aboutsummaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gdb/doc/gdb.info-1
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/gdb/doc/gdb.info-1')
-rw-r--r--gnu/usr.bin/gdb/doc/gdb.info-11304
1 files changed, 1304 insertions, 0 deletions
diff --git a/gnu/usr.bin/gdb/doc/gdb.info-1 b/gnu/usr.bin/gdb/doc/gdb.info-1
new file mode 100644
index 000000000000..a1d71201a5c8
--- /dev/null
+++ b/gnu/usr.bin/gdb/doc/gdb.info-1
@@ -0,0 +1,1304 @@
+This is Info file ./gdb.info, produced by Makeinfo-1.52 from the input
+file gdb.texinfo.
+
+START-INFO-DIR-ENTRY
+* Gdb:: The GNU debugger.
+END-INFO-DIR-ENTRY
+ This file documents the GNU debugger GDB.
+
+ This is Edition 4.09, August 1993, of `Debugging with GDB: the GNU
+Source-Level Debugger' for GDB Version 4.11.
+
+ Copyright (C) 1988, '89, '90, '91, '92, '93 Free Software
+Foundation, Inc.
+
+ Permission is granted to make and distribute verbatim copies of this
+manual provided the copyright notice and this permission notice are
+preserved on all copies.
+
+ Permission is granted to copy and distribute modified versions of
+this manual under the conditions for verbatim copying, provided also
+that the entire resulting derived work is distributed under the terms
+of a permission notice identical to this one.
+
+ Permission is granted to copy and distribute translations of this
+manual into another language, under the above conditions for modified
+versions.
+
+
+File: gdb.info, Node: Top, Next: Summary, Prev: (DIR), Up: (DIR)
+
+Debugging with GDB
+******************
+
+ This file describes GDB, the GNU symbolic debugger.
+
+ This is Edition 4.09, August 1993, for GDB Version 4.11.
+
+* Menu:
+
+* Summary:: Summary of GDB
+
+* New Features:: New features since GDB version 3.5
+
+* Sample Session:: A sample GDB session
+
+* Invocation:: Getting in and out of GDB
+* Commands:: GDB commands
+* Running:: Running programs under GDB
+* Stopping:: Stopping and continuing
+* Stack:: Examining the stack
+* Source:: Examining source files
+* Data:: Examining data
+
+* Languages:: Using GDB with different languages
+
+
+* Symbols:: Examining the symbol table
+* Altering:: Altering execution
+* GDB Files:: GDB files
+* Targets:: Specifying a debugging target
+* Controlling GDB:: Controlling GDB
+* Sequences:: Canned sequences of commands
+
+* Emacs:: Using GDB under GNU Emacs
+
+* GDB Bugs:: Reporting bugs in GDB
+* Command Line Editing:: Facilities of the readline library
+* Using History Interactively::
+