effectively makes them nullable later. - Backreferences have to get a real position so we can detect - transitions on them later. But they are nullable. */ - *nullable++ = d->tokens[i] == BACKREF; - - /* This position is in its own firstpos and lastpos. */ - *nfirstpos++ = *nlastpos++ = 1; - --firstpos, --lastpos; - firstpos->index = lastpos->index = i; - firstpos->constraint = lastpos->constraint = NO_CONSTRAINT; - - /* Allocate the follow set for this position. */ - nalloc[i] = 1; - MALLOC(d->follows[i].elems, position, nalloc[i]); - break; - } -#ifdef DEBUG - /* ... balance the above nonsyntactic #ifdef goo... */ - fprintf(stderr, "node %d:", i); - prtok(d->tokens[i]); - putc('\n', stderr); - fprintf(stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n"); - fprintf(stderr, " firstpos:"); - for (j = nfirstpos[-1] - 1; j >= 0; --j) - { - fprintf(stderr, " %d:", firstpos[j].index); - prtok(d->tokens[firstpos[j].index]); - } - fprintf(stderr, "\n lastpos:"); - for (j = nlastpos[-1] - 1; j >= 0; --j) - { - fprintf(stderr, " %d:", lastpos[j].index); - prtok(d->tokens[lastpos[j].index]); - } - putc('\n', stderr); - } -#endif - - /* For each follow set that is the follow set of a real position, replace - it with its epsilon closure. */ - for (i = 0; i < d->tindex; ++i) - if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF - || d->tokens[i] >= CSET) - { -#ifdef DEBUG - fprintf(stderr, "follows(%d:", i); - prtok(d->tokens[i]); - fprintf(stderr, "):"); - for (j = d->follows[i].nelem - 1; j >= 0; --j) - { - fprintf(stderr, " %d:", d->follows[i].elems[j].index); - prtok(d->tokens[d->follows[i].elems[j].index]); - } - putc('\n', stderr); -#endif - copy(&d->follows[i], &merged); - epsclosure(&merged, d); - if (d->follows[i].nelem < merged.nelem) - REALLOC(d->follows[i].elems, position, merged.nelem); - copy(&merged, &d->follows[i]); - } - - /* Get the epsilon closure of the firstpos of the regexp. The result will - be the set of positions of state 0. */ - merged.nelem = 0; - for (i = 0; i < nfirstpos[-1]; ++i) - insert(firstpos[i], &merged); - epsclosure(&merged, d); - - /* Check if any of the positions of state 0 will want newline context. */ - wants_newline = 0; - for (i = 0; i < merged.nelem; ++i) - if (PREV_NEWLINE_DEPENDENT(merged.elems[i].constraint)) - wants_newline = 1; - - /* Build the initial state. */ - d->salloc = 1; - d->sindex = 0; - MALLOC(d->states, dfa_state, d->salloc); - state_index(d, &merged, wants_newline, 0); - - free(o_nullable); - free(o_nfirst); - free(o_firstpos); - free(o_nlast); - free(o_lastpos); - free(nalloc); - free(merged.elems); -} - -/* Find, for each character, the transition out of state s of d, and store - it in the appropriate slot of trans. - - We divide the positions of s into groups (positions can appear in more - than one group). Each group is labeled with a set of characters that - every position in the group matches (taking into account, if necessary, - preceding context information of s). For each group, find the union - of the its elements' follows. This set is the set of positions of the - new state. For each character in the group's label, set the transition - on this character to be to a state corresponding to the set's positions, - and its associated backward context information, if necessary. - - If we are building a searching matcher, we include the positions of state - 0 in every state. - - The collection of groups is constructed by building an equivalence-class - partition of the positions of s. - - For each position, find the set of characters C that it matches. Eliminate - any characters from C that fail on grounds of backward context. - - Search through the groups, looking for a group whose label L has nonempty - intersection with C. If L - C is nonempty, create a new group labeled - L - C and having the same positions as the current group, and set L to - the intersection of L and C. Insert the position in this group, set - C = C - L, and resume scanning. - - If after comparing with every group there are characters remaining in C, - create a new group labeled with the characters of C and insert this - position in that group. */ -void -dfastate(s, d, trans) - int s; - struct dfa *d; - int trans[]; -{ - position_set grps[NOTCHAR]; /* As many as will ever be needed. */ - charclass labels[NOTCHAR]; /* Labels corresponding to the groups. */ - int ngrps = 0; /* Number of groups actually used. */ - position pos; /* Current position being considered. */ - charclass matches; /* Set of matching characters. */ - int matchesf; /* True if matches is nonempty. */ - charclass intersect; /* Intersection with some label set. */ - int intersectf; /* True if intersect is nonempty. */ - charclass leftovers; /* Stuff in the label that didn't match. */ - int leftoversf; /* True if leftovers is nonempty. */ - static charclass letters; /* Set of characters considered letters. */ - static charclass newline; /* Set of characters that aren't newline. */ - position_set follows; /* Union of the follows of some group. */ - position_set tmp; /* Temporary space for merging sets. */ - int state; /* New state. */ - int wants_newline; /* New state wants to know newline context. */ - int state_newline; /* New state on a newline transition. */ - int wants_letter; /* New state wants to know letter context. */ - int state_letter; /* New state on a letter transition. */ - static initialized; /* Flag for static initialization. */ - int i, j, k; - - /* Initialize the set of letters, if necessary. */ - if (! initialized) - { - initialized = 1; - for (i = 0; i < NOTCHAR; ++i) - if (ISALNUM(i)) - setbit(i, letters); - setbit('\n', newline); - } - - zeroset(matches); - - for (i = 0; i < d->states[s].elems.nelem; ++i) - { - pos = d->states[s].elems.elems[i]; - if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR) - setbit(d->tokens[pos.index], matches); - else if (d->tokens[pos.index] >= CSET) - copyset(d->charclasses[d->tokens[pos.index] - CSET], matches); - else - continue; - - /* Some characters may need to be eliminated from matches because - they fail in the current context. */ - if (pos.constraint != 0xFF) - { - if (! MATCHES_NEWLINE_CONTEXT(pos.constraint, - d->states[s].newline, 1)) - clrbit('\n', matches); - if (! MATCHES_NEWLINE_CONTEXT(pos.constraint, - d->states[s].newline, 0)) - for (j = 0; j < CHARCLASS_INTS; ++j) - matches[j] &= newline[j]; - if (! MATCHES_LETTER_CONTEXT(pos.constraint, - d->states[s].letter, 1)) - for (j = 0; j < CHARCLASS_INTS; ++j) - matches[j] &= ~letters[j]; - if (! MATCHES_LETTER_CONTEXT(pos.constraint, - d->states[s].letter, 0)) - for (j = 0; j < CHARCLASS_INTS; ++j) - matches[j] &= letters[j]; - - /* If there are no characters left, there's no point in going on. */ - for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j) - ; - if (j == CHARCLASS_INTS) - continue; - } - - for (j = 0; j < ngrps; ++j) - { - /* If matches contains a single character only, and the current - group's label doesn't contain that character, go on to the - next group. */ - if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR - && !tstbit(d->tokens[pos.index], labels[j])) - continue; - - /* Check if this group's label has a nonempty intersection with - matches. */ - intersectf = 0; - for (k = 0; k < CHARCLASS_INTS; ++k) - (intersect[k] = matches[k] & labels[j][k]) ? intersectf = 1 : 0; - if (! intersectf) - continue; - - /* It does; now find the set differences both ways. */ - leftoversf = matchesf = 0; - for (k = 0; k < CHARCLASS_INTS; ++k) - { - /* Even an optimizing compiler can't know this for sure. */ - int match = matches[k], label = labels[j][k]; - - (leftovers[k] = ~match & label) ? leftoversf = 1 : 0; - (matches[k] = match & ~label) ? matchesf = 1 : 0; - } - - /* If there were leftovers, create a new group labeled with them. */ - if (leftoversf) - { - copyset(leftovers, labels[ngrps]); - copyset(intersect, labels[j]); - MALLOC(grps[ngrps].elems, position, d->nleaves); - copy(&grps[j], &grps[ngrps]); - ++ngrps; - } - - /* Put the position in the current group. Note that there is no - reason to call insert() here. */ - grps[j].elems[grps[j].nelem++] = pos; - - /* If every character matching the current position has been - accounted for, we're done. */ - if (! matchesf) - break; - } - - /* If we've passed the last group, and there are still characters - unaccounted for, then we'll have to create a new group. */ - if (j == ngrps) - { - copyset(matches, labels[ngrps]); - zeroset(matches); - MALLOC(grps[ngrps].elems, position, d->nleaves); - grps[ngrps].nelem = 1; - grps[ngrps].elems[0] = pos; - ++ngrps; - } - } - - MALLOC(follows.elems, position, d->nleaves); - MALLOC(tmp.elems, position, d->nleaves); - - /* If we are a searching matcher, the default transition is to a state - containing the positions of state 0, otherwise the default transition - is to fail miserably. */ - if (d->searchflag) - { - wants_newline = 0; - wants_letter = 0; - for (i = 0; i < d->states[0].elems.nelem; ++i) - { - if (PREV_NEWLINE_DEPENDENT(d->states[0].elems.elems[i].constraint)) - wants_newline = 1; - if (PREV_LETTER_DEPENDENT(d->states[0].elems.elems[i].constraint)) - wants_letter = 1; - } - copy(&d->states[0].elems, &follows); - state = state_index(d, &follows, 0, 0); - if (wants_newline) - state_newline = state_index(d, &follows, 1, 0); - else - state_newline = state; - if (wants_letter) - state_letter = state_index(d, &follows, 0, 1); - else - state_letter = state; - for (i = 0; i < NOTCHAR; ++i) - if (i == '\n') - trans[i] = state_newline; - else if (ISALNUM(i)) - trans[i] = state_letter; - else - trans[i] = state; - } - else - for (i = 0; i < NOTCHAR; ++i) - trans[i] = -1; - - for (i = 0; i < ngrps; ++i) - { - follows.nelem = 0; - - /* Find the union of the follows of the positions of the group. - This is a hideously inefficient loop. Fix it someday. */ - for (j = 0; j < grps[i].nelem; ++j) - for (k = 0; k < d->follows[grps[i].elems[j].index].nelem; ++k) - insert(d->follows[grps[i].elems[j].index].elems[k], &follows); - - /* If we are building a searching matcher, throw in the positions - of state 0 as well. */ - if (d->searchflag) - for (j = 0; j < d->states[0].elems.nelem; ++j) - insert(d->states[0].elems.elems[j], &follows); - - /* Find out if the new state will want any context information. */ - wants_newline = 0; - if (tstbit('\n', labels[i])) - for (j = 0; j < follows.nelem; ++j) - if (PREV_NEWLINE_DEPENDENT(follows.elems[j].constraint)) - wants_newline = 1; - - wants_letter = 0; - for (j = 0; j < CHARCLASS_INTS; ++j) - if (labels[i][j] & letters[j]) - break; - if (j < CHARCLASS_INTS) - for (j = 0; j < follows.nelem; ++j) - if (PREV_LETTER_DEPENDENT(follows.elems[j].constraint)) - wants_letter = 1; - - /* Find the state(s) corresponding to the union of the follows. */ - state = state_index(d, &follows, 0, 0); - if (wants_newline) - state_newline = state_index(d, &follows, 1, 0); - else - state_newline = state; - if (wants_letter) - state_letter = state_index(d, &follows, 0, 1); - else - state_letter = state; - - /* Set the transitions for each character in the current label. */ - for (j = 0; j < CHARCLASS_INTS; ++j) - for (k = 0; k < INTBITS; ++k) - if (labels[i][j] & 1 << k) - { - int c = j * INTBITS + k; - - if (c == '\n') - trans[c] = state_newline; - else if (ISALNUM(c)) - trans[c] = state_letter; - else if (c < NOTCHAR) - trans[c] = state; - } - } - - for (i = 0; i < ngrps; ++i) - free(grps[i].elems); - free(follows.elems); - free(tmp.elems); -} - -/* Some routines for manipulating a compiled dfa's transition tables. - Each state may or may not have a transition table; if it does, and it - is a non-accepting state, then d->trans[state] points to its table. - If it is an accepting state then d->fails[state] points to its table. - If it has no table at all, then d->trans[state] is NULL. - TODO: Improve this comment, get rid of the unnecessary redundancy. */ - -static void -build_state(s, d) - int s; - struct dfa *d; -{ - int *trans; /* The new transition table. */ - int i; - - /* Set an upper limit on the number of transition tables that will ever - exist at once. 1024 is arbitrary. The idea is that the frequently - used transition tables will be quickly rebuilt, whereas the ones that - were only needed once or twice will be cleared away. */ - if (d->trcount >= 1024) - { - for (i = 0; i < d->tralloc; ++i) - if (d->trans[i]) - { - free((ptr_t) d->trans[i]); - d->trans[i] = NULL; - } - else if (d->fails[i]) - { - free((ptr_t) d->fails[i]); - d->fails[i] = NULL; - } - d->trcount = 0; - } - - ++d->trcount; - - /* Set up the success bits for this state. */ - d->success[s] = 0; - if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 1, d->states[s].letter, 0, - s, *d)) - d->success[s] |= 4; - if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 1, - s, *d)) - d->success[s] |= 2; - if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 0, - s, *d)) - d->success[s] |= 1; - - MALLOC(trans, int, NOTCHAR); - dfastate(s, d, trans); - - /* Now go through the new transition table, and make sure that the trans - and fail arrays are allocated large enough to hold a pointer for the - largest state mentioned in the table. */ - for (i = 0; i < NOTCHAR; ++i) - if (trans[i] >= d->tralloc) - { - int oldalloc = d->tralloc; - - while (trans[i] >= d->tralloc) - d->tralloc *= 2; - REALLOC(d->realtrans, int *, d->tralloc + 1); - d->trans = d->realtrans + 1; - REALLOC(d->fails, int *, d->tralloc); - REALLOC(d->success, int, d->tralloc); - REALLOC(d->newlines, int, d->tralloc); - while (oldalloc < d->tralloc) - { - d->trans[oldalloc] = NULL; - d->fails[oldalloc++] = NULL; - } - } - - /* Keep the newline transition in a special place so we can use it as - a sentinel. */ - d->newlines[s] = trans['\n']; - trans['\n'] = -1; - - if (ACCEPTING(s, *d)) - d->fails[s] = trans; - else - d->trans[s] = trans; -} - -static void -build_state_zero(d) - struct dfa *d; -{ - d->tralloc = 1; - d->trcount = 0; - CALLOC(d->realtrans, int *, d->tralloc + 1); - d->trans = d->realtrans + 1; - CALLOC(d->fails, int *, d->tralloc); - MALLOC(d->success, int, d->tralloc); - MALLOC(d->newlines, int, d->tralloc); - build_state(0, d); -} - -/* Search through a buffer looking for a match to the given struct dfa. - Find the first occurrence of a string matching the regexp in the buffer, - and the shortest possible version thereof. Return a pointer to the first - character after the match, or NULL if none is found. Begin points to - the beginning of the buffer, and end points to the first character after - its end. We store a newline in *end to act as a sentinel, so end had - better point somewhere valid. Newline is a flag indicating whether to - allow newlines to be in the matching string. If count is non- - NULL it points to a place we're supposed to increment every time we - see a newline. Finally, if backref is non-NULL it points to a place - where we're supposed to store a 1 if backreferencing happened and the - match needs to be verified by a backtracking matcher. Otherwise - we store a 0 in *backref. */ -char * -dfaexec(d, begin, end, newline, count, backref) - struct dfa *d; - char *begin; - char *end; - int newline; - int *count; - int *backref; -{ - register s, s1, tmp; /* Current state. */ - register unsigned char *p; /* Current input character. */ - register **trans, *t; /* Copy of d->trans so it can be optimized - into a register. */ - static sbit[NOTCHAR]; /* Table for anding with d->success. */ - static sbit_init; - - if (! sbit_init) - { - int i; - - sbit_init = 1; - for (i = 0; i < NOTCHAR; ++i) - if (i == '\n') - sbit[i] = 4; - else if (ISALNUM(i)) - sbit[i] = 2; - else - sbit[i] = 1; - } - - if (! d->tralloc) - build_state_zero(d); - - s = s1 = 0; - p = (unsigned char *) begin; - trans = d->trans; - *end = '\n'; - - for (;;) - { - /* The dreaded inner loop. */ - if ((t = trans[s]) != 0) - do - { - s1 = t[*p++]; - if (! (t = trans[s1])) - goto last_was_s; - s = t[*p++]; - } - while ((t = trans[s]) != 0); - goto last_was_s1; - last_was_s: - tmp = s, s = s1, s1 = tmp; - last_was_s1: - - if (s >= 0 && p <= (unsigned char *) end && d->fails[s]) - { - if (d->success[s] & sbit[*p]) - { - if (backref) - if (d->states[s].backref) - *backref = 1; - else - *backref = 0; - return (char *) p; - } - - s1 = s; - s = d->fails[s][*p++]; - continue; - } - - /* If the previous character was a newline, count it. */ - if (count && (char *) p <= end && p[-1] == '\n') - ++*count; - - /* Check if we've run off the end of the buffer. */ - if ((char *) p > end) - return NULL; - - if (s >= 0) - { - build_state(s, d); - trans = d->trans; - continue; - } - - if (p[-1] == '\n' && newline) - { - s = d->newlines[s1]; - continue; - } - - s = 0; - } -} - -/* Initialize the components of a dfa that the other routines don't - initialize for themselves. */ -void -dfainit(d) - struct dfa *d; -{ - d->calloc = 1; - MALLOC(d->charclasses, charclass, d->calloc); - d->cindex = 0; - - d->talloc = 1; - MALLOC(d->tokens, token, d->talloc); - d->tindex = d->depth = d->nleaves = d->nregexps = 0; - - d->searchflag = 0; - d->tralloc = 0; - - d->musts = 0; -} - -/* Parse and analyze a single string of the given length. */ -void -dfacomp(s, len, d, searchflag) - char *s; - size_t len; - struct dfa *d; - int searchflag; -{ - if (case_fold) /* dummy folding in service of dfamust() */ - { - char *copy; - int i; - - copy = malloc(len); - if (!copy) - dfaerror("out of memory"); - - /* This is a kludge. */ - case_fold = 0; - for (i = 0; i < len; ++i) - if (ISUPPER(s[i])) - copy[i] = tolower(s[i]); - else - copy[i] = s[i]; - - dfainit(d); - dfaparse(copy, len, d); - free(copy); - dfamust(d); - d->cindex = d->tindex = d->depth = d->nleaves = d->nregexps = 0; - case_fold = 1; - dfaparse(s, len, d); - dfaanalyze(d, searchflag); - } - else - { - dfainit(d); - dfaparse(s, len, d); - dfamust(d); - dfaanalyze(d, searchflag); - } -} - -/* Free the storage held by the components of a dfa. */ -void -dfafree(d) - struct dfa *d; -{ - int i; - struct dfamust *dm, *ndm; - - free((ptr_t) d->charclasses); - free((ptr_t) d->tokens); - for (i = 0; i < d->sindex; ++i) - free((ptr_t) d->states[i].elems.elems); - free((ptr_t) d->states); - for (i = 0; i < d->tindex; ++i) - if (d->follows[i].elems) - free((ptr_t) d->follows[i].elems); - free((ptr_t) d->follows); - for (i = 0; i < d->tralloc; ++i) - if (d->trans[i]) - free((ptr_t) d->trans[i]); - else if (d->fails[i]) - free((ptr_t) d->fails[i]); - free((ptr_t) d->realtrans); - free((ptr_t) d->fails); - free((ptr_t) d->newlines); - for (dm = d->musts; dm; dm = ndm) - { - ndm = dm->next; - free(dm->must); - free((ptr_t) dm); - } -} - -/* Having found the postfix representation of the regular expression, - try to find a long sequence of characters that must appear in any line - containing the r.e. - Finding a "longest" sequence is beyond the scope here; - we take an easy way out and hope for the best. - (Take "(ab|a)b"--please.) - - We do a bottom-up calculation of sequences of characters that must appear - in matches of r.e.'s represented by trees rooted at the nodes of the postfix - representation: - sequences that must appear at the left of the match ("left") - sequences that must appear at the right of the match ("right") - lists of sequences that must appear somewhere in the match ("in") - sequences that must constitute the match ("is") - - When we get to the root of the tree, we use one of the longest of its - calculated "in" sequences as our answer. The sequence we find is returned in - d->must (where "d" is the single argument passed to "dfamust"); - the length of the sequence is returned in d->mustn. - - The sequences calculated for the various types of node (in pseudo ANSI c) - are shown below. "p" is the operand of unary operators (and the left-hand - operand of binary operators); "q" is the right-hand operand of binary - operators. - - "ZERO" means "a zero-length sequence" below. - - Type left right is in - ---- ---- ----- -- -- - char c # c # c # c # c - - CSET ZERO ZERO ZERO ZERO - - STAR ZERO ZERO ZERO ZERO - - QMARK ZERO ZERO ZERO ZERO - - PLUS p->left p->right ZERO p->in - - CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus - p->left : q->right : q->is!=ZERO) ? q->in plus - p->is##q->left p->right##q->is p->is##q->is : p->right##q->left - ZERO - - OR longest common longest common (do p->is and substrings common to - leading trailing q->is have same p->in and q->in - (sub)sequence (sub)sequence length and - of p->left of p->right content) ? - and q->left and q->right p->is : NULL - - If there's anything else we recognize in the tree, all four sequences get set - to zero-length sequences. If there's something we don't recognize in the tree, - we just return a zero-length sequence. - - Break ties in favor of infrequent letters (choosing 'zzz' in preference to - 'aaa')? - - And. . .is it here or someplace that we might ponder "optimizations" such as - egrep 'psi|epsilon' -> egrep 'psi' - egrep 'pepsi|epsilon' -> egrep 'epsi' - (Yes, we now find "epsi" as a "string - that must occur", but we might also - simplify the *entire* r.e. being sought) - grep '[c]' -> grep 'c' - grep '(ab|a)b' -> grep 'ab' - grep 'ab*' -> grep 'a' - grep 'a*b' -> grep 'b' - - There are several issues: - - Is optimization easy (enough)? - - Does optimization actually accomplish anything, - or is the automaton you get from "psi|epsilon" (for example) - the same as the one you get from "psi" (for example)? - - Are optimizable r.e.'s likely to be used in real-life situations - (something like 'ab*' is probably unlikely; something like is - 'psi|epsilon' is likelier)? */ - -static char * -icatalloc(old, new) - char *old; - char *new; -{ - char *result; - int oldsize, newsize; - - newsize = (new == NULL) ? 0 : strlen(new); - if (old == NULL) - oldsize = 0; - else if (newsize == 0) - return old; - else oldsize = strlen(old); - if (old == NULL) - result = (char *) malloc(newsize + 1); - else - result = (char *) realloc((void *) old, oldsize + newsize + 1); - if (result != NULL && new != NULL) - (void) strcpy(result + oldsize, new); - return result; -} - -static char * -icpyalloc(string) - char *string; -{ - return icatalloc((char *) NULL, string); -} - -static char * -istrstr(lookin, lookfor) - char *lookin; - char *lookfor; -{ - char *cp; - int len; - - len = strlen(lookfor); - for (cp = lookin; *cp != '\0'; ++cp) - if (strncmp(cp, lookfor, len) == 0) - return cp; - return NULL; -} - -static void -ifree(cp) - char *cp; -{ - if (cp != NULL) - free(cp); -} - -static void -freelist(cpp) - char **cpp; -{ - int i; - - if (cpp == NULL) - return; - for (i = 0; cpp[i] != NULL; ++i) - { - free(cpp[i]); - cpp[i] = NULL; - } -} - -static char ** -enlist(cpp, new, len) - char **cpp; - char *new; - int len; -{ - int i, j; - - if (cpp == NULL) - return NULL; - if ((new = icpyalloc(new)) == NULL) - { - freelist(cpp); - return NULL; - } - new[len] = '\0'; - /* Is there already something in the list that's new (or longer)? */ - for (i = 0; cpp[i] != NULL; ++i) - if (istrstr(cpp[i], new) != NULL) - { - free(new); - return cpp; - } - /* Eliminate any obsoleted strings. */ - j = 0; - while (cpp[j] != NULL) - if (istrstr(new, cpp[j]) == NULL) - ++j; - else - { - free(cpp[j]); - if (--i == j) - break; - cpp[j] = cpp[i]; - cpp[i] = NULL; - } - /* Add the new string. */ - cpp = (char **) realloc((char *) cpp, (i + 2) * sizeof *cpp); - if (cpp == NULL) - return NULL; - cpp[i] = new; - cpp[i + 1] = NULL; - return cpp; -} - -/* Given pointers to two strings, return a pointer to an allocated - list of their distinct common substrings. Return NULL if something - seems wild. */ -static char ** -comsubs(left, right) - char *left; - char *right; -{ - char **cpp; - char *lcp; - char *rcp; - int i, len; - - if (left == NULL || right == NULL) - return NULL; - cpp = (char **) malloc(sizeof *cpp); - if (cpp == NULL) - return NULL; - cpp[0] = NULL; - for (lcp = left; *lcp != '\0'; ++lcp) - { - len = 0; - rcp = index(right, *lcp); - while (rcp != NULL) - { - for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i) - ; - if (i > len) - len = i; - rcp = index(rcp + 1, *lcp); - } - if (len == 0) - continue; - if ((cpp = enlist(cpp, lcp, len)) == NULL) - break; - } - return cpp; -} - -static char ** -addlists(old, new) -char **old; -char **new; -{ - int i; - - if (old == NULL || new == NULL) - return NULL; - for (i = 0; new[i] != NULL; ++i) - { - old = enlist(old, new[i], strlen(new[i])); - if (old == NULL) - break; - } - return old; -} - -/* Given two lists of substrings, return a new list giving substrings - common to both. */ -static char ** -inboth(left, right) - char **left; - char **right; -{ - char **both; - char **temp; - int lnum, rnum; - - if (left == NULL || right == NULL) - return NULL; - both = (char **) malloc(sizeof *both); - if (both == NULL) - return NULL; - both[0] = NULL; - for (lnum = 0; left[lnum] != NULL; ++lnum) - { - for (rnum = 0; right[rnum] != NULL; ++rnum) - { - temp = comsubs(left[lnum], right[rnum]); - if (temp == NULL) - { - freelist(both); - return NULL; - } - both = addlists(both, temp); - freelist(temp); - if (both == NULL) - return NULL; - } - } - return both; -} - -typedef struct -{ - char **in; - char *left; - char *right; - char *is; -} must; - -static void -resetmust(mp) -must *mp; -{ - mp->left[0] = mp->right[0] = mp->is[0] = '\0'; - freelist(mp->in); -} - -static void -dfamust(dfa) -struct dfa *dfa; -{ - must *musts; - must *mp; - char *result; - int ri; - int i; - int exact; - token t; - static must must0; - struct dfamust *dm; - - result = ""; - exact = 0; - musts = (must *) malloc((dfa->tindex + 1) * sizeof *musts); - if (musts == NULL) - return; - mp = musts; - for (i = 0; i <= dfa->tindex; ++i) - mp[i] = must0; - for (i = 0; i <= dfa->tindex; ++i) - { - mp[i].in = (char **) malloc(sizeof *mp[i].in); - mp[i].left = malloc(2); - mp[i].right = malloc(2); - mp[i].is = malloc(2); - if (mp[i].in == NULL || mp[i].left == NULL || - mp[i].right == NULL || mp[i].is == NULL) - goto done; - mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0'; - mp[i].in[0] = NULL; - } -#ifdef DEBUG - fprintf(stderr, "dfamust:\n"); - for (i = 0; i < dfa->tindex; ++i) - { - fprintf(stderr, " %d:", i); - prtok(dfa->tokens[i]); - } - putc('\n', stderr); -#endif - for (ri = 0; ri < dfa->tindex; ++ri) - { - switch (t = dfa->tokens[ri]) - { - case LPAREN: - case RPAREN: - goto done; /* "cannot happen" */ - case EMPTY: - case BEGLINE: - case ENDLINE: - case BEGWORD: - case ENDWORD: - case LIMWORD: - case NOTLIMWORD: - case BACKREF: - resetmust(mp); - break; - case STAR: - case QMARK: - if (mp <= musts) - goto done; /* "cannot happen" */ - --mp; - resetmust(mp); - break; - case OR: - case ORTOP: - if (mp < &musts[2]) - goto done; /* "cannot happen" */ - { - char **new; - must *lmp; - must *rmp; - int j, ln, rn, n; - - rmp = --mp; - lmp = --mp; - /* Guaranteed to be. Unlikely, but. . . */ - if (strcmp(lmp->is, rmp->is) != 0) - lmp->is[0] = '\0'; - /* Left side--easy */ - i = 0; - while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i]) - ++i; - lmp->left[i] = '\0'; - /* Right side */ - ln = strlen(lmp->right); - rn = strlen(rmp->right); - n = ln; - if (n > rn) - n = rn; - for (i = 0; i < n; ++i) - if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1]) - break; - for (j = 0; j < i; ++j) - lmp->right[j] = lmp->right[(ln - i) + j]; - lmp->right[j] = '\0'; - new = inboth(lmp->in, rmp->in); - if (new == NULL) - goto done; - freelist(lmp->in); - free((char *) lmp->in); - lmp->in = new; - } - break; - case PLUS: - if (mp <= musts) - goto done; /* "cannot happen" */ - --mp; - mp->is[0] = '\0'; - break; - case END: - if (mp != &musts[1]) - goto done; /* "cannot happen" */ - for (i = 0; musts[0].in[i] != NULL; ++i) - if (strlen(musts[0].in[i]) > strlen(result)) - result = musts[0].in[i]; - if (strcmp(result, musts[0].is) == 0) - exact = 1; - goto done; - case CAT: - if (mp < &musts[2]) - goto done; /* "cannot happen" */ - { - must *lmp; - must *rmp; - - rmp = --mp; - lmp = --mp; - /* In. Everything in left, plus everything in - right, plus catenation of - left's right and right's left. */ - lmp->in = addlists(lmp->in, rmp->in); - if (lmp->in == NULL) - goto done; - if (lmp->right[0] != '\0' && - rmp->left[0] != '\0') - { - char *tp; - - tp = icpyalloc(lmp->right); - if (tp == NULL) - goto done; - tp = icatalloc(tp, rmp->left); - if (tp == NULL) - goto done; - lmp->in = enlist(lmp->in, tp, - strlen(tp)); - free(tp); - if (lmp->in == NULL) - goto done; - } - /* Left-hand */ - if (lmp->is[0] != '\0') - { - lmp->left = icatalloc(lmp->left, - rmp->left); - if (lmp->left == NULL) - goto done; - } - /* Right-hand */ - if (rmp->is[0] == '\0') - lmp->right[0] = '\0'; - lmp->right = icatalloc(lmp->right, rmp->right); - if (lmp->right == NULL) - goto done; - /* Guaranteed to be */ - if (lmp->is[0] != '\0' && rmp->is[0] != '\0') - { - lmp->is = icatalloc(lmp->is, rmp->is); - if (lmp->is == NULL) - goto done; - } - else - lmp->is[0] = '\0'; - } - break; - default: - if (t < END) - { - /* "cannot happen" */ - goto done; - } - else if (t == '\0') - { - /* not on *my* shift */ - goto done; - } - else if (t >= CSET) - { - /* easy enough */ - resetmust(mp); - } - else - { - /* plain character */ - resetmust(mp); - mp->is[0] = mp->left[0] = mp->right[0] = t; - mp->is[1] = mp->left[1] = mp->right[1] = '\0'; - mp->in = enlist(mp->in, mp->is, 1); - if (mp->in == NULL) - goto done; - } - break; - } -#ifdef DEBUG - fprintf(stderr, " node: %d:", ri); - prtok(dfa->tokens[ri]); - fprintf(stderr, "\n in:"); - for (i = 0; mp->in[i]; ++i) - fprintf(stderr, " \"%s\"", mp->in[i]); - fprintf(stderr, "\n is: \"%s\"\n", mp->is); - fprintf(stderr, " left: \"%s\"\n", mp->left); - fprintf(stderr, " right: \"%s\"\n", mp->right); -#endif - ++mp; - } - done: - if (strlen(result)) - { - dm = (struct dfamust *) malloc(sizeof (struct dfamust)); - dm->exact = exact; - dm->must = malloc(strlen(result) + 1); - strcpy(dm->must, result); - dm->next = dfa->musts; - dfa->musts = dm; - } - mp = musts; - for (i = 0; i <= dfa->tindex; ++i) - { - freelist(mp[i].in); - ifree((char *) mp[i].in); - ifree(mp[i].left); - ifree(mp[i].right); - ifree(mp[i].is); - } - free((char *) mp); -} diff --git a/gnu/grep/dfa.h b/gnu/grep/dfa.h deleted file mode 100644 index 32e05fc2aa4a..000000000000 --- a/gnu/grep/dfa.h +++ /dev/null @@ -1,360 +0,0 @@ -/* dfa.h - declarations for GNU deterministic regexp compiler - Copyright (C) 1988 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* Written June, 1988 by Mike Haertel */ - -/* FIXME: - 2. We should not export so much of the DFA internals. - In addition to clobbering modularity, we eat up valuable - name space. */ - -/* Number of bits in an unsigned char. */ -#define CHARBITS 8 - -/* First integer value that is greater than any character code. */ -#define NOTCHAR (1 << CHARBITS) - -/* INTBITS need not be exact, just a lower bound. */ -#define INTBITS (CHARBITS * sizeof (int)) - -/* Number of ints required to hold a bit for every character. */ -#define CHARCLASS_INTS ((NOTCHAR + INTBITS - 1) / INTBITS) - -/* Sets of unsigned characters are stored as bit vectors in arrays of ints. */ -typedef int charclass[CHARCLASS_INTS]; - -/* The regexp is parsed into an array of tokens in postfix form. Some tokens - are operators and others are terminal symbols. Most (but not all) of these - codes are returned by the lexical analyzer. */ - -typedef enum -{ - END = -1, /* END is a terminal symbol that matches the - end of input; any value of END or less in - the parse tree is such a symbol. Accepting - states of the DFA are those that would have - a transition on END. */ - - /* Ordinary character values are terminal symbols that match themselves. */ - - EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches - the empty string. */ - - BACKREF, /* BACKREF is generated by \<digit>; it - it not completely handled. If the scanner - detects a transition on backref, it returns - a kind of "semi-success" indicating that - the match will have to be verified with - a backtracking matcher. */ - - BEGLINE, /* BEGLINE is a terminal symbol that matches - the empty string if it is at the beginning - of a line. */ - - ENDLINE, /* ENDLINE is a terminal symbol that matches - the empty string if it is at the end of - a line. */ - - BEGWORD, /* BEGWORD is a terminal symbol that matches - the empty string if it is at the beginning - of a word. */ - - ENDWORD, /* ENDWORD is a terminal symbol that matches - the empty string if it is at the end of - a word. */ - - LIMWORD, /* LIMWORD is a terminal symbol that matches - the empty string if it is at the beginning - or the end of a word. */ - - NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that - matches the empty string if it is not at - the beginning or end of a word. */ - - QMARK, /* QMARK is an operator of one argument that - matches zero or one occurences of its - argument. */ - - STAR, /* STAR is an operator of one argument that - matches the Kleene closure (zero or more - occurrences) of its argument. */ - - PLUS, /* PLUS is an operator of one argument that - matches the positive closure (one or more - occurrences) of its argument. */ - - REPMN, /* REPMN is a lexical token corresponding - to the {m,n} construct. REPMN never - appears in the compiled token vector. */ - - CAT, /* CAT is an operator of two arguments that - matches the concatenation of its - arguments. CAT is never returned by the - lexical analyzer. */ - - OR, /* OR is an operator of two arguments that - matches either of its arguments. */ - - ORTOP, /* OR at the toplevel in the parse tree. - This is used for a boyer-moore heuristic. */ - - LPAREN, /* LPAREN never appears in the parse tree, - it is only a lexeme. */ - - RPAREN, /* RPAREN never appears in the parse tree. */ - - CSET /* CSET and (and any value greater) is a - terminal symbol that matches any of a - class of characters. */ -} token; - -/* Sets are stored in an array in the compiled dfa; the index of the - array corresponding to a given set token is given by SET_INDEX(t). */ -#define SET_INDEX(t) ((t) - CSET) - -/* Sometimes characters can only be matched depending on the surrounding - context. Such context decisions depend on what the previous character - was, and the value of the current (lookahead) character. Context - dependent constraints are encoded as 8 bit integers. Each bit that - is set indicates that the constraint succeeds in the corresponding - context. - - bit 7 - previous and current are newlines - bit 6 - previous was newline, current isn't - bit 5 - previous wasn't newline, current is - bit 4 - neither previous nor current is a newline - bit 3 - previous and current are word-constituents - bit 2 - previous was word-constituent, current isn't - bit 1 - previous wasn't word-constituent, current is - bit 0 - neither previous nor current is word-constituent - - Word-constituent characters are those that satisfy isalnum(). - - The macro SUCCEEDS_IN_CONTEXT determines whether a a given constraint - succeeds in a particular context. Prevn is true if the previous character - was a newline, currn is true if the lookahead character is a newline. - Prevl and currl similarly depend upon whether the previous and current - characters are word-constituent letters. */ -#define MATCHES_NEWLINE_CONTEXT(constraint, prevn, currn) \ - ((constraint) & 1 << (((prevn) ? 2 : 0) + ((currn) ? 1 : 0) + 4)) -#define MATCHES_LETTER_CONTEXT(constraint, prevl, currl) \ - ((constraint) & 1 << (((prevl) ? 2 : 0) + ((currl) ? 1 : 0))) -#define SUCCEEDS_IN_CONTEXT(constraint, prevn, currn, prevl, currl) \ - (MATCHES_NEWLINE_CONTEXT(constraint, prevn, currn) \ - && MATCHES_LETTER_CONTEXT(constraint, prevl, currl)) - -/* The following macros give information about what a constraint depends on. */ -#define PREV_NEWLINE_DEPENDENT(constraint) \ - (((constraint) & 0xc0) >> 2 != ((constraint) & 0x30)) -#define PREV_LETTER_DEPENDENT(constraint) \ - (((constraint) & 0x0c) >> 2 != ((constraint) & 0x03)) - -/* Tokens that match the empty string subject to some constraint actually - work by applying that constraint to determine what may follow them, - taking into account what has gone before. The following values are - the constraints corresponding to the special tokens previously defined. */ -#define NO_CONSTRAINT 0xff -#define BEGLINE_CONSTRAINT 0xcf -#define ENDLINE_CONSTRAINT 0xaf -#define BEGWORD_CONSTRAINT 0xf2 -#define ENDWORD_CONSTRAINT 0xf4 -#define LIMWORD_CONSTRAINT 0xf6 -#define NOTLIMWORD_CONSTRAINT 0xf9 - -/* States of the recognizer correspond to sets of positions in the parse - tree, together with the constraints under which they may be matched. - So a position is encoded as an index into the parse tree together with - a constraint. */ -typedef struct -{ - unsigned index; /* Index into the parse array. */ - unsigned constraint; /* Constraint for matching this position. */ -} position; - -/* Sets of positions are stored as arrays. */ -typedef struct -{ - position *elems; /* Elements of this position set. */ - int nelem; /* Number of elements in this set. */ -} position_set; - -/* A state of the dfa consists of a set of positions, some flags, - and the token value of the lowest-numbered position of the state that - contains an END token. */ -typedef struct -{ - int hash; /* Hash of the positions of this state. */ - position_set elems; /* Positions this state could match. */ - char newline; /* True if previous state matched newline. */ - char letter; /* True if previous state matched a letter. */ - char backref; /* True if this state matches a \<digit>. */ - unsigned char constraint; /* Constraint for this state to accept. */ - int first_end; /* Token value of the first END in elems. */ -} dfa_state; - -/* Element of a list of strings, at least one of which is known to - appear in any R.E. matching the DFA. */ -struct dfamust -{ - int exact; - char *must; - struct dfamust *next; -}; - -/* A compiled regular expression. */ -struct dfa -{ - /* Stuff built by the scanner. */ - charclass *charclasses; /* Array of character sets for CSET tokens. */ - int cindex; /* Index for adding new charclasses. */ - int calloc; /* Number of charclasses currently allocated. */ - - /* Stuff built by the parser. */ - token *tokens; /* Postfix parse array. */ - int tindex; /* Index for adding new tokens. */ - int talloc; /* Number of tokens currently allocated. */ - int depth; /* Depth required of an evaluation stack - used for depth-first traversal of the - parse tree. */ - int nleaves; /* Number of leaves on the parse tree. */ - int nregexps; /* Count of parallel regexps being built - with dfaparse(). */ - - /* Stuff owned by the state builder. */ - dfa_state *states; /* States of the dfa. */ - int sindex; /* Index for adding new states. */ - int salloc; /* Number of states currently allocated. */ - - /* Stuff built by the structure analyzer. */ - position_set *follows; /* Array of follow sets, indexed by position - index. The follow of a position is the set - of positions containing characters that - could conceivably follow a character - matching the given position in a string - matching the regexp. Allocated to the - maximum possible position index. */ - int searchflag; /* True if we are supposed to build a searching - as opposed to an exact matcher. A searching - matcher finds the first and shortest string - matching a regexp anywhere in the buffer, - whereas an exact matcher finds the longest - string matching, but anchored to the - beginning of the buffer. */ - - /* Stuff owned by the executor. */ - int tralloc; /* Number of transition tables that have - slots so far. */ - int trcount; /* Number of transition tables that have - actually been built. */ - int **trans; /* Transition tables for states that can - never accept. If the transitions for a - state have not yet been computed, or the - state could possibly accept, its entry in - this table is NULL. */ - int **realtrans; /* Trans always points to realtrans + 1; this - is so trans[-1] can contain NULL. */ - int **fails; /* Transition tables after failing to accept - on a state that potentially could do so. */ - int *success; /* Table of acceptance conditions used in - dfaexec and computed in build_state. */ - int *newlines; /* Transitions on newlines. The entry for a - newline in any transition table is always - -1 so we can count lines without wasting - too many cycles. The transition for a - newline is stored separately and handled - as a special case. Newline is also used - as a sentinel at the end of the buffer. */ - struct dfamust *musts; /* List of strings, at least one of which - is known to appear in any r.e. matching - the dfa. */ -}; - -/* Some macros for user access to dfa internals. */ - -/* ACCEPTING returns true if s could possibly be an accepting state of r. */ -#define ACCEPTING(s, r) ((r).states[s].constraint) - -/* ACCEPTS_IN_CONTEXT returns true if the given state accepts in the - specified context. */ -#define ACCEPTS_IN_CONTEXT(prevn, currn, prevl, currl, state, dfa) \ - SUCCEEDS_IN_CONTEXT((dfa).states[state].constraint, \ - prevn, currn, prevl, currl) - -/* FIRST_MATCHING_REGEXP returns the index number of the first of parallel - regexps that a given state could accept. Parallel regexps are numbered - starting at 1. */ -#define FIRST_MATCHING_REGEXP(state, dfa) (-(dfa).states[state].first_end) - -/* Entry points. */ - -#if __STDC__ - -/* dfasyntax() takes two arguments; the first sets the syntax bits described - earlier in this file, and the second sets the case-folding flag. */ -extern void dfasyntax(int, int); - -/* Compile the given string of the given length into the given struct dfa. - Final argument is a flag specifying whether to build a searching or an - exact matcher. */ -extern void dfacomp(char *, size_t, struct dfa *, int); - -/* Execute the given struct dfa on the buffer of characters. The - first char * points to the beginning, and the second points to the - first character after the end of the buffer, which must be a writable - place so a sentinel end-of-buffer marker can be stored there. The - second-to-last argument is a flag telling whether to allow newlines to - be part of a string matching the regexp. The next-to-last argument, - if non-NULL, points to a place to increment every time we see a - newline. The final argument, if non-NULL, points to a flag that will - be set if further examination by a backtracking matcher is needed in - order to verify backreferencing; otherwise the flag will be cleared. - Returns NULL if no match is found, or a pointer to the first - character after the first & shortest matching string in the buffer. */ -extern char *dfaexec(struct dfa *, char *, char *, int, int *, int *); - -/* Free the storage held by the components of a struct dfa. */ -extern void dfafree(struct dfa *); - -/* Entry points for people who know what they're doing. */ - -/* Initialize the components of a struct dfa. */ -extern void dfainit(struct dfa *); - -/* Incrementally parse a string of given length into a struct dfa. */ -extern void dfaparse(char *, size_t, struct dfa *); - -/* Analyze a parsed regexp; second argument tells whether to build a searching - or an exact matcher. */ -extern void dfaanalyze(struct dfa *, int); - -/* Compute, for each possible character, the transitions out of a given - state, storing them in an array of integers. */ -extern void dfastate(int, struct dfa *, int []); - -/* Error handling. */ - -/* dfaerror() is called by the regexp routines whenever an error occurs. It - takes a single argument, a NUL-terminated string describing the error. - The default dfaerror() prints the error message to stderr and exits. - The user can provide a different dfafree() if so desired. */ -extern void dfaerror(char *); - -#else /* ! __STDC__ */ -extern void dfasyntax(), dfacomp(), dfafree(), dfainit(), dfaparse(); -extern void dfaanalyze(), dfastate(), dfaerror(); -extern char *dfaexec(); -#endif /* ! __STDC__ */ diff --git a/gnu/grep/getopt.c b/gnu/grep/getopt.c deleted file mode 100644 index a59a01339835..000000000000 --- a/gnu/grep/getopt.c +++ /dev/null @@ -1,731 +0,0 @@ -/* Getopt for GNU. - NOTE: getopt is now part of the C library, so if you don't know what - "Keep this file name-space clean" means, talk to roland@gnu.ai.mit.edu - before changing it! - - Copyright (C) 1987, 88, 89, 90, 91, 92, 1993 - Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published by the - Free Software Foundation; either version 2, or (at your option) any - later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* NOTE!!! AIX requires this to be the first thing in the file. - Do not put ANYTHING before it! */ -#if !defined (__GNUC__) && defined (_AIX) - #pragma alloca -#endif - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -#ifdef __GNUC__ -#define alloca __builtin_alloca -#else /* not __GNUC__ */ -#if defined (HAVE_ALLOCA_H) || (defined(sparc) && (defined(sun) || (!defined(USG) && !defined(SVR4) && !defined(__svr4__)))) -#include <alloca.h> -#else -#ifndef _AIX -char *alloca (); -#endif -#endif /* alloca.h */ -#endif /* not __GNUC__ */ - -#if !__STDC__ && !defined(const) && IN_GCC -#define const -#endif - -/* This tells Alpha OSF/1 not to define a getopt prototype in <stdio.h>. */ -#ifndef _NO_PROTO -#define _NO_PROTO -#endif - -#include <stdio.h> - -/* Comment out all this code if we are using the GNU C Library, and are not - actually compiling the library itself. This code is part of the GNU C - Library, but also included in many other GNU distributions. Compiling - and linking in this code is a waste when using the GNU C library - (especially if it is a shared library). Rather than having every GNU - program understand `configure --with-gnu-libc' and omit the object files, - it is simpler to just do this in the source for each such file. */ - -#if defined (_LIBC) || !defined (__GNU_LIBRARY__) - - -/* This needs to come after some library #include - to get __GNU_LIBRARY__ defined. */ -#ifdef __GNU_LIBRARY__ -#undef alloca -/* Don't include stdlib.h for non-GNU C libraries because some of them - contain conflicting prototypes for getopt. */ -#include <stdlib.h> -#else /* Not GNU C library. */ -#define __alloca alloca -#endif /* GNU C library. */ - -/* If GETOPT_COMPAT is defined, `+' as well as `--' can introduce a - long-named option. Because this is not POSIX.2 compliant, it is - being phased out. */ -/* #define GETOPT_COMPAT */ - -/* This version of `getopt' appears to the caller like standard Unix `getopt' - but it behaves differently for the user, since it allows the user - to intersperse the options with the other arguments. - - As `getopt' works, it permutes the elements of ARGV so that, - when it is done, all the options precede everything else. Thus - all application programs are extended to handle flexible argument order. - - Setting the environment variable POSIXLY_CORRECT disables permutation. - Then the behavior is completely standard. - - GNU application programs can use a third alternative mode in which - they can distinguish the relative order of options and other arguments. */ - -#include "getopt.h" - -/* For communication from `getopt' to the caller. - When `getopt' finds an option that takes an argument, - the argument value is returned here. - Also, when `ordering' is RETURN_IN_ORDER, - each non-option ARGV-element is returned here. */ - -char *optarg = 0; - -/* Index in ARGV of the next element to be scanned. - This is used for communication to and from the caller - and for communication between successive calls to `getopt'. - - On entry to `getopt', zero means this is the first call; initialize. - - When `getopt' returns EOF, this is the index of the first of the - non-option elements that the caller should itself scan. - - Otherwise, `optind' communicates from one call to the next - how much of ARGV has been scanned so far. */ - -/* XXX 1003.2 says this must be 1 before any call. */ -int optind = 0; - -/* The next char to be scanned in the option-element - in which the last option character we returned was found. - This allows us to pick up the scan where we left off. - - If this is zero, or a null string, it means resume the scan - by advancing to the next ARGV-element. */ - -static char *nextchar; - -/* Callers store zero here to inhibit the error message - for unrecognized options. */ - -int opterr = 1; - -/* Set to an option character which was unrecognized. - This must be initialized on some systems to avoid linking in the - system's own getopt implementation. */ - -int optopt = '?'; - -/* Describe how to deal with options that follow non-option ARGV-elements. - - If the caller did not specify anything, - the default is REQUIRE_ORDER if the environment variable - POSIXLY_CORRECT is defined, PERMUTE otherwise. - - REQUIRE_ORDER means don't recognize them as options; - stop option processing when the first non-option is seen. - This is what Unix does. - This mode of operation is selected by either setting the environment - variable POSIXLY_CORRECT, or using `+' as the first character - of the list of option characters. - - PERMUTE is the default. We permute the contents of ARGV as we scan, - so that eventually all the non-options are at the end. This allows options - to be given in any order, even with programs that were not written to - expect this. - - RETURN_IN_ORDER is an option available to programs that were written - to expect options and other ARGV-elements in any order and that care about - the ordering of the two. We describe each non-option ARGV-element - as if it were the argument of an option with character code 1. - Using `-' as the first character of the list of option characters - selects this mode of operation. - - The special argument `--' forces an end of option-scanning regardless - of the value of `ordering'. In the case of RETURN_IN_ORDER, only - `--' can cause `getopt' to return EOF with `optind' != ARGC. */ - -static enum -{ - REQUIRE_ORDER, PERMUTE, RETURN_IN_ORDER -} ordering; - -#ifdef __GNU_LIBRARY__ -/* We want to avoid inclusion of string.h with non-GNU libraries - because there are many ways it can cause trouble. - On some systems, it contains special magic macros that don't work - in GCC. */ -#include <string.h> -#define my_index strchr -#define my_bcopy(src, dst, n) memcpy ((dst), (src), (n)) -#else - -/* Avoid depending on library functions or files - whose names are inconsistent. */ - -char *getenv (); - -static char * -my_index (str, chr) - const char *str; - int chr; -{ - while (*str) - { - if (*str == chr) - return (char *) str; - str++; - } - return 0; -} - -static void -my_bcopy (from, to, size) - const char *from; - char *to; - int size; -{ - int i; - for (i = 0; i < size; i++) - to[i] = from[i]; -} -#endif /* GNU C library. */ - -/* Handle permutation of arguments. */ - -/* Describe the part of ARGV that contains non-options that have - been skipped. `first_nonopt' is the index in ARGV of the first of them; - `last_nonopt' is the index after the last of them. */ - -static int first_nonopt; -static int last_nonopt; - -/* Exchange two adjacent subsequences of ARGV. - One subsequence is elements [first_nonopt,last_nonopt) - which contains all the non-options that have been skipped so far. - The other is elements [last_nonopt,optind), which contains all - the options processed since those non-options were skipped. - - `first_nonopt' and `last_nonopt' are relocated so that they describe - the new indices of the non-options in ARGV after they are moved. */ - -static void -exchange (argv) - char **argv; -{ - int nonopts_size = (last_nonopt - first_nonopt) * sizeof (char *); - char **temp = (char **) __alloca (nonopts_size); - - /* Interchange the two blocks of data in ARGV. */ - - my_bcopy ((char *) &argv[first_nonopt], (char *) temp, nonopts_size); - my_bcopy ((char *) &argv[last_nonopt], (char *) &argv[first_nonopt], - (optind - last_nonopt) * sizeof (char *)); - my_bcopy ((char *) temp, - (char *) &argv[first_nonopt + optind - last_nonopt], - nonopts_size); - - /* Update records for the slots the non-options now occupy. */ - - first_nonopt += (optind - last_nonopt); - last_nonopt = optind; -} - -/* Scan elements of ARGV (whose length is ARGC) for option characters - given in OPTSTRING. - - If an element of ARGV starts with '-', and is not exactly "-" or "--", - then it is an option element. The characters of this element - (aside from the initial '-') are option characters. If `getopt' - is called repeatedly, it returns successively each of the option characters - from each of the option elements. - - If `getopt' finds another option character, it returns that character, - updating `optind' and `nextchar' so that the next call to `getopt' can - resume the scan with the following option character or ARGV-element. - - If there are no more option characters, `getopt' returns `EOF'. - Then `optind' is the index in ARGV of the first ARGV-element - that is not an option. (The ARGV-elements have been permuted - so that those that are not options now come last.) - - OPTSTRING is a string containing the legitimate option characters. - If an option character is seen that is not listed in OPTSTRING, - return '?' after printing an error message. If you set `opterr' to - zero, the error message is suppressed but we still return '?'. - - If a char in OPTSTRING is followed by a colon, that means it wants an arg, - so the following text in the same ARGV-element, or the text of the following - ARGV-element, is returned in `optarg'. Two colons mean an option that - wants an optional arg; if there is text in the current ARGV-element, - it is returned in `optarg', otherwise `optarg' is set to zero. - - If OPTSTRING starts with `-' or `+', it requests different methods of - handling the non-option ARGV-elements. - See the comments about RETURN_IN_ORDER and REQUIRE_ORDER, above. - - Long-named options begin with `--' instead of `-'. - Their names may be abbreviated as long as the abbreviation is unique - or is an exact match for some defined option. If they have an - argument, it follows the option name in the same ARGV-element, separated - from the option name by a `=', or else the in next ARGV-element. - When `getopt' finds a long-named option, it returns 0 if that option's - `flag' field is nonzero, the value of the option's `val' field - if the `flag' field is zero. - - The elements of ARGV aren't really const, because we permute them. - But we pretend they're const in the prototype to be compatible - with other systems. - - LONGOPTS is a vector of `struct option' terminated by an - element containing a name which is zero. - - LONGIND returns the index in LONGOPT of the long-named option found. - It is only valid when a long-named option has been found by the most - recent call. - - If LONG_ONLY is nonzero, '-' as well as '--' can introduce - long-named options. */ - -int -_getopt_internal (argc, argv, optstring, longopts, longind, long_only) - int argc; - char *const *argv; - const char *optstring; - const struct option *longopts; - int *longind; - int long_only; -{ - int option_index; - - optarg = 0; - - /* Initialize the internal data when the first call is made. - Start processing options with ARGV-element 1 (since ARGV-element 0 - is the program name); the sequence of previously skipped - non-option ARGV-elements is empty. */ - - if (optind == 0) - { - first_nonopt = last_nonopt = optind = 1; - - nextchar = NULL; - - /* Determine how to handle the ordering of options and nonoptions. */ - - if (optstring[0] == '-') - { - ordering = RETURN_IN_ORDER; - ++optstring; - } - else if (optstring[0] == '+') - { - ordering = REQUIRE_ORDER; - ++optstring; - } - else if (getenv ("POSIXLY_CORRECT") != NULL) - ordering = REQUIRE_ORDER; - else - ordering = PERMUTE; - } - - if (nextchar == NULL || *nextchar == '\0') - { - if (ordering == PERMUTE) - { - /* If we have just processed some options following some non-options, - exchange them so that the options come first. */ - - if (first_nonopt != last_nonopt && last_nonopt != optind) - exchange ((char **) argv); - else if (last_nonopt != optind) - first_nonopt = optind; - - /* Now skip any additional non-options - and extend the range of non-options previously skipped. */ - - while (optind < argc - && (argv[optind][0] != '-' || argv[optind][1] == '\0') -#ifdef GETOPT_COMPAT - && (longopts == NULL - || argv[optind][0] != '+' || argv[optind][1] == '\0') -#endif /* GETOPT_COMPAT */ - ) - optind++; - last_nonopt = optind; - } - - /* Special ARGV-element `--' means premature end of options. - Skip it like a null option, - then exchange with previous non-options as if it were an option, - then skip everything else like a non-option. */ - - if (optind != argc && !strcmp (argv[optind], "--")) - { - optind++; - - if (first_nonopt != last_nonopt && last_nonopt != optind) - exchange ((char **) argv); - else if (first_nonopt == last_nonopt) - first_nonopt = optind; - last_nonopt = argc; - - optind = argc; - } - - /* If we have done all the ARGV-elements, stop the scan - and back over any non-options that we skipped and permuted. */ - - if (optind == argc) - { - /* Set the next-arg-index to point at the non-options - that we previously skipped, so the caller will digest them. */ - if (first_nonopt != last_nonopt) - optind = first_nonopt; - return EOF; - } - - /* If we have come to a non-option and did not permute it, - either stop the scan or describe it to the caller and pass it by. */ - - if ((argv[optind][0] != '-' || argv[optind][1] == '\0') -#ifdef GETOPT_COMPAT - && (longopts == NULL - || argv[optind][0] != '+' || argv[optind][1] == '\0') -#endif /* GETOPT_COMPAT */ - ) - { - if (ordering == REQUIRE_ORDER) - return EOF; - optarg = argv[optind++]; - return 1; - } - - /* We have found another option-ARGV-element. - Start decoding its characters. */ - - nextchar = (argv[optind] + 1 - + (longopts != NULL && argv[optind][1] == '-')); - } - - if (longopts != NULL - && ((argv[optind][0] == '-' - && (argv[optind][1] == '-' || long_only)) -#ifdef GETOPT_COMPAT - || argv[optind][0] == '+' -#endif /* GETOPT_COMPAT */ - )) - { - const struct option *p; - char *s = nextchar; - int exact = 0; - int ambig = 0; - const struct option *pfound = NULL; - int indfound; - - while (*s && *s != '=') - s++; - - /* Test all options for either exact match or abbreviated matches. */ - for (p = longopts, option_index = 0; p->name; - p++, option_index++) - if (!strncmp (p->name, nextchar, s - nextchar)) - { - if (s - nextchar == strlen (p->name)) - { - /* Exact match found. */ - pfound = p; - indfound = option_index; - exact = 1; - break; - } - else if (pfound == NULL) - { - /* First nonexact match found. */ - pfound = p; - indfound = option_index; - } - else - /* Second nonexact match found. */ - ambig = 1; - } - - if (ambig && !exact) - { - if (opterr) - fprintf (stderr, "%s: option `%s' is ambiguous\n", - argv[0], argv[optind]); - nextchar += strlen (nextchar); - optind++; - return '?'; - } - - if (pfound != NULL) - { - option_index = indfound; - optind++; - if (*s) - { - /* Don't test has_arg with >, because some C compilers don't - allow it to be used on enums. */ - if (pfound->has_arg) - optarg = s + 1; - else - { - if (opterr) - { - if (argv[optind - 1][1] == '-') - /* --option */ - fprintf (stderr, - "%s: option `--%s' doesn't allow an argument\n", - argv[0], pfound->name); - else - /* +option or -option */ - fprintf (stderr, - "%s: option `%c%s' doesn't allow an argument\n", - argv[0], argv[optind - 1][0], pfound->name); - } - nextchar += strlen (nextchar); - return '?'; - } - } - else if (pfound->has_arg == 1) - { - if (optind < argc) - optarg = argv[optind++]; - else - { - if (opterr) - fprintf (stderr, "%s: option `%s' requires an argument\n", - argv[0], argv[optind - 1]); - nextchar += strlen (nextchar); - return optstring[0] == ':' ? ':' : '?'; - } - } - nextchar += strlen (nextchar); - if (longind != NULL) - *longind = option_index; - if (pfound->flag) - { - *(pfound->flag) = pfound->val; - return 0; - } - return pfound->val; - } - /* Can't find it as a long option. If this is not getopt_long_only, - or the option starts with '--' or is not a valid short - option, then it's an error. - Otherwise interpret it as a short option. */ - if (!long_only || argv[optind][1] == '-' -#ifdef GETOPT_COMPAT - || argv[optind][0] == '+' -#endif /* GETOPT_COMPAT */ - || my_index (optstring, *nextchar) == NULL) - { - if (opterr) - { - if (argv[optind][1] == '-') - /* --option */ - fprintf (stderr, "%s: unrecognized option `--%s'\n", - argv[0], nextchar); - else - /* +option or -option */ - fprintf (stderr, "%s: unrecognized option `%c%s'\n", - argv[0], argv[optind][0], nextchar); - } - nextchar = (char *) ""; - optind++; - return '?'; - } - } - - /* Look at and handle the next option-character. */ - - { - char c = *nextchar++; - char *temp = my_index (optstring, c); - - /* Increment `optind' when we start to process its last character. */ - if (*nextchar == '\0') - ++optind; - - if (temp == NULL || c == ':') - { - if (opterr) - { -#if 0 - if (c < 040 || c >= 0177) - fprintf (stderr, "%s: unrecognized option, character code 0%o\n", - argv[0], c); - else - fprintf (stderr, "%s: unrecognized option `-%c'\n", argv[0], c); -#else - /* 1003.2 specifies the format of this message. */ - fprintf (stderr, "%s: illegal option -- %c\n", argv[0], c); -#endif - } - optopt = c; - return '?'; - } - if (temp[1] == ':') - { - if (temp[2] == ':') - { - /* This is an option that accepts an argument optionally. */ - if (*nextchar != '\0') - { - optarg = nextchar; - optind++; - } - else - optarg = 0; - nextchar = NULL; - } - else - { - /* This is an option that requires an argument. */ - if (*nextchar != '\0') - { - optarg = nextchar; - /* If we end this ARGV-element by taking the rest as an arg, - we must advance to the next element now. */ - optind++; - } - else if (optind == argc) - { - if (opterr) - { -#if 0 - fprintf (stderr, "%s: option `-%c' requires an argument\n", - argv[0], c); -#else - /* 1003.2 specifies the format of this message. */ - fprintf (stderr, "%s: option requires an argument -- %c\n", - argv[0], c); -#endif - } - optopt = c; - if (optstring[0] == ':') - c = ':'; - else - c = '?'; - } - else - /* We already incremented `optind' once; - increment it again when taking next ARGV-elt as argument. */ - optarg = argv[optind++]; - nextchar = NULL; - } - } - return c; - } -} - -int -getopt (argc, argv, optstring) - int argc; - char *const *argv; - const char *optstring; -{ - return _getopt_internal (argc, argv, optstring, - (const struct option *) 0, - (int *) 0, - 0); -} - -#endif /* _LIBC or not __GNU_LIBRARY__. */ - -#ifdef TEST - -/* Compile with -DTEST to make an executable for use in testing - the above definition of `getopt'. */ - -int -main (argc, argv) - int argc; - char **argv; -{ - int c; - int digit_optind = 0; - - while (1) - { - int this_option_optind = optind ? optind : 1; - - c = getopt (argc, argv, "abc:d:0123456789"); - if (c == EOF) - break; - - switch (c) - { - case '0': - case '1': - case '2': - case '3': - case '4': - case '5': - case '6': - case '7': - case '8': - case '9': - if (digit_optind != 0 && digit_optind != this_option_optind) - printf ("digits occur in two different argv-elements.\n"); - digit_optind = this_option_optind; - printf ("option %c\n", c); - break; - - case 'a': - printf ("option a\n"); - break; - - case 'b': - printf ("option b\n"); - break; - - case 'c': - printf ("option c with value `%s'\n", optarg); - break; - - case '?': - break; - - default: - printf ("?? getopt returned character code 0%o ??\n", c); - } - } - - if (optind < argc) - { - printf ("non-option ARGV-elements: "); - while (optind < argc) - printf ("%s ", argv[optind++]); - printf ("\n"); - } - - exit (0); -} - -#endif /* TEST */ diff --git a/gnu/grep/getopt.h b/gnu/grep/getopt.h deleted file mode 100644 index 45541f5ac0f9..000000000000 --- a/gnu/grep/getopt.h +++ /dev/null @@ -1,129 +0,0 @@ -/* Declarations for getopt. - Copyright (C) 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published by the - Free Software Foundation; either version 2, or (at your option) any - later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -#ifndef _GETOPT_H -#define _GETOPT_H 1 - -#ifdef __cplusplus -extern "C" { -#endif - -/* For communication from `getopt' to the caller. - When `getopt' finds an option that takes an argument, - the argument value is returned here. - Also, when `ordering' is RETURN_IN_ORDER, - each non-option ARGV-element is returned here. */ - -extern char *optarg; - -/* Index in ARGV of the next element to be scanned. - This is used for communication to and from the caller - and for communication between successive calls to `getopt'. - - On entry to `getopt', zero means this is the first call; initialize. - - When `getopt' returns EOF, this is the index of the first of the - non-option elements that the caller should itself scan. - - Otherwise, `optind' communicates from one call to the next - how much of ARGV has been scanned so far. */ - -extern int optind; - -/* Callers store zero here to inhibit the error message `getopt' prints - for unrecognized options. */ - -extern int opterr; - -/* Set to an option character which was unrecognized. */ - -extern int optopt; - -/* Describe the long-named options requested by the application. - The LONG_OPTIONS argument to getopt_long or getopt_long_only is a vector - of `struct option' terminated by an element containing a name which is - zero. - - The field `has_arg' is: - no_argument (or 0) if the option does not take an argument, - required_argument (or 1) if the option requires an argument, - optional_argument (or 2) if the option takes an optional argument. - - If the field `flag' is not NULL, it points to a variable that is set - to the value given in the field `val' when the option is found, but - left unchanged if the option is not found. - - To have a long-named option do something other than set an `int' to - a compiled-in constant, such as set a value from `optarg', set the - option's `flag' field to zero and its `val' field to a nonzero - value (the equivalent single-letter option character, if there is - one). For long options that have a zero `flag' field, `getopt' - returns the contents of the `val' field. */ - -struct option -{ -#if __STDC__ - const char *name; -#else - char *name; -#endif - /* has_arg can't be an enum because some compilers complain about - type mismatches in all the code that assumes it is an int. */ - int has_arg; - int *flag; - int val; -}; - -/* Names for the values of the `has_arg' field of `struct option'. */ - -#define no_argument 0 -#define required_argument 1 -#define optional_argument 2 - -#if __STDC__ -#if defined(__GNU_LIBRARY__) -/* Many other libraries have conflicting prototypes for getopt, with - differences in the consts, in stdlib.h. To avoid compilation - errors, only prototype getopt for the GNU C library. */ -extern int getopt (int argc, char *const *argv, const char *shortopts); -#else /* not __GNU_LIBRARY__ */ -extern int getopt (); -#endif /* not __GNU_LIBRARY__ */ -extern int getopt_long (int argc, char *const *argv, const char *shortopts, - const struct option *longopts, int *longind); -extern int getopt_long_only (int argc, char *const *argv, - const char *shortopts, - const struct option *longopts, int *longind); - -/* Internal only. Users should not call this directly. */ -extern int _getopt_internal (int argc, char *const *argv, - const char *shortopts, - const struct option *longopts, int *longind, - int long_only); -#else /* not __STDC__ */ -extern int getopt (); -extern int getopt_long (); -extern int getopt_long_only (); - -extern int _getopt_internal (); -#endif /* not __STDC__ */ - -#ifdef __cplusplus -} -#endif - -#endif /* _GETOPT_H */ diff --git a/gnu/grep/getpagesize.h b/gnu/grep/getpagesize.h deleted file mode 100644 index e6bd5610678a..000000000000 --- a/gnu/grep/getpagesize.h +++ /dev/null @@ -1,42 +0,0 @@ -#ifdef BSD -#ifndef BSD4_1 -#define HAVE_GETPAGESIZE -#endif -#endif - -#ifndef HAVE_GETPAGESIZE - -#ifdef VMS -#define getpagesize() 512 -#endif - -#ifdef HAVE_UNISTD_H -#include <unistd.h> -#endif - -#ifdef _SC_PAGESIZE -#define getpagesize() sysconf(_SC_PAGESIZE) -#else - -#ifdef HAVE_SYS_PARAM_H -#include <sys/param.h> - -#ifdef EXEC_PAGESIZE -#define getpagesize() EXEC_PAGESIZE -#else -#ifdef NBPG -#define getpagesize() NBPG * CLSIZE -#ifndef CLSIZE -#define CLSIZE 1 -#endif /* no CLSIZE */ -#else /* no NBPG */ -#define getpagesize() NBPC -#endif /* no NBPG */ -#endif /* no EXEC_PAGESIZE */ -#else /* !HAVE_SYS_PARAM_H */ -#define getpagesize() 8192 /* punt totally */ -#endif /* !HAVE_SYS_PARAM_H */ -#endif /* no _SC_PAGESIZE */ - -#endif /* not HAVE_GETPAGESIZE */ - diff --git a/gnu/grep/grep.1 b/gnu/grep/grep.1 deleted file mode 100644 index 27c6b0e419d2..000000000000 --- a/gnu/grep/grep.1 +++ /dev/null @@ -1,375 +0,0 @@ -.TH GREP 1 "1992 September 10" "GNU Project" -.SH NAME -grep, egrep, fgrep \- print lines matching a pattern -.SH SYNOPOSIS -.B grep -[ -.BR \- [[ AB "] ]\c" -.I "num" -] -[ -.BR \- [ CEFGVBchilnsvwx ] -] -[ -.B \-e -] -.I pattern -| -.BI \-f file -] [ -.I files... -] -.SH DESCRIPTION -.PP -.B Grep -searches the named input -.I files -(or standard input if no files are named, or -the file name -.B \- -is given) -for lines containing a match to the given -.IR pattern . -By default, -.B grep -prints the matching lines. -.PP -There are three major variants of -.BR grep , -controlled by the following options. -.PD 0 -.TP -.B \-G -Interpret -.I pattern -as a basic regular expression (see below). This is the default. -.TP -.B \-E -Interpret -.I pattern -as an extended regular expression (see below). -.TP -.B \-F -Interpret -.I pattern -as a list of fixed strings, separated by newlines, -any of which is to be matched. -.LP -In addition, two variant programs -.B egrep -and -.B fgrep -are available. -.B Egrep -is similiar (but not identical) to -.BR "grep\ \-E" , -and is compatible with the historical Unix -.BR egrep . -.B Fgrep -is the same as -.BR "grep\ \-F" . -.PD -.LP -All variants of -.B grep -understand the following options: -.PD 0 -.TP -.BI \- num -Matches will be printed with -.I num -lines of leading and trailing context. However, -.B grep -will never print any given line more than once. -.TP -.BI \-A " num" -Print -.I num -lines of trailing context after matching lines. -.TP -.BI \-B " num" -Print -.I num -lines of leading context before matching lines. -.TP -.B \-C -Equivalent to -.BR \-2 . -.TP -.B \-V -Print the version number of -.B grep -to standard error. This version number should -be included in all bug reports (see below). -.TP -.B \-b -Print the byte offset within the input file before -each line of output. -.TP -.B \-c -Suppress normal output; instead print a count of -matching lines for each input file. -With the -.B \-v -option (see below), count non-matching lines. -.TP -.BI \-e " pattern" -Use -.I pattern -as the pattern; useful to protect patterns beginning with -.BR \- . -.TP -.BI \-f " file" -Obtain the pattern from -.IR file . -.TP -.B \-h -Suppress the prefixing of filenames on output -when multiple files are searched. -.TP -.B \-i -Ignore case distinctions in both the -.I pattern -and the input files. -.TP -.B \-L -Suppress normal output; instead print the name -of each input file from which no output would -normally have been printed. -.TP -.B \-l -Suppress normal output; instead print -the name of each input file from which output -would normally have been printed. -.TP -.B \-n -Prefix each line of output with the line number -within its input file. -.TP -.B \-q -Quiet; suppress normal output. -.TP -.B \-s -Suppress error messages about nonexistent or unreadable files. -.TP -.B \-v -Invert the sense of matching, to select non-matching lines. -.TP -.B \-w -Select only those lines containing matches that form whole words. -The test is that the matching substring must either be at the -beginning of the line, or preceded by a non-word constituent -character. Similarly, it must be either at the end of the line -or followed by a non-word constituent character. Word-constituent -characters are letters, digits, and the underscore. -.TP -.B \-x -Select only those matches that exactly match the whole line. -.PD -.SH "REGULAR EXPRESSIONS" -.PP -A regular expression is a pattern that describes a set of strings. -Regular expressions are constructed analagously to arithmetic -expressions, by using various operators to combine smaller expressions. -.PP -.B Grep -understands two different versions of regular expression syntax: -``basic'' and ``extended.'' In -.RB "GNU\ " grep , -there is no difference in available functionality using either syntax. -In other implementations, basic regular expressions are less powerful. -The following description applies to extended regular expressions; -differences for basic regular expressions are summarized afterwards. -.PP -The fundamental building blocks are the regular expressions that match -a single character. Most characters, including all letters and digits, -are regular expressions that match themselves. Any metacharacter with -special meaning may be quoted by preceding it with a backslash. -.PP -A list of characters enclosed by -.B [ -and -.B ] -matches any single -character in that list; if the first character of the list -is the caret -.B ^ -then it matches any character -.I not -in the list. -For example, the regular expression -.B [0123456789] -matches any single digit. A range of ASCII characters -may be specified by giving the first and last characters, separated -by a hyphen. -Finally, certain named classes of characters are predefined. -Their names are self explanatory, and they are -.BR [:alnum:] , -.BR [:alpha:] , -.BR [:cntrl:] , -.BR [:digit:] , -.BR [:graph:] , -.BR [:lower:] , -.BR [:print:] , -.BR [:punct:] , -.BR [:space:] , -.BR [:upper:] , -and -.BR [:xdigit:]. -For example, -.B [[:alnum:]] -means -.BR [0-9A-Za-z] , -except the latter form is dependent upon the ASCII character encoding, -whereas the former is portable. -(Note that the brackets in these class names are part of the symbolic -names, and must be included in addition to the brackets delimiting -the bracket list.) Most metacharacters lose their special meaning -inside lists. To include a literal -.B ] -place it first in the list. Similarly, to include a literal -.B ^ -place it anywhere but first. Finally, to include a literal -.B \- -place it last. -.PP -The period -.B . -matches any single character. -The symbol -.B \ew -is a synonym for -.B [[:alnum:]] -and -.B \eW -is a synonym for -.BR [^[:alnum]] . -.PP -The caret -.B ^ -and the dollar sign -.B $ -are metacharacters that respectively match the empty string at the -beginning and end of a line. -The symbols -.B \e< -and -.B \e> -respectively match the empty string at the beginning and end of a word. -The symbol -.B \eb -matches the empty string at the edge of a word, -and -.B \eB -matches the empty string provided it's -.I not -at the edge of a word. -.PP -A regular expression matching a single character may be followed -by one of several repetition operators: -.PD 0 -.TP -.B ? -The preceding item is optional and matched at most once. -.TP -.B * -The preceding item will be matched zero or more times. -.TP -.B + -The preceding item will be matched one or more times. -.TP -.BI { n } -The preceding item is matched exactly -.I n -times. -.TP -.BI { n ,} -The preceding item is matched -.I n -or more times. -.TP -.BI {, m } -The preceding item is optional and is matched at most -.I m -times. -.TP -.BI { n , m } -The preceding item is matched at least -.I n -times, but not more than -.I m -times. -.PD -.PP -Two regular expressions may be concatenated; the resulting -regular expression matches any string formed by concatenating -two substrings that respectively match the concatenated -subexpressions. -.PP -Two regular expressions may be joined by the infix operator -.BR | ; -the resulting regular expression matches any string matching -either subexpression. -.PP -Repetition takes precedence over concatenation, which in turn -takes precedence over alternation. A whole subexpression may be -enclosed in parentheses to override these precedence rules. -.PP -The backreference -.BI \e n\c -\&, where -.I n -is a single digit, matches the substring -previously matched by the -.IR n th -parenthesized subexpression of the regular expression. -.PP -In basic regular expressions the metacharacters -.BR ? , -.BR + , -.BR { , -.BR | , -.BR ( , -and -.BR ) -lose their special meaning; instead use the backslashed -versions -.BR \e? , -.BR \e+ , -.BR \e{ , -.BR \e| , -.BR \e( , -and -.BR \e) . -.PP -In -.B egrep -the metacharacter -.B { -loses its special meaning; instead use -.BR \e{ . -.SH DIAGNOSTICS -.PP -Normally, exit status is 0 if matches were found, -and 1 if no matches were found. (The -.B \-v -option inverts the sense of the exit status.) -Exit status is 2 if there were syntax errors -in the pattern, inaccessible input files, or -other system errors. -.SH BUGS -.PP -Email bug reports to -.BR bug-gnu-utils@prep.ai.mit.edu . -Be sure to include the word ``grep'' somewhere in the ``Subject:'' field. -.PP -Large repetition counts in the -.BI { m , n } -construct may cause grep to use lots of memory. -In addition, -certain other obscure regular expressions require exponential time -and space, and may cause -.B grep -to run out of memory. -.PP -Backreferences are very slow, and may require exponential time. diff --git a/gnu/grep/grep.c b/gnu/grep/grep.c deleted file mode 100644 index 07872a166631..000000000000 --- a/gnu/grep/grep.c +++ /dev/null @@ -1,826 +0,0 @@ -/* grep.c - main driver file for grep. - Copyright (C) 1992 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - Written July 1992 by Mike Haertel. */ - -#include <errno.h> -#include <stdio.h> - -#ifndef errno -extern int errno; -#endif - -#ifdef STDC_HEADERS -#include <stdlib.h> -#else -#include <sys/types.h> -extern char *malloc(), *realloc(); -extern void free(); -#endif - -#if defined(STDC_HEADERS) || defined(HAVE_STRING_H) -#include <string.h> -#ifdef NEED_MEMORY_H -#include <memory.h> -#endif -#else -#include <strings.h> -#ifdef __STDC__ -extern void *memchr(); -#else -extern char *memchr(); -#endif -#define strrchr rindex -#endif - -#ifdef HAVE_UNISTD_H -#include <sys/types.h> -#include <fcntl.h> -#include <unistd.h> -#else -#define O_RDONLY 0 -extern int open(), read(), close(); -#endif - -#include "getpagesize.h" -#include "grep.h" - -#undef MAX -#define MAX(A,B) ((A) > (B) ? (A) : (B)) - -/* Provide missing ANSI features if necessary. */ - -#ifndef HAVE_STRERROR -extern int sys_nerr; -extern char *sys_errlist[]; -#define strerror(E) ((E) < sys_nerr ? sys_errlist[(E)] : "bogus error number") -#endif - -#ifndef HAVE_MEMCHR -#ifdef __STDC__ -#define VOID void -#else -#define VOID char -#endif -VOID * -memchr(vp, c, n) - VOID *vp; - int c; - size_t n; -{ - unsigned char *p; - - for (p = (unsigned char *) vp; n--; ++p) - if (*p == c) - return (VOID *) p; - return 0; -} -#endif - -/* Define flags declared in grep.h. */ -char *matcher; -int match_icase; -int match_words; -int match_lines; - -/* Functions we'll use to search. */ -static void (*compile)(); -static char *(*execute)(); - -/* For error messages. */ -static char *prog; -static char *filename; -static int errseen; - -/* Print a message and possibly an error string. Remember - that something awful happened. */ -static void -error(mesg, errnum) -#ifdef __STDC__ - const -#endif - char *mesg; - int errnum; -{ - if (errnum) - fprintf(stderr, "%s: %s: %s\n", prog, mesg, strerror(errnum)); - else - fprintf(stderr, "%s: %s\n", prog, mesg); - errseen = 1; -} - -/* Like error(), but die horribly after printing. */ -void -fatal(mesg, errnum) -#ifdef __STDC__ - const -#endif - char *mesg; - int errnum; -{ - error(mesg, errnum); - exit(2); -} - -/* Interface to handle errors and fix library lossage. */ -char * -xmalloc(size) - size_t size; -{ - char *result; - - result = malloc(size); - if (size && !result) - fatal("memory exhausted", 0); - return result; -} - -/* Interface to handle errors and fix some library lossage. */ -char * -xrealloc(ptr, size) - char *ptr; - size_t size; -{ - char *result; - - if (ptr) - result = realloc(ptr, size); - else - result = malloc(size); - if (size && !result) - fatal("memory exhausted", 0); - return result; -} - -#if !defined(HAVE_VALLOC) -#define valloc malloc -#else -#ifdef __STDC__ -extern void *valloc(size_t); -#else -extern char *valloc(); -#endif -#endif - -/* Hairy buffering mechanism for grep. The intent is to keep - all reads aligned on a page boundary and multiples of the - page size. */ - -static char *buffer; /* Base of buffer. */ -static size_t bufsalloc; /* Allocated size of buffer save region. */ -static size_t bufalloc; /* Total buffer size. */ -static int bufdesc; /* File descriptor. */ -static char *bufbeg; /* Beginning of user-visible stuff. */ -static char *buflim; /* Limit of user-visible stuff. */ - -#if defined(HAVE_WORKING_MMAP) -#include <sys/types.h> -#include <sys/stat.h> -#include <sys/mman.h> - -static int bufmapped; /* True for ordinary files. */ -static struct stat bufstat; /* From fstat(). */ -static off_t bufoffset; /* What read() normally remembers. */ -#endif - -/* Reset the buffer for a new file. Initialize - on the first time through. */ -void -reset(fd) - int fd; -{ - static int initialized; - - if (!initialized) - { - initialized = 1; -#ifndef BUFSALLOC - bufsalloc = MAX(8192, getpagesize()); -#else - bufsalloc = BUFSALLOC; -#endif - bufalloc = 5 * bufsalloc; - /* The 1 byte of overflow is a kludge for dfaexec(), which - inserts a sentinel newline at the end of the buffer - being searched. There's gotta be a better way... */ - buffer = valloc(bufalloc + 1); - if (!buffer) - fatal("memory exhausted", 0); - bufbeg = buffer; - buflim = buffer; - } - bufdesc = fd; -#if defined(HAVE_WORKING_MMAP) - if (fstat(fd, &bufstat) < 0 || !S_ISREG(bufstat.st_mode)) - bufmapped = 0; - else - { - bufmapped = 1; - bufoffset = lseek(fd, 0, 1); - } -#endif -} - -/* Read new stuff into the buffer, saving the specified - amount of old stuff. When we're done, 'bufbeg' points - to the beginning of the buffer contents, and 'buflim' - points just after the end. Return count of new stuff. */ -static int -fillbuf(save) - size_t save; -{ - char *nbuffer, *dp, *sp; - int cc; -#if defined(HAVE_WORKING_MMAP) - caddr_t maddr; -#endif - static int pagesize; - - if (pagesize == 0 && (pagesize = getpagesize()) == 0) - abort(); - - if (save > bufsalloc) - { - while (save > bufsalloc) - bufsalloc *= 2; - bufalloc = 5 * bufsalloc; - nbuffer = valloc(bufalloc + 1); - if (!nbuffer) - fatal("memory exhausted", 0); - } - else - nbuffer = buffer; - - sp = buflim - save; - dp = nbuffer + bufsalloc - save; - bufbeg = dp; - while (save--) - *dp++ = *sp++; - - /* We may have allocated a new, larger buffer. Since - there is no portable vfree(), we just have to forget - about the old one. Sorry. */ - buffer = nbuffer; - -#if defined(HAVE_WORKING_MMAP) - if (bufmapped && bufoffset % pagesize == 0 - && bufstat.st_size - bufoffset >= bufalloc - bufsalloc) - { - maddr = buffer + bufsalloc; - maddr = mmap(maddr, bufalloc - bufsalloc, PROT_READ | PROT_WRITE, - MAP_PRIVATE | MAP_FIXED, bufdesc, bufoffset); - if (maddr == (caddr_t) -1) - { - fprintf(stderr, "%s: warning: %s: %s\n", filename, - strerror(errno)); - goto tryread; - } -#if 0 - /* You might thing this (or MADV_WILLNEED) would help, - but it doesn't, at least not on a Sun running 4.1. - In fact, it actually slows us down about 30%! */ - madvise(maddr, bufalloc - bufsalloc, MADV_SEQUENTIAL); -#endif - cc = bufalloc - bufsalloc; - bufoffset += cc; - } - else - { - tryread: - /* We come here when we're not going to use mmap() any more. - Note that we need to synchronize the file offset the - first time through. */ - if (bufmapped) - { - bufmapped = 0; - lseek(bufdesc, bufoffset, 0); - } - cc = read(bufdesc, buffer + bufsalloc, bufalloc - bufsalloc); - } -#else - cc = read(bufdesc, buffer + bufsalloc, bufalloc - bufsalloc); -#endif - if (cc > 0) - buflim = buffer + bufsalloc + cc; - else - buflim = buffer + bufsalloc; - return cc; -} - -/* Flags controlling the style of output. */ -static int out_quiet; /* Suppress all normal output. */ -static int out_invert; /* Print nonmatching stuff. */ -static int out_file; /* Print filenames. */ -static int out_line; /* Print line numbers. */ -static int out_byte; /* Print byte offsets. */ -static int out_before; /* Lines of leading context. */ -static int out_after; /* Lines of trailing context. */ - -/* Internal variables to keep track of byte count, context, etc. */ -static size_t totalcc; /* Total character count before bufbeg. */ -static char *lastnl; /* Pointer after last newline counted. */ -static char *lastout; /* Pointer after last character output; - NULL if no character has been output - or if it's conceptually before bufbeg. */ -static size_t totalnl; /* Total newline count before lastnl. */ -static int pending; /* Pending lines of output. */ - -static void -nlscan(lim) - char *lim; -{ - char *beg; - - for (beg = lastnl; beg < lim; ++beg) - if (*beg == '\n') - ++totalnl; - lastnl = beg; -} - -static void -prline(beg, lim, sep) - char *beg; - char *lim; - char sep; -{ - if (out_file) - printf("%s%c", filename, sep); - if (out_line) - { - nlscan(beg); - printf("%d%c", ++totalnl, sep); - lastnl = lim; - } - if (out_byte) - printf("%lu%c", totalcc + (beg - bufbeg), sep); - fwrite(beg, 1, lim - beg, stdout); - if (ferror(stdout)) - error("writing output", errno); - lastout = lim; -} - -/* Print pending lines of trailing context prior to LIM. */ -static void -prpending(lim) - char *lim; -{ - char *nl; - - if (!lastout) - lastout = bufbeg; - while (pending > 0 && lastout < lim) - { - --pending; - if ((nl = memchr(lastout, '\n', lim - lastout)) != 0) - ++nl; - else - nl = lim; - prline(lastout, nl, '-'); - } -} - -/* Print the lines between BEG and LIM. Deal with context crap. - If NLINESP is non-null, store a count of lines between BEG and LIM. */ -static void -prtext(beg, lim, nlinesp) - char *beg; - char *lim; - int *nlinesp; -{ - static int used; /* avoid printing "--" before any output */ - char *bp, *p, *nl; - int i, n; - - if (!out_quiet && pending > 0) - prpending(beg); - - p = beg; - - if (!out_quiet) - { - /* Deal with leading context crap. */ - - bp = lastout ? lastout : bufbeg; - for (i = 0; i < out_before; ++i) - if (p > bp) - do - --p; - while (p > bp && p[-1] != '\n'); - - /* We only print the "--" separator if our output is - discontiguous from the last output in the file. */ - if ((out_before || out_after) && used && p != lastout) - puts("--"); - - while (p < beg) - { - nl = memchr(p, '\n', beg - p); - prline(p, nl + 1, '-'); - p = nl + 1; - } - } - - if (nlinesp) - { - /* Caller wants a line count. */ - for (n = 0; p < lim; ++n) - { - if ((nl = memchr(p, '\n', lim - p)) != 0) - ++nl; - else - nl = lim; - if (!out_quiet) - prline(p, nl, ':'); - p = nl; - } - *nlinesp = n; - } - else - if (!out_quiet) - prline(beg, lim, ':'); - - pending = out_after; - used = 1; -} - -/* Scan the specified portion of the buffer, matching lines (or - between matching lines if OUT_INVERT is true). Return a count of - lines printed. */ -static int -grepbuf(beg, lim) - char *beg; - char *lim; -{ - int nlines, n; - register char *p, *b; - char *endp; - - nlines = 0; - p = beg; - while ((b = (*execute)(p, lim - p, &endp)) != 0) - { - /* Avoid matching the empty line at the end of the buffer. */ - if (b == lim && ((b > beg && b[-1] == '\n') || b == beg)) - break; - if (!out_invert) - { - prtext(b, endp, (int *) 0); - nlines += 1; - } - else if (p < b) - { - prtext(p, b, &n); - nlines += n; - } - p = endp; - } - if (out_invert && p < lim) - { - prtext(p, lim, &n); - nlines += n; - } - return nlines; -} - -/* Search a given file. Return a count of lines printed. */ -static int -grep(fd) - int fd; -{ - int nlines, i; - size_t residue, save; - char *beg, *lim; - - reset(fd); - - totalcc = 0; - lastout = 0; - totalnl = 0; - pending = 0; - - nlines = 0; - residue = 0; - save = 0; - - for (;;) - { - if (fillbuf(save) < 0) - { - error(filename, errno); - return nlines; - } - lastnl = bufbeg; - if (lastout) - lastout = bufbeg; - if (buflim - bufbeg == save) - break; - beg = bufbeg + save - residue; - for (lim = buflim; lim > beg && lim[-1] != '\n'; --lim) - ; - residue = buflim - lim; - if (beg < lim) - { - nlines += grepbuf(beg, lim); - if (pending) - prpending(lim); - } - i = 0; - beg = lim; - while (i < out_before && beg > bufbeg && beg != lastout) - { - ++i; - do - --beg; - while (beg > bufbeg && beg[-1] != '\n'); - } - if (beg != lastout) - lastout = 0; - save = residue + lim - beg; - totalcc += buflim - bufbeg - save; - if (out_line) - nlscan(beg); - } - if (residue) - { - nlines += grepbuf(bufbeg + save - residue, buflim); - if (pending) - prpending(buflim); - } - return nlines; -} - -static char version[] = "GNU grep version 2.0"; - -#define USAGE \ - "usage: %s [-[[AB] ]<num>] [-[CEFGVchilnqsvwx]] [-[ef]] <expr> [<files...>]\n" - -static void -usage() -{ - fprintf(stderr, USAGE, prog); - exit(2); -} - -/* Go through the matchers vector and look for the specified matcher. - If we find it, install it in compile and execute, and return 1. */ -int -setmatcher(name) - char *name; -{ - int i; - - for (i = 0; matchers[i].name; ++i) - if (strcmp(name, matchers[i].name) == 0) - { - compile = matchers[i].compile; - execute = matchers[i].execute; - return 1; - } - return 0; -} - -int -main(argc, argv) - int argc; - char *argv[]; -{ - char *keys; - size_t keycc, oldcc, keyalloc; - int keyfound, count_matches, no_filenames, list_files, suppress_errors; - int opt, cc, desc, count, status; - FILE *fp; - extern char *optarg; - extern int optind; - - prog = argv[0]; - if (prog && strrchr(prog, '/')) - prog = strrchr(prog, '/') + 1; - - keys = NULL; - keycc = 0; - keyfound = 0; - count_matches = 0; - no_filenames = 0; - list_files = 0; - suppress_errors = 0; - matcher = NULL; - - while ((opt = getopt(argc, argv, "0123456789A:B:CEFGVX:bce:f:hiLlnqsvwxy")) - != EOF) - switch (opt) - { - case '0': - case '1': - case '2': - case '3': - case '4': - case '5': - case '6': - case '7': - case '8': - case '9': - out_before = 10 * out_before + opt - '0'; - out_after = 10 * out_after + opt - '0'; - break; - case 'A': - out_after = atoi(optarg); - if (out_after < 0) - usage(); - break; - case 'B': - out_before = atoi(optarg); - if (out_before < 0) - usage(); - break; - case 'C': - out_before = out_after = 2; - break; - case 'E': - if (matcher && strcmp(matcher, "egrep") != 0) - fatal("you may specify only one of -E, -F, or -G", 0); - matcher = "posix-egrep"; - break; - case 'F': - if (matcher && strcmp(matcher, "fgrep") != 0) - fatal("you may specify only one of -E, -F, or -G", 0);; - matcher = "fgrep"; - break; - case 'G': - if (matcher && strcmp(matcher, "grep") != 0) - fatal("you may specify only one of -E, -F, or -G", 0); - matcher = "grep"; - break; - case 'V': - fprintf(stderr, "%s\n", version); - break; - case 'X': - if (matcher) - fatal("matcher already specified", 0); - matcher = optarg; - break; - case 'b': - out_byte = 1; - break; - case 'c': - out_quiet = 1; - count_matches = 1; - break; - case 'e': - cc = strlen(optarg); - keys = xrealloc(keys, keycc + cc + 1); - if (keyfound) - keys[keycc++] = '\n'; - strcpy(&keys[keycc], optarg); - keycc += cc; - keyfound = 1; - break; - case 'f': - fp = strcmp(optarg, "-") != 0 ? fopen(optarg, "r") : stdin; - if (!fp) - fatal(optarg, errno); - for (keyalloc = 1; keyalloc <= keycc; keyalloc *= 2) - ; - keys = xrealloc(keys, keyalloc); - oldcc = keycc; - if (keyfound) - keys[keycc++] = '\n'; - while (!feof(fp) - && (cc = fread(keys + keycc, 1, keyalloc - keycc, fp)) > 0) - { - keycc += cc; - if (keycc == keyalloc) - keys = xrealloc(keys, keyalloc *= 2); - } - if (fp != stdin) - fclose(fp); - /* Nuke the final newline to avoid matching a null string. */ - if (keycc - oldcc > 0 && keys[keycc - 1] == '\n') - --keycc; - keyfound = 1; - break; - case 'h': - no_filenames = 1; - break; - case 'i': - case 'y': /* For old-timers . . . */ - match_icase = 1; - break; - case 'L': - /* Like -l, except list files that don't contain matches. - Inspired by the same option in Hume's gre. */ - out_quiet = 1; - list_files = -1; - break; - case 'l': - out_quiet = 1; - list_files = 1; - break; - case 'n': - out_line = 1; - break; - case 'q': - out_quiet = 1; - break; - case 's': - suppress_errors = 1; - break; - case 'v': - out_invert = 1; - break; - case 'w': - match_words = 1; - break; - case 'x': - match_lines = 1; - break; - default: - usage(); - break; - } - - if (!keyfound) - if (optind < argc) - { - keys = argv[optind++]; - keycc = strlen(keys); - } - else - usage(); - - if (!matcher) - matcher = prog; - - if (!setmatcher(matcher) && !setmatcher("default")) - abort(); - - (*compile)(keys, keycc); - - if (argc - optind > 1 && !no_filenames) - out_file = 1; - - status = 1; - - if (optind < argc) - while (optind < argc) - { - desc = strcmp(argv[optind], "-") ? open(argv[optind], O_RDONLY) : 0; - if (desc < 0) - { - if (!suppress_errors) - error(argv[optind], errno); - } - else - { - filename = desc == 0 ? "(standard input)" : argv[optind]; - count = grep(desc); - if (count_matches) - { - if (out_file) - printf("%s:", filename); - printf("%d\n", count); - } - if (count) - { - status = 0; - if (list_files == 1) - printf("%s\n", filename); - } - else if (list_files == -1) - printf("%s\n", filename); - } - if (desc != 0) - close(desc); - ++optind; - } - else - { - filename = "(standard input)"; - count = grep(0); - if (count_matches) - printf("%d\n", count); - if (count) - { - status = 0; - if (list_files == 1) - printf("(standard input)\n"); - } - else if (list_files == -1) - printf("(standard input)\n"); - } - - exit(errseen ? 2 : status); -} diff --git a/gnu/grep/grep.h b/gnu/grep/grep.h deleted file mode 100644 index a3316c501fb1..000000000000 --- a/gnu/grep/grep.h +++ /dev/null @@ -1,53 +0,0 @@ -/* grep.h - interface to grep driver for searching subroutines. - Copyright (C) 1992 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ - -#if __STDC__ - -extern void fatal(const char *, int); - -/* Grep.c expects the matchers vector to be terminated - by an entry with a NULL name, and to contain at least - an entry named "default". */ - -extern struct matcher -{ - char *name; - void (*compile)(char *, size_t); - char *(*execute)(char *, size_t, char **); -} matchers[]; - -#else - -extern void fatal(); - -extern struct matcher -{ - char *name; - void (*compile)(); - char *(*execute)(); -} matchers[]; - -#endif - -/* Exported from grep.c. */ -extern char *matcher; - -/* The following flags are exported from grep for the matchers - to look at. */ -extern int match_icase; /* -i */ -extern int match_words; /* -w */ -extern int match_lines; /* -x */ diff --git a/gnu/grep/kwset.c b/gnu/grep/kwset.c deleted file mode 100644 index 9b09071dbfb6..000000000000 --- a/gnu/grep/kwset.c +++ /dev/null @@ -1,805 +0,0 @@ -/* kwset.c - search for any of a set of keywords. - Copyright 1989 Free Software Foundation - Written August 1989 by Mike Haertel. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 1, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - The author may be reached (Email) at the address mike@ai.mit.edu, - or (US mail) as Mike Haertel c/o Free Software Foundation. */ - -/* The algorithm implemented by these routines bears a startling resemblence - to one discovered by Beate Commentz-Walter, although it is not identical. - See "A String Matching Algorithm Fast on the Average," Technical Report, - IBM-Germany, Scientific Center Heidelberg, Tiergartenstrasse 15, D-6900 - Heidelberg, Germany. See also Aho, A.V., and M. Corasick, "Efficient - String Matching: An Aid to Bibliographic Search," CACM June 1975, - Vol. 18, No. 6, which describes the failure function used below. */ - - -#ifdef STDC_HEADERS -#include <limits.h> -#include <stdlib.h> -#else -#define INT_MAX 2147483647 -#define UCHAR_MAX 255 -#ifdef __STDC__ -#include <stddef.h> -#else -#include <sys/types.h> -#endif -extern char *malloc(); -extern void free(); -#endif - -#ifdef HAVE_MEMCHR -#include <string.h> -#ifdef NEED_MEMORY_H -#include <memory.h> -#endif -#else -#ifdef __STDC__ -extern void *memchr(); -#else -extern char *memchr(); -#endif -#endif - -#ifdef GREP -extern char *xmalloc(); -#define malloc xmalloc -#endif - -#include "kwset.h" -#include "obstack.h" - -#define NCHAR (UCHAR_MAX + 1) -#define obstack_chunk_alloc malloc -#define obstack_chunk_free free - -/* Balanced tree of edges and labels leaving a given trie node. */ -struct tree -{ - struct tree *llink; /* Left link; MUST be first field. */ - struct tree *rlink; /* Right link (to larger labels). */ - struct trie *trie; /* Trie node pointed to by this edge. */ - unsigned char label; /* Label on this edge. */ - char balance; /* Difference in depths of subtrees. */ -}; - -/* Node of a trie representing a set of reversed keywords. */ -struct trie -{ - unsigned int accepting; /* Word index of accepted word, or zero. */ - struct tree *links; /* Tree of edges leaving this node. */ - struct trie *parent; /* Parent of this node. */ - struct trie *next; /* List of all trie nodes in level order. */ - struct trie *fail; /* Aho-Corasick failure function. */ - int depth; /* Depth of this node from the root. */ - int shift; /* Shift function for search failures. */ - int maxshift; /* Max shift of self and descendents. */ -}; - -/* Structure returned opaquely to the caller, containing everything. */ -struct kwset -{ - struct obstack obstack; /* Obstack for node allocation. */ - int words; /* Number of words in the trie. */ - struct trie *trie; /* The trie itself. */ - int mind; /* Minimum depth of an accepting node. */ - int maxd; /* Maximum depth of any node. */ - unsigned char delta[NCHAR]; /* Delta table for rapid search. */ - struct trie *next[NCHAR]; /* Table of children of the root. */ - char *target; /* Target string if there's only one. */ - int mind2; /* Used in Boyer-Moore search for one string. */ - char *trans; /* Character translation table. */ -}; - -/* Allocate and initialize a keyword set object, returning an opaque - pointer to it. Return NULL if memory is not available. */ -kwset_t -kwsalloc(trans) - char *trans; -{ - struct kwset *kwset; - - kwset = (struct kwset *) malloc(sizeof (struct kwset)); - if (!kwset) - return 0; - - obstack_init(&kwset->obstack); - kwset->words = 0; - kwset->trie - = (struct trie *) obstack_alloc(&kwset->obstack, sizeof (struct trie)); - if (!kwset->trie) - { - kwsfree((kwset_t) kwset); - return 0; - } - kwset->trie->accepting = 0; - kwset->trie->links = 0; - kwset->trie->parent = 0; - kwset->trie->next = 0; - kwset->trie->fail = 0; - kwset->trie->depth = 0; - kwset->trie->shift = 0; - kwset->mind = INT_MAX; - kwset->maxd = -1; - kwset->target = 0; - kwset->trans = trans; - - return (kwset_t) kwset; -} - -/* Add the given string to the contents of the keyword set. Return NULL - for success, an error message otherwise. */ -char * -kwsincr(kws, text, len) - kwset_t kws; - char *text; - size_t len; -{ - struct kwset *kwset; - register struct trie *trie; - register unsigned char label; - register struct tree *link; - register int depth; - struct tree *links[12]; - enum { L, R } dirs[12]; - struct tree *t, *r, *l, *rl, *lr; - - kwset = (struct kwset *) kws; - trie = kwset->trie; - text += len; - - /* Descend the trie (built of reversed keywords) character-by-character, - installing new nodes when necessary. */ - while (len--) - { - label = kwset->trans ? kwset->trans[(unsigned char) *--text] : *--text; - - /* Descend the tree of outgoing links for this trie node, - looking for the current character and keeping track - of the path followed. */ - link = trie->links; - links[0] = (struct tree *) &trie->links; - dirs[0] = L; - depth = 1; - - while (link && label != link->label) - { - links[depth] = link; - if (label < link->label) - dirs[depth++] = L, link = link->llink; - else - dirs[depth++] = R, link = link->rlink; - } - - /* The current character doesn't have an outgoing link at - this trie node, so build a new trie node and install - a link in the current trie node's tree. */ - if (!link) - { - link = (struct tree *) obstack_alloc(&kwset->obstack, - sizeof (struct tree)); - if (!link) - return "memory exhausted"; - link->llink = 0; - link->rlink = 0; - link->trie = (struct trie *) obstack_alloc(&kwset->obstack, - sizeof (struct trie)); - if (!link->trie) - return "memory exhausted"; - link->trie->accepting = 0; - link->trie->links = 0; - link->trie->parent = trie; - link->trie->next = 0; - link->trie->fail = 0; - link->trie->depth = trie->depth + 1; - link->trie->shift = 0; - link->label = label; - link->balance = 0; - - /* Install the new tree node in its parent. */ - if (dirs[--depth] == L) - links[depth]->llink = link; - else - links[depth]->rlink = link; - - /* Back up the tree fixing the balance flags. */ - while (depth && !links[depth]->balance) - { - if (dirs[depth] == L) - --links[depth]->balance; - else - ++links[depth]->balance; - --depth; - } - - /* Rebalance the tree by pointer rotations if necessary. */ - if (depth && ((dirs[depth] == L && --links[depth]->balance) - || (dirs[depth] == R && ++links[depth]->balance))) - { - switch (links[depth]->balance) - { - case (char) -2: - switch (dirs[depth + 1]) - { - case L: - r = links[depth], t = r->llink, rl = t->rlink; - t->rlink = r, r->llink = rl; - t->balance = r->balance = 0; - break; - case R: - r = links[depth], l = r->llink, t = l->rlink; - rl = t->rlink, lr = t->llink; - t->llink = l, l->rlink = lr, t->rlink = r, r->llink = rl; - l->balance = t->balance != 1 ? 0 : -1; - r->balance = t->balance != (char) -1 ? 0 : 1; - t->balance = 0; - break; - } - break; - case 2: - switch (dirs[depth + 1]) - { - case R: - l = links[depth], t = l->rlink, lr = t->llink; - t->llink = l, l->rlink = lr; - t->balance = l->balance = 0; - break; - case L: - l = links[depth], r = l->rlink, t = r->llink; - lr = t->llink, rl = t->rlink; - t->llink = l, l->rlink = lr, t->rlink = r, r->llink = rl; - l->balance = t->balance != 1 ? 0 : -1; - r->balance = t->balance != (char) -1 ? 0 : 1; - t->balance = 0; - break; - } - break; - } - - if (dirs[depth - 1] == L) - links[depth - 1]->llink = t; - else - links[depth - 1]->rlink = t; - } - } - - trie = link->trie; - } - - /* Mark the node we finally reached as accepting, encoding the - index number of this word in the keyword set so far. */ - if (!trie->accepting) - trie->accepting = 1 + 2 * kwset->words; - ++kwset->words; - - /* Keep track of the longest and shortest string of the keyword set. */ - if (trie->depth < kwset->mind) - kwset->mind = trie->depth; - if (trie->depth > kwset->maxd) - kwset->maxd = trie->depth; - - return 0; -} - -/* Enqueue the trie nodes referenced from the given tree in the - given queue. */ -static void -enqueue(tree, last) - struct tree *tree; - struct trie **last; -{ - if (!tree) - return; - enqueue(tree->llink, last); - enqueue(tree->rlink, last); - (*last) = (*last)->next = tree->trie; -} - -/* Compute the Aho-Corasick failure function for the trie nodes referenced - from the given tree, given the failure function for their parent as - well as a last resort failure node. */ -static void -treefails(tree, fail, recourse) - register struct tree *tree; - struct trie *fail; - struct trie *recourse; -{ - register struct tree *link; - - if (!tree) - return; - - treefails(tree->llink, fail, recourse); - treefails(tree->rlink, fail, recourse); - - /* Find, in the chain of fails going back to the root, the first - node that has a descendent on the current label. */ - while (fail) - { - link = fail->links; - while (link && tree->label != link->label) - if (tree->label < link->label) - link = link->llink; - else - link = link->rlink; - if (link) - { - tree->trie->fail = link->trie; - return; - } - fail = fail->fail; - } - - tree->trie->fail = recourse; -} - -/* Set delta entries for the links of the given tree such that - the preexisting delta value is larger than the current depth. */ -static void -treedelta(tree, depth, delta) - register struct tree *tree; - register unsigned int depth; - unsigned char delta[]; -{ - if (!tree) - return; - treedelta(tree->llink, depth, delta); - treedelta(tree->rlink, depth, delta); - if (depth < delta[tree->label]) - delta[tree->label] = depth; -} - -/* Return true if A has every label in B. */ -static int -hasevery(a, b) - register struct tree *a; - register struct tree *b; -{ - if (!b) - return 1; - if (!hasevery(a, b->llink)) - return 0; - if (!hasevery(a, b->rlink)) - return 0; - while (a && b->label != a->label) - if (b->label < a->label) - a = a->llink; - else - a = a->rlink; - return !!a; -} - -/* Compute a vector, indexed by character code, of the trie nodes - referenced from the given tree. */ -static void -treenext(tree, next) - struct tree *tree; - struct trie *next[]; -{ - if (!tree) - return; - treenext(tree->llink, next); - treenext(tree->rlink, next); - next[tree->label] = tree->trie; -} - -/* Compute the shift for each trie node, as well as the delta - table and next cache for the given keyword set. */ -char * -kwsprep(kws) - kwset_t kws; -{ - register struct kwset *kwset; - register int i; - register struct trie *curr, *fail; - register char *trans; - unsigned char delta[NCHAR]; - struct trie *last, *next[NCHAR]; - - kwset = (struct kwset *) kws; - - /* Initial values for the delta table; will be changed later. The - delta entry for a given character is the smallest depth of any - node at which an outgoing edge is labeled by that character. */ - if (kwset->mind < 256) - for (i = 0; i < NCHAR; ++i) - delta[i] = kwset->mind; - else - for (i = 0; i < NCHAR; ++i) - delta[i] = 255; - - /* Check if we can use the simple boyer-moore algorithm, instead - of the hairy commentz-walter algorithm. */ - if (kwset->words == 1 && kwset->trans == 0) - { - /* Looking for just one string. Extract it from the trie. */ - kwset->target = obstack_alloc(&kwset->obstack, kwset->mind); - for (i = kwset->mind - 1, curr = kwset->trie; i >= 0; --i) - { - kwset->target[i] = curr->links->label; - curr = curr->links->trie; - } - /* Build the Boyer Moore delta. Boy that's easy compared to CW. */ - for (i = 0; i < kwset->mind; ++i) - delta[(unsigned char) kwset->target[i]] = kwset->mind - (i + 1); - kwset->mind2 = kwset->mind; - /* Find the minimal delta2 shift that we might make after - a backwards match has failed. */ - for (i = 0; i < kwset->mind - 1; ++i) - if (kwset->target[i] == kwset->target[kwset->mind - 1]) - kwset->mind2 = kwset->mind - (i + 1); - } - else - { - /* Traverse the nodes of the trie in level order, simultaneously - computing the delta table, failure function, and shift function. */ - for (curr = last = kwset->trie; curr; curr = curr->next) - { - /* Enqueue the immediate descendents in the level order queue. */ - enqueue(curr->links, &last); - - curr->shift = kwset->mind; - curr->maxshift = kwset->mind; - - /* Update the delta table for the descendents of this node. */ - treedelta(curr->links, curr->depth, delta); - - /* Compute the failure function for the decendents of this node. */ - treefails(curr->links, curr->fail, kwset->trie); - - /* Update the shifts at each node in the current node's chain - of fails back to the root. */ - for (fail = curr->fail; fail; fail = fail->fail) - { - /* If the current node has some outgoing edge that the fail - doesn't, then the shift at the fail should be no larger - than the difference of their depths. */ - if (!hasevery(fail->links, curr->links)) - if (curr->depth - fail->depth < fail->shift) - fail->shift = curr->depth - fail->depth; - - /* If the current node is accepting then the shift at the - fail and its descendents should be no larger than the - difference of their depths. */ - if (curr->accepting && fail->maxshift > curr->depth - fail->depth) - fail->maxshift = curr->depth - fail->depth; - } - } - - /* Traverse the trie in level order again, fixing up all nodes whose - shift exceeds their inherited maxshift. */ - for (curr = kwset->trie->next; curr; curr = curr->next) - { - if (curr->maxshift > curr->parent->maxshift) - curr->maxshift = curr->parent->maxshift; - if (curr->shift > curr->maxshift) - curr->shift = curr->maxshift; - } - - /* Create a vector, indexed by character code, of the outgoing links - from the root node. */ - for (i = 0; i < NCHAR; ++i) - next[i] = 0; - treenext(kwset->trie->links, next); - - if ((trans = kwset->trans) != 0) - for (i = 0; i < NCHAR; ++i) - kwset->next[i] = next[(unsigned char) trans[i]]; - else - for (i = 0; i < NCHAR; ++i) - kwset->next[i] = next[i]; - } - - /* Fix things up for any translation table. */ - if ((trans = kwset->trans) != 0) - for (i = 0; i < NCHAR; ++i) - kwset->delta[i] = delta[(unsigned char) trans[i]]; - else - for (i = 0; i < NCHAR; ++i) - kwset->delta[i] = delta[i]; - - return 0; -} - -#define U(C) ((unsigned char) (C)) - -/* Fast boyer-moore search. */ -static char * -bmexec(kws, text, size) - kwset_t kws; - char *text; - size_t size; -{ - struct kwset *kwset; - register unsigned char *d1; - register char *ep, *sp, *tp; - register int d, gc, i, len, md2; - - kwset = (struct kwset *) kws; - len = kwset->mind; - - if (len == 0) - return text; - if (len > size) - return 0; - if (len == 1) - return memchr(text, kwset->target[0], size); - - d1 = kwset->delta; - sp = kwset->target + len; - gc = U(sp[-2]); - md2 = kwset->mind2; - tp = text + len; - - /* Significance of 12: 1 (initial offset) + 10 (skip loop) + 1 (md2). */ - if (size > 12 * len) - /* 11 is not a bug, the initial offset happens only once. */ - for (ep = text + size - 11 * len;;) - { - while (tp <= ep) - { - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - if (d == 0) - goto found; - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - if (d == 0) - goto found; - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - if (d == 0) - goto found; - d = d1[U(tp[-1])], tp += d; - d = d1[U(tp[-1])], tp += d; - } - break; - found: - if (U(tp[-2]) == gc) - { - for (i = 3; i <= len && U(tp[-i]) == U(sp[-i]); ++i) - ; - if (i > len) - return tp - len; - } - tp += md2; - } - - /* Now we have only a few characters left to search. We - carefully avoid ever producing an out-of-bounds pointer. */ - ep = text + size; - d = d1[U(tp[-1])]; - while (d <= ep - tp) - { - d = d1[U((tp += d)[-1])]; - if (d != 0) - continue; - if (tp[-2] == gc) - { - for (i = 3; i <= len && U(tp[-i]) == U(sp[-i]); ++i) - ; - if (i > len) - return tp - len; - } - d = md2; - } - - return 0; -} - -/* Hairy multiple string search. */ -static char * -cwexec(kws, text, len, kwsmatch) - kwset_t kws; - char *text; - size_t len; - struct kwsmatch *kwsmatch; -{ - struct kwset *kwset; - struct trie **next, *trie, *accept; - char *beg, *lim, *mch, *lmch; - register unsigned char c, *delta; - register int d; - register char *end, *qlim; - register struct tree *tree; - register char *trans; - - /* Initialize register copies and look for easy ways out. */ - kwset = (struct kwset *) kws; - if (len < kwset->mind) - return 0; - next = kwset->next; - delta = kwset->delta; - trans = kwset->trans; - lim = text + len; - end = text; - if ((d = kwset->mind) != 0) - mch = 0; - else - { - mch = text, accept = kwset->trie; - goto match; - } - - if (len >= 4 * kwset->mind) - qlim = lim - 4 * kwset->mind; - else - qlim = 0; - - while (lim - end >= d) - { - if (qlim && end <= qlim) - { - end += d - 1; - while ((d = delta[c = *end]) && end < qlim) - { - end += d; - end += delta[(unsigned char) *end]; - end += delta[(unsigned char) *end]; - } - ++end; - } - else - d = delta[c = (end += d)[-1]]; - if (d) - continue; - beg = end - 1; - trie = next[c]; - if (trie->accepting) - { - mch = beg; - accept = trie; - } - d = trie->shift; - while (beg > text) - { - c = trans ? trans[(unsigned char) *--beg] : *--beg; - tree = trie->links; - while (tree && c != tree->label) - if (c < tree->label) - tree = tree->llink; - else - tree = tree->rlink; - if (tree) - { - trie = tree->trie; - if (trie->accepting) - { - mch = beg; - accept = trie; - } - } - else - break; - d = trie->shift; - } - if (mch) - goto match; - } - return 0; - - match: - /* Given a known match, find the longest possible match anchored - at or before its starting point. This is nearly a verbatim - copy of the preceding main search loops. */ - if (lim - mch > kwset->maxd) - lim = mch + kwset->maxd; - lmch = 0; - d = 1; - while (lim - end >= d) - { - if ((d = delta[c = (end += d)[-1]]) != 0) - continue; - beg = end - 1; - if (!(trie = next[c])) - { - d = 1; - continue; - } - if (trie->accepting && beg <= mch) - { - lmch = beg; - accept = trie; - } - d = trie->shift; - while (beg > text) - { - c = trans ? trans[(unsigned char) *--beg] : *--beg; - tree = trie->links; - while (tree && c != tree->label) - if (c < tree->label) - tree = tree->llink; - else - tree = tree->rlink; - if (tree) - { - trie = tree->trie; - if (trie->accepting && beg <= mch) - { - lmch = beg; - accept = trie; - } - } - else - break; - d = trie->shift; - } - if (lmch) - { - mch = lmch; - goto match; - } - if (!d) - d = 1; - } - - if (kwsmatch) - { - kwsmatch->index = accept->accepting / 2; - kwsmatch->beg[0] = mch; - kwsmatch->size[0] = accept->depth; - } - return mch; -} - -/* Search through the given text for a match of any member of the - given keyword set. Return a pointer to the first character of - the matching substring, or NULL if no match is found. If FOUNDLEN - is non-NULL store in the referenced location the length of the - matching substring. Similarly, if FOUNDIDX is non-NULL, store - in the referenced location the index number of the particular - keyword matched. */ -char * -kwsexec(kws, text, size, kwsmatch) - kwset_t kws; - char *text; - size_t size; - struct kwsmatch *kwsmatch; -{ - struct kwset *kwset; - char *ret; - - kwset = (struct kwset *) kws; - if (kwset->words == 1 && kwset->trans == 0) - { - ret = bmexec(kws, text, size); - if (kwsmatch != 0 && ret != 0) - { - kwsmatch->index = 0; - kwsmatch->beg[0] = ret; - kwsmatch->size[0] = kwset->mind; - } - return ret; - } - else - return cwexec(kws, text, size, kwsmatch); -} - -/* Free the components of the given keyword set. */ -void -kwsfree(kws) - kwset_t kws; -{ - struct kwset *kwset; - - kwset = (struct kwset *) kws; - obstack_free(&kwset->obstack, 0); - free(kws); -} diff --git a/gnu/grep/kwset.h b/gnu/grep/kwset.h deleted file mode 100644 index 95f62e715d98..000000000000 --- a/gnu/grep/kwset.h +++ /dev/null @@ -1,69 +0,0 @@ -/* kwset.h - header declaring the keyword set library. - Copyright 1989 Free Software Foundation - Written August 1989 by Mike Haertel. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 1, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - The author may be reached (Email) at the address mike@ai.mit.edu, - or (US mail) as Mike Haertel c/o Free Software Foundation. */ - -struct kwsmatch -{ - int index; /* Index number of matching keyword. */ - char *beg[1]; /* Begin pointer for each submatch. */ - size_t size[1]; /* Length of each submatch. */ -}; - -#if __STDC__ - -typedef void *kwset_t; - -/* Return an opaque pointer to a newly allocated keyword set, or NULL - if enough memory cannot be obtained. The argument if non-NULL - specifies a table of character translations to be applied to all - pattern and search text. */ -extern kwset_t kwsalloc(char *); - -/* Incrementally extend the keyword set to include the given string. - Return NULL for success, or an error message. Remember an index - number for each keyword included in the set. */ -extern char *kwsincr(kwset_t, char *, size_t); - -/* When the keyword set has been completely built, prepare it for - use. Return NULL for success, or an error message. */ -extern char *kwsprep(kwset_t); - -/* Search through the given buffer for a member of the keyword set. - Return a pointer to the leftmost longest match found, or NULL if - no match is found. If foundlen is non-NULL, store the length of - the matching substring in the integer it points to. Similarly, - if foundindex is non-NULL, store the index of the particular - keyword found therein. */ -extern char *kwsexec(kwset_t, char *, size_t, struct kwsmatch *); - -/* Deallocate the given keyword set and all its associated storage. */ -extern void kwsfree(kwset_t); - -#else - -typedef char *kwset_t; - -extern kwset_t kwsalloc(); -extern char *kwsincr(); -extern char *kwsprep(); -extern char *kwsexec(); -extern void kwsfree(); - -#endif diff --git a/gnu/grep/obstack.c b/gnu/grep/obstack.c deleted file mode 100644 index 7b9d3b9046d4..000000000000 --- a/gnu/grep/obstack.c +++ /dev/null @@ -1,454 +0,0 @@ -/* obstack.c - subroutines used implicitly by object stack macros - Copyright (C) 1988, 1993 Free Software Foundation, Inc. - -This program is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any -later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -#include "obstack.h" - -/* This is just to get __GNU_LIBRARY__ defined. */ -#include <stdio.h> - -/* Comment out all this code if we are using the GNU C Library, and are not - actually compiling the library itself. This code is part of the GNU C - Library, but also included in many other GNU distributions. Compiling - and linking in this code is a waste when using the GNU C library - (especially if it is a shared library). Rather than having every GNU - program understand `configure --with-gnu-libc' and omit the object files, - it is simpler to just do this in the source for each such file. */ - -#if defined (_LIBC) || !defined (__GNU_LIBRARY__) - - -#ifdef __STDC__ -#define POINTER void * -#else -#define POINTER char * -#endif - -/* Determine default alignment. */ -struct fooalign {char x; double d;}; -#define DEFAULT_ALIGNMENT \ - ((PTR_INT_TYPE) ((char *)&((struct fooalign *) 0)->d - (char *)0)) -/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT. - But in fact it might be less smart and round addresses to as much as - DEFAULT_ROUNDING. So we prepare for it to do that. */ -union fooround {long x; double d;}; -#define DEFAULT_ROUNDING (sizeof (union fooround)) - -/* When we copy a long block of data, this is the unit to do it with. - On some machines, copying successive ints does not work; - in such a case, redefine COPYING_UNIT to `long' (if that works) - or `char' as a last resort. */ -#ifndef COPYING_UNIT -#define COPYING_UNIT int -#endif - -/* The non-GNU-C macros copy the obstack into this global variable - to avoid multiple evaluation. */ - -struct obstack *_obstack; - -/* Define a macro that either calls functions with the traditional malloc/free - calling interface, or calls functions with the mmalloc/mfree interface - (that adds an extra first argument), based on the state of use_extra_arg. - For free, do not use ?:, since some compilers, like the MIPS compilers, - do not allow (expr) ? void : void. */ - -#define CALL_CHUNKFUN(h, size) \ - (((h) -> use_extra_arg) \ - ? (*(h)->chunkfun) ((h)->extra_arg, (size)) \ - : (*(h)->chunkfun) ((size))) - -#define CALL_FREEFUN(h, old_chunk) \ - do { \ - if ((h) -> use_extra_arg) \ - (*(h)->freefun) ((h)->extra_arg, (old_chunk)); \ - else \ - (*(h)->freefun) ((old_chunk)); \ - } while (0) - - -/* Initialize an obstack H for use. Specify chunk size SIZE (0 means default). - Objects start on multiples of ALIGNMENT (0 means use default). - CHUNKFUN is the function to use to allocate chunks, - and FREEFUN the function to free them. */ - -void -_obstack_begin (h, size, alignment, chunkfun, freefun) - struct obstack *h; - int size; - int alignment; - POINTER (*chunkfun) (); - void (*freefun) (); -{ - register struct _obstack_chunk* chunk; /* points to new chunk */ - - if (alignment == 0) - alignment = DEFAULT_ALIGNMENT; - if (size == 0) - /* Default size is what GNU malloc can fit in a 4096-byte block. */ - { - /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc. - Use the values for range checking, because if range checking is off, - the extra bytes won't be missed terribly, but if range checking is on - and we used a larger request, a whole extra 4096 bytes would be - allocated. - - These number are irrelevant to the new GNU malloc. I suspect it is - less sensitive to the size of the request. */ - int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1)) - + 4 + DEFAULT_ROUNDING - 1) - & ~(DEFAULT_ROUNDING - 1)); - size = 4096 - extra; - } - - h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun; - h->freefun = freefun; - h->chunk_size = size; - h->alignment_mask = alignment - 1; - h->use_extra_arg = 0; - - chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size); - h->next_free = h->object_base = chunk->contents; - h->chunk_limit = chunk->limit - = (char *) chunk + h->chunk_size; - chunk->prev = 0; - /* The initial chunk now contains no empty object. */ - h->maybe_empty_object = 0; -} - -void -_obstack_begin_1 (h, size, alignment, chunkfun, freefun, arg) - struct obstack *h; - int size; - int alignment; - POINTER (*chunkfun) (); - void (*freefun) (); - POINTER arg; -{ - register struct _obstack_chunk* chunk; /* points to new chunk */ - - if (alignment == 0) - alignment = DEFAULT_ALIGNMENT; - if (size == 0) - /* Default size is what GNU malloc can fit in a 4096-byte block. */ - { - /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc. - Use the values for range checking, because if range checking is off, - the extra bytes won't be missed terribly, but if range checking is on - and we used a larger request, a whole extra 4096 bytes would be - allocated. - - These number are irrelevant to the new GNU malloc. I suspect it is - less sensitive to the size of the request. */ - int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1)) - + 4 + DEFAULT_ROUNDING - 1) - & ~(DEFAULT_ROUNDING - 1)); - size = 4096 - extra; - } - - h->chunkfun = (struct _obstack_chunk * (*)()) chunkfun; - h->freefun = freefun; - h->chunk_size = size; - h->alignment_mask = alignment - 1; - h->extra_arg = arg; - h->use_extra_arg = 1; - - chunk = h->chunk = CALL_CHUNKFUN (h, h -> chunk_size); - h->next_free = h->object_base = chunk->contents; - h->chunk_limit = chunk->limit - = (char *) chunk + h->chunk_size; - chunk->prev = 0; - /* The initial chunk now contains no empty object. */ - h->maybe_empty_object = 0; -} - -/* Allocate a new current chunk for the obstack *H - on the assumption that LENGTH bytes need to be added - to the current object, or a new object of length LENGTH allocated. - Copies any partial object from the end of the old chunk - to the beginning of the new one. */ - -void -_obstack_newchunk (h, length) - struct obstack *h; - int length; -{ - register struct _obstack_chunk* old_chunk = h->chunk; - register struct _obstack_chunk* new_chunk; - register long new_size; - register int obj_size = h->next_free - h->object_base; - register int i; - int already; - - /* Compute size for new chunk. */ - new_size = (obj_size + length) + (obj_size >> 3) + 100; - if (new_size < h->chunk_size) - new_size = h->chunk_size; - - /* Allocate and initialize the new chunk. */ - new_chunk = h->chunk = CALL_CHUNKFUN (h, new_size); - new_chunk->prev = old_chunk; - new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size; - - /* Move the existing object to the new chunk. - Word at a time is fast and is safe if the object - is sufficiently aligned. */ - if (h->alignment_mask + 1 >= DEFAULT_ALIGNMENT) - { - for (i = obj_size / sizeof (COPYING_UNIT) - 1; - i >= 0; i--) - ((COPYING_UNIT *)new_chunk->contents)[i] - = ((COPYING_UNIT *)h->object_base)[i]; - /* We used to copy the odd few remaining bytes as one extra COPYING_UNIT, - but that can cross a page boundary on a machine - which does not do strict alignment for COPYING_UNITS. */ - already = obj_size / sizeof (COPYING_UNIT) * sizeof (COPYING_UNIT); - } - else - already = 0; - /* Copy remaining bytes one by one. */ - for (i = already; i < obj_size; i++) - new_chunk->contents[i] = h->object_base[i]; - - /* If the object just copied was the only data in OLD_CHUNK, - free that chunk and remove it from the chain. - But not if that chunk might contain an empty object. */ - if (h->object_base == old_chunk->contents && ! h->maybe_empty_object) - { - new_chunk->prev = old_chunk->prev; - CALL_FREEFUN (h, old_chunk); - } - - h->object_base = new_chunk->contents; - h->next_free = h->object_base + obj_size; - /* The new chunk certainly contains no empty object yet. */ - h->maybe_empty_object = 0; -} - -/* Return nonzero if object OBJ has been allocated from obstack H. - This is here for debugging. - If you use it in a program, you are probably losing. */ - -int -_obstack_allocated_p (h, obj) - struct obstack *h; - POINTER obj; -{ - register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */ - register struct _obstack_chunk* plp; /* point to previous chunk if any */ - - lp = (h)->chunk; - /* We use >= rather than > since the object cannot be exactly at - the beginning of the chunk but might be an empty object exactly - at the end of an adjacent chunk. */ - while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj)) - { - plp = lp->prev; - lp = plp; - } - return lp != 0; -} - -/* Free objects in obstack H, including OBJ and everything allocate - more recently than OBJ. If OBJ is zero, free everything in H. */ - -#undef obstack_free - -/* This function has two names with identical definitions. - This is the first one, called from non-ANSI code. */ - -void -_obstack_free (h, obj) - struct obstack *h; - POINTER obj; -{ - register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */ - register struct _obstack_chunk* plp; /* point to previous chunk if any */ - - lp = h->chunk; - /* We use >= because there cannot be an object at the beginning of a chunk. - But there can be an empty object at that address - at the end of another chunk. */ - while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj)) - { - plp = lp->prev; - CALL_FREEFUN (h, lp); - lp = plp; - /* If we switch chunks, we can't tell whether the new current - chunk contains an empty object, so assume that it may. */ - h->maybe_empty_object = 1; - } - if (lp) - { - h->object_base = h->next_free = (char *)(obj); - h->chunk_limit = lp->limit; - h->chunk = lp; - } - else if (obj != 0) - /* obj is not in any of the chunks! */ - abort (); -} - -/* This function is used from ANSI code. */ - -void -obstack_free (h, obj) - struct obstack *h; - POINTER obj; -{ - register struct _obstack_chunk* lp; /* below addr of any objects in this chunk */ - register struct _obstack_chunk* plp; /* point to previous chunk if any */ - - lp = h->chunk; - /* We use >= because there cannot be an object at the beginning of a chunk. - But there can be an empty object at that address - at the end of another chunk. */ - while (lp != 0 && ((POINTER)lp >= obj || (POINTER)(lp)->limit < obj)) - { - plp = lp->prev; - CALL_FREEFUN (h, lp); - lp = plp; - /* If we switch chunks, we can't tell whether the new current - chunk contains an empty object, so assume that it may. */ - h->maybe_empty_object = 1; - } - if (lp) - { - h->object_base = h->next_free = (char *)(obj); - h->chunk_limit = lp->limit; - h->chunk = lp; - } - else if (obj != 0) - /* obj is not in any of the chunks! */ - abort (); -} - -#if 0 -/* These are now turned off because the applications do not use it - and it uses bcopy via obstack_grow, which causes trouble on sysV. */ - -/* Now define the functional versions of the obstack macros. - Define them to simply use the corresponding macros to do the job. */ - -#ifdef __STDC__ -/* These function definitions do not work with non-ANSI preprocessors; - they won't pass through the macro names in parentheses. */ - -/* The function names appear in parentheses in order to prevent - the macro-definitions of the names from being expanded there. */ - -POINTER (obstack_base) (obstack) - struct obstack *obstack; -{ - return obstack_base (obstack); -} - -POINTER (obstack_next_free) (obstack) - struct obstack *obstack; -{ - return obstack_next_free (obstack); -} - -int (obstack_object_size) (obstack) - struct obstack *obstack; -{ - return obstack_object_size (obstack); -} - -int (obstack_room) (obstack) - struct obstack *obstack; -{ - return obstack_room (obstack); -} - -void (obstack_grow) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - obstack_grow (obstack, pointer, length); -} - -void (obstack_grow0) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - obstack_grow0 (obstack, pointer, length); -} - -void (obstack_1grow) (obstack, character) - struct obstack *obstack; - int character; -{ - obstack_1grow (obstack, character); -} - -void (obstack_blank) (obstack, length) - struct obstack *obstack; - int length; -{ - obstack_blank (obstack, length); -} - -void (obstack_1grow_fast) (obstack, character) - struct obstack *obstack; - int character; -{ - obstack_1grow_fast (obstack, character); -} - -void (obstack_blank_fast) (obstack, length) - struct obstack *obstack; - int length; -{ - obstack_blank_fast (obstack, length); -} - -POINTER (obstack_finish) (obstack) - struct obstack *obstack; -{ - return obstack_finish (obstack); -} - -POINTER (obstack_alloc) (obstack, length) - struct obstack *obstack; - int length; -{ - return obstack_alloc (obstack, length); -} - -POINTER (obstack_copy) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - return obstack_copy (obstack, pointer, length); -} - -POINTER (obstack_copy0) (obstack, pointer, length) - struct obstack *obstack; - POINTER pointer; - int length; -{ - return obstack_copy0 (obstack, pointer, length); -} - -#endif /* __STDC__ */ - -#endif /* 0 */ - -#endif /* _LIBC or not __GNU_LIBRARY__. */ diff --git a/gnu/grep/obstack.h b/gnu/grep/obstack.h deleted file mode 100644 index 8a18e4566e96..000000000000 --- a/gnu/grep/obstack.h +++ /dev/null @@ -1,484 +0,0 @@ -/* obstack.h - object stack macros - Copyright (C) 1988, 1992 Free Software Foundation, Inc. - -This program is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any -later version. - -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* Summary: - -All the apparent functions defined here are macros. The idea -is that you would use these pre-tested macros to solve a -very specific set of problems, and they would run fast. -Caution: no side-effects in arguments please!! They may be -evaluated MANY times!! - -These macros operate a stack of objects. Each object starts life -small, and may grow to maturity. (Consider building a word syllable -by syllable.) An object can move while it is growing. Once it has -been "finished" it never changes address again. So the "top of the -stack" is typically an immature growing object, while the rest of the -stack is of mature, fixed size and fixed address objects. - -These routines grab large chunks of memory, using a function you -supply, called `obstack_chunk_alloc'. On occasion, they free chunks, -by calling `obstack_chunk_free'. You must define them and declare -them before using any obstack macros. - -Each independent stack is represented by a `struct obstack'. -Each of the obstack macros expects a pointer to such a structure -as the first argument. - -One motivation for this package is the problem of growing char strings -in symbol tables. Unless you are "fascist pig with a read-only mind" ---Gosper's immortal quote from HAKMEM item 154, out of context--you -would not like to put any arbitrary upper limit on the length of your -symbols. - -In practice this often means you will build many short symbols and a -few long symbols. At the time you are reading a symbol you don't know -how long it is. One traditional method is to read a symbol into a -buffer, realloc()ating the buffer every time you try to read a symbol -that is longer than the buffer. This is beaut, but you still will -want to copy the symbol from the buffer to a more permanent -symbol-table entry say about half the time. - -With obstacks, you can work differently. Use one obstack for all symbol -names. As you read a symbol, grow the name in the obstack gradually. -When the name is complete, finalize it. Then, if the symbol exists already, -free the newly read name. - -The way we do this is to take a large chunk, allocating memory from -low addresses. When you want to build a symbol in the chunk you just -add chars above the current "high water mark" in the chunk. When you -have finished adding chars, because you got to the end of the symbol, -you know how long the chars are, and you can create a new object. -Mostly the chars will not burst over the highest address of the chunk, -because you would typically expect a chunk to be (say) 100 times as -long as an average object. - -In case that isn't clear, when we have enough chars to make up -the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed) -so we just point to it where it lies. No moving of chars is -needed and this is the second win: potentially long strings need -never be explicitly shuffled. Once an object is formed, it does not -change its address during its lifetime. - -When the chars burst over a chunk boundary, we allocate a larger -chunk, and then copy the partly formed object from the end of the old -chunk to the beginning of the new larger chunk. We then carry on -accreting characters to the end of the object as we normally would. - -A special macro is provided to add a single char at a time to a -growing object. This allows the use of register variables, which -break the ordinary 'growth' macro. - -Summary: - We allocate large chunks. - We carve out one object at a time from the current chunk. - Once carved, an object never moves. - We are free to append data of any size to the currently - growing object. - Exactly one object is growing in an obstack at any one time. - You can run one obstack per control block. - You may have as many control blocks as you dare. - Because of the way we do it, you can `unwind' an obstack - back to a previous state. (You may remove objects much - as you would with a stack.) -*/ - - -/* Don't do the contents of this file more than once. */ - -#ifndef __OBSTACKS__ -#define __OBSTACKS__ - -/* We use subtraction of (char *)0 instead of casting to int - because on word-addressable machines a simple cast to int - may ignore the byte-within-word field of the pointer. */ - -#ifndef __PTR_TO_INT -#define __PTR_TO_INT(P) ((P) - (char *)0) -#endif - -#ifndef __INT_TO_PTR -#define __INT_TO_PTR(P) ((P) + (char *)0) -#endif - -/* We need the type of the resulting object. In ANSI C it is ptrdiff_t - but in traditional C it is usually long. If we are in ANSI C and - don't already have ptrdiff_t get it. */ - -#if defined (__STDC__) && ! defined (offsetof) -#if defined (__GNUC__) && defined (IN_GCC) -/* On Next machine, the system's stddef.h screws up if included - after we have defined just ptrdiff_t, so include all of gstddef.h. - Otherwise, define just ptrdiff_t, which is all we need. */ -#ifndef __NeXT__ -#define __need_ptrdiff_t -#endif - -/* While building GCC, the stddef.h that goes with GCC has this name. */ -#include "gstddef.h" -#else -#include <stddef.h> -#endif -#endif - -#ifdef __STDC__ -#define PTR_INT_TYPE ptrdiff_t -#else -#define PTR_INT_TYPE long -#endif - -struct _obstack_chunk /* Lives at front of each chunk. */ -{ - char *limit; /* 1 past end of this chunk */ - struct _obstack_chunk *prev; /* address of prior chunk or NULL */ - char contents[4]; /* objects begin here */ -}; - -struct obstack /* control current object in current chunk */ -{ - long chunk_size; /* preferred size to allocate chunks in */ - struct _obstack_chunk* chunk; /* address of current struct obstack_chunk */ - char *object_base; /* address of object we are building */ - char *next_free; /* where to add next char to current object */ - char *chunk_limit; /* address of char after current chunk */ - PTR_INT_TYPE temp; /* Temporary for some macros. */ - int alignment_mask; /* Mask of alignment for each object. */ - struct _obstack_chunk *(*chunkfun) (); /* User's fcn to allocate a chunk. */ - void (*freefun) (); /* User's function to free a chunk. */ - char *extra_arg; /* first arg for chunk alloc/dealloc funcs */ - unsigned use_extra_arg:1; /* chunk alloc/dealloc funcs take extra arg */ - unsigned maybe_empty_object:1;/* There is a possibility that the current - chunk contains a zero-length object. This - prevents freeing the chunk if we allocate - a bigger chunk to replace it. */ -}; - -/* Declare the external functions we use; they are in obstack.c. */ - -#ifdef __STDC__ -extern void _obstack_newchunk (struct obstack *, int); -extern void _obstack_free (struct obstack *, void *); -extern void _obstack_begin (struct obstack *, int, int, - void *(*) (), void (*) ()); -extern void _obstack_begin_1 (struct obstack *, int, int, - void *(*) (), void (*) (), void *); -#else -extern void _obstack_newchunk (); -extern void _obstack_free (); -extern void _obstack_begin (); -extern void _obstack_begin_1 (); -#endif - -#ifdef __STDC__ - -/* Do the function-declarations after the structs - but before defining the macros. */ - -void obstack_init (struct obstack *obstack); - -void * obstack_alloc (struct obstack *obstack, int size); - -void * obstack_copy (struct obstack *obstack, void *address, int size); -void * obstack_copy0 (struct obstack *obstack, void *address, int size); - -void obstack_free (struct obstack *obstack, void *block); - -void obstack_blank (struct obstack *obstack, int size); - -void obstack_grow (struct obstack *obstack, void *data, int size); -void obstack_grow0 (struct obstack *obstack, void *data, int size); - -void obstack_1grow (struct obstack *obstack, int data_char); -void obstack_ptr_grow (struct obstack *obstack, void *data); -void obstack_int_grow (struct obstack *obstack, int data); - -void * obstack_finish (struct obstack *obstack); - -int obstack_object_size (struct obstack *obstack); - -int obstack_room (struct obstack *obstack); -void obstack_1grow_fast (struct obstack *obstack, int data_char); -void obstack_ptr_grow_fast (struct obstack *obstack, void *data); -void obstack_int_grow_fast (struct obstack *obstack, int data); -void obstack_blank_fast (struct obstack *obstack, int size); - -void * obstack_base (struct obstack *obstack); -void * obstack_next_free (struct obstack *obstack); -int obstack_alignment_mask (struct obstack *obstack); -int obstack_chunk_size (struct obstack *obstack); - -#endif /* __STDC__ */ - -/* Non-ANSI C cannot really support alternative functions for these macros, - so we do not declare them. */ - -/* Pointer to beginning of object being allocated or to be allocated next. - Note that this might not be the final address of the object - because a new chunk might be needed to hold the final size. */ - -#define obstack_base(h) ((h)->object_base) - -/* Size for allocating ordinary chunks. */ - -#define obstack_chunk_size(h) ((h)->chunk_size) - -/* Pointer to next byte not yet allocated in current chunk. */ - -#define obstack_next_free(h) ((h)->next_free) - -/* Mask specifying low bits that should be clear in address of an object. */ - -#define obstack_alignment_mask(h) ((h)->alignment_mask) - -#define obstack_init(h) \ - _obstack_begin ((h), 0, 0, \ - (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free) - -#define obstack_begin(h, size) \ - _obstack_begin ((h), (size), 0, \ - (void *(*) ()) obstack_chunk_alloc, (void (*) ()) obstack_chunk_free) - -#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun) \ - _obstack_begin ((h), (size), (alignment), \ - (void *(*) ()) (chunkfun), (void (*) ()) (freefun)) - -#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \ - _obstack_begin_1 ((h), (size), (alignment), \ - (void *(*) ()) (chunkfun), (void (*) ()) (freefun), (arg)) - -#define obstack_1grow_fast(h,achar) (*((h)->next_free)++ = achar) - -#define obstack_blank_fast(h,n) ((h)->next_free += (n)) - -#if defined (__GNUC__) && defined (__STDC__) -#if __GNUC__ < 2 || defined(NeXT) -#define __extension__ -#endif - -/* For GNU C, if not -traditional, - we can define these macros to compute all args only once - without using a global variable. - Also, we can avoid using the `temp' slot, to make faster code. */ - -#define obstack_object_size(OBSTACK) \ - __extension__ \ - ({ struct obstack *__o = (OBSTACK); \ - (unsigned) (__o->next_free - __o->object_base); }) - -#define obstack_room(OBSTACK) \ - __extension__ \ - ({ struct obstack *__o = (OBSTACK); \ - (unsigned) (__o->chunk_limit - __o->next_free); }) - -/* Note that the call to _obstack_newchunk is enclosed in (..., 0) - so that we can avoid having void expressions - in the arms of the conditional expression. - Casting the third operand to void was tried before, - but some compilers won't accept it. */ -#define obstack_grow(OBSTACK,where,length) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - int __len = (length); \ - ((__o->next_free + __len > __o->chunk_limit) \ - ? (_obstack_newchunk (__o, __len), 0) : 0); \ - bcopy (where, __o->next_free, __len); \ - __o->next_free += __len; \ - (void) 0; }) - -#define obstack_grow0(OBSTACK,where,length) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - int __len = (length); \ - ((__o->next_free + __len + 1 > __o->chunk_limit) \ - ? (_obstack_newchunk (__o, __len + 1), 0) : 0), \ - bcopy (where, __o->next_free, __len), \ - __o->next_free += __len, \ - *(__o->next_free)++ = 0; \ - (void) 0; }) - -#define obstack_1grow(OBSTACK,datum) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - ((__o->next_free + 1 > __o->chunk_limit) \ - ? (_obstack_newchunk (__o, 1), 0) : 0), \ - *(__o->next_free)++ = (datum); \ - (void) 0; }) - -/* These assume that the obstack alignment is good enough for pointers or ints, - and that the data added so far to the current object - shares that much alignment. */ - -#define obstack_ptr_grow(OBSTACK,datum) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - ((__o->next_free + sizeof (void *) > __o->chunk_limit) \ - ? (_obstack_newchunk (__o, sizeof (void *)), 0) : 0), \ - *((void **)__o->next_free)++ = ((void *)datum); \ - (void) 0; }) - -#define obstack_int_grow(OBSTACK,datum) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - ((__o->next_free + sizeof (int) > __o->chunk_limit) \ - ? (_obstack_newchunk (__o, sizeof (int)), 0) : 0), \ - *((int *)__o->next_free)++ = ((int)datum); \ - (void) 0; }) - -#define obstack_ptr_grow_fast(h,aptr) (*((void **)(h)->next_free)++ = (void *)aptr) -#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint) - -#define obstack_blank(OBSTACK,length) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - int __len = (length); \ - ((__o->chunk_limit - __o->next_free < __len) \ - ? (_obstack_newchunk (__o, __len), 0) : 0); \ - __o->next_free += __len; \ - (void) 0; }) - -#define obstack_alloc(OBSTACK,length) \ -__extension__ \ -({ struct obstack *__h = (OBSTACK); \ - obstack_blank (__h, (length)); \ - obstack_finish (__h); }) - -#define obstack_copy(OBSTACK,where,length) \ -__extension__ \ -({ struct obstack *__h = (OBSTACK); \ - obstack_grow (__h, (where), (length)); \ - obstack_finish (__h); }) - -#define obstack_copy0(OBSTACK,where,length) \ -__extension__ \ -({ struct obstack *__h = (OBSTACK); \ - obstack_grow0 (__h, (where), (length)); \ - obstack_finish (__h); }) - -/* The local variable is named __o1 to avoid a name conflict - when obstack_blank is called. */ -#define obstack_finish(OBSTACK) \ -__extension__ \ -({ struct obstack *__o1 = (OBSTACK); \ - void *value = (void *) __o1->object_base; \ - if (__o1->next_free == value) \ - __o1->maybe_empty_object = 1; \ - __o1->next_free \ - = __INT_TO_PTR ((__PTR_TO_INT (__o1->next_free)+__o1->alignment_mask)\ - & ~ (__o1->alignment_mask)); \ - ((__o1->next_free - (char *)__o1->chunk \ - > __o1->chunk_limit - (char *)__o1->chunk) \ - ? (__o1->next_free = __o1->chunk_limit) : 0); \ - __o1->object_base = __o1->next_free; \ - value; }) - -#define obstack_free(OBSTACK, OBJ) \ -__extension__ \ -({ struct obstack *__o = (OBSTACK); \ - void *__obj = (OBJ); \ - if (__obj > (void *)__o->chunk && __obj < (void *)__o->chunk_limit) \ - __o->next_free = __o->object_base = __obj; \ - else (obstack_free) (__o, __obj); }) - -#else /* not __GNUC__ or not __STDC__ */ - -#define obstack_object_size(h) \ - (unsigned) ((h)->next_free - (h)->object_base) - -#define obstack_room(h) \ - (unsigned) ((h)->chunk_limit - (h)->next_free) - -#define obstack_grow(h,where,length) \ -( (h)->temp = (length), \ - (((h)->next_free + (h)->temp > (h)->chunk_limit) \ - ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \ - bcopy (where, (h)->next_free, (h)->temp), \ - (h)->next_free += (h)->temp) - -#define obstack_grow0(h,where,length) \ -( (h)->temp = (length), \ - (((h)->next_free + (h)->temp + 1 > (h)->chunk_limit) \ - ? (_obstack_newchunk ((h), (h)->temp + 1), 0) : 0), \ - bcopy (where, (h)->next_free, (h)->temp), \ - (h)->next_free += (h)->temp, \ - *((h)->next_free)++ = 0) - -#define obstack_1grow(h,datum) \ -( (((h)->next_free + 1 > (h)->chunk_limit) \ - ? (_obstack_newchunk ((h), 1), 0) : 0), \ - *((h)->next_free)++ = (datum)) - -#define obstack_ptr_grow(h,datum) \ -( (((h)->next_free + sizeof (char *) > (h)->chunk_limit) \ - ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0), \ - *((char **)(((h)->next_free+=sizeof(char *))-sizeof(char *))) = ((char *)datum)) - -#define obstack_int_grow(h,datum) \ -( (((h)->next_free + sizeof (int) > (h)->chunk_limit) \ - ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0), \ - *((int *)(((h)->next_free+=sizeof(int))-sizeof(int))) = ((int)datum)) - -#define obstack_ptr_grow_fast(h,aptr) (*((char **)(h)->next_free)++ = (char *)aptr) -#define obstack_int_grow_fast(h,aint) (*((int *)(h)->next_free)++ = (int)aint) - -#define obstack_blank(h,length) \ -( (h)->temp = (length), \ - (((h)->chunk_limit - (h)->next_free < (h)->temp) \ - ? (_obstack_newchunk ((h), (h)->temp), 0) : 0), \ - (h)->next_free += (h)->temp) - -#define obstack_alloc(h,length) \ - (obstack_blank ((h), (length)), obstack_finish ((h))) - -#define obstack_copy(h,where,length) \ - (obstack_grow ((h), (where), (length)), obstack_finish ((h))) - -#define obstack_copy0(h,where,length) \ - (obstack_grow0 ((h), (where), (length)), obstack_finish ((h))) - -#define obstack_finish(h) \ -( ((h)->next_free == (h)->object_base \ - ? (((h)->maybe_empty_object = 1), 0) \ - : 0), \ - (h)->temp = __PTR_TO_INT ((h)->object_base), \ - (h)->next_free \ - = __INT_TO_PTR ((__PTR_TO_INT ((h)->next_free)+(h)->alignment_mask) \ - & ~ ((h)->alignment_mask)), \ - (((h)->next_free - (char *)(h)->chunk \ - > (h)->chunk_limit - (char *)(h)->chunk) \ - ? ((h)->next_free = (h)->chunk_limit) : 0), \ - (h)->object_base = (h)->next_free, \ - __INT_TO_PTR ((h)->temp)) - -#ifdef __STDC__ -#define obstack_free(h,obj) \ -( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \ - (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\ - ? (int) ((h)->next_free = (h)->object_base \ - = (h)->temp + (char *) (h)->chunk) \ - : (((obstack_free) ((h), (h)->temp + (char *) (h)->chunk), 0), 0))) -#else -#define obstack_free(h,obj) \ -( (h)->temp = (char *)(obj) - (char *) (h)->chunk, \ - (((h)->temp > 0 && (h)->temp < (h)->chunk_limit - (char *) (h)->chunk)\ - ? (int) ((h)->next_free = (h)->object_base \ - = (h)->temp + (char *) (h)->chunk) \ - : (_obstack_free ((h), (h)->temp + (char *) (h)->chunk), 0))) -#endif - -#endif /* not __GNUC__ or not __STDC__ */ - -#endif /* not __OBSTACKS__ */ diff --git a/gnu/grep/regex.c b/gnu/grep/regex.c deleted file mode 100644 index e8b588207dae..000000000000 --- a/gnu/grep/regex.c +++ /dev/null @@ -1,4987 +0,0 @@ -/* Extended regular expression matching and search library, - version 0.12. - (Implements POSIX draft P10003.2/D11.2, except for - internationalization features.) - - Copyright (C) 1993 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* AIX requires this to be the first thing in the file. */ -#if defined (_AIX) && !defined (REGEX_MALLOC) - #pragma alloca -#endif - -#define _GNU_SOURCE - -/* We need this for `regex.h', and perhaps for the Emacs include files. */ -#include <sys/types.h> - -#ifdef HAVE_CONFIG_H -#include "config.h" -#endif - -/* The `emacs' switch turns on certain matching commands - that make sense only in Emacs. */ -#ifdef emacs - -#include "lisp.h" -#include "buffer.h" -#include "syntax.h" - -/* Emacs uses `NULL' as a predicate. */ -#undef NULL - -#else /* not emacs */ - -/* We used to test for `BSTRING' here, but only GCC and Emacs define - `BSTRING', as far as I know, and neither of them use this code. */ -#if HAVE_STRING_H || STDC_HEADERS -#include <string.h> -#ifndef bcmp -#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) -#endif -#ifndef bcopy -#define bcopy(s, d, n) memcpy ((d), (s), (n)) -#endif -#ifndef bzero -#define bzero(s, n) memset ((s), 0, (n)) -#endif -#else -#include <strings.h> -#endif - -#ifdef STDC_HEADERS -#include <stdlib.h> -#else -char *malloc (); -char *realloc (); -#endif - - -/* Define the syntax stuff for \<, \>, etc. */ - -/* This must be nonzero for the wordchar and notwordchar pattern - commands in re_match_2. */ -#ifndef Sword -#define Sword 1 -#endif - -#ifdef SYNTAX_TABLE - -extern char *re_syntax_table; - -#else /* not SYNTAX_TABLE */ - -/* How many characters in the character set. */ -#define CHAR_SET_SIZE 256 - -static char re_syntax_table[CHAR_SET_SIZE]; - -static void -init_syntax_once () -{ - register int c; - static int done = 0; - - if (done) - return; - - bzero (re_syntax_table, sizeof re_syntax_table); - - for (c = 'a'; c <= 'z'; c++) - re_syntax_table[c] = Sword; - - for (c = 'A'; c <= 'Z'; c++) - re_syntax_table[c] = Sword; - - for (c = '0'; c <= '9'; c++) - re_syntax_table[c] = Sword; - - re_syntax_table['_'] = Sword; - - done = 1; -} - -#endif /* not SYNTAX_TABLE */ - -#define SYNTAX(c) re_syntax_table[c] - -#endif /* not emacs */ - -/* Get the interface, including the syntax bits. */ -#include "regex.h" - -/* isalpha etc. are used for the character classes. */ -#include <ctype.h> - -/* Jim Meyering writes: - - "... Some ctype macros are valid only for character codes that - isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when - using /bin/cc or gcc but without giving an ansi option). So, all - ctype uses should be through macros like ISPRINT... If - STDC_HEADERS is defined, then autoconf has verified that the ctype - macros don't need to be guarded with references to isascii. ... - Defining isascii to 1 should let any compiler worth its salt - eliminate the && through constant folding." */ -#if ! defined (isascii) || defined (STDC_HEADERS) -#undef isascii -#define isascii(c) 1 -#endif - -#ifdef isblank -#define ISBLANK(c) (isascii (c) && isblank (c)) -#else -#define ISBLANK(c) ((c) == ' ' || (c) == '\t') -#endif -#ifdef isgraph -#define ISGRAPH(c) (isascii (c) && isgraph (c)) -#else -#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c)) -#endif - -#define ISPRINT(c) (isascii (c) && isprint (c)) -#define ISDIGIT(c) (isascii (c) && isdigit (c)) -#define ISALNUM(c) (isascii (c) && isalnum (c)) -#define ISALPHA(c) (isascii (c) && isalpha (c)) -#define ISCNTRL(c) (isascii (c) && iscntrl (c)) -#define ISLOWER(c) (isascii (c) && islower (c)) -#define ISPUNCT(c) (isascii (c) && ispunct (c)) -#define ISSPACE(c) (isascii (c) && isspace (c)) -#define ISUPPER(c) (isascii (c) && isupper (c)) -#define ISXDIGIT(c) (isascii (c) && isxdigit (c)) - -#ifndef NULL -#define NULL 0 -#endif - -/* We remove any previous definition of `SIGN_EXTEND_CHAR', - since ours (we hope) works properly with all combinations of - machines, compilers, `char' and `unsigned char' argument types. - (Per Bothner suggested the basic approach.) */ -#undef SIGN_EXTEND_CHAR -#if __STDC__ -#define SIGN_EXTEND_CHAR(c) ((signed char) (c)) -#else /* not __STDC__ */ -/* As in Harbison and Steele. */ -#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) -#endif - -/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we - use `alloca' instead of `malloc'. This is because using malloc in - re_search* or re_match* could cause memory leaks when C-g is used in - Emacs; also, malloc is slower and causes storage fragmentation. On - the other hand, malloc is more portable, and easier to debug. - - Because we sometimes use alloca, some routines have to be macros, - not functions -- `alloca'-allocated space disappears at the end of the - function it is called in. */ - -#ifdef REGEX_MALLOC - -#define REGEX_ALLOCATE malloc -#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) - -#else /* not REGEX_MALLOC */ - -/* Emacs already defines alloca, sometimes. */ -#ifndef alloca - -/* Make alloca work the best possible way. */ -#ifdef __GNUC__ -#define alloca __builtin_alloca -#else /* not __GNUC__ */ -#if HAVE_ALLOCA_H -#include <alloca.h> -#else /* not __GNUC__ or HAVE_ALLOCA_H */ -#ifndef _AIX /* Already did AIX, up at the top. */ -char *alloca (); -#endif /* not _AIX */ -#endif /* not HAVE_ALLOCA_H */ -#endif /* not __GNUC__ */ - -#endif /* not alloca */ - -#define REGEX_ALLOCATE alloca - -/* Assumes a `char *destination' variable. */ -#define REGEX_REALLOCATE(source, osize, nsize) \ - (destination = (char *) alloca (nsize), \ - bcopy (source, destination, osize), \ - destination) - -#endif /* not REGEX_MALLOC */ - - -/* True if `size1' is non-NULL and PTR is pointing anywhere inside - `string1' or just past its end. This works if PTR is NULL, which is - a good thing. */ -#define FIRST_STRING_P(ptr) \ - (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) - -/* (Re)Allocate N items of type T using malloc, or fail. */ -#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) -#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) -#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) - -#define BYTEWIDTH 8 /* In bits. */ - -#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) - -#define MAX(a, b) ((a) > (b) ? (a) : (b)) -#define MIN(a, b) ((a) < (b) ? (a) : (b)) - -typedef char boolean; -#define false 0 -#define true 1 - -/* These are the command codes that appear in compiled regular - expressions. Some opcodes are followed by argument bytes. A - command code can specify any interpretation whatsoever for its - arguments. Zero bytes may appear in the compiled regular expression. - - The value of `exactn' is needed in search.c (search_buffer) in Emacs. - So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of - `exactn' we use here must also be 1. */ - -typedef enum -{ - no_op = 0, - - /* Followed by one byte giving n, then by n literal bytes. */ - exactn = 1, - - /* Matches any (more or less) character. */ - anychar, - - /* Matches any one char belonging to specified set. First - following byte is number of bitmap bytes. Then come bytes - for a bitmap saying which chars are in. Bits in each byte - are ordered low-bit-first. A character is in the set if its - bit is 1. A character too large to have a bit in the map is - automatically not in the set. */ - charset, - - /* Same parameters as charset, but match any character that is - not one of those specified. */ - charset_not, - - /* Start remembering the text that is matched, for storing in a - register. Followed by one byte with the register number, in - the range 0 to one less than the pattern buffer's re_nsub - field. Then followed by one byte with the number of groups - inner to this one. (This last has to be part of the - start_memory only because we need it in the on_failure_jump - of re_match_2.) */ - start_memory, - - /* Stop remembering the text that is matched and store it in a - memory register. Followed by one byte with the register - number, in the range 0 to one less than `re_nsub' in the - pattern buffer, and one byte with the number of inner groups, - just like `start_memory'. (We need the number of inner - groups here because we don't have any easy way of finding the - corresponding start_memory when we're at a stop_memory.) */ - stop_memory, - - /* Match a duplicate of something remembered. Followed by one - byte containing the register number. */ - duplicate, - - /* Fail unless at beginning of line. */ - begline, - - /* Fail unless at end of line. */ - endline, - - /* Succeeds if at beginning of buffer (if emacs) or at beginning - of string to be matched (if not). */ - begbuf, - - /* Analogously, for end of buffer/string. */ - endbuf, - - /* Followed by two byte relative address to which to jump. */ - jump, - - /* Same as jump, but marks the end of an alternative. */ - jump_past_alt, - - /* Followed by two-byte relative address of place to resume at - in case of failure. */ - on_failure_jump, - - /* Like on_failure_jump, but pushes a placeholder instead of the - current string position when executed. */ - on_failure_keep_string_jump, - - /* Throw away latest failure point and then jump to following - two-byte relative address. */ - pop_failure_jump, - - /* Change to pop_failure_jump if know won't have to backtrack to - match; otherwise change to jump. This is used to jump - back to the beginning of a repeat. If what follows this jump - clearly won't match what the repeat does, such that we can be - sure that there is no use backtracking out of repetitions - already matched, then we change it to a pop_failure_jump. - Followed by two-byte address. */ - maybe_pop_jump, - - /* Jump to following two-byte address, and push a dummy failure - point. This failure point will be thrown away if an attempt - is made to use it for a failure. A `+' construct makes this - before the first repeat. Also used as an intermediary kind - of jump when compiling an alternative. */ - dummy_failure_jump, - - /* Push a dummy failure point and continue. Used at the end of - alternatives. */ - push_dummy_failure, - - /* Followed by two-byte relative address and two-byte number n. - After matching N times, jump to the address upon failure. */ - succeed_n, - - /* Followed by two-byte relative address, and two-byte number n. - Jump to the address N times, then fail. */ - jump_n, - - /* Set the following two-byte relative address to the - subsequent two-byte number. The address *includes* the two - bytes of number. */ - set_number_at, - - wordchar, /* Matches any word-constituent character. */ - notwordchar, /* Matches any char that is not a word-constituent. */ - - wordbeg, /* Succeeds if at word beginning. */ - wordend, /* Succeeds if at word end. */ - - wordbound, /* Succeeds if at a word boundary. */ - notwordbound /* Succeeds if not at a word boundary. */ - -#ifdef emacs - ,before_dot, /* Succeeds if before point. */ - at_dot, /* Succeeds if at point. */ - after_dot, /* Succeeds if after point. */ - - /* Matches any character whose syntax is specified. Followed by - a byte which contains a syntax code, e.g., Sword. */ - syntaxspec, - - /* Matches any character whose syntax is not that specified. */ - notsyntaxspec -#endif /* emacs */ -} re_opcode_t; - -/* Common operations on the compiled pattern. */ - -/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ - -#define STORE_NUMBER(destination, number) \ - do { \ - (destination)[0] = (number) & 0377; \ - (destination)[1] = (number) >> 8; \ - } while (0) - -/* Same as STORE_NUMBER, except increment DESTINATION to - the byte after where the number is stored. Therefore, DESTINATION - must be an lvalue. */ - -#define STORE_NUMBER_AND_INCR(destination, number) \ - do { \ - STORE_NUMBER (destination, number); \ - (destination) += 2; \ - } while (0) - -/* Put into DESTINATION a number stored in two contiguous bytes starting - at SOURCE. */ - -#define EXTRACT_NUMBER(destination, source) \ - do { \ - (destination) = *(source) & 0377; \ - (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ - } while (0) - -#ifdef DEBUG -static void -extract_number (dest, source) - int *dest; - unsigned char *source; -{ - int temp = SIGN_EXTEND_CHAR (*(source + 1)); - *dest = *source & 0377; - *dest += temp << 8; -} - -#ifndef EXTRACT_MACROS /* To debug the macros. */ -#undef EXTRACT_NUMBER -#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) -#endif /* not EXTRACT_MACROS */ - -#endif /* DEBUG */ - -/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. - SOURCE must be an lvalue. */ - -#define EXTRACT_NUMBER_AND_INCR(destination, source) \ - do { \ - EXTRACT_NUMBER (destination, source); \ - (source) += 2; \ - } while (0) - -#ifdef DEBUG -static void -extract_number_and_incr (destination, source) - int *destination; - unsigned char **source; -{ - extract_number (destination, *source); - *source += 2; -} - -#ifndef EXTRACT_MACROS -#undef EXTRACT_NUMBER_AND_INCR -#define EXTRACT_NUMBER_AND_INCR(dest, src) \ - extract_number_and_incr (&dest, &src) -#endif /* not EXTRACT_MACROS */ - -#endif /* DEBUG */ - -/* If DEBUG is defined, Regex prints many voluminous messages about what - it is doing (if the variable `debug' is nonzero). If linked with the - main program in `iregex.c', you can enter patterns and strings - interactively. And if linked with the main program in `main.c' and - the other test files, you can run the already-written tests. */ - -#ifdef DEBUG - -/* We use standard I/O for debugging. */ -#include <stdio.h> - -/* It is useful to test things that ``must'' be true when debugging. */ -#include <assert.h> - -static int debug = 0; - -#define DEBUG_STATEMENT(e) e -#define DEBUG_PRINT1(x) if (debug) printf (x) -#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) -#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) -#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) -#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ - if (debug) print_partial_compiled_pattern (s, e) -#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ - if (debug) print_double_string (w, s1, sz1, s2, sz2) - - -extern void printchar (); - -/* Print the fastmap in human-readable form. */ - -void -print_fastmap (fastmap) - char *fastmap; -{ - unsigned was_a_range = 0; - unsigned i = 0; - - while (i < (1 << BYTEWIDTH)) - { - if (fastmap[i++]) - { - was_a_range = 0; - printchar (i - 1); - while (i < (1 << BYTEWIDTH) && fastmap[i]) - { - was_a_range = 1; - i++; - } - if (was_a_range) - { - printf ("-"); - printchar (i - 1); - } - } - } - putchar ('\n'); -} - - -/* Print a compiled pattern string in human-readable form, starting at - the START pointer into it and ending just before the pointer END. */ - -void -print_partial_compiled_pattern (start, end) - unsigned char *start; - unsigned char *end; -{ - int mcnt, mcnt2; - unsigned char *p = start; - unsigned char *pend = end; - - if (start == NULL) - { - printf ("(null)\n"); - return; - } - - /* Loop over pattern commands. */ - while (p < pend) - { - printf ("%d:\t", p - start); - - switch ((re_opcode_t) *p++) - { - case no_op: - printf ("/no_op"); - break; - - case exactn: - mcnt = *p++; - printf ("/exactn/%d", mcnt); - do - { - putchar ('/'); - printchar (*p++); - } - while (--mcnt); - break; - - case start_memory: - mcnt = *p++; - printf ("/start_memory/%d/%d", mcnt, *p++); - break; - - case stop_memory: - mcnt = *p++; - printf ("/stop_memory/%d/%d", mcnt, *p++); - break; - - case duplicate: - printf ("/duplicate/%d", *p++); - break; - - case anychar: - printf ("/anychar"); - break; - - case charset: - case charset_not: - { - register int c, last = -100; - register int in_range = 0; - - printf ("/charset [%s", - (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); - - assert (p + *p < pend); - - for (c = 0; c < 256; c++) - if (c / 8 < *p - && (p[1 + (c/8)] & (1 << (c % 8)))) - { - /* Are we starting a range? */ - if (last + 1 == c && ! in_range) - { - putchar ('-'); - in_range = 1; - } - /* Have we broken a range? */ - else if (last + 1 != c && in_range) - { - printchar (last); - in_range = 0; - } - - if (! in_range) - printchar (c); - - last = c; - } - - if (in_range) - printchar (last); - - putchar (']'); - - p += 1 + *p; - } - break; - - case begline: - printf ("/begline"); - break; - - case endline: - printf ("/endline"); - break; - - case on_failure_jump: - extract_number_and_incr (&mcnt, &p); - printf ("/on_failure_jump to %d", p + mcnt - start); - break; - - case on_failure_keep_string_jump: - extract_number_and_incr (&mcnt, &p); - printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); - break; - - case dummy_failure_jump: - extract_number_and_incr (&mcnt, &p); - printf ("/dummy_failure_jump to %d", p + mcnt - start); - break; - - case push_dummy_failure: - printf ("/push_dummy_failure"); - break; - - case maybe_pop_jump: - extract_number_and_incr (&mcnt, &p); - printf ("/maybe_pop_jump to %d", p + mcnt - start); - break; - - case pop_failure_jump: - extract_number_and_incr (&mcnt, &p); - printf ("/pop_failure_jump to %d", p + mcnt - start); - break; - - case jump_past_alt: - extract_number_and_incr (&mcnt, &p); - printf ("/jump_past_alt to %d", p + mcnt - start); - break; - - case jump: - extract_number_and_incr (&mcnt, &p); - printf ("/jump to %d", p + mcnt - start); - break; - - case succeed_n: - extract_number_and_incr (&mcnt, &p); - extract_number_and_incr (&mcnt2, &p); - printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); - break; - - case jump_n: - extract_number_and_incr (&mcnt, &p); - extract_number_and_incr (&mcnt2, &p); - printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); - break; - - case set_number_at: - extract_number_and_incr (&mcnt, &p); - extract_number_and_incr (&mcnt2, &p); - printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); - break; - - case wordbound: - printf ("/wordbound"); - break; - - case notwordbound: - printf ("/notwordbound"); - break; - - case wordbeg: - printf ("/wordbeg"); - break; - - case wordend: - printf ("/wordend"); - -#ifdef emacs - case before_dot: - printf ("/before_dot"); - break; - - case at_dot: - printf ("/at_dot"); - break; - - case after_dot: - printf ("/after_dot"); - break; - - case syntaxspec: - printf ("/syntaxspec"); - mcnt = *p++; - printf ("/%d", mcnt); - break; - - case notsyntaxspec: - printf ("/notsyntaxspec"); - mcnt = *p++; - printf ("/%d", mcnt); - break; -#endif /* emacs */ - - case wordchar: - printf ("/wordchar"); - break; - - case notwordchar: - printf ("/notwordchar"); - break; - - case begbuf: - printf ("/begbuf"); - break; - - case endbuf: - printf ("/endbuf"); - break; - - default: - printf ("?%d", *(p-1)); - } - - putchar ('\n'); - } - - printf ("%d:\tend of pattern.\n", p - start); -} - - -void -print_compiled_pattern (bufp) - struct re_pattern_buffer *bufp; -{ - unsigned char *buffer = bufp->buffer; - - print_partial_compiled_pattern (buffer, buffer + bufp->used); - printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); - - if (bufp->fastmap_accurate && bufp->fastmap) - { - printf ("fastmap: "); - print_fastmap (bufp->fastmap); - } - - printf ("re_nsub: %d\t", bufp->re_nsub); - printf ("regs_alloc: %d\t", bufp->regs_allocated); - printf ("can_be_null: %d\t", bufp->can_be_null); - printf ("newline_anchor: %d\n", bufp->newline_anchor); - printf ("no_sub: %d\t", bufp->no_sub); - printf ("not_bol: %d\t", bufp->not_bol); - printf ("not_eol: %d\t", bufp->not_eol); - printf ("syntax: %d\n", bufp->syntax); - /* Perhaps we should print the translate table? */ -} - - -void -print_double_string (where, string1, size1, string2, size2) - const char *where; - const char *string1; - const char *string2; - int size1; - int size2; -{ - unsigned this_char; - - if (where == NULL) - printf ("(null)"); - else - { - if (FIRST_STRING_P (where)) - { - for (this_char = where - string1; this_char < size1; this_char++) - printchar (string1[this_char]); - - where = string2; - } - - for (this_char = where - string2; this_char < size2; this_char++) - printchar (string2[this_char]); - } -} - -#else /* not DEBUG */ - -#undef assert -#define assert(e) - -#define DEBUG_STATEMENT(e) -#define DEBUG_PRINT1(x) -#define DEBUG_PRINT2(x1, x2) -#define DEBUG_PRINT3(x1, x2, x3) -#define DEBUG_PRINT4(x1, x2, x3, x4) -#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) -#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) - -#endif /* not DEBUG */ - -/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can - also be assigned to arbitrarily: each pattern buffer stores its own - syntax, so it can be changed between regex compilations. */ -reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS; - - -/* Specify the precise syntax of regexps for compilation. This provides - for compatibility for various utilities which historically have - different, incompatible syntaxes. - - The argument SYNTAX is a bit mask comprised of the various bits - defined in regex.h. We return the old syntax. */ - -reg_syntax_t -re_set_syntax (syntax) - reg_syntax_t syntax; -{ - reg_syntax_t ret = re_syntax_options; - - re_syntax_options = syntax; - return ret; -} - -/* This table gives an error message for each of the error codes listed - in regex.h. Obviously the order here has to be same as there. */ - -static const char *re_error_msg[] = - { NULL, /* REG_NOERROR */ - "No match", /* REG_NOMATCH */ - "Invalid regular expression", /* REG_BADPAT */ - "Invalid collation character", /* REG_ECOLLATE */ - "Invalid character class name", /* REG_ECTYPE */ - "Trailing backslash", /* REG_EESCAPE */ - "Invalid back reference", /* REG_ESUBREG */ - "Unmatched [ or [^", /* REG_EBRACK */ - "Unmatched ( or \\(", /* REG_EPAREN */ - "Unmatched \\{", /* REG_EBRACE */ - "Invalid content of \\{\\}", /* REG_BADBR */ - "Invalid range end", /* REG_ERANGE */ - "Memory exhausted", /* REG_ESPACE */ - "Invalid preceding regular expression", /* REG_BADRPT */ - "Premature end of regular expression", /* REG_EEND */ - "Regular expression too big", /* REG_ESIZE */ - "Unmatched ) or \\)", /* REG_ERPAREN */ - }; - -/* Subroutine declarations and macros for regex_compile. */ - -static void store_op1 (), store_op2 (); -static void insert_op1 (), insert_op2 (); -static boolean at_begline_loc_p (), at_endline_loc_p (); -static boolean group_in_compile_stack (); -static reg_errcode_t compile_range (); - -/* Fetch the next character in the uncompiled pattern---translating it - if necessary. Also cast from a signed character in the constant - string passed to us by the user to an unsigned char that we can use - as an array index (in, e.g., `translate'). */ -#define PATFETCH(c) \ - do {if (p == pend) return REG_EEND; \ - c = (unsigned char) *p++; \ - if (translate) c = translate[c]; \ - } while (0) - -/* Fetch the next character in the uncompiled pattern, with no - translation. */ -#define PATFETCH_RAW(c) \ - do {if (p == pend) return REG_EEND; \ - c = (unsigned char) *p++; \ - } while (0) - -/* Go backwards one character in the pattern. */ -#define PATUNFETCH p-- - - -/* If `translate' is non-null, return translate[D], else just D. We - cast the subscript to translate because some data is declared as - `char *', to avoid warnings when a string constant is passed. But - when we use a character as a subscript we must make it unsigned. */ -#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) - - -/* Macros for outputting the compiled pattern into `buffer'. */ - -/* If the buffer isn't allocated when it comes in, use this. */ -#define INIT_BUF_SIZE 32 - -/* Make sure we have at least N more bytes of space in buffer. */ -#define GET_BUFFER_SPACE(n) \ - while (b - bufp->buffer + (n) > bufp->allocated) \ - EXTEND_BUFFER () - -/* Make sure we have one more byte of buffer space and then add C to it. */ -#define BUF_PUSH(c) \ - do { \ - GET_BUFFER_SPACE (1); \ - *b++ = (unsigned char) (c); \ - } while (0) - - -/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ -#define BUF_PUSH_2(c1, c2) \ - do { \ - GET_BUFFER_SPACE (2); \ - *b++ = (unsigned char) (c1); \ - *b++ = (unsigned char) (c2); \ - } while (0) - - -/* As with BUF_PUSH_2, except for three bytes. */ -#define BUF_PUSH_3(c1, c2, c3) \ - do { \ - GET_BUFFER_SPACE (3); \ - *b++ = (unsigned char) (c1); \ - *b++ = (unsigned char) (c2); \ - *b++ = (unsigned char) (c3); \ - } while (0) - - -/* Store a jump with opcode OP at LOC to location TO. We store a - relative address offset by the three bytes the jump itself occupies. */ -#define STORE_JUMP(op, loc, to) \ - store_op1 (op, loc, (to) - (loc) - 3) - -/* Likewise, for a two-argument jump. */ -#define STORE_JUMP2(op, loc, to, arg) \ - store_op2 (op, loc, (to) - (loc) - 3, arg) - -/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ -#define INSERT_JUMP(op, loc, to) \ - insert_op1 (op, loc, (to) - (loc) - 3, b) - -/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ -#define INSERT_JUMP2(op, loc, to, arg) \ - insert_op2 (op, loc, (to) - (loc) - 3, arg, b) - - -/* This is not an arbitrary limit: the arguments which represent offsets - into the pattern are two bytes long. So if 2^16 bytes turns out to - be too small, many things would have to change. */ -#define MAX_BUF_SIZE (1L << 16) - - -/* Extend the buffer by twice its current size via realloc and - reset the pointers that pointed into the old block to point to the - correct places in the new one. If extending the buffer results in it - being larger than MAX_BUF_SIZE, then flag memory exhausted. */ -#define EXTEND_BUFFER() \ - do { \ - unsigned char *old_buffer = bufp->buffer; \ - if (bufp->allocated == MAX_BUF_SIZE) \ - return REG_ESIZE; \ - bufp->allocated <<= 1; \ - if (bufp->allocated > MAX_BUF_SIZE) \ - bufp->allocated = MAX_BUF_SIZE; \ - bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ - if (bufp->buffer == NULL) \ - return REG_ESPACE; \ - /* If the buffer moved, move all the pointers into it. */ \ - if (old_buffer != bufp->buffer) \ - { \ - b = (b - old_buffer) + bufp->buffer; \ - begalt = (begalt - old_buffer) + bufp->buffer; \ - if (fixup_alt_jump) \ - fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ - if (laststart) \ - laststart = (laststart - old_buffer) + bufp->buffer; \ - if (pending_exact) \ - pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ - } \ - } while (0) - - -/* Since we have one byte reserved for the register number argument to - {start,stop}_memory, the maximum number of groups we can report - things about is what fits in that byte. */ -#define MAX_REGNUM 255 - -/* But patterns can have more than `MAX_REGNUM' registers. We just - ignore the excess. */ -typedef unsigned regnum_t; - - -/* Macros for the compile stack. */ - -/* Since offsets can go either forwards or backwards, this type needs to - be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ -typedef int pattern_offset_t; - -typedef struct -{ - pattern_offset_t begalt_offset; - pattern_offset_t fixup_alt_jump; - pattern_offset_t inner_group_offset; - pattern_offset_t laststart_offset; - regnum_t regnum; -} compile_stack_elt_t; - - -typedef struct -{ - compile_stack_elt_t *stack; - unsigned size; - unsigned avail; /* Offset of next open position. */ -} compile_stack_type; - - -#define INIT_COMPILE_STACK_SIZE 32 - -#define COMPILE_STACK_EMPTY (compile_stack.avail == 0) -#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) - -/* The next available element. */ -#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) - - -/* Set the bit for character C in a list. */ -#define SET_LIST_BIT(c) \ - (b[((unsigned char) (c)) / BYTEWIDTH] \ - |= 1 << (((unsigned char) c) % BYTEWIDTH)) - - -/* Get the next unsigned number in the uncompiled pattern. */ -#define GET_UNSIGNED_NUMBER(num) \ - { if (p != pend) \ - { \ - PATFETCH (c); \ - while (ISDIGIT (c)) \ - { \ - if (num < 0) \ - num = 0; \ - num = num * 10 + c - '0'; \ - if (p == pend) \ - break; \ - PATFETCH (c); \ - } \ - } \ - } - -#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ - -#define IS_CHAR_CLASS(string) \ - (STREQ (string, "alpha") || STREQ (string, "upper") \ - || STREQ (string, "lower") || STREQ (string, "digit") \ - || STREQ (string, "alnum") || STREQ (string, "xdigit") \ - || STREQ (string, "space") || STREQ (string, "print") \ - || STREQ (string, "punct") || STREQ (string, "graph") \ - || STREQ (string, "cntrl") || STREQ (string, "blank")) - -/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. - Returns one of error codes defined in `regex.h', or zero for success. - - Assumes the `allocated' (and perhaps `buffer') and `translate' - fields are set in BUFP on entry. - - If it succeeds, results are put in BUFP (if it returns an error, the - contents of BUFP are undefined): - `buffer' is the compiled pattern; - `syntax' is set to SYNTAX; - `used' is set to the length of the compiled pattern; - `fastmap_accurate' is zero; - `re_nsub' is the number of subexpressions in PATTERN; - `not_bol' and `not_eol' are zero; - - The `fastmap' and `newline_anchor' fields are neither - examined nor set. */ - -static reg_errcode_t -regex_compile (pattern, size, syntax, bufp) - const char *pattern; - int size; - reg_syntax_t syntax; - struct re_pattern_buffer *bufp; -{ - /* We fetch characters from PATTERN here. Even though PATTERN is - `char *' (i.e., signed), we declare these variables as unsigned, so - they can be reliably used as array indices. */ - register unsigned char c, c1; - - /* A random tempory spot in PATTERN. */ - const char *p1; - - /* Points to the end of the buffer, where we should append. */ - register unsigned char *b; - - /* Keeps track of unclosed groups. */ - compile_stack_type compile_stack; - - /* Points to the current (ending) position in the pattern. */ - const char *p = pattern; - const char *pend = pattern + size; - - /* How to translate the characters in the pattern. */ - char *translate = bufp->translate; - - /* Address of the count-byte of the most recently inserted `exactn' - command. This makes it possible to tell if a new exact-match - character can be added to that command or if the character requires - a new `exactn' command. */ - unsigned char *pending_exact = 0; - - /* Address of start of the most recently finished expression. - This tells, e.g., postfix * where to find the start of its - operand. Reset at the beginning of groups and alternatives. */ - unsigned char *laststart = 0; - - /* Address of beginning of regexp, or inside of last group. */ - unsigned char *begalt; - - /* Place in the uncompiled pattern (i.e., the {) to - which to go back if the interval is invalid. */ - const char *beg_interval; - - /* Address of the place where a forward jump should go to the end of - the containing expression. Each alternative of an `or' -- except the - last -- ends with a forward jump of this sort. */ - unsigned char *fixup_alt_jump = 0; - - /* Counts open-groups as they are encountered. Remembered for the - matching close-group on the compile stack, so the same register - number is put in the stop_memory as the start_memory. */ - regnum_t regnum = 0; - -#ifdef DEBUG - DEBUG_PRINT1 ("\nCompiling pattern: "); - if (debug) - { - unsigned debug_count; - - for (debug_count = 0; debug_count < size; debug_count++) - printchar (pattern[debug_count]); - putchar ('\n'); - } -#endif /* DEBUG */ - - /* Initialize the compile stack. */ - compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); - if (compile_stack.stack == NULL) - return REG_ESPACE; - - compile_stack.size = INIT_COMPILE_STACK_SIZE; - compile_stack.avail = 0; - - /* Initialize the pattern buffer. */ - bufp->syntax = syntax; - bufp->fastmap_accurate = 0; - bufp->not_bol = bufp->not_eol = 0; - - /* Set `used' to zero, so that if we return an error, the pattern - printer (for debugging) will think there's no pattern. We reset it - at the end. */ - bufp->used = 0; - - /* Always count groups, whether or not bufp->no_sub is set. */ - bufp->re_nsub = 0; - -#if !defined (emacs) && !defined (SYNTAX_TABLE) - /* Initialize the syntax table. */ - init_syntax_once (); -#endif - - if (bufp->allocated == 0) - { - if (bufp->buffer) - { /* If zero allocated, but buffer is non-null, try to realloc - enough space. This loses if buffer's address is bogus, but - that is the user's responsibility. */ - RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); - } - else - { /* Caller did not allocate a buffer. Do it for them. */ - bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); - } - if (!bufp->buffer) return REG_ESPACE; - - bufp->allocated = INIT_BUF_SIZE; - } - - begalt = b = bufp->buffer; - - /* Loop through the uncompiled pattern until we're at the end. */ - while (p != pend) - { - PATFETCH (c); - - switch (c) - { - case '^': - { - if ( /* If at start of pattern, it's an operator. */ - p == pattern + 1 - /* If context independent, it's an operator. */ - || syntax & RE_CONTEXT_INDEP_ANCHORS - /* Otherwise, depends on what's come before. */ - || at_begline_loc_p (pattern, p, syntax)) - BUF_PUSH (begline); - else - goto normal_char; - } - break; - - - case '$': - { - if ( /* If at end of pattern, it's an operator. */ - p == pend - /* If context independent, it's an operator. */ - || syntax & RE_CONTEXT_INDEP_ANCHORS - /* Otherwise, depends on what's next. */ - || at_endline_loc_p (p, pend, syntax)) - BUF_PUSH (endline); - else - goto normal_char; - } - break; - - - case '+': - case '?': - if ((syntax & RE_BK_PLUS_QM) - || (syntax & RE_LIMITED_OPS)) - goto normal_char; - handle_plus: - case '*': - /* If there is no previous pattern... */ - if (!laststart) - { - if (syntax & RE_CONTEXT_INVALID_OPS) - return REG_BADRPT; - else if (!(syntax & RE_CONTEXT_INDEP_OPS)) - goto normal_char; - } - - { - /* Are we optimizing this jump? */ - boolean keep_string_p = false; - - /* 1 means zero (many) matches is allowed. */ - char zero_times_ok = 0, many_times_ok = 0; - - /* If there is a sequence of repetition chars, collapse it - down to just one (the right one). We can't combine - interval operators with these because of, e.g., `a{2}*', - which should only match an even number of `a's. */ - - for (;;) - { - zero_times_ok |= c != '+'; - many_times_ok |= c != '?'; - - if (p == pend) - break; - - PATFETCH (c); - - if (c == '*' - || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) - ; - - else if (syntax & RE_BK_PLUS_QM && c == '\\') - { - if (p == pend) return REG_EESCAPE; - - PATFETCH (c1); - if (!(c1 == '+' || c1 == '?')) - { - PATUNFETCH; - PATUNFETCH; - break; - } - - c = c1; - } - else - { - PATUNFETCH; - break; - } - - /* If we get here, we found another repeat character. */ - } - - /* Star, etc. applied to an empty pattern is equivalent - to an empty pattern. */ - if (!laststart) - break; - - /* Now we know whether or not zero matches is allowed - and also whether or not two or more matches is allowed. */ - if (many_times_ok) - { /* More than one repetition is allowed, so put in at the - end a backward relative jump from `b' to before the next - jump we're going to put in below (which jumps from - laststart to after this jump). - - But if we are at the `*' in the exact sequence `.*\n', - insert an unconditional jump backwards to the ., - instead of the beginning of the loop. This way we only - push a failure point once, instead of every time - through the loop. */ - assert (p - 1 > pattern); - - /* Allocate the space for the jump. */ - GET_BUFFER_SPACE (3); - - /* We know we are not at the first character of the pattern, - because laststart was nonzero. And we've already - incremented `p', by the way, to be the character after - the `*'. Do we have to do something analogous here - for null bytes, because of RE_DOT_NOT_NULL? */ - if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') - && zero_times_ok - && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') - && !(syntax & RE_DOT_NEWLINE)) - { /* We have .*\n. */ - STORE_JUMP (jump, b, laststart); - keep_string_p = true; - } - else - /* Anything else. */ - STORE_JUMP (maybe_pop_jump, b, laststart - 3); - - /* We've added more stuff to the buffer. */ - b += 3; - } - - /* On failure, jump from laststart to b + 3, which will be the - end of the buffer after this jump is inserted. */ - GET_BUFFER_SPACE (3); - INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump - : on_failure_jump, - laststart, b + 3); - pending_exact = 0; - b += 3; - - if (!zero_times_ok) - { - /* At least one repetition is required, so insert a - `dummy_failure_jump' before the initial - `on_failure_jump' instruction of the loop. This - effects a skip over that instruction the first time - we hit that loop. */ - GET_BUFFER_SPACE (3); - INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); - b += 3; - } - } - break; - - - case '.': - laststart = b; - BUF_PUSH (anychar); - break; - - - case '[': - { - boolean had_char_class = false; - - if (p == pend) return REG_EBRACK; - - /* Ensure that we have enough space to push a charset: the - opcode, the length count, and the bitset; 34 bytes in all. */ - GET_BUFFER_SPACE (34); - - laststart = b; - - /* We test `*p == '^' twice, instead of using an if - statement, so we only need one BUF_PUSH. */ - BUF_PUSH (*p == '^' ? charset_not : charset); - if (*p == '^') - p++; - - /* Remember the first position in the bracket expression. */ - p1 = p; - - /* Push the number of bytes in the bitmap. */ - BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); - - /* Clear the whole map. */ - bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); - - /* charset_not matches newline according to a syntax bit. */ - if ((re_opcode_t) b[-2] == charset_not - && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) - SET_LIST_BIT ('\n'); - - /* Read in characters and ranges, setting map bits. */ - for (;;) - { - if (p == pend) return REG_EBRACK; - - PATFETCH (c); - - /* \ might escape characters inside [...] and [^...]. */ - if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') - { - if (p == pend) return REG_EESCAPE; - - PATFETCH (c1); - SET_LIST_BIT (c1); - continue; - } - - /* Could be the end of the bracket expression. If it's - not (i.e., when the bracket expression is `[]' so - far), the ']' character bit gets set way below. */ - if (c == ']' && p != p1 + 1) - break; - - /* Look ahead to see if it's a range when the last thing - was a character class. */ - if (had_char_class && c == '-' && *p != ']') - return REG_ERANGE; - - /* Look ahead to see if it's a range when the last thing - was a character: if this is a hyphen not at the - beginning or the end of a list, then it's the range - operator. */ - if (c == '-' - && !(p - 2 >= pattern && p[-2] == '[') - && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') - && *p != ']') - { - reg_errcode_t ret - = compile_range (&p, pend, translate, syntax, b); - if (ret != REG_NOERROR) return ret; - } - - else if (p[0] == '-' && p[1] != ']') - { /* This handles ranges made up of characters only. */ - reg_errcode_t ret; - - /* Move past the `-'. */ - PATFETCH (c1); - - ret = compile_range (&p, pend, translate, syntax, b); - if (ret != REG_NOERROR) return ret; - } - - /* See if we're at the beginning of a possible character - class. */ - - else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') - { /* Leave room for the null. */ - char str[CHAR_CLASS_MAX_LENGTH + 1]; - - PATFETCH (c); - c1 = 0; - - /* If pattern is `[[:'. */ - if (p == pend) return REG_EBRACK; - - for (;;) - { - PATFETCH (c); - if (c == ':' || c == ']' || p == pend - || c1 == CHAR_CLASS_MAX_LENGTH) - break; - str[c1++] = c; - } - str[c1] = '\0'; - - /* If isn't a word bracketed by `[:' and:`]': - undo the ending character, the letters, and leave - the leading `:' and `[' (but set bits for them). */ - if (c == ':' && *p == ']') - { - int ch; - boolean is_alnum = STREQ (str, "alnum"); - boolean is_alpha = STREQ (str, "alpha"); - boolean is_blank = STREQ (str, "blank"); - boolean is_cntrl = STREQ (str, "cntrl"); - boolean is_digit = STREQ (str, "digit"); - boolean is_graph = STREQ (str, "graph"); - boolean is_lower = STREQ (str, "lower"); - boolean is_print = STREQ (str, "print"); - boolean is_punct = STREQ (str, "punct"); - boolean is_space = STREQ (str, "space"); - boolean is_upper = STREQ (str, "upper"); - boolean is_xdigit = STREQ (str, "xdigit"); - - if (!IS_CHAR_CLASS (str)) return REG_ECTYPE; - - /* Throw away the ] at the end of the character - class. */ - PATFETCH (c); - - if (p == pend) return REG_EBRACK; - - for (ch = 0; ch < 1 << BYTEWIDTH; ch++) - { - if ( (is_alnum && ISALNUM (ch)) - || (is_alpha && ISALPHA (ch)) - || (is_blank && ISBLANK (ch)) - || (is_cntrl && ISCNTRL (ch)) - || (is_digit && ISDIGIT (ch)) - || (is_graph && ISGRAPH (ch)) - || (is_lower && ISLOWER (ch)) - || (is_print && ISPRINT (ch)) - || (is_punct && ISPUNCT (ch)) - || (is_space && ISSPACE (ch)) - || (is_upper && ISUPPER (ch)) - || (is_xdigit && ISXDIGIT (ch))) - SET_LIST_BIT (ch); - } - had_char_class = true; - } - else - { - c1++; - while (c1--) - PATUNFETCH; - SET_LIST_BIT ('['); - SET_LIST_BIT (':'); - had_char_class = false; - } - } - else - { - had_char_class = false; - SET_LIST_BIT (c); - } - } - - /* Discard any (non)matching list bytes that are all 0 at the - end of the map. Decrease the map-length byte too. */ - while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) - b[-1]--; - b += b[-1]; - } - break; - - - case '(': - if (syntax & RE_NO_BK_PARENS) - goto handle_open; - else - goto normal_char; - - - case ')': - if (syntax & RE_NO_BK_PARENS) - goto handle_close; - else - goto normal_char; - - - case '\n': - if (syntax & RE_NEWLINE_ALT) - goto handle_alt; - else - goto normal_char; - - - case '|': - if (syntax & RE_NO_BK_VBAR) - goto handle_alt; - else - goto normal_char; - - - case '{': - if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) - goto handle_interval; - else - goto normal_char; - - - case '\\': - if (p == pend) return REG_EESCAPE; - - /* Do not translate the character after the \, so that we can - distinguish, e.g., \B from \b, even if we normally would - translate, e.g., B to b. */ - PATFETCH_RAW (c); - - switch (c) - { - case '(': - if (syntax & RE_NO_BK_PARENS) - goto normal_backslash; - - handle_open: - bufp->re_nsub++; - regnum++; - - if (COMPILE_STACK_FULL) - { - RETALLOC (compile_stack.stack, compile_stack.size << 1, - compile_stack_elt_t); - if (compile_stack.stack == NULL) return REG_ESPACE; - - compile_stack.size <<= 1; - } - - /* These are the values to restore when we hit end of this - group. They are all relative offsets, so that if the - whole pattern moves because of realloc, they will still - be valid. */ - COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; - COMPILE_STACK_TOP.fixup_alt_jump - = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; - COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; - COMPILE_STACK_TOP.regnum = regnum; - - /* We will eventually replace the 0 with the number of - groups inner to this one. But do not push a - start_memory for groups beyond the last one we can - represent in the compiled pattern. */ - if (regnum <= MAX_REGNUM) - { - COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; - BUF_PUSH_3 (start_memory, regnum, 0); - } - - compile_stack.avail++; - - fixup_alt_jump = 0; - laststart = 0; - begalt = b; - /* If we've reached MAX_REGNUM groups, then this open - won't actually generate any code, so we'll have to - clear pending_exact explicitly. */ - pending_exact = 0; - break; - - - case ')': - if (syntax & RE_NO_BK_PARENS) goto normal_backslash; - - if (COMPILE_STACK_EMPTY) - if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) - goto normal_backslash; - else - return REG_ERPAREN; - - handle_close: - if (fixup_alt_jump) - { /* Push a dummy failure point at the end of the - alternative for a possible future - `pop_failure_jump' to pop. See comments at - `push_dummy_failure' in `re_match_2'. */ - BUF_PUSH (push_dummy_failure); - - /* We allocated space for this jump when we assigned - to `fixup_alt_jump', in the `handle_alt' case below. */ - STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); - } - - /* See similar code for backslashed left paren above. */ - if (COMPILE_STACK_EMPTY) - if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) - goto normal_char; - else - return REG_ERPAREN; - - /* Since we just checked for an empty stack above, this - ``can't happen''. */ - assert (compile_stack.avail != 0); - { - /* We don't just want to restore into `regnum', because - later groups should continue to be numbered higher, - as in `(ab)c(de)' -- the second group is #2. */ - regnum_t this_group_regnum; - - compile_stack.avail--; - begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; - fixup_alt_jump - = COMPILE_STACK_TOP.fixup_alt_jump - ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 - : 0; - laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; - this_group_regnum = COMPILE_STACK_TOP.regnum; - /* If we've reached MAX_REGNUM groups, then this open - won't actually generate any code, so we'll have to - clear pending_exact explicitly. */ - pending_exact = 0; - - /* We're at the end of the group, so now we know how many - groups were inside this one. */ - if (this_group_regnum <= MAX_REGNUM) - { - unsigned char *inner_group_loc - = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; - - *inner_group_loc = regnum - this_group_regnum; - BUF_PUSH_3 (stop_memory, this_group_regnum, - regnum - this_group_regnum); - } - } - break; - - - case '|': /* `\|'. */ - if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) - goto normal_backslash; - handle_alt: - if (syntax & RE_LIMITED_OPS) - goto normal_char; - - /* Insert before the previous alternative a jump which - jumps to this alternative if the former fails. */ - GET_BUFFER_SPACE (3); - INSERT_JUMP (on_failure_jump, begalt, b + 6); - pending_exact = 0; - b += 3; - - /* The alternative before this one has a jump after it - which gets executed if it gets matched. Adjust that - jump so it will jump to this alternative's analogous - jump (put in below, which in turn will jump to the next - (if any) alternative's such jump, etc.). The last such - jump jumps to the correct final destination. A picture: - _____ _____ - | | | | - | v | v - a | b | c - - If we are at `b', then fixup_alt_jump right now points to a - three-byte space after `a'. We'll put in the jump, set - fixup_alt_jump to right after `b', and leave behind three - bytes which we'll fill in when we get to after `c'. */ - - if (fixup_alt_jump) - STORE_JUMP (jump_past_alt, fixup_alt_jump, b); - - /* Mark and leave space for a jump after this alternative, - to be filled in later either by next alternative or - when know we're at the end of a series of alternatives. */ - fixup_alt_jump = b; - GET_BUFFER_SPACE (3); - b += 3; - - laststart = 0; - begalt = b; - break; - - - case '{': - /* If \{ is a literal. */ - if (!(syntax & RE_INTERVALS) - /* If we're at `\{' and it's not the open-interval - operator. */ - || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) - || (p - 2 == pattern && p == pend)) - goto normal_backslash; - - handle_interval: - { - /* If got here, then the syntax allows intervals. */ - - /* At least (most) this many matches must be made. */ - int lower_bound = -1, upper_bound = -1; - - beg_interval = p - 1; - - if (p == pend) - { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_EBRACE; - } - - GET_UNSIGNED_NUMBER (lower_bound); - - if (c == ',') - { - GET_UNSIGNED_NUMBER (upper_bound); - if (upper_bound < 0) upper_bound = RE_DUP_MAX; - } - else - /* Interval such as `{1}' => match exactly once. */ - upper_bound = lower_bound; - - if (lower_bound < 0 || upper_bound > RE_DUP_MAX - || lower_bound > upper_bound) - { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_BADBR; - } - - if (!(syntax & RE_NO_BK_BRACES)) - { - if (c != '\\') return REG_EBRACE; - - PATFETCH (c); - } - - if (c != '}') - { - if (syntax & RE_NO_BK_BRACES) - goto unfetch_interval; - else - return REG_BADBR; - } - - /* We just parsed a valid interval. */ - - /* If it's invalid to have no preceding re. */ - if (!laststart) - { - if (syntax & RE_CONTEXT_INVALID_OPS) - return REG_BADRPT; - else if (syntax & RE_CONTEXT_INDEP_OPS) - laststart = b; - else - goto unfetch_interval; - } - - /* If the upper bound is zero, don't want to succeed at - all; jump from `laststart' to `b + 3', which will be - the end of the buffer after we insert the jump. */ - if (upper_bound == 0) - { - GET_BUFFER_SPACE (3); - INSERT_JUMP (jump, laststart, b + 3); - b += 3; - } - - /* Otherwise, we have a nontrivial interval. When - we're all done, the pattern will look like: - set_number_at <jump count> <upper bound> - set_number_at <succeed_n count> <lower bound> - succeed_n <after jump addr> <succed_n count> - <body of loop> - jump_n <succeed_n addr> <jump count> - (The upper bound and `jump_n' are omitted if - `upper_bound' is 1, though.) */ - else - { /* If the upper bound is > 1, we need to insert - more at the end of the loop. */ - unsigned nbytes = 10 + (upper_bound > 1) * 10; - - GET_BUFFER_SPACE (nbytes); - - /* Initialize lower bound of the `succeed_n', even - though it will be set during matching by its - attendant `set_number_at' (inserted next), - because `re_compile_fastmap' needs to know. - Jump to the `jump_n' we might insert below. */ - INSERT_JUMP2 (succeed_n, laststart, - b + 5 + (upper_bound > 1) * 5, - lower_bound); - b += 5; - - /* Code to initialize the lower bound. Insert - before the `succeed_n'. The `5' is the last two - bytes of this `set_number_at', plus 3 bytes of - the following `succeed_n'. */ - insert_op2 (set_number_at, laststart, 5, lower_bound, b); - b += 5; - - if (upper_bound > 1) - { /* More than one repetition is allowed, so - append a backward jump to the `succeed_n' - that starts this interval. - - When we've reached this during matching, - we'll have matched the interval once, so - jump back only `upper_bound - 1' times. */ - STORE_JUMP2 (jump_n, b, laststart + 5, - upper_bound - 1); - b += 5; - - /* The location we want to set is the second - parameter of the `jump_n'; that is `b-2' as - an absolute address. `laststart' will be - the `set_number_at' we're about to insert; - `laststart+3' the number to set, the source - for the relative address. But we are - inserting into the middle of the pattern -- - so everything is getting moved up by 5. - Conclusion: (b - 2) - (laststart + 3) + 5, - i.e., b - laststart. - - We insert this at the beginning of the loop - so that if we fail during matching, we'll - reinitialize the bounds. */ - insert_op2 (set_number_at, laststart, b - laststart, - upper_bound - 1, b); - b += 5; - } - } - pending_exact = 0; - beg_interval = NULL; - } - break; - - unfetch_interval: - /* If an invalid interval, match the characters as literals. */ - assert (beg_interval); - p = beg_interval; - beg_interval = NULL; - - /* normal_char and normal_backslash need `c'. */ - PATFETCH (c); - - if (!(syntax & RE_NO_BK_BRACES)) - { - if (p > pattern && p[-1] == '\\') - goto normal_backslash; - } - goto normal_char; - -#ifdef emacs - /* There is no way to specify the before_dot and after_dot - operators. rms says this is ok. --karl */ - case '=': - BUF_PUSH (at_dot); - break; - - case 's': - laststart = b; - PATFETCH (c); - BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); - break; - - case 'S': - laststart = b; - PATFETCH (c); - BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); - break; -#endif /* emacs */ - - - case 'w': - laststart = b; - BUF_PUSH (wordchar); - break; - - - case 'W': - laststart = b; - BUF_PUSH (notwordchar); - break; - - - case '<': - BUF_PUSH (wordbeg); - break; - - case '>': - BUF_PUSH (wordend); - break; - - case 'b': - BUF_PUSH (wordbound); - break; - - case 'B': - BUF_PUSH (notwordbound); - break; - - case '`': - BUF_PUSH (begbuf); - break; - - case '\'': - BUF_PUSH (endbuf); - break; - - case '1': case '2': case '3': case '4': case '5': - case '6': case '7': case '8': case '9': - if (syntax & RE_NO_BK_REFS) - goto normal_char; - - c1 = c - '0'; - - if (c1 > regnum) - return REG_ESUBREG; - - /* Can't back reference to a subexpression if inside of it. */ - if (group_in_compile_stack (compile_stack, c1)) - goto normal_char; - - laststart = b; - BUF_PUSH_2 (duplicate, c1); - break; - - - case '+': - case '?': - if (syntax & RE_BK_PLUS_QM) - goto handle_plus; - else - goto normal_backslash; - - default: - normal_backslash: - /* You might think it would be useful for \ to mean - not to translate; but if we don't translate it - it will never match anything. */ - c = TRANSLATE (c); - goto normal_char; - } - break; - - - default: - /* Expects the character in `c'. */ - normal_char: - /* If no exactn currently being built. */ - if (!pending_exact - - /* If last exactn not at current position. */ - || pending_exact + *pending_exact + 1 != b - - /* We have only one byte following the exactn for the count. */ - || *pending_exact == (1 << BYTEWIDTH) - 1 - - /* If followed by a repetition operator. */ - || *p == '*' || *p == '^' - || ((syntax & RE_BK_PLUS_QM) - ? *p == '\\' && (p[1] == '+' || p[1] == '?') - : (*p == '+' || *p == '?')) - || ((syntax & RE_INTERVALS) - && ((syntax & RE_NO_BK_BRACES) - ? *p == '{' - : (p[0] == '\\' && p[1] == '{')))) - { - /* Start building a new exactn. */ - - laststart = b; - - BUF_PUSH_2 (exactn, 0); - pending_exact = b - 1; - } - - BUF_PUSH (c); - (*pending_exact)++; - break; - } /* switch (c) */ - } /* while p != pend */ - - - /* Through the pattern now. */ - - if (fixup_alt_jump) - STORE_JUMP (jump_past_alt, fixup_alt_jump, b); - - if (!COMPILE_STACK_EMPTY) - return REG_EPAREN; - - free (compile_stack.stack); - - /* We have succeeded; set the length of the buffer. */ - bufp->used = b - bufp->buffer; - -#ifdef DEBUG - if (debug) - { - DEBUG_PRINT1 ("\nCompiled pattern: \n"); - print_compiled_pattern (bufp); - } -#endif /* DEBUG */ - - return REG_NOERROR; -} /* regex_compile */ - -/* Subroutines for `regex_compile'. */ - -/* Store OP at LOC followed by two-byte integer parameter ARG. */ - -static void -store_op1 (op, loc, arg) - re_opcode_t op; - unsigned char *loc; - int arg; -{ - *loc = (unsigned char) op; - STORE_NUMBER (loc + 1, arg); -} - - -/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ - -static void -store_op2 (op, loc, arg1, arg2) - re_opcode_t op; - unsigned char *loc; - int arg1, arg2; -{ - *loc = (unsigned char) op; - STORE_NUMBER (loc + 1, arg1); - STORE_NUMBER (loc + 3, arg2); -} - - -/* Copy the bytes from LOC to END to open up three bytes of space at LOC - for OP followed by two-byte integer parameter ARG. */ - -static void -insert_op1 (op, loc, arg, end) - re_opcode_t op; - unsigned char *loc; - int arg; - unsigned char *end; -{ - register unsigned char *pfrom = end; - register unsigned char *pto = end + 3; - - while (pfrom != loc) - *--pto = *--pfrom; - - store_op1 (op, loc, arg); -} - - -/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ - -static void -insert_op2 (op, loc, arg1, arg2, end) - re_opcode_t op; - unsigned char *loc; - int arg1, arg2; - unsigned char *end; -{ - register unsigned char *pfrom = end; - register unsigned char *pto = end + 5; - - while (pfrom != loc) - *--pto = *--pfrom; - - store_op2 (op, loc, arg1, arg2); -} - - -/* P points to just after a ^ in PATTERN. Return true if that ^ comes - after an alternative or a begin-subexpression. We assume there is at - least one character before the ^. */ - -static boolean -at_begline_loc_p (pattern, p, syntax) - const char *pattern, *p; - reg_syntax_t syntax; -{ - const char *prev = p - 2; - boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; - - return - /* After a subexpression? */ - (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) - /* After an alternative? */ - || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); -} - - -/* The dual of at_begline_loc_p. This one is for $. We assume there is - at least one character after the $, i.e., `P < PEND'. */ - -static boolean -at_endline_loc_p (p, pend, syntax) - const char *p, *pend; - int syntax; -{ - const char *next = p; - boolean next_backslash = *next == '\\'; - const char *next_next = p + 1 < pend ? p + 1 : NULL; - - return - /* Before a subexpression? */ - (syntax & RE_NO_BK_PARENS ? *next == ')' - : next_backslash && next_next && *next_next == ')') - /* Before an alternative? */ - || (syntax & RE_NO_BK_VBAR ? *next == '|' - : next_backslash && next_next && *next_next == '|'); -} - - -/* Returns true if REGNUM is in one of COMPILE_STACK's elements and - false if it's not. */ - -static boolean -group_in_compile_stack (compile_stack, regnum) - compile_stack_type compile_stack; - regnum_t regnum; -{ - int this_element; - - for (this_element = compile_stack.avail - 1; - this_element >= 0; - this_element--) - if (compile_stack.stack[this_element].regnum == regnum) - return true; - - return false; -} - - -/* Read the ending character of a range (in a bracket expression) from the - uncompiled pattern *P_PTR (which ends at PEND). We assume the - starting character is in `P[-2]'. (`P[-1]' is the character `-'.) - Then we set the translation of all bits between the starting and - ending characters (inclusive) in the compiled pattern B. - - Return an error code. - - We use these short variable names so we can use the same macros as - `regex_compile' itself. */ - -static reg_errcode_t -compile_range (p_ptr, pend, translate, syntax, b) - const char **p_ptr, *pend; - char *translate; - reg_syntax_t syntax; - unsigned char *b; -{ - unsigned this_char; - - const char *p = *p_ptr; - int range_start, range_end; - - if (p == pend) - return REG_ERANGE; - - /* Even though the pattern is a signed `char *', we need to fetch - with unsigned char *'s; if the high bit of the pattern character - is set, the range endpoints will be negative if we fetch using a - signed char *. - - We also want to fetch the endpoints without translating them; the - appropriate translation is done in the bit-setting loop below. */ - range_start = ((unsigned char *) p)[-2]; - range_end = ((unsigned char *) p)[0]; - - /* Have to increment the pointer into the pattern string, so the - caller isn't still at the ending character. */ - (*p_ptr)++; - - /* If the start is after the end, the range is empty. */ - if (range_start > range_end) - return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; - - /* Here we see why `this_char' has to be larger than an `unsigned - char' -- the range is inclusive, so if `range_end' == 0xff - (assuming 8-bit characters), we would otherwise go into an infinite - loop, since all characters <= 0xff. */ - for (this_char = range_start; this_char <= range_end; this_char++) - { - SET_LIST_BIT (TRANSLATE (this_char)); - } - - return REG_NOERROR; -} - -/* Failure stack declarations and macros; both re_compile_fastmap and - re_match_2 use a failure stack. These have to be macros because of - REGEX_ALLOCATE. */ - - -/* Number of failure points for which to initially allocate space - when matching. If this number is exceeded, we allocate more - space, so it is not a hard limit. */ -#ifndef INIT_FAILURE_ALLOC -#define INIT_FAILURE_ALLOC 5 -#endif - -/* Roughly the maximum number of failure points on the stack. Would be - exactly that if always used MAX_FAILURE_SPACE each time we failed. - This is a variable only so users of regex can assign to it; we never - change it ourselves. */ -int re_max_failures = 2000; - -typedef const unsigned char *fail_stack_elt_t; - -typedef struct -{ - fail_stack_elt_t *stack; - unsigned size; - unsigned avail; /* Offset of next open position. */ -} fail_stack_type; - -#define FAIL_STACK_EMPTY() (fail_stack.avail == 0) -#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) -#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) -#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) - - -/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ - -#define INIT_FAIL_STACK() \ - do { \ - fail_stack.stack = (fail_stack_elt_t *) \ - REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ - \ - if (fail_stack.stack == NULL) \ - return -2; \ - \ - fail_stack.size = INIT_FAILURE_ALLOC; \ - fail_stack.avail = 0; \ - } while (0) - - -/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. - - Return 1 if succeeds, and 0 if either ran out of memory - allocating space for it or it was already too large. - - REGEX_REALLOCATE requires `destination' be declared. */ - -#define DOUBLE_FAIL_STACK(fail_stack) \ - ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ - ? 0 \ - : ((fail_stack).stack = (fail_stack_elt_t *) \ - REGEX_REALLOCATE ((fail_stack).stack, \ - (fail_stack).size * sizeof (fail_stack_elt_t), \ - ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ - \ - (fail_stack).stack == NULL \ - ? 0 \ - : ((fail_stack).size <<= 1, \ - 1))) - - -/* Push PATTERN_OP on FAIL_STACK. - - Return 1 if was able to do so and 0 if ran out of memory allocating - space to do so. */ -#define PUSH_PATTERN_OP(pattern_op, fail_stack) \ - ((FAIL_STACK_FULL () \ - && !DOUBLE_FAIL_STACK (fail_stack)) \ - ? 0 \ - : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ - 1)) - -/* This pushes an item onto the failure stack. Must be a four-byte - value. Assumes the variable `fail_stack'. Probably should only - be called from within `PUSH_FAILURE_POINT'. */ -#define PUSH_FAILURE_ITEM(item) \ - fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item - -/* The complement operation. Assumes `fail_stack' is nonempty. */ -#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] - -/* Used to omit pushing failure point id's when we're not debugging. */ -#ifdef DEBUG -#define DEBUG_PUSH PUSH_FAILURE_ITEM -#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () -#else -#define DEBUG_PUSH(item) -#define DEBUG_POP(item_addr) -#endif - - -/* Push the information about the state we will need - if we ever fail back to it. - - Requires variables fail_stack, regstart, regend, reg_info, and - num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be - declared. - - Does `return FAILURE_CODE' if runs out of memory. */ - -#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ - do { \ - char *destination; \ - /* Must be int, so when we don't save any registers, the arithmetic \ - of 0 + -1 isn't done as unsigned. */ \ - int this_reg; \ - \ - DEBUG_STATEMENT (failure_id++); \ - DEBUG_STATEMENT (nfailure_points_pushed++); \ - DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ - DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ - DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ - \ - DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ - DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ - \ - /* Ensure we have enough space allocated for what we will push. */ \ - while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ - { \ - if (!DOUBLE_FAIL_STACK (fail_stack)) \ - return failure_code; \ - \ - DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ - (fail_stack).size); \ - DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ - } \ - \ - /* Push the info, starting with the registers. */ \ - DEBUG_PRINT1 ("\n"); \ - \ - for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ - this_reg++) \ - { \ - DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ - DEBUG_STATEMENT (num_regs_pushed++); \ - \ - DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ - PUSH_FAILURE_ITEM (regstart[this_reg]); \ - \ - DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ - PUSH_FAILURE_ITEM (regend[this_reg]); \ - \ - DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ - DEBUG_PRINT2 (" match_null=%d", \ - REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ - DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ - DEBUG_PRINT2 (" matched_something=%d", \ - MATCHED_SOMETHING (reg_info[this_reg])); \ - DEBUG_PRINT2 (" ever_matched=%d", \ - EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ - DEBUG_PRINT1 ("\n"); \ - PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ - } \ - \ - DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ - PUSH_FAILURE_ITEM (lowest_active_reg); \ - \ - DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ - PUSH_FAILURE_ITEM (highest_active_reg); \ - \ - DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ - DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ - PUSH_FAILURE_ITEM (pattern_place); \ - \ - DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ - DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ - size2); \ - DEBUG_PRINT1 ("'\n"); \ - PUSH_FAILURE_ITEM (string_place); \ - \ - DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ - DEBUG_PUSH (failure_id); \ - } while (0) - -/* This is the number of items that are pushed and popped on the stack - for each register. */ -#define NUM_REG_ITEMS 3 - -/* Individual items aside from the registers. */ -#ifdef DEBUG -#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ -#else -#define NUM_NONREG_ITEMS 4 -#endif - -/* We push at most this many items on the stack. */ -#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) - -/* We actually push this many items. */ -#define NUM_FAILURE_ITEMS \ - ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ - + NUM_NONREG_ITEMS) - -/* How many items can still be added to the stack without overflowing it. */ -#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) - - -/* Pops what PUSH_FAIL_STACK pushes. - - We restore into the parameters, all of which should be lvalues: - STR -- the saved data position. - PAT -- the saved pattern position. - LOW_REG, HIGH_REG -- the highest and lowest active registers. - REGSTART, REGEND -- arrays of string positions. - REG_INFO -- array of information about each subexpression. - - Also assumes the variables `fail_stack' and (if debugging), `bufp', - `pend', `string1', `size1', `string2', and `size2'. */ - -#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ -{ \ - DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ - int this_reg; \ - const unsigned char *string_temp; \ - \ - assert (!FAIL_STACK_EMPTY ()); \ - \ - /* Remove failure points and point to how many regs pushed. */ \ - DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ - DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ - DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ - \ - assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ - \ - DEBUG_POP (&failure_id); \ - DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ - \ - /* If the saved string location is NULL, it came from an \ - on_failure_keep_string_jump opcode, and we want to throw away the \ - saved NULL, thus retaining our current position in the string. */ \ - string_temp = POP_FAILURE_ITEM (); \ - if (string_temp != NULL) \ - str = (const char *) string_temp; \ - \ - DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ - DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ - DEBUG_PRINT1 ("'\n"); \ - \ - pat = (unsigned char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ - DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ - \ - /* Restore register info. */ \ - high_reg = (unsigned) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ - \ - low_reg = (unsigned) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ - \ - for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ - { \ - DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ - \ - reg_info[this_reg].word = POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ - \ - regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ - \ - regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ - DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ - } \ - \ - DEBUG_STATEMENT (nfailure_points_popped++); \ -} /* POP_FAILURE_POINT */ - -/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in - BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible - characters can start a string that matches the pattern. This fastmap - is used by re_search to skip quickly over impossible starting points. - - The caller must supply the address of a (1 << BYTEWIDTH)-byte data - area as BUFP->fastmap. - - We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in - the pattern buffer. - - Returns 0 if we succeed, -2 if an internal error. */ - -int -re_compile_fastmap (bufp) - struct re_pattern_buffer *bufp; -{ - int j, k; - fail_stack_type fail_stack; -#ifndef REGEX_MALLOC - char *destination; -#endif - /* We don't push any register information onto the failure stack. */ - unsigned num_regs = 0; - - register char *fastmap = bufp->fastmap; - unsigned char *pattern = bufp->buffer; - unsigned long size = bufp->used; - const unsigned char *p = pattern; - register unsigned char *pend = pattern + size; - - /* Assume that each path through the pattern can be null until - proven otherwise. We set this false at the bottom of switch - statement, to which we get only if a particular path doesn't - match the empty string. */ - boolean path_can_be_null = true; - - /* We aren't doing a `succeed_n' to begin with. */ - boolean succeed_n_p = false; - - assert (fastmap != NULL && p != NULL); - - INIT_FAIL_STACK (); - bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ - bufp->fastmap_accurate = 1; /* It will be when we're done. */ - bufp->can_be_null = 0; - - while (p != pend || !FAIL_STACK_EMPTY ()) - { - if (p == pend) - { - bufp->can_be_null |= path_can_be_null; - - /* Reset for next path. */ - path_can_be_null = true; - - p = fail_stack.stack[--fail_stack.avail]; - } - - /* We should never be about to go beyond the end of the pattern. */ - assert (p < pend); - -#ifdef SWITCH_ENUM_BUG - switch ((int) ((re_opcode_t) *p++)) -#else - switch ((re_opcode_t) *p++) -#endif - { - - /* I guess the idea here is to simply not bother with a fastmap - if a backreference is used, since it's too hard to figure out - the fastmap for the corresponding group. Setting - `can_be_null' stops `re_search_2' from using the fastmap, so - that is all we do. */ - case duplicate: - bufp->can_be_null = 1; - return 0; - - - /* Following are the cases which match a character. These end - with `break'. */ - - case exactn: - fastmap[p[1]] = 1; - break; - - - case charset: - for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) - if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) - fastmap[j] = 1; - break; - - - case charset_not: - /* Chars beyond end of map must be allowed. */ - for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) - fastmap[j] = 1; - - for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) - if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) - fastmap[j] = 1; - break; - - - case wordchar: - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (SYNTAX (j) == Sword) - fastmap[j] = 1; - break; - - - case notwordchar: - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (SYNTAX (j) != Sword) - fastmap[j] = 1; - break; - - - case anychar: - /* `.' matches anything ... */ - for (j = 0; j < (1 << BYTEWIDTH); j++) - fastmap[j] = 1; - - /* ... except perhaps newline. */ - if (!(bufp->syntax & RE_DOT_NEWLINE)) - fastmap['\n'] = 0; - - /* Return if we have already set `can_be_null'; if we have, - then the fastmap is irrelevant. Something's wrong here. */ - else if (bufp->can_be_null) - return 0; - - /* Otherwise, have to check alternative paths. */ - break; - - -#ifdef emacs - case syntaxspec: - k = *p++; - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (SYNTAX (j) == (enum syntaxcode) k) - fastmap[j] = 1; - break; - - - case notsyntaxspec: - k = *p++; - for (j = 0; j < (1 << BYTEWIDTH); j++) - if (SYNTAX (j) != (enum syntaxcode) k) - fastmap[j] = 1; - break; - - - /* All cases after this match the empty string. These end with - `continue'. */ - - - case before_dot: - case at_dot: - case after_dot: - continue; -#endif /* not emacs */ - - - case no_op: - case begline: - case endline: - case begbuf: - case endbuf: - case wordbound: - case notwordbound: - case wordbeg: - case wordend: - case push_dummy_failure: - continue; - - - case jump_n: - case pop_failure_jump: - case maybe_pop_jump: - case jump: - case jump_past_alt: - case dummy_failure_jump: - EXTRACT_NUMBER_AND_INCR (j, p); - p += j; - if (j > 0) - continue; - - /* Jump backward implies we just went through the body of a - loop and matched nothing. Opcode jumped to should be - `on_failure_jump' or `succeed_n'. Just treat it like an - ordinary jump. For a * loop, it has pushed its failure - point already; if so, discard that as redundant. */ - if ((re_opcode_t) *p != on_failure_jump - && (re_opcode_t) *p != succeed_n) - continue; - - p++; - EXTRACT_NUMBER_AND_INCR (j, p); - p += j; - - /* If what's on the stack is where we are now, pop it. */ - if (!FAIL_STACK_EMPTY () - && fail_stack.stack[fail_stack.avail - 1] == p) - fail_stack.avail--; - - continue; - - - case on_failure_jump: - case on_failure_keep_string_jump: - handle_on_failure_jump: - EXTRACT_NUMBER_AND_INCR (j, p); - - /* For some patterns, e.g., `(a?)?', `p+j' here points to the - end of the pattern. We don't want to push such a point, - since when we restore it above, entering the switch will - increment `p' past the end of the pattern. We don't need - to push such a point since we obviously won't find any more - fastmap entries beyond `pend'. Such a pattern can match - the null string, though. */ - if (p + j < pend) - { - if (!PUSH_PATTERN_OP (p + j, fail_stack)) - return -2; - } - else - bufp->can_be_null = 1; - - if (succeed_n_p) - { - EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ - succeed_n_p = false; - } - - continue; - - - case succeed_n: - /* Get to the number of times to succeed. */ - p += 2; - - /* Increment p past the n for when k != 0. */ - EXTRACT_NUMBER_AND_INCR (k, p); - if (k == 0) - { - p -= 4; - succeed_n_p = true; /* Spaghetti code alert. */ - goto handle_on_failure_jump; - } - continue; - - - case set_number_at: - p += 4; - continue; - - - case start_memory: - case stop_memory: - p += 2; - continue; - - - default: - abort (); /* We have listed all the cases. */ - } /* switch *p++ */ - - /* Getting here means we have found the possible starting - characters for one path of the pattern -- and that the empty - string does not match. We need not follow this path further. - Instead, look at the next alternative (remembered on the - stack), or quit if no more. The test at the top of the loop - does these things. */ - path_can_be_null = false; - p = pend; - } /* while p */ - - /* Set `can_be_null' for the last path (also the first path, if the - pattern is empty). */ - bufp->can_be_null |= path_can_be_null; - return 0; -} /* re_compile_fastmap */ - -/* Set REGS to hold NUM_REGS registers, storing them in STARTS and - ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use - this memory for recording register information. STARTS and ENDS - must be allocated using the malloc library routine, and must each - be at least NUM_REGS * sizeof (regoff_t) bytes long. - - If NUM_REGS == 0, then subsequent matches should allocate their own - register data. - - Unless this function is called, the first search or match using - PATTERN_BUFFER will allocate its own register data, without - freeing the old data. */ - -void -re_set_registers (bufp, regs, num_regs, starts, ends) - struct re_pattern_buffer *bufp; - struct re_registers *regs; - unsigned num_regs; - regoff_t *starts, *ends; -{ - if (num_regs) - { - bufp->regs_allocated = REGS_REALLOCATE; - regs->num_regs = num_regs; - regs->start = starts; - regs->end = ends; - } - else - { - bufp->regs_allocated = REGS_UNALLOCATED; - regs->num_regs = 0; - regs->start = regs->end = (regoff_t) 0; - } -} - -/* Searching routines. */ - -/* Like re_search_2, below, but only one string is specified, and - doesn't let you say where to stop matching. */ - -int -re_search (bufp, string, size, startpos, range, regs) - struct re_pattern_buffer *bufp; - const char *string; - int size, startpos, range; - struct re_registers *regs; -{ - return re_search_2 (bufp, NULL, 0, string, size, startpos, range, - regs, size); -} - - -/* Using the compiled pattern in BUFP->buffer, first tries to match the - virtual concatenation of STRING1 and STRING2, starting first at index - STARTPOS, then at STARTPOS + 1, and so on. - - STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. - - RANGE is how far to scan while trying to match. RANGE = 0 means try - only at STARTPOS; in general, the last start tried is STARTPOS + - RANGE. - - In REGS, return the indices of the virtual concatenation of STRING1 - and STRING2 that matched the entire BUFP->buffer and its contained - subexpressions. - - Do not consider matching one past the index STOP in the virtual - concatenation of STRING1 and STRING2. - - We return either the position in the strings at which the match was - found, -1 if no match, or -2 if error (such as failure - stack overflow). */ - -int -re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) - struct re_pattern_buffer *bufp; - const char *string1, *string2; - int size1, size2; - int startpos; - int range; - struct re_registers *regs; - int stop; -{ - int val; - register char *fastmap = bufp->fastmap; - register char *translate = bufp->translate; - int total_size = size1 + size2; - int endpos = startpos + range; - - /* Check for out-of-range STARTPOS. */ - if (startpos < 0 || startpos > total_size) - return -1; - - /* Fix up RANGE if it might eventually take us outside - the virtual concatenation of STRING1 and STRING2. */ - if (endpos < -1) - range = -1 - startpos; - else if (endpos > total_size) - range = total_size - startpos; - - /* If the search isn't to be a backwards one, don't waste time in a - search for a pattern that must be anchored. */ - if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) - { - if (startpos > 0) - return -1; - else - range = 1; - } - - /* Update the fastmap now if not correct already. */ - if (fastmap && !bufp->fastmap_accurate) - if (re_compile_fastmap (bufp) == -2) - return -2; - - /* Loop through the string, looking for a place to start matching. */ - for (;;) - { - /* If a fastmap is supplied, skip quickly over characters that - cannot be the start of a match. If the pattern can match the - null string, however, we don't need to skip characters; we want - the first null string. */ - if (fastmap && startpos < total_size && !bufp->can_be_null) - { - if (range > 0) /* Searching forwards. */ - { - register const char *d; - register int lim = 0; - int irange = range; - - if (startpos < size1 && startpos + range >= size1) - lim = range - (size1 - startpos); - - d = (startpos >= size1 ? string2 - size1 : string1) + startpos; - - /* Written out as an if-else to avoid testing `translate' - inside the loop. */ - if (translate) - while (range > lim - && !fastmap[(unsigned char) - translate[(unsigned char) *d++]]) - range--; - else - while (range > lim && !fastmap[(unsigned char) *d++]) - range--; - - startpos += irange - range; - } - else /* Searching backwards. */ - { - register char c = (size1 == 0 || startpos >= size1 - ? string2[startpos - size1] - : string1[startpos]); - - if (!fastmap[(unsigned char) TRANSLATE (c)]) - goto advance; - } - } - - /* If can't match the null string, and that's all we have left, fail. */ - if (range >= 0 && startpos == total_size && fastmap - && !bufp->can_be_null) - return -1; - - val = re_match_2 (bufp, string1, size1, string2, size2, - startpos, regs, stop); - if (val >= 0) - return startpos; - - if (val == -2) - return -2; - - advance: - if (!range) - break; - else if (range > 0) - { - range--; - startpos++; - } - else - { - range++; - startpos--; - } - } - return -1; -} /* re_search_2 */ - -/* Declarations and macros for re_match_2. */ - -static int bcmp_translate (); -static boolean alt_match_null_string_p (), - common_op_match_null_string_p (), - group_match_null_string_p (); - -/* Structure for per-register (a.k.a. per-group) information. - This must not be longer than one word, because we push this value - onto the failure stack. Other register information, such as the - starting and ending positions (which are addresses), and the list of - inner groups (which is a bits list) are maintained in separate - variables. - - We are making a (strictly speaking) nonportable assumption here: that - the compiler will pack our bit fields into something that fits into - the type of `word', i.e., is something that fits into one item on the - failure stack. */ -typedef union -{ - fail_stack_elt_t word; - struct - { - /* This field is one if this group can match the empty string, - zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ -#define MATCH_NULL_UNSET_VALUE 3 - unsigned match_null_string_p : 2; - unsigned is_active : 1; - unsigned matched_something : 1; - unsigned ever_matched_something : 1; - } bits; -} register_info_type; - -#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) -#define IS_ACTIVE(R) ((R).bits.is_active) -#define MATCHED_SOMETHING(R) ((R).bits.matched_something) -#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) - - -/* Call this when have matched a real character; it sets `matched' flags - for the subexpressions which we are currently inside. Also records - that those subexprs have matched. */ -#define SET_REGS_MATCHED() \ - do \ - { \ - unsigned r; \ - for (r = lowest_active_reg; r <= highest_active_reg; r++) \ - { \ - MATCHED_SOMETHING (reg_info[r]) \ - = EVER_MATCHED_SOMETHING (reg_info[r]) \ - = 1; \ - } \ - } \ - while (0) - - -/* This converts PTR, a pointer into one of the search strings `string1' - and `string2' into an offset from the beginning of that string. */ -#define POINTER_TO_OFFSET(ptr) \ - (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1) - -/* Registers are set to a sentinel when they haven't yet matched. */ -#define REG_UNSET_VALUE ((char *) -1) -#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) - - -/* Macros for dealing with the split strings in re_match_2. */ - -#define MATCHING_IN_FIRST_STRING (dend == end_match_1) - -/* Call before fetching a character with *d. This switches over to - string2 if necessary. */ -#define PREFETCH() \ - while (d == dend) \ - { \ - /* End of string2 => fail. */ \ - if (dend == end_match_2) \ - goto fail; \ - /* End of string1 => advance to string2. */ \ - d = string2; \ - dend = end_match_2; \ - } - - -/* Test if at very beginning or at very end of the virtual concatenation - of `string1' and `string2'. If only one string, it's `string2'. */ -#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) -#define AT_STRINGS_END(d) ((d) == end2) - - -/* Test if D points to a character which is word-constituent. We have - two special cases to check for: if past the end of string1, look at - the first character in string2; and if before the beginning of - string2, look at the last character in string1. */ -#define WORDCHAR_P(d) \ - (SYNTAX ((d) == end1 ? *string2 \ - : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ - == Sword) - -/* Test if the character before D and the one at D differ with respect - to being word-constituent. */ -#define AT_WORD_BOUNDARY(d) \ - (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ - || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) - - -/* Free everything we malloc. */ -#ifdef REGEX_MALLOC -#define FREE_VAR(var) if (var) free (var); var = NULL -#define FREE_VARIABLES() \ - do { \ - FREE_VAR (fail_stack.stack); \ - FREE_VAR (regstart); \ - FREE_VAR (regend); \ - FREE_VAR (old_regstart); \ - FREE_VAR (old_regend); \ - FREE_VAR (best_regstart); \ - FREE_VAR (best_regend); \ - FREE_VAR (reg_info); \ - FREE_VAR (reg_dummy); \ - FREE_VAR (reg_info_dummy); \ - } while (0) -#else /* not REGEX_MALLOC */ -/* Some MIPS systems (at least) want this to free alloca'd storage. */ -#define FREE_VARIABLES() alloca (0) -#endif /* not REGEX_MALLOC */ - - -/* These values must meet several constraints. They must not be valid - register values; since we have a limit of 255 registers (because - we use only one byte in the pattern for the register number), we can - use numbers larger than 255. They must differ by 1, because of - NUM_FAILURE_ITEMS above. And the value for the lowest register must - be larger than the value for the highest register, so we do not try - to actually save any registers when none are active. */ -#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) -#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) - -/* Matching routines. */ - -#ifndef emacs /* Emacs never uses this. */ -/* re_match is like re_match_2 except it takes only a single string. */ - -int -re_match (bufp, string, size, pos, regs) - struct re_pattern_buffer *bufp; - const char *string; - int size, pos; - struct re_registers *regs; - { - return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size); -} -#endif /* not emacs */ - - -/* re_match_2 matches the compiled pattern in BUFP against the - the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 - and SIZE2, respectively). We start matching at POS, and stop - matching at STOP. - - If REGS is non-null and the `no_sub' field of BUFP is nonzero, we - store offsets for the substring each group matched in REGS. See the - documentation for exactly how many groups we fill. - - We return -1 if no match, -2 if an internal error (such as the - failure stack overflowing). Otherwise, we return the length of the - matched substring. */ - -int -re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) - struct re_pattern_buffer *bufp; - const char *string1, *string2; - int size1, size2; - int pos; - struct re_registers *regs; - int stop; -{ - /* General temporaries. */ - int mcnt; - unsigned char *p1; - - /* Just past the end of the corresponding string. */ - const char *end1, *end2; - - /* Pointers into string1 and string2, just past the last characters in - each to consider matching. */ - const char *end_match_1, *end_match_2; - - /* Where we are in the data, and the end of the current string. */ - const char *d, *dend; - - /* Where we are in the pattern, and the end of the pattern. */ - unsigned char *p = bufp->buffer; - register unsigned char *pend = p + bufp->used; - - /* We use this to map every character in the string. */ - char *translate = bufp->translate; - - /* Failure point stack. Each place that can handle a failure further - down the line pushes a failure point on this stack. It consists of - restart, regend, and reg_info for all registers corresponding to - the subexpressions we're currently inside, plus the number of such - registers, and, finally, two char *'s. The first char * is where - to resume scanning the pattern; the second one is where to resume - scanning the strings. If the latter is zero, the failure point is - a ``dummy''; if a failure happens and the failure point is a dummy, - it gets discarded and the next next one is tried. */ - fail_stack_type fail_stack; -#ifdef DEBUG - static unsigned failure_id = 0; - unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; -#endif - - /* We fill all the registers internally, independent of what we - return, for use in backreferences. The number here includes - an element for register zero. */ - unsigned num_regs = bufp->re_nsub + 1; - - /* The currently active registers. */ - unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; - unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; - - /* Information on the contents of registers. These are pointers into - the input strings; they record just what was matched (on this - attempt) by a subexpression part of the pattern, that is, the - regnum-th regstart pointer points to where in the pattern we began - matching and the regnum-th regend points to right after where we - stopped matching the regnum-th subexpression. (The zeroth register - keeps track of what the whole pattern matches.) */ - const char **regstart, **regend; - - /* If a group that's operated upon by a repetition operator fails to - match anything, then the register for its start will need to be - restored because it will have been set to wherever in the string we - are when we last see its open-group operator. Similarly for a - register's end. */ - const char **old_regstart, **old_regend; - - /* The is_active field of reg_info helps us keep track of which (possibly - nested) subexpressions we are currently in. The matched_something - field of reg_info[reg_num] helps us tell whether or not we have - matched any of the pattern so far this time through the reg_num-th - subexpression. These two fields get reset each time through any - loop their register is in. */ - register_info_type *reg_info; - - /* The following record the register info as found in the above - variables when we find a match better than any we've seen before. - This happens as we backtrack through the failure points, which in - turn happens only if we have not yet matched the entire string. */ - unsigned best_regs_set = false; - const char **best_regstart, **best_regend; - - /* Logically, this is `best_regend[0]'. But we don't want to have to - allocate space for that if we're not allocating space for anything - else (see below). Also, we never need info about register 0 for - any of the other register vectors, and it seems rather a kludge to - treat `best_regend' differently than the rest. So we keep track of - the end of the best match so far in a separate variable. We - initialize this to NULL so that when we backtrack the first time - and need to test it, it's not garbage. */ - const char *match_end = NULL; - - /* Used when we pop values we don't care about. */ - const char **reg_dummy; - register_info_type *reg_info_dummy; - -#ifdef DEBUG - /* Counts the total number of registers pushed. */ - unsigned num_regs_pushed = 0; -#endif - - DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); - - INIT_FAIL_STACK (); - - /* Do not bother to initialize all the register variables if there are - no groups in the pattern, as it takes a fair amount of time. If - there are groups, we include space for register 0 (the whole - pattern), even though we never use it, since it simplifies the - array indexing. We should fix this. */ - if (bufp->re_nsub) - { - regstart = REGEX_TALLOC (num_regs, const char *); - regend = REGEX_TALLOC (num_regs, const char *); - old_regstart = REGEX_TALLOC (num_regs, const char *); - old_regend = REGEX_TALLOC (num_regs, const char *); - best_regstart = REGEX_TALLOC (num_regs, const char *); - best_regend = REGEX_TALLOC (num_regs, const char *); - reg_info = REGEX_TALLOC (num_regs, register_info_type); - reg_dummy = REGEX_TALLOC (num_regs, const char *); - reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); - - if (!(regstart && regend && old_regstart && old_regend && reg_info - && best_regstart && best_regend && reg_dummy && reg_info_dummy)) - { - FREE_VARIABLES (); - return -2; - } - } -#ifdef REGEX_MALLOC - else - { - /* We must initialize all our variables to NULL, so that - `FREE_VARIABLES' doesn't try to free them. */ - regstart = regend = old_regstart = old_regend = best_regstart - = best_regend = reg_dummy = NULL; - reg_info = reg_info_dummy = (register_info_type *) NULL; - } -#endif /* REGEX_MALLOC */ - - /* The starting position is bogus. */ - if (pos < 0 || pos > size1 + size2) - { - FREE_VARIABLES (); - return -1; - } - - /* Initialize subexpression text positions to -1 to mark ones that no - start_memory/stop_memory has been seen for. Also initialize the - register information struct. */ - for (mcnt = 1; mcnt < num_regs; mcnt++) - { - regstart[mcnt] = regend[mcnt] - = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; - - REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; - IS_ACTIVE (reg_info[mcnt]) = 0; - MATCHED_SOMETHING (reg_info[mcnt]) = 0; - EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; - } - - /* We move `string1' into `string2' if the latter's empty -- but not if - `string1' is null. */ - if (size2 == 0 && string1 != NULL) - { - string2 = string1; - size2 = size1; - string1 = 0; - size1 = 0; - } - end1 = string1 + size1; - end2 = string2 + size2; - - /* Compute where to stop matching, within the two strings. */ - if (stop <= size1) - { - end_match_1 = string1 + stop; - end_match_2 = string2; - } - else - { - end_match_1 = end1; - end_match_2 = string2 + stop - size1; - } - - /* `p' scans through the pattern as `d' scans through the data. - `dend' is the end of the input string that `d' points within. `d' - is advanced into the following input string whenever necessary, but - this happens before fetching; therefore, at the beginning of the - loop, `d' can be pointing at the end of a string, but it cannot - equal `string2'. */ - if (size1 > 0 && pos <= size1) - { - d = string1 + pos; - dend = end_match_1; - } - else - { - d = string2 + pos - size1; - dend = end_match_2; - } - - DEBUG_PRINT1 ("The compiled pattern is: "); - DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); - DEBUG_PRINT1 ("The string to match is: `"); - DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); - DEBUG_PRINT1 ("'\n"); - - /* This loops over pattern commands. It exits by returning from the - function if the match is complete, or it drops through if the match - fails at this starting point in the input data. */ - for (;;) - { - DEBUG_PRINT2 ("\n0x%x: ", p); - - if (p == pend) - { /* End of pattern means we might have succeeded. */ - DEBUG_PRINT1 ("end of pattern ... "); - - /* If we haven't matched the entire string, and we want the - longest match, try backtracking. */ - if (d != end_match_2) - { - DEBUG_PRINT1 ("backtracking.\n"); - - if (!FAIL_STACK_EMPTY ()) - { /* More failure points to try. */ - boolean same_str_p = (FIRST_STRING_P (match_end) - == MATCHING_IN_FIRST_STRING); - - /* If exceeds best match so far, save it. */ - if (!best_regs_set - || (same_str_p && d > match_end) - || (!same_str_p && !MATCHING_IN_FIRST_STRING)) - { - best_regs_set = true; - match_end = d; - - DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); - - for (mcnt = 1; mcnt < num_regs; mcnt++) - { - best_regstart[mcnt] = regstart[mcnt]; - best_regend[mcnt] = regend[mcnt]; - } - } - goto fail; - } - - /* If no failure points, don't restore garbage. */ - else if (best_regs_set) - { - restore_best_regs: - /* Restore best match. It may happen that `dend == - end_match_1' while the restored d is in string2. - For example, the pattern `x.*y.*z' against the - strings `x-' and `y-z-', if the two strings are - not consecutive in memory. */ - DEBUG_PRINT1 ("Restoring best registers.\n"); - - d = match_end; - dend = ((d >= string1 && d <= end1) - ? end_match_1 : end_match_2); - - for (mcnt = 1; mcnt < num_regs; mcnt++) - { - regstart[mcnt] = best_regstart[mcnt]; - regend[mcnt] = best_regend[mcnt]; - } - } - } /* d != end_match_2 */ - - DEBUG_PRINT1 ("Accepting match.\n"); - - /* If caller wants register contents data back, do it. */ - if (regs && !bufp->no_sub) - { - /* Have the register data arrays been allocated? */ - if (bufp->regs_allocated == REGS_UNALLOCATED) - { /* No. So allocate them with malloc. We need one - extra element beyond `num_regs' for the `-1' marker - GNU code uses. */ - regs->num_regs = MAX (RE_NREGS, num_regs + 1); - regs->start = TALLOC (regs->num_regs, regoff_t); - regs->end = TALLOC (regs->num_regs, regoff_t); - if (regs->start == NULL || regs->end == NULL) - return -2; - bufp->regs_allocated = REGS_REALLOCATE; - } - else if (bufp->regs_allocated == REGS_REALLOCATE) - { /* Yes. If we need more elements than were already - allocated, reallocate them. If we need fewer, just - leave it alone. */ - if (regs->num_regs < num_regs + 1) - { - regs->num_regs = num_regs + 1; - RETALLOC (regs->start, regs->num_regs, regoff_t); - RETALLOC (regs->end, regs->num_regs, regoff_t); - if (regs->start == NULL || regs->end == NULL) - return -2; - } - } - else - { - /* These braces fend off a "empty body in an else-statement" - warning under GCC when assert expands to nothing. */ - assert (bufp->regs_allocated == REGS_FIXED); - } - - /* Convert the pointer data in `regstart' and `regend' to - indices. Register zero has to be set differently, - since we haven't kept track of any info for it. */ - if (regs->num_regs > 0) - { - regs->start[0] = pos; - regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1 - : d - string2 + size1); - } - - /* Go through the first `min (num_regs, regs->num_regs)' - registers, since that is all we initialized. */ - for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) - { - if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) - regs->start[mcnt] = regs->end[mcnt] = -1; - else - { - regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]); - regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]); - } - } - - /* If the regs structure we return has more elements than - were in the pattern, set the extra elements to -1. If - we (re)allocated the registers, this is the case, - because we always allocate enough to have at least one - -1 at the end. */ - for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) - regs->start[mcnt] = regs->end[mcnt] = -1; - } /* regs && !bufp->no_sub */ - - FREE_VARIABLES (); - DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", - nfailure_points_pushed, nfailure_points_popped, - nfailure_points_pushed - nfailure_points_popped); - DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); - - mcnt = d - pos - (MATCHING_IN_FIRST_STRING - ? string1 - : string2 - size1); - - DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); - - return mcnt; - } - - /* Otherwise match next pattern command. */ -#ifdef SWITCH_ENUM_BUG - switch ((int) ((re_opcode_t) *p++)) -#else - switch ((re_opcode_t) *p++) -#endif - { - /* Ignore these. Used to ignore the n of succeed_n's which - currently have n == 0. */ - case no_op: - DEBUG_PRINT1 ("EXECUTING no_op.\n"); - break; - - - /* Match the next n pattern characters exactly. The following - byte in the pattern defines n, and the n bytes after that - are the characters to match. */ - case exactn: - mcnt = *p++; - DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); - - /* This is written out as an if-else so we don't waste time - testing `translate' inside the loop. */ - if (translate) - { - do - { - PREFETCH (); - if (translate[(unsigned char) *d++] != (char) *p++) - goto fail; - } - while (--mcnt); - } - else - { - do - { - PREFETCH (); - if (*d++ != (char) *p++) goto fail; - } - while (--mcnt); - } - SET_REGS_MATCHED (); - break; - - - /* Match any character except possibly a newline or a null. */ - case anychar: - DEBUG_PRINT1 ("EXECUTING anychar.\n"); - - PREFETCH (); - - if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') - || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) - goto fail; - - SET_REGS_MATCHED (); - DEBUG_PRINT2 (" Matched `%d'.\n", *d); - d++; - break; - - - case charset: - case charset_not: - { - register unsigned char c; - boolean not = (re_opcode_t) *(p - 1) == charset_not; - - DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); - - PREFETCH (); - c = TRANSLATE (*d); /* The character to match. */ - - /* Cast to `unsigned' instead of `unsigned char' in case the - bit list is a full 32 bytes long. */ - if (c < (unsigned) (*p * BYTEWIDTH) - && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) - not = !not; - - p += 1 + *p; - - if (!not) goto fail; - - SET_REGS_MATCHED (); - d++; - break; - } - - - /* The beginning of a group is represented by start_memory. - The arguments are the register number in the next byte, and the - number of groups inner to this one in the next. The text - matched within the group is recorded (in the internal - registers data structure) under the register number. */ - case start_memory: - DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); - - /* Find out if this group can match the empty string. */ - p1 = p; /* To send to group_match_null_string_p. */ - - if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) - REG_MATCH_NULL_STRING_P (reg_info[*p]) - = group_match_null_string_p (&p1, pend, reg_info); - - /* Save the position in the string where we were the last time - we were at this open-group operator in case the group is - operated upon by a repetition operator, e.g., with `(a*)*b' - against `ab'; then we want to ignore where we are now in - the string in case this attempt to match fails. */ - old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) - ? REG_UNSET (regstart[*p]) ? d : regstart[*p] - : regstart[*p]; - DEBUG_PRINT2 (" old_regstart: %d\n", - POINTER_TO_OFFSET (old_regstart[*p])); - - regstart[*p] = d; - DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); - - IS_ACTIVE (reg_info[*p]) = 1; - MATCHED_SOMETHING (reg_info[*p]) = 0; - - /* This is the new highest active register. */ - highest_active_reg = *p; - - /* If nothing was active before, this is the new lowest active - register. */ - if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) - lowest_active_reg = *p; - - /* Move past the register number and inner group count. */ - p += 2; - break; - - - /* The stop_memory opcode represents the end of a group. Its - arguments are the same as start_memory's: the register - number, and the number of inner groups. */ - case stop_memory: - DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); - - /* We need to save the string position the last time we were at - this close-group operator in case the group is operated - upon by a repetition operator, e.g., with `((a*)*(b*)*)*' - against `aba'; then we want to ignore where we are now in - the string in case this attempt to match fails. */ - old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) - ? REG_UNSET (regend[*p]) ? d : regend[*p] - : regend[*p]; - DEBUG_PRINT2 (" old_regend: %d\n", - POINTER_TO_OFFSET (old_regend[*p])); - - regend[*p] = d; - DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); - - /* This register isn't active anymore. */ - IS_ACTIVE (reg_info[*p]) = 0; - - /* If this was the only register active, nothing is active - anymore. */ - if (lowest_active_reg == highest_active_reg) - { - lowest_active_reg = NO_LOWEST_ACTIVE_REG; - highest_active_reg = NO_HIGHEST_ACTIVE_REG; - } - else - { /* We must scan for the new highest active register, since - it isn't necessarily one less than now: consider - (a(b)c(d(e)f)g). When group 3 ends, after the f), the - new highest active register is 1. */ - unsigned char r = *p - 1; - while (r > 0 && !IS_ACTIVE (reg_info[r])) - r--; - - /* If we end up at register zero, that means that we saved - the registers as the result of an `on_failure_jump', not - a `start_memory', and we jumped to past the innermost - `stop_memory'. For example, in ((.)*) we save - registers 1 and 2 as a result of the *, but when we pop - back to the second ), we are at the stop_memory 1. - Thus, nothing is active. */ - if (r == 0) - { - lowest_active_reg = NO_LOWEST_ACTIVE_REG; - highest_active_reg = NO_HIGHEST_ACTIVE_REG; - } - else - highest_active_reg = r; - } - - /* If just failed to match something this time around with a - group that's operated on by a repetition operator, try to - force exit from the ``loop'', and restore the register - information for this group that we had before trying this - last match. */ - if ((!MATCHED_SOMETHING (reg_info[*p]) - || (re_opcode_t) p[-3] == start_memory) - && (p + 2) < pend) - { - boolean is_a_jump_n = false; - - p1 = p + 2; - mcnt = 0; - switch ((re_opcode_t) *p1++) - { - case jump_n: - is_a_jump_n = true; - case pop_failure_jump: - case maybe_pop_jump: - case jump: - case dummy_failure_jump: - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - if (is_a_jump_n) - p1 += 2; - break; - - default: - /* do nothing */ ; - } - p1 += mcnt; - - /* If the next operation is a jump backwards in the pattern - to an on_failure_jump right before the start_memory - corresponding to this stop_memory, exit from the loop - by forcing a failure after pushing on the stack the - on_failure_jump's jump in the pattern, and d. */ - if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump - && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) - { - /* If this group ever matched anything, then restore - what its registers were before trying this last - failed match, e.g., with `(a*)*b' against `ab' for - regstart[1], and, e.g., with `((a*)*(b*)*)*' - against `aba' for regend[3]. - - Also restore the registers for inner groups for, - e.g., `((a*)(b*))*' against `aba' (register 3 would - otherwise get trashed). */ - - if (EVER_MATCHED_SOMETHING (reg_info[*p])) - { - unsigned r; - - EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; - - /* Restore this and inner groups' (if any) registers. */ - for (r = *p; r < *p + *(p + 1); r++) - { - regstart[r] = old_regstart[r]; - - /* xx why this test? */ - if ((int) old_regend[r] >= (int) regstart[r]) - regend[r] = old_regend[r]; - } - } - p1++; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - PUSH_FAILURE_POINT (p1 + mcnt, d, -2); - - goto fail; - } - } - - /* Move past the register number and the inner group count. */ - p += 2; - break; - - - /* \<digit> has been turned into a `duplicate' command which is - followed by the numeric value of <digit> as the register number. */ - case duplicate: - { - register const char *d2, *dend2; - int regno = *p++; /* Get which register to match against. */ - DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); - - /* Can't back reference a group which we've never matched. */ - if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) - goto fail; - - /* Where in input to try to start matching. */ - d2 = regstart[regno]; - - /* Where to stop matching; if both the place to start and - the place to stop matching are in the same string, then - set to the place to stop, otherwise, for now have to use - the end of the first string. */ - - dend2 = ((FIRST_STRING_P (regstart[regno]) - == FIRST_STRING_P (regend[regno])) - ? regend[regno] : end_match_1); - for (;;) - { - /* If necessary, advance to next segment in register - contents. */ - while (d2 == dend2) - { - if (dend2 == end_match_2) break; - if (dend2 == regend[regno]) break; - - /* End of string1 => advance to string2. */ - d2 = string2; - dend2 = regend[regno]; - } - /* At end of register contents => success */ - if (d2 == dend2) break; - - /* If necessary, advance to next segment in data. */ - PREFETCH (); - - /* How many characters left in this segment to match. */ - mcnt = dend - d; - - /* Want how many consecutive characters we can match in - one shot, so, if necessary, adjust the count. */ - if (mcnt > dend2 - d2) - mcnt = dend2 - d2; - - /* Compare that many; failure if mismatch, else move - past them. */ - if (translate - ? bcmp_translate (d, d2, mcnt, translate) - : bcmp (d, d2, mcnt)) - goto fail; - d += mcnt, d2 += mcnt; - } - } - break; - - - /* begline matches the empty string at the beginning of the string - (unless `not_bol' is set in `bufp'), and, if - `newline_anchor' is set, after newlines. */ - case begline: - DEBUG_PRINT1 ("EXECUTING begline.\n"); - - if (AT_STRINGS_BEG (d)) - { - if (!bufp->not_bol) break; - } - else if (d[-1] == '\n' && bufp->newline_anchor) - { - break; - } - /* In all other cases, we fail. */ - goto fail; - - - /* endline is the dual of begline. */ - case endline: - DEBUG_PRINT1 ("EXECUTING endline.\n"); - - if (AT_STRINGS_END (d)) - { - if (!bufp->not_eol) break; - } - - /* We have to ``prefetch'' the next character. */ - else if ((d == end1 ? *string2 : *d) == '\n' - && bufp->newline_anchor) - { - break; - } - goto fail; - - - /* Match at the very beginning of the data. */ - case begbuf: - DEBUG_PRINT1 ("EXECUTING begbuf.\n"); - if (AT_STRINGS_BEG (d)) - break; - goto fail; - - - /* Match at the very end of the data. */ - case endbuf: - DEBUG_PRINT1 ("EXECUTING endbuf.\n"); - if (AT_STRINGS_END (d)) - break; - goto fail; - - - /* on_failure_keep_string_jump is used to optimize `.*\n'. It - pushes NULL as the value for the string on the stack. Then - `pop_failure_point' will keep the current value for the - string, instead of restoring it. To see why, consider - matching `foo\nbar' against `.*\n'. The .* matches the foo; - then the . fails against the \n. But the next thing we want - to do is match the \n against the \n; if we restored the - string value, we would be back at the foo. - - Because this is used only in specific cases, we don't need to - check all the things that `on_failure_jump' does, to make - sure the right things get saved on the stack. Hence we don't - share its code. The only reason to push anything on the - stack at all is that otherwise we would have to change - `anychar's code to do something besides goto fail in this - case; that seems worse than this. */ - case on_failure_keep_string_jump: - DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); - - EXTRACT_NUMBER_AND_INCR (mcnt, p); - DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); - - PUSH_FAILURE_POINT (p + mcnt, NULL, -2); - break; - - - /* Uses of on_failure_jump: - - Each alternative starts with an on_failure_jump that points - to the beginning of the next alternative. Each alternative - except the last ends with a jump that in effect jumps past - the rest of the alternatives. (They really jump to the - ending jump of the following alternative, because tensioning - these jumps is a hassle.) - - Repeats start with an on_failure_jump that points past both - the repetition text and either the following jump or - pop_failure_jump back to this on_failure_jump. */ - case on_failure_jump: - on_failure: - DEBUG_PRINT1 ("EXECUTING on_failure_jump"); - - EXTRACT_NUMBER_AND_INCR (mcnt, p); - DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); - - /* If this on_failure_jump comes right before a group (i.e., - the original * applied to a group), save the information - for that group and all inner ones, so that if we fail back - to this point, the group's information will be correct. - For example, in \(a*\)*\1, we need the preceding group, - and in \(\(a*\)b*\)\2, we need the inner group. */ - - /* We can't use `p' to check ahead because we push - a failure point to `p + mcnt' after we do this. */ - p1 = p; - - /* We need to skip no_op's before we look for the - start_memory in case this on_failure_jump is happening as - the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 - against aba. */ - while (p1 < pend && (re_opcode_t) *p1 == no_op) - p1++; - - if (p1 < pend && (re_opcode_t) *p1 == start_memory) - { - /* We have a new highest active register now. This will - get reset at the start_memory we are about to get to, - but we will have saved all the registers relevant to - this repetition op, as described above. */ - highest_active_reg = *(p1 + 1) + *(p1 + 2); - if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) - lowest_active_reg = *(p1 + 1); - } - - DEBUG_PRINT1 (":\n"); - PUSH_FAILURE_POINT (p + mcnt, d, -2); - break; - - - /* A smart repeat ends with `maybe_pop_jump'. - We change it to either `pop_failure_jump' or `jump'. */ - case maybe_pop_jump: - EXTRACT_NUMBER_AND_INCR (mcnt, p); - DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); - { - register unsigned char *p2 = p; - - /* Compare the beginning of the repeat with what in the - pattern follows its end. If we can establish that there - is nothing that they would both match, i.e., that we - would have to backtrack because of (as in, e.g., `a*a') - then we can change to pop_failure_jump, because we'll - never have to backtrack. - - This is not true in the case of alternatives: in - `(a|ab)*' we do need to backtrack to the `ab' alternative - (e.g., if the string was `ab'). But instead of trying to - detect that here, the alternative has put on a dummy - failure point which is what we will end up popping. */ - - /* Skip over open/close-group commands. */ - while (p2 + 2 < pend - && ((re_opcode_t) *p2 == stop_memory - || (re_opcode_t) *p2 == start_memory)) - p2 += 3; /* Skip over args, too. */ - - /* If we're at the end of the pattern, we can change. */ - if (p2 == pend) - { - /* Consider what happens when matching ":\(.*\)" - against ":/". I don't really understand this code - yet. */ - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT1 - (" End of pattern: change to `pop_failure_jump'.\n"); - } - - else if ((re_opcode_t) *p2 == exactn - || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) - { - register unsigned char c - = *p2 == (unsigned char) endline ? '\n' : p2[2]; - p1 = p + mcnt; - - /* p1[0] ... p1[2] are the `on_failure_jump' corresponding - to the `maybe_finalize_jump' of this case. Examine what - follows. */ - if ((re_opcode_t) p1[3] == exactn && p1[5] != c) - { - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", - c, p1[5]); - } - - else if ((re_opcode_t) p1[3] == charset - || (re_opcode_t) p1[3] == charset_not) - { - int not = (re_opcode_t) p1[3] == charset_not; - - if (c < (unsigned char) (p1[4] * BYTEWIDTH) - && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) - not = !not; - - /* `not' is equal to 1 if c would match, which means - that we can't change to pop_failure_jump. */ - if (!not) - { - p[-3] = (unsigned char) pop_failure_jump; - DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); - } - } - } - } - p -= 2; /* Point at relative address again. */ - if ((re_opcode_t) p[-1] != pop_failure_jump) - { - p[-1] = (unsigned char) jump; - DEBUG_PRINT1 (" Match => jump.\n"); - goto unconditional_jump; - } - /* Note fall through. */ - - - /* The end of a simple repeat has a pop_failure_jump back to - its matching on_failure_jump, where the latter will push a - failure point. The pop_failure_jump takes off failure - points put on by this pop_failure_jump's matching - on_failure_jump; we got through the pattern to here from the - matching on_failure_jump, so didn't fail. */ - case pop_failure_jump: - { - /* We need to pass separate storage for the lowest and - highest registers, even though we don't care about the - actual values. Otherwise, we will restore only one - register from the stack, since lowest will == highest in - `pop_failure_point'. */ - unsigned dummy_low_reg, dummy_high_reg; - unsigned char *pdummy; - const char *sdummy; - - DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); - POP_FAILURE_POINT (sdummy, pdummy, - dummy_low_reg, dummy_high_reg, - reg_dummy, reg_dummy, reg_info_dummy); - } - /* Note fall through. */ - - - /* Unconditionally jump (without popping any failure points). */ - case jump: - unconditional_jump: - EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ - DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); - p += mcnt; /* Do the jump. */ - DEBUG_PRINT2 ("(to 0x%x).\n", p); - break; - - - /* We need this opcode so we can detect where alternatives end - in `group_match_null_string_p' et al. */ - case jump_past_alt: - DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); - goto unconditional_jump; - - - /* Normally, the on_failure_jump pushes a failure point, which - then gets popped at pop_failure_jump. We will end up at - pop_failure_jump, also, and with a pattern of, say, `a+', we - are skipping over the on_failure_jump, so we have to push - something meaningless for pop_failure_jump to pop. */ - case dummy_failure_jump: - DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); - /* It doesn't matter what we push for the string here. What - the code at `fail' tests is the value for the pattern. */ - PUSH_FAILURE_POINT (0, 0, -2); - goto unconditional_jump; - - - /* At the end of an alternative, we need to push a dummy failure - point in case we are followed by a `pop_failure_jump', because - we don't want the failure point for the alternative to be - popped. For example, matching `(a|ab)*' against `aab' - requires that we match the `ab' alternative. */ - case push_dummy_failure: - DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); - /* See comments just above at `dummy_failure_jump' about the - two zeroes. */ - PUSH_FAILURE_POINT (0, 0, -2); - break; - - /* Have to succeed matching what follows at least n times. - After that, handle like `on_failure_jump'. */ - case succeed_n: - EXTRACT_NUMBER (mcnt, p + 2); - DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); - - assert (mcnt >= 0); - /* Originally, this is how many times we HAVE to succeed. */ - if (mcnt > 0) - { - mcnt--; - p += 2; - STORE_NUMBER_AND_INCR (p, mcnt); - DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); - } - else if (mcnt == 0) - { - DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); - p[2] = (unsigned char) no_op; - p[3] = (unsigned char) no_op; - goto on_failure; - } - break; - - case jump_n: - EXTRACT_NUMBER (mcnt, p + 2); - DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); - - /* Originally, this is how many times we CAN jump. */ - if (mcnt) - { - mcnt--; - STORE_NUMBER (p + 2, mcnt); - goto unconditional_jump; - } - /* If don't have to jump any more, skip over the rest of command. */ - else - p += 4; - break; - - case set_number_at: - { - DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); - - EXTRACT_NUMBER_AND_INCR (mcnt, p); - p1 = p + mcnt; - EXTRACT_NUMBER_AND_INCR (mcnt, p); - DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); - STORE_NUMBER (p1, mcnt); - break; - } - - case wordbound: - DEBUG_PRINT1 ("EXECUTING wordbound.\n"); - if (AT_WORD_BOUNDARY (d)) - break; - goto fail; - - case notwordbound: - DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); - if (AT_WORD_BOUNDARY (d)) - goto fail; - break; - - case wordbeg: - DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); - if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) - break; - goto fail; - - case wordend: - DEBUG_PRINT1 ("EXECUTING wordend.\n"); - if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) - && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) - break; - goto fail; - -#ifdef emacs -#ifdef emacs19 - case before_dot: - DEBUG_PRINT1 ("EXECUTING before_dot.\n"); - if (PTR_CHAR_POS ((unsigned char *) d) >= point) - goto fail; - break; - - case at_dot: - DEBUG_PRINT1 ("EXECUTING at_dot.\n"); - if (PTR_CHAR_POS ((unsigned char *) d) != point) - goto fail; - break; - - case after_dot: - DEBUG_PRINT1 ("EXECUTING after_dot.\n"); - if (PTR_CHAR_POS ((unsigned char *) d) <= point) - goto fail; - break; -#else /* not emacs19 */ - case at_dot: - DEBUG_PRINT1 ("EXECUTING at_dot.\n"); - if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) - goto fail; - break; -#endif /* not emacs19 */ - - case syntaxspec: - DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); - mcnt = *p++; - goto matchsyntax; - - case wordchar: - DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); - mcnt = (int) Sword; - matchsyntax: - PREFETCH (); - if (SYNTAX (*d++) != (enum syntaxcode) mcnt) - goto fail; - SET_REGS_MATCHED (); - break; - - case notsyntaxspec: - DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); - mcnt = *p++; - goto matchnotsyntax; - - case notwordchar: - DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); - mcnt = (int) Sword; - matchnotsyntax: - PREFETCH (); - if (SYNTAX (*d++) == (enum syntaxcode) mcnt) - goto fail; - SET_REGS_MATCHED (); - break; - -#else /* not emacs */ - case wordchar: - DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); - PREFETCH (); - if (!WORDCHAR_P (d)) - goto fail; - SET_REGS_MATCHED (); - d++; - break; - - case notwordchar: - DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); - PREFETCH (); - if (WORDCHAR_P (d)) - goto fail; - SET_REGS_MATCHED (); - d++; - break; -#endif /* not emacs */ - - default: - abort (); - } - continue; /* Successfully executed one pattern command; keep going. */ - - - /* We goto here if a matching operation fails. */ - fail: - if (!FAIL_STACK_EMPTY ()) - { /* A restart point is known. Restore to that state. */ - DEBUG_PRINT1 ("\nFAIL:\n"); - POP_FAILURE_POINT (d, p, - lowest_active_reg, highest_active_reg, - regstart, regend, reg_info); - - /* If this failure point is a dummy, try the next one. */ - if (!p) - goto fail; - - /* If we failed to the end of the pattern, don't examine *p. */ - assert (p <= pend); - if (p < pend) - { - boolean is_a_jump_n = false; - - /* If failed to a backwards jump that's part of a repetition - loop, need to pop this failure point and use the next one. */ - switch ((re_opcode_t) *p) - { - case jump_n: - is_a_jump_n = true; - case maybe_pop_jump: - case pop_failure_jump: - case jump: - p1 = p + 1; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - p1 += mcnt; - - if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) - || (!is_a_jump_n - && (re_opcode_t) *p1 == on_failure_jump)) - goto fail; - break; - default: - /* do nothing */ ; - } - } - - if (d >= string1 && d <= end1) - dend = end_match_1; - } - else - break; /* Matching at this starting point really fails. */ - } /* for (;;) */ - - if (best_regs_set) - goto restore_best_regs; - - FREE_VARIABLES (); - - return -1; /* Failure to match. */ -} /* re_match_2 */ - -/* Subroutine definitions for re_match_2. */ - - -/* We are passed P pointing to a register number after a start_memory. - - Return true if the pattern up to the corresponding stop_memory can - match the empty string, and false otherwise. - - If we find the matching stop_memory, sets P to point to one past its number. - Otherwise, sets P to an undefined byte less than or equal to END. - - We don't handle duplicates properly (yet). */ - -static boolean -group_match_null_string_p (p, end, reg_info) - unsigned char **p, *end; - register_info_type *reg_info; -{ - int mcnt; - /* Point to after the args to the start_memory. */ - unsigned char *p1 = *p + 2; - - while (p1 < end) - { - /* Skip over opcodes that can match nothing, and return true or - false, as appropriate, when we get to one that can't, or to the - matching stop_memory. */ - - switch ((re_opcode_t) *p1) - { - /* Could be either a loop or a series of alternatives. */ - case on_failure_jump: - p1++; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - - /* If the next operation is not a jump backwards in the - pattern. */ - - if (mcnt >= 0) - { - /* Go through the on_failure_jumps of the alternatives, - seeing if any of the alternatives cannot match nothing. - The last alternative starts with only a jump, - whereas the rest start with on_failure_jump and end - with a jump, e.g., here is the pattern for `a|b|c': - - /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 - /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 - /exactn/1/c - - So, we have to first go through the first (n-1) - alternatives and then deal with the last one separately. */ - - - /* Deal with the first (n-1) alternatives, which start - with an on_failure_jump (see above) that jumps to right - past a jump_past_alt. */ - - while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) - { - /* `mcnt' holds how many bytes long the alternative - is, including the ending `jump_past_alt' and - its number. */ - - if (!alt_match_null_string_p (p1, p1 + mcnt - 3, - reg_info)) - return false; - - /* Move to right after this alternative, including the - jump_past_alt. */ - p1 += mcnt; - - /* Break if it's the beginning of an n-th alternative - that doesn't begin with an on_failure_jump. */ - if ((re_opcode_t) *p1 != on_failure_jump) - break; - - /* Still have to check that it's not an n-th - alternative that starts with an on_failure_jump. */ - p1++; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) - { - /* Get to the beginning of the n-th alternative. */ - p1 -= 3; - break; - } - } - - /* Deal with the last alternative: go back and get number - of the `jump_past_alt' just before it. `mcnt' contains - the length of the alternative. */ - EXTRACT_NUMBER (mcnt, p1 - 2); - - if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) - return false; - - p1 += mcnt; /* Get past the n-th alternative. */ - } /* if mcnt > 0 */ - break; - - - case stop_memory: - assert (p1[1] == **p); - *p = p1 + 2; - return true; - - - default: - if (!common_op_match_null_string_p (&p1, end, reg_info)) - return false; - } - } /* while p1 < end */ - - return false; -} /* group_match_null_string_p */ - - -/* Similar to group_match_null_string_p, but doesn't deal with alternatives: - It expects P to be the first byte of a single alternative and END one - byte past the last. The alternative can contain groups. */ - -static boolean -alt_match_null_string_p (p, end, reg_info) - unsigned char *p, *end; - register_info_type *reg_info; -{ - int mcnt; - unsigned char *p1 = p; - - while (p1 < end) - { - /* Skip over opcodes that can match nothing, and break when we get - to one that can't. */ - - switch ((re_opcode_t) *p1) - { - /* It's a loop. */ - case on_failure_jump: - p1++; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - p1 += mcnt; - break; - - default: - if (!common_op_match_null_string_p (&p1, end, reg_info)) - return false; - } - } /* while p1 < end */ - - return true; -} /* alt_match_null_string_p */ - - -/* Deals with the ops common to group_match_null_string_p and - alt_match_null_string_p. - - Sets P to one after the op and its arguments, if any. */ - -static boolean -common_op_match_null_string_p (p, end, reg_info) - unsigned char **p, *end; - register_info_type *reg_info; -{ - int mcnt; - boolean ret; - int reg_no; - unsigned char *p1 = *p; - - switch ((re_opcode_t) *p1++) - { - case no_op: - case begline: - case endline: - case begbuf: - case endbuf: - case wordbeg: - case wordend: - case wordbound: - case notwordbound: -#ifdef emacs - case before_dot: - case at_dot: - case after_dot: -#endif - break; - - case start_memory: - reg_no = *p1; - assert (reg_no > 0 && reg_no <= MAX_REGNUM); - ret = group_match_null_string_p (&p1, end, reg_info); - - /* Have to set this here in case we're checking a group which - contains a group and a back reference to it. */ - - if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) - REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; - - if (!ret) - return false; - break; - - /* If this is an optimized succeed_n for zero times, make the jump. */ - case jump: - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - if (mcnt >= 0) - p1 += mcnt; - else - return false; - break; - - case succeed_n: - /* Get to the number of times to succeed. */ - p1 += 2; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - - if (mcnt == 0) - { - p1 -= 4; - EXTRACT_NUMBER_AND_INCR (mcnt, p1); - p1 += mcnt; - } - else - return false; - break; - - case duplicate: - if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) - return false; - break; - - case set_number_at: - p1 += 4; - - default: - /* All other opcodes mean we cannot match the empty string. */ - return false; - } - - *p = p1; - return true; -} /* common_op_match_null_string_p */ - - -/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN - bytes; nonzero otherwise. */ - -static int -bcmp_translate (s1, s2, len, translate) - unsigned char *s1, *s2; - register int len; - char *translate; -{ - register unsigned char *p1 = s1, *p2 = s2; - while (len) - { - if (translate[*p1++] != translate[*p2++]) return 1; - len--; - } - return 0; -} - -/* Entry points for GNU code. */ - -/* re_compile_pattern is the GNU regular expression compiler: it - compiles PATTERN (of length SIZE) and puts the result in BUFP. - Returns 0 if the pattern was valid, otherwise an error string. - - Assumes the `allocated' (and perhaps `buffer') and `translate' fields - are set in BUFP on entry. - - We call regex_compile to do the actual compilation. */ - -const char * -re_compile_pattern (pattern, length, bufp) - const char *pattern; - int length; - struct re_pattern_buffer *bufp; -{ - reg_errcode_t ret; - - /* GNU code is written to assume at least RE_NREGS registers will be set - (and at least one extra will be -1). */ - bufp->regs_allocated = REGS_UNALLOCATED; - - /* And GNU code determines whether or not to get register information - by passing null for the REGS argument to re_match, etc., not by - setting no_sub. */ - bufp->no_sub = 0; - - /* Match anchors at newline. */ - bufp->newline_anchor = 1; - - ret = regex_compile (pattern, length, re_syntax_options, bufp); - - return re_error_msg[(int) ret]; -} - -/* Entry points compatible with 4.2 BSD regex library. We don't define - them if this is an Emacs or POSIX compilation. */ - -#if !defined (emacs) && !defined (_POSIX_SOURCE) - -/* BSD has one and only one pattern buffer. */ -static struct re_pattern_buffer re_comp_buf; - -char * -re_comp (s) - const char *s; -{ - reg_errcode_t ret; - - if (!s) - { - if (!re_comp_buf.buffer) - return "No previous regular expression"; - return 0; - } - - if (!re_comp_buf.buffer) - { - re_comp_buf.buffer = (unsigned char *) malloc (200); - if (re_comp_buf.buffer == NULL) - return "Memory exhausted"; - re_comp_buf.allocated = 200; - - re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); - if (re_comp_buf.fastmap == NULL) - return "Memory exhausted"; - } - - /* Since `re_exec' always passes NULL for the `regs' argument, we - don't need to initialize the pattern buffer fields which affect it. */ - - /* Match anchors at newlines. */ - re_comp_buf.newline_anchor = 1; - - ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); - - /* Yes, we're discarding `const' here. */ - return (char *) re_error_msg[(int) ret]; -} - - -int -re_exec (s) - const char *s; -{ - const int len = strlen (s); - return - 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); -} -#endif /* not emacs and not _POSIX_SOURCE */ - -/* POSIX.2 functions. Don't define these for Emacs. */ - -#ifndef emacs - -/* regcomp takes a regular expression as a string and compiles it. - - PREG is a regex_t *. We do not expect any fields to be initialized, - since POSIX says we shouldn't. Thus, we set - - `buffer' to the compiled pattern; - `used' to the length of the compiled pattern; - `syntax' to RE_SYNTAX_POSIX_EXTENDED if the - REG_EXTENDED bit in CFLAGS is set; otherwise, to - RE_SYNTAX_POSIX_BASIC; - `newline_anchor' to REG_NEWLINE being set in CFLAGS; - `fastmap' and `fastmap_accurate' to zero; - `re_nsub' to the number of subexpressions in PATTERN. - - PATTERN is the address of the pattern string. - - CFLAGS is a series of bits which affect compilation. - - If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we - use POSIX basic syntax. - - If REG_NEWLINE is set, then . and [^...] don't match newline. - Also, regexec will try a match beginning after every newline. - - If REG_ICASE is set, then we considers upper- and lowercase - versions of letters to be equivalent when matching. - - If REG_NOSUB is set, then when PREG is passed to regexec, that - routine will report only success or failure, and nothing about the - registers. - - It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for - the return codes and their meanings.) */ - -int -regcomp (preg, pattern, cflags) - regex_t *preg; - const char *pattern; - int cflags; -{ - reg_errcode_t ret; - unsigned syntax - = (cflags & REG_EXTENDED) ? - RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; - - /* regex_compile will allocate the space for the compiled pattern. */ - preg->buffer = 0; - preg->allocated = 0; - preg->used = 0; - - /* Don't bother to use a fastmap when searching. This simplifies the - REG_NEWLINE case: if we used a fastmap, we'd have to put all the - characters after newlines into the fastmap. This way, we just try - every character. */ - preg->fastmap = 0; - - if (cflags & REG_ICASE) - { - unsigned i; - - preg->translate = (char *) malloc (CHAR_SET_SIZE); - if (preg->translate == NULL) - return (int) REG_ESPACE; - - /* Map uppercase characters to corresponding lowercase ones. */ - for (i = 0; i < CHAR_SET_SIZE; i++) - preg->translate[i] = ISUPPER (i) ? tolower (i) : i; - } - else - preg->translate = NULL; - - /* If REG_NEWLINE is set, newlines are treated differently. */ - if (cflags & REG_NEWLINE) - { /* REG_NEWLINE implies neither . nor [^...] match newline. */ - syntax &= ~RE_DOT_NEWLINE; - syntax |= RE_HAT_LISTS_NOT_NEWLINE; - /* It also changes the matching behavior. */ - preg->newline_anchor = 1; - } - else - preg->newline_anchor = 0; - - preg->no_sub = !!(cflags & REG_NOSUB); - - /* POSIX says a null character in the pattern terminates it, so we - can use strlen here in compiling the pattern. */ - ret = regex_compile (pattern, strlen (pattern), syntax, preg); - - /* POSIX doesn't distinguish between an unmatched open-group and an - unmatched close-group: both are REG_EPAREN. */ - if (ret == REG_ERPAREN) ret = REG_EPAREN; - - return (int) ret; -} - - -/* regexec searches for a given pattern, specified by PREG, in the - string STRING. - - If NMATCH is zero or REG_NOSUB was set in the cflags argument to - `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at - least NMATCH elements, and we set them to the offsets of the - corresponding matched substrings. - - EFLAGS specifies `execution flags' which affect matching: if - REG_NOTBOL is set, then ^ does not match at the beginning of the - string; if REG_NOTEOL is set, then $ does not match at the end. - - We return 0 if we find a match and REG_NOMATCH if not. */ - -int -regexec (preg, string, nmatch, pmatch, eflags) - const regex_t *preg; - const char *string; - size_t nmatch; - regmatch_t pmatch[]; - int eflags; -{ - int ret; - struct re_registers regs; - regex_t private_preg; - int len = strlen (string); - boolean want_reg_info = !preg->no_sub && nmatch > 0; - - private_preg = *preg; - - private_preg.not_bol = !!(eflags & REG_NOTBOL); - private_preg.not_eol = !!(eflags & REG_NOTEOL); - - /* The user has told us exactly how many registers to return - information about, via `nmatch'. We have to pass that on to the - matching routines. */ - private_preg.regs_allocated = REGS_FIXED; - - if (want_reg_info) - { - regs.num_regs = nmatch; - regs.start = TALLOC (nmatch, regoff_t); - regs.end = TALLOC (nmatch, regoff_t); - if (regs.start == NULL || regs.end == NULL) - return (int) REG_NOMATCH; - } - - /* Perform the searching operation. */ - ret = re_search (&private_preg, string, len, - /* start: */ 0, /* range: */ len, - want_reg_info ? ®s : (struct re_registers *) 0); - - /* Copy the register information to the POSIX structure. */ - if (want_reg_info) - { - if (ret >= 0) - { - unsigned r; - - for (r = 0; r < nmatch; r++) - { - pmatch[r].rm_so = regs.start[r]; - pmatch[r].rm_eo = regs.end[r]; - } - } - - /* If we needed the temporary register info, free the space now. */ - free (regs.start); - free (regs.end); - } - - /* We want zero return to mean success, unlike `re_search'. */ - return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; -} - - -/* Returns a message corresponding to an error code, ERRCODE, returned - from either regcomp or regexec. We don't use PREG here. */ - -size_t -regerror (errcode, preg, errbuf, errbuf_size) - int errcode; - const regex_t *preg; - char *errbuf; - size_t errbuf_size; -{ - const char *msg; - size_t msg_size; - - if (errcode < 0 - || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0]))) - /* Only error codes returned by the rest of the code should be passed - to this routine. If we are given anything else, or if other regex - code generates an invalid error code, then the program has a bug. - Dump core so we can fix it. */ - abort (); - - msg = re_error_msg[errcode]; - - /* POSIX doesn't require that we do anything in this case, but why - not be nice. */ - if (! msg) - msg = "Success"; - - msg_size = strlen (msg) + 1; /* Includes the null. */ - - if (errbuf_size != 0) - { - if (msg_size > errbuf_size) - { - strncpy (errbuf, msg, errbuf_size - 1); - errbuf[errbuf_size - 1] = 0; - } - else - strcpy (errbuf, msg); - } - - return msg_size; -} - - -/* Free dynamically allocated space used by PREG. */ - -void -regfree (preg) - regex_t *preg; -{ - if (preg->buffer != NULL) - free (preg->buffer); - preg->buffer = NULL; - - preg->allocated = 0; - preg->used = 0; - - if (preg->fastmap != NULL) - free (preg->fastmap); - preg->fastmap = NULL; - preg->fastmap_accurate = 0; - - if (preg->translate != NULL) - free (preg->translate); - preg->translate = NULL; -} - -#endif /* not emacs */ - -/* -Local variables: -make-backup-files: t -version-control: t -trim-versions-without-asking: nil -End: -*/ diff --git a/gnu/grep/regex.h b/gnu/grep/regex.h deleted file mode 100644 index 408dd210348f..000000000000 --- a/gnu/grep/regex.h +++ /dev/null @@ -1,490 +0,0 @@ -/* Definitions for data structures and routines for the regular - expression library, version 0.12. - - Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ - -#ifndef __REGEXP_LIBRARY_H__ -#define __REGEXP_LIBRARY_H__ - -/* POSIX says that <sys/types.h> must be included (by the caller) before - <regex.h>. */ - -#ifdef VMS -/* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it - should be there. */ -#include <stddef.h> -#endif - - -/* The following bits are used to determine the regexp syntax we - recognize. The set/not-set meanings are chosen so that Emacs syntax - remains the value 0. The bits are given in alphabetical order, and - the definitions shifted by one from the previous bit; thus, when we - add or remove a bit, only one other definition need change. */ -typedef unsigned reg_syntax_t; - -/* If this bit is not set, then \ inside a bracket expression is literal. - If set, then such a \ quotes the following character. */ -#define RE_BACKSLASH_ESCAPE_IN_LISTS (1) - -/* If this bit is not set, then + and ? are operators, and \+ and \? are - literals. - If set, then \+ and \? are operators and + and ? are literals. */ -#define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) - -/* If this bit is set, then character classes are supported. They are: - [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], - [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. - If not set, then character classes are not supported. */ -#define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) - -/* If this bit is set, then ^ and $ are always anchors (outside bracket - expressions, of course). - If this bit is not set, then it depends: - ^ is an anchor if it is at the beginning of a regular - expression or after an open-group or an alternation operator; - $ is an anchor if it is at the end of a regular expression, or - before a close-group or an alternation operator. - - This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because - POSIX draft 11.2 says that * etc. in leading positions is undefined. - We already implemented a previous draft which made those constructs - invalid, though, so we haven't changed the code back. */ -#define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) - -/* If this bit is set, then special characters are always special - regardless of where they are in the pattern. - If this bit is not set, then special characters are special only in - some contexts; otherwise they are ordinary. Specifically, - * + ? and intervals are only special when not after the beginning, - open-group, or alternation operator. */ -#define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) - -/* If this bit is set, then *, +, ?, and { cannot be first in an re or - immediately after an alternation or begin-group operator. */ -#define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) - -/* If this bit is set, then . matches newline. - If not set, then it doesn't. */ -#define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) - -/* If this bit is set, then . doesn't match NUL. - If not set, then it does. */ -#define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) - -/* If this bit is set, nonmatching lists [^...] do not match newline. - If not set, they do. */ -#define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) - -/* If this bit is set, either \{...\} or {...} defines an - interval, depending on RE_NO_BK_BRACES. - If not set, \{, \}, {, and } are literals. */ -#define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) - -/* If this bit is set, +, ? and | aren't recognized as operators. - If not set, they are. */ -#define RE_LIMITED_OPS (RE_INTERVALS << 1) - -/* If this bit is set, newline is an alternation operator. - If not set, newline is literal. */ -#define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) - -/* If this bit is set, then `{...}' defines an interval, and \{ and \} - are literals. - If not set, then `\{...\}' defines an interval. */ -#define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) - -/* If this bit is set, (...) defines a group, and \( and \) are literals. - If not set, \(...\) defines a group, and ( and ) are literals. */ -#define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) - -/* If this bit is set, then \<digit> matches <digit>. - If not set, then \<digit> is a back-reference. */ -#define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) - -/* If this bit is set, then | is an alternation operator, and \| is literal. - If not set, then \| is an alternation operator, and | is literal. */ -#define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) - -/* If this bit is set, then an ending range point collating higher - than the starting range point, as in [z-a], is invalid. - If not set, then when ending range point collates higher than the - starting range point, the range is ignored. */ -#define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) - -/* If this bit is set, then an unmatched ) is ordinary. - If not set, then an unmatched ) is invalid. */ -#define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) - -/* This global variable defines the particular regexp syntax to use (for - some interfaces). When a regexp is compiled, the syntax used is - stored in the pattern buffer, so changing this does not affect - already-compiled regexps. */ -extern reg_syntax_t re_syntax_options; - -/* Define combinations of the above bits for the standard possibilities. - (The [[[ comments delimit what gets put into the Texinfo file, so - don't delete them!) */ -/* [[[begin syntaxes]]] */ -#define RE_SYNTAX_EMACS 0 - -#define RE_SYNTAX_AWK \ - (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ - | RE_NO_BK_PARENS | RE_NO_BK_REFS \ - | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ - | RE_UNMATCHED_RIGHT_PAREN_ORD) - -#define RE_SYNTAX_POSIX_AWK \ - (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS) - -#define RE_SYNTAX_GREP \ - (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ - | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \ - | RE_NEWLINE_ALT) - -#define RE_SYNTAX_EGREP \ - (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \ - | RE_NEWLINE_ALT | RE_NO_BK_PARENS \ - | RE_NO_BK_VBAR) - -#define RE_SYNTAX_POSIX_EGREP \ - (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES) - -/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ -#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC - -#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC - -/* Syntax bits common to both basic and extended POSIX regex syntax. */ -#define _RE_SYNTAX_POSIX_COMMON \ - (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \ - | RE_INTERVALS | RE_NO_EMPTY_RANGES) - -#define RE_SYNTAX_POSIX_BASIC \ - (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM) - -/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes - RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this - isn't minimal, since other operators, such as \`, aren't disabled. */ -#define RE_SYNTAX_POSIX_MINIMAL_BASIC \ - (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) - -#define RE_SYNTAX_POSIX_EXTENDED \ - (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ - | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ - | RE_UNMATCHED_RIGHT_PAREN_ORD) - -/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS - replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */ -#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ - (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ - | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ - | RE_NO_BK_PARENS | RE_NO_BK_REFS \ - | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD) -/* [[[end syntaxes]]] */ - -/* Maximum number of duplicates an interval can allow. Some systems - (erroneously) define this in other header files, but we want our - value, so remove any previous define. */ -#ifdef RE_DUP_MAX -#undef RE_DUP_MAX -#endif -#define RE_DUP_MAX ((1 << 15) - 1) - - -/* POSIX `cflags' bits (i.e., information for `regcomp'). */ - -/* If this bit is set, then use extended regular expression syntax. - If not set, then use basic regular expression syntax. */ -#define REG_EXTENDED 1 - -/* If this bit is set, then ignore case when matching. - If not set, then case is significant. */ -#define REG_ICASE (REG_EXTENDED << 1) - -/* If this bit is set, then anchors do not match at newline - characters in the string. - If not set, then anchors do match at newlines. */ -#define REG_NEWLINE (REG_ICASE << 1) - -/* If this bit is set, then report only success or fail in regexec. - If not set, then returns differ between not matching and errors. */ -#define REG_NOSUB (REG_NEWLINE << 1) - - -/* POSIX `eflags' bits (i.e., information for regexec). */ - -/* If this bit is set, then the beginning-of-line operator doesn't match - the beginning of the string (presumably because it's not the - beginning of a line). - If not set, then the beginning-of-line operator does match the - beginning of the string. */ -#define REG_NOTBOL 1 - -/* Like REG_NOTBOL, except for the end-of-line. */ -#define REG_NOTEOL (1 << 1) - - -/* If any error codes are removed, changed, or added, update the - `re_error_msg' table in regex.c. */ -typedef enum -{ - REG_NOERROR = 0, /* Success. */ - REG_NOMATCH, /* Didn't find a match (for regexec). */ - - /* POSIX regcomp return error codes. (In the order listed in the - standard.) */ - REG_BADPAT, /* Invalid pattern. */ - REG_ECOLLATE, /* Not implemented. */ - REG_ECTYPE, /* Invalid character class name. */ - REG_EESCAPE, /* Trailing backslash. */ - REG_ESUBREG, /* Invalid back reference. */ - REG_EBRACK, /* Unmatched left bracket. */ - REG_EPAREN, /* Parenthesis imbalance. */ - REG_EBRACE, /* Unmatched \{. */ - REG_BADBR, /* Invalid contents of \{\}. */ - REG_ERANGE, /* Invalid range end. */ - REG_ESPACE, /* Ran out of memory. */ - REG_BADRPT, /* No preceding re for repetition op. */ - - /* Error codes we've added. */ - REG_EEND, /* Premature end. */ - REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */ - REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */ -} reg_errcode_t; - -/* This data structure represents a compiled pattern. Before calling - the pattern compiler, the fields `buffer', `allocated', `fastmap', - `translate', and `no_sub' can be set. After the pattern has been - compiled, the `re_nsub' field is available. All other fields are - private to the regex routines. */ - -struct re_pattern_buffer -{ -/* [[[begin pattern_buffer]]] */ - /* Space that holds the compiled pattern. It is declared as - `unsigned char *' because its elements are - sometimes used as array indexes. */ - unsigned char *buffer; - - /* Number of bytes to which `buffer' points. */ - unsigned long allocated; - - /* Number of bytes actually used in `buffer'. */ - unsigned long used; - - /* Syntax setting with which the pattern was compiled. */ - reg_syntax_t syntax; - - /* Pointer to a fastmap, if any, otherwise zero. re_search uses - the fastmap, if there is one, to skip over impossible - starting points for matches. */ - char *fastmap; - - /* Either a translate table to apply to all characters before - comparing them, or zero for no translation. The translation - is applied to a pattern when it is compiled and to a string - when it is matched. */ - char *translate; - - /* Number of subexpressions found by the compiler. */ - size_t re_nsub; - - /* Zero if this pattern cannot match the empty string, one else. - Well, in truth it's used only in `re_search_2', to see - whether or not we should use the fastmap, so we don't set - this absolutely perfectly; see `re_compile_fastmap' (the - `duplicate' case). */ - unsigned can_be_null : 1; - - /* If REGS_UNALLOCATED, allocate space in the `regs' structure - for `max (RE_NREGS, re_nsub + 1)' groups. - If REGS_REALLOCATE, reallocate space if necessary. - If REGS_FIXED, use what's there. */ -#define REGS_UNALLOCATED 0 -#define REGS_REALLOCATE 1 -#define REGS_FIXED 2 - unsigned regs_allocated : 2; - - /* Set to zero when `regex_compile' compiles a pattern; set to one - by `re_compile_fastmap' if it updates the fastmap. */ - unsigned fastmap_accurate : 1; - - /* If set, `re_match_2' does not return information about - subexpressions. */ - unsigned no_sub : 1; - - /* If set, a beginning-of-line anchor doesn't match at the - beginning of the string. */ - unsigned not_bol : 1; - - /* Similarly for an end-of-line anchor. */ - unsigned not_eol : 1; - - /* If true, an anchor at a newline matches. */ - unsigned newline_anchor : 1; - -/* [[[end pattern_buffer]]] */ -}; - -typedef struct re_pattern_buffer regex_t; - - -/* search.c (search_buffer) in Emacs needs this one opcode value. It is - defined both in `regex.c' and here. */ -#define RE_EXACTN_VALUE 1 - -/* Type for byte offsets within the string. POSIX mandates this. */ -typedef int regoff_t; - - -/* This is the structure we store register match data in. See - regex.texinfo for a full description of what registers match. */ -struct re_registers -{ - unsigned num_regs; - regoff_t *start; - regoff_t *end; -}; - - -/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, - `re_match_2' returns information about at least this many registers - the first time a `regs' structure is passed. */ -#ifndef RE_NREGS -#define RE_NREGS 30 -#endif - - -/* POSIX specification for registers. Aside from the different names than - `re_registers', POSIX uses an array of structures, instead of a - structure of arrays. */ -typedef struct -{ - regoff_t rm_so; /* Byte offset from string's start to substring's start. */ - regoff_t rm_eo; /* Byte offset from string's start to substring's end. */ -} regmatch_t; - -/* Declarations for routines. */ - -/* To avoid duplicating every routine declaration -- once with a - prototype (if we are ANSI), and once without (if we aren't) -- we - use the following macro to declare argument types. This - unfortunately clutters up the declarations a bit, but I think it's - worth it. */ - -#if __STDC__ - -#define _RE_ARGS(args) args - -#else /* not __STDC__ */ - -#define _RE_ARGS(args) () - -#endif /* not __STDC__ */ - -/* Sets the current default syntax to SYNTAX, and return the old syntax. - You can also simply assign to the `re_syntax_options' variable. */ -extern reg_syntax_t re_set_syntax _RE_ARGS ((reg_syntax_t syntax)); - -/* Compile the regular expression PATTERN, with length LENGTH - and syntax given by the global `re_syntax_options', into the buffer - BUFFER. Return NULL if successful, and an error string if not. */ -extern const char *re_compile_pattern - _RE_ARGS ((const char *pattern, int length, - struct re_pattern_buffer *buffer)); - - -/* Compile a fastmap for the compiled pattern in BUFFER; used to - accelerate searches. Return 0 if successful and -2 if was an - internal error. */ -extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer)); - - -/* Search in the string STRING (with length LENGTH) for the pattern - compiled into BUFFER. Start searching at position START, for RANGE - characters. Return the starting position of the match, -1 for no - match, or -2 for an internal error. Also return register - information in REGS (if REGS and BUFFER->no_sub are nonzero). */ -extern int re_search - _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, - int length, int start, int range, struct re_registers *regs)); - - -/* Like `re_search', but search in the concatenation of STRING1 and - STRING2. Also, stop searching at index START + STOP. */ -extern int re_search_2 - _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, - int length1, const char *string2, int length2, - int start, int range, struct re_registers *regs, int stop)); - - -/* Like `re_search', but return how many characters in STRING the regexp - in BUFFER matched, starting at position START. */ -extern int re_match - _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, - int length, int start, struct re_registers *regs)); - - -/* Relates to `re_match' as `re_search_2' relates to `re_search'. */ -extern int re_match_2 - _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, - int length1, const char *string2, int length2, - int start, struct re_registers *regs, int stop)); - - -/* Set REGS to hold NUM_REGS registers, storing them in STARTS and - ENDS. Subsequent matches using BUFFER and REGS will use this memory - for recording register information. STARTS and ENDS must be - allocated with malloc, and must each be at least `NUM_REGS * sizeof - (regoff_t)' bytes long. - - If NUM_REGS == 0, then subsequent matches should allocate their own - register data. - - Unless this function is called, the first search or match using - PATTERN_BUFFER will allocate its own register data, without - freeing the old data. */ -extern void re_set_registers - _RE_ARGS ((struct re_pattern_buffer *buffer, struct re_registers *regs, - unsigned num_regs, regoff_t *starts, regoff_t *ends)); - -/* 4.2 bsd compatibility. */ -extern char *re_comp _RE_ARGS ((const char *)); -extern int re_exec _RE_ARGS ((const char *)); - -/* POSIX compatibility. */ -extern int regcomp _RE_ARGS ((regex_t *preg, const char *pattern, int cflags)); -extern int regexec - _RE_ARGS ((const regex_t *preg, const char *string, size_t nmatch, - regmatch_t pmatch[], int eflags)); -extern size_t regerror - _RE_ARGS ((int errcode, const regex_t *preg, char *errbuf, - size_t errbuf_size)); -extern void regfree _RE_ARGS ((regex_t *preg)); - -#endif /* not __REGEXP_LIBRARY_H__ */ - -/* -Local variables: -make-backup-files: t -version-control: t -trim-versions-without-asking: nil -End: -*/ diff --git a/gnu/grep/search.c b/gnu/grep/search.c deleted file mode 100644 index d2be489f5757..000000000000 --- a/gnu/grep/search.c +++ /dev/null @@ -1,481 +0,0 @@ -/* search.c - searching subroutines using dfa, kwset and regex for grep. - Copyright (C) 1992 Free Software Foundation, Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2, or (at your option) - any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - - Written August 1992 by Mike Haertel. */ - -#include <ctype.h> - -#ifdef STDC_HEADERS -#include <limits.h> -#include <stdlib.h> -#else -#define UCHAR_MAX 255 -#include <sys/types.h> -extern char *malloc(); -#endif - -#ifdef HAVE_MEMCHR -#include <string.h> -#ifdef NEED_MEMORY_H -#include <memory.h> -#endif -#else -#ifdef __STDC__ -extern void *memchr(); -#else -extern char *memchr(); -#endif -#endif - -#if defined(HAVE_STRING_H) || defined(STDC_HEADERS) -#undef bcopy -#define bcopy(s, d, n) memcpy((d), (s), (n)) -#endif - -#ifdef isascii -#define ISALNUM(C) (isascii(C) && isalnum(C)) -#define ISUPPER(C) (isascii(C) && isupper(C)) -#else -#define ISALNUM(C) isalnum(C) -#define ISUPPER(C) isupper(C) -#endif - -#define TOLOWER(C) (ISUPPER(C) ? tolower(C) : (C)) - -#include "grep.h" -#include "dfa.h" -#include "kwset.h" -#include "regex.h" - -#define NCHAR (UCHAR_MAX + 1) - -#if __STDC__ -static void Gcompile(char *, size_t); -static void Ecompile(char *, size_t); -static char *EGexecute(char *, size_t, char **); -static void Fcompile(char *, size_t); -static char *Fexecute(char *, size_t, char **); -#else -static void Gcompile(); -static void Ecompile(); -static char *EGexecute(); -static void Fcompile(); -static char *Fexecute(); -#endif - -/* Here is the matchers vector for the main program. */ -struct matcher matchers[] = { - { "default", Gcompile, EGexecute }, - { "grep", Gcompile, EGexecute }, - { "ggrep", Gcompile, EGexecute }, - { "egrep", Ecompile, EGexecute }, - { "posix-egrep", Ecompile, EGexecute }, - { "gegrep", Ecompile, EGexecute }, - { "fgrep", Fcompile, Fexecute }, - { "gfgrep", Fcompile, Fexecute }, - { 0, 0, 0 }, -}; - -/* For -w, we also consider _ to be word constituent. */ -#define WCHAR(C) (ISALNUM(C) || (C) == '_') - -/* DFA compiled regexp. */ -static struct dfa dfa; - -/* Regex compiled regexp. */ -static struct re_pattern_buffer regex; - -/* KWset compiled pattern. For Ecompile and Gcompile, we compile - a list of strings, at least one of which is known to occur in - any string matching the regexp. */ -static kwset_t kwset; - -/* Last compiled fixed string known to exactly match the regexp. - If kwsexec() returns < lastexact, then we don't need to - call the regexp matcher at all. */ -static int lastexact; - -void -dfaerror(mesg) - char *mesg; -{ - fatal(mesg, 0); -} - -static void -kwsinit() -{ - static char trans[NCHAR]; - int i; - - if (match_icase) - for (i = 0; i < NCHAR; ++i) - trans[i] = TOLOWER(i); - - if (!(kwset = kwsalloc(match_icase ? trans : (char *) 0))) - fatal("memory exhausted", 0); -} - -/* If the DFA turns out to have some set of fixed strings one of - which must occur in the match, then we build a kwset matcher - to find those strings, and thus quickly filter out impossible - matches. */ -static void -kwsmusts() -{ - struct dfamust *dm; - char *err; - - if (dfa.musts) - { - kwsinit(); - /* First, we compile in the substrings known to be exact - matches. The kwset matcher will return the index - of the matching string that it chooses. */ - for (dm = dfa.musts; dm; dm = dm->next) - { - if (!dm->exact) - continue; - ++lastexact; - if ((err = kwsincr(kwset, dm->must, strlen(dm->must))) != 0) - fatal(err, 0); - } - /* Now, we compile the substrings that will require - the use of the regexp matcher. */ - for (dm = dfa.musts; dm; dm = dm->next) - { - if (dm->exact) - continue; - if ((err = kwsincr(kwset, dm->must, strlen(dm->must))) != 0) - fatal(err, 0); - } - if ((err = kwsprep(kwset)) != 0) - fatal(err, 0); - } -} - -static void -Gcompile(pattern, size) - char *pattern; - size_t size; -{ -#ifdef __STDC__ - const -#endif - char *err; - - re_set_syntax(RE_SYNTAX_GREP | RE_HAT_LISTS_NOT_NEWLINE); - dfasyntax(RE_SYNTAX_GREP | RE_HAT_LISTS_NOT_NEWLINE, match_icase); - - if ((err = re_compile_pattern(pattern, size, ®ex)) != 0) - fatal(err, 0); - - dfainit(&dfa); - - /* In the match_words and match_lines cases, we use a different pattern - for the DFA matcher that will quickly throw out cases that won't work. - Then if DFA succeeds we do some hairy stuff using the regex matcher - to decide whether the match should really count. */ - if (match_words || match_lines) - { - /* In the whole-word case, we use the pattern: - (^|[^A-Za-z_])(userpattern)([^A-Za-z_]|$). - In the whole-line case, we use the pattern: - ^(userpattern)$. - BUG: Using [A-Za-z_] is locale-dependent! */ - - char *n = malloc(size + 50); - int i = 0; - - strcpy(n, ""); - - if (match_lines) - strcpy(n, "^\\("); - if (match_words) - strcpy(n, "\\(^\\|[^0-9A-Za-z_]\\)\\("); - - i = strlen(n); - bcopy(pattern, n + i, size); - i += size; - - if (match_words) - strcpy(n + i, "\\)\\([^0-9A-Za-z_]\\|$\\)"); - if (match_lines) - strcpy(n + i, "\\)$"); - - i += strlen(n + i); - dfacomp(n, i, &dfa, 1); - } - else - dfacomp(pattern, size, &dfa, 1); - - kwsmusts(); -} - -static void -Ecompile(pattern, size) - char *pattern; - size_t size; -{ -#ifdef __STDC__ - const -#endif - char *err; - - if (strcmp(matcher, "posix-egrep") == 0) - { - re_set_syntax(RE_SYNTAX_POSIX_EGREP); - dfasyntax(RE_SYNTAX_POSIX_EGREP, match_icase); - } - else - { - re_set_syntax(RE_SYNTAX_EGREP); - dfasyntax(RE_SYNTAX_EGREP, match_icase); - } - - if ((err = re_compile_pattern(pattern, size, ®ex)) != 0) - fatal(err, 0); - - dfainit(&dfa); - - /* In the match_words and match_lines cases, we use a different pattern - for the DFA matcher that will quickly throw out cases that won't work. - Then if DFA succeeds we do some hairy stuff using the regex matcher - to decide whether the match should really count. */ - if (match_words || match_lines) - { - /* In the whole-word case, we use the pattern: - (^|[^A-Za-z_])(userpattern)([^A-Za-z_]|$). - In the whole-line case, we use the pattern: - ^(userpattern)$. - BUG: Using [A-Za-z_] is locale-dependent! */ - - char *n = malloc(size + 50); - int i = 0; - - strcpy(n, ""); - - if (match_lines) - strcpy(n, "^("); - if (match_words) - strcpy(n, "(^|[^0-9A-Za-z_])("); - - i = strlen(n); - bcopy(pattern, n + i, size); - i += size; - - if (match_words) - strcpy(n + i, ")([^0-9A-Za-z_]|$)"); - if (match_lines) - strcpy(n + i, ")$"); - - i += strlen(n + i); - dfacomp(n, i, &dfa, 1); - } - else - dfacomp(pattern, size, &dfa, 1); - - kwsmusts(); -} - -static char * -EGexecute(buf, size, endp) - char *buf; - size_t size; - char **endp; -{ - register char *buflim, *beg, *end, save; - int backref, start, len; - struct kwsmatch kwsm; - static struct re_registers regs; /* This is static on account of a BRAIN-DEAD - Q@#%!# library interface in regex.c. */ - - buflim = buf + size; - - for (beg = end = buf; end < buflim; beg = end + 1) - { - if (kwset) - { - /* Find a possible match using the KWset matcher. */ - beg = kwsexec(kwset, beg, buflim - beg, &kwsm); - if (!beg) - goto failure; - /* Narrow down to the line containing the candidate, and - run it through DFA. */ - end = memchr(beg, '\n', buflim - beg); - if (!end) - end = buflim; - while (beg > buf && beg[-1] != '\n') - --beg; - save = *end; - if (kwsm.index < lastexact) - goto success; - if (!dfaexec(&dfa, beg, end, 0, (int *) 0, &backref)) - { - *end = save; - continue; - } - *end = save; - /* Successful, no backreferences encountered. */ - if (!backref) - goto success; - } - else - { - /* No good fixed strings; start with DFA. */ - save = *buflim; - beg = dfaexec(&dfa, beg, buflim, 0, (int *) 0, &backref); - *buflim = save; - if (!beg) - goto failure; - /* Narrow down to the line we've found. */ - end = memchr(beg, '\n', buflim - beg); - if (!end) - end = buflim; - while (beg > buf && beg[-1] != '\n') - --beg; - /* Successful, no backreferences encountered! */ - if (!backref) - goto success; - } - /* If we've made it to this point, this means DFA has seen - a probable match, and we need to run it through Regex. */ - regex.not_eol = 0; - if ((start = re_search(®ex, beg, end - beg, 0, end - beg, ®s)) >= 0) - { - len = regs.end[0] - start; - if (!match_lines && !match_words || match_lines && len == end - beg) - goto success; - /* If -w, check if the match aligns with word boundaries. - We do this iteratively because: - (a) the line may contain more than one occurence of the pattern, and - (b) Several alternatives in the pattern might be valid at a given - point, and we may need to consider a shorter one to find a word - boundary. */ - if (match_words) - while (start >= 0) - { - if ((start == 0 || !WCHAR(beg[start - 1])) - && (len == end - beg || !WCHAR(beg[start + len]))) - goto success; - if (len > 0) - { - /* Try a shorter length anchored at the same place. */ - --len; - regex.not_eol = 1; - len = re_match(®ex, beg, start + len, start, ®s); - } - if (len <= 0) - { - /* Try looking further on. */ - if (start == end - beg) - break; - ++start; - regex.not_eol = 0; - start = re_search(®ex, beg, end - beg, - start, end - beg - start, ®s); - len = regs.end[0] - start; - } - } - } - } - - failure: - return 0; - - success: - *endp = end < buflim ? end + 1 : end; - return beg; -} - -static void -Fcompile(pattern, size) - char *pattern; - size_t size; -{ - char *beg, *lim, *err; - - kwsinit(); - beg = pattern; - do - { - for (lim = beg; lim < pattern + size && *lim != '\n'; ++lim) - ; - if ((err = kwsincr(kwset, beg, lim - beg)) != 0) - fatal(err, 0); - if (lim < pattern + size) - ++lim; - beg = lim; - } - while (beg < pattern + size); - - if ((err = kwsprep(kwset)) != 0) - fatal(err, 0); -} - -static char * -Fexecute(buf, size, endp) - char *buf; - size_t size; - char **endp; -{ - register char *beg, *try, *end; - register size_t len; - struct kwsmatch kwsmatch; - - for (beg = buf; beg <= buf + size; ++beg) - { - if (!(beg = kwsexec(kwset, beg, buf + size - beg, &kwsmatch))) - return 0; - len = kwsmatch.size[0]; - if (match_lines) - { - if (beg > buf && beg[-1] != '\n') - continue; - if (beg + len < buf + size && beg[len] != '\n') - continue; - goto success; - } - else if (match_words) - for (try = beg; len && try;) - { - if (try > buf && WCHAR((unsigned char) try[-1])) - break; - if (try + len < buf + size && WCHAR((unsigned char) try[len])) - { - try = kwsexec(kwset, beg, --len, &kwsmatch); - len = kwsmatch.size[0]; - } - else - goto success; - } - else - goto success; - } - - return 0; - - success: - if ((end = memchr(beg + len, '\n', (buf + size) - (beg + len))) != 0) - ++end; - else - end = buf + size; - *endp = end; - while (beg > buf && beg[-1] != '\n') - --beg; - return beg; -} diff --git a/gnu/grep/tests/check.sh b/gnu/grep/tests/check.sh deleted file mode 100644 index d2c8fdbc64dc..000000000000 --- a/gnu/grep/tests/check.sh +++ /dev/null @@ -1,24 +0,0 @@ -#! /bin/sh -# Regression test for GNU grep. -# Usage: regress.sh [testdir] - -testdir=${1-tests} - -failures=0 - -# The Khadafy test is brought to you by Scott Anderson . . . -./grep -E -f $testdir/khadafy.regexp $testdir/khadafy.lines > khadafy.out -if cmp $testdir/khadafy.lines khadafy.out -then - : -else - echo Khadafy test failed -- output left on khadafy.out - failures=1 -fi - -# . . . and the following by Henry Spencer. - -${AWK-awk} -F: -f $testdir/scriptgen.awk $testdir/spencer.tests > tmp.script - -sh tmp.script && exit $failures -exit 1 diff --git a/gnu/grep/tests/khadafy.lines b/gnu/grep/tests/khadafy.lines deleted file mode 100644 index 57e21a17948d..000000000000 --- a/gnu/grep/tests/khadafy.lines +++ /dev/null @@ -1,32 +0,0 @@ -1) Muammar Qaddafi -2) Mo'ammar Gadhafi -3) Muammar Kaddafi -4) Muammar Qadhafi -5) Moammar El Kadhafi -6) Muammar Gadafi -7) Mu'ammar al-Qadafi -8) Moamer El Kazzafi -9) Moamar al-Gaddafi -10) Mu'ammar Al Qathafi -11) Muammar Al Qathafi -12) Mo'ammar el-Gadhafi -13) Moamar El Kadhafi -14) Muammar al-Qadhafi -15) Mu'ammar al-Qadhdhafi -16) Mu'ammar Qadafi -17) Moamar Gaddafi -18) Mu'ammar Qadhdhafi -19) Muammar Khaddafi -20) Muammar al-Khaddafi -21) Mu'amar al-Kadafi -22) Muammar Ghaddafy -23) Muammar Ghadafi -24) Muammar Ghaddafi -25) Muamar Kaddafi -26) Muammar Quathafi -27) Muammar Gheddafi -28) Muamar Al-Kaddafi -29) Moammar Khadafy -30) Moammar Qudhafi -31) Mu'ammar al-Qaddafi -32) Mulazim Awwal Mu'ammar Muhammad Abu Minyar al-Qadhafi diff --git a/gnu/grep/tests/khadafy.regexp b/gnu/grep/tests/khadafy.regexp deleted file mode 100644 index 46fe8ddd6dad..000000000000 --- a/gnu/grep/tests/khadafy.regexp +++ /dev/null @@ -1 +0,0 @@ -M[ou]'?am+[ae]r .*([AEae]l[- ])?[GKQ]h?[aeu]+([dtz][dhz]?)+af[iy] diff --git a/gnu/grep/tests/scriptgen.awk b/gnu/grep/tests/scriptgen.awk deleted file mode 100644 index 44ef4df16e53..000000000000 --- a/gnu/grep/tests/scriptgen.awk +++ /dev/null @@ -1,10 +0,0 @@ -BEGIN { print "failures=0"; } -$0 !~ /^#/ && NF == 3 { - print "echo '" $3 "' | ./grep -E -e '" $2 "' > /dev/null 2>&1"; - print "if [ $? != " $1 " ]" - print "then" - printf "\techo Spencer test \\#%d failed\n", ++n - print "\tfailures=1" - print "fi" -} -END { print "exit $failures"; } diff --git a/gnu/grep/tests/spencer.tests b/gnu/grep/tests/spencer.tests deleted file mode 100644 index 913f1980c832..000000000000 --- a/gnu/grep/tests/spencer.tests +++ /dev/null @@ -1,122 +0,0 @@ -0:abc:abc -1:abc:xbc -1:abc:axc -1:abc:abx -0:abc:xabcy -0:abc:ababc -0:ab*c:abc -0:ab*bc:abc -0:ab*bc:abbc -0:ab*bc:abbbbc -0:ab+bc:abbc -1:ab+bc:abc -1:ab+bc:abq -0:ab+bc:abbbbc -0:ab?bc:abbc -0:ab?bc:abc -1:ab?bc:abbbbc -0:ab?c:abc -0:^abc$:abc -1:^abc$:abcc -0:^abc:abcc -1:^abc$:aabc -0:abc$:aabc -0:^:abc -0:$:abc -0:a.c:abc -0:a.c:axc -0:a.*c:axyzc -1:a.*c:axyzd -1:a[bc]d:abc -0:a[bc]d:abd -1:a[b-d]e:abd -0:a[b-d]e:ace -0:a[b-d]:aac -0:a[-b]:a- -0:a[b-]:a- -1:a[b-a]:- -2:a[]b:- -2:a[:- -0:a]:a] -0:a[]]b:a]b -0:a[^bc]d:aed -1:a[^bc]d:abd -0:a[^-b]c:adc -1:a[^-b]c:a-c -1:a[^]b]c:a]c -0:a[^]b]c:adc -0:ab|cd:abc -0:ab|cd:abcd -0:()ef:def -0:()*:- -1:*a:- -0:^*:- -0:$*:- -1:(*)b:- -1:$b:b -2:a\:- -0:a\(b:a(b -0:a\(*b:ab -0:a\(*b:a((b -1:a\x:a\x -2:abc):- -2:(abc:- -0:((a)):abc -0:(a)b(c):abc -0:a+b+c:aabbabc -0:a**:- -0:a*?:- -0:(a*)*:- -0:(a*)+:- -0:(a|)*:- -0:(a*|b)*:- -0:(a+|b)*:ab -0:(a+|b)+:ab -0:(a+|b)?:ab -0:[^ab]*:cde -0:(^)*:- -0:(ab|)*:- -2:)(:- -1:abc: -1:abc: -0:a*: -0:([abc])*d:abbbcd -0:([abc])*bcd:abcd -0:a|b|c|d|e:e -0:(a|b|c|d|e)f:ef -0:((a*|b))*:- -0:abcd*efg:abcdefg -0:ab*:xabyabbbz -0:ab*:xayabbbz -0:(ab|cd)e:abcde -0:[abhgefdc]ij:hij -1:^(ab|cd)e:abcde -0:(abc|)ef:abcdef -0:(a|b)c*d:abcd -0:(ab|ab*)bc:abc -0:a([bc]*)c*:abc -0:a([bc]*)(c*d):abcd -0:a([bc]+)(c*d):abcd -0:a([bc]*)(c+d):abcd -0:a[bcd]*dcdcde:adcdcde -1:a[bcd]+dcdcde:adcdcde -0:(ab|a)b*c:abc -0:((a)(b)c)(d):abcd -0:[A-Za-z_][A-Za-z0-9_]*:alpha -0:^a(bc+|b[eh])g|.h$:abh -0:(bc+d$|ef*g.|h?i(j|k)):effgz -0:(bc+d$|ef*g.|h?i(j|k)):ij -1:(bc+d$|ef*g.|h?i(j|k)):effg -1:(bc+d$|ef*g.|h?i(j|k)):bcdd -0:(bc+d$|ef*g.|h?i(j|k)):reffgz -1:((((((((((a)))))))))):- -0:(((((((((a))))))))):a -1:multiple words of text:uh-uh -0:multiple words:multiple words, yeah -0:(.*)c(.*):abcde -1:\((.*),:(.*)\) -1:[k]:ab -0:abcd:abcd -0:a(bc)d:abcd -0:a[-]?c:ac -0:(....).*\1:beriberi |
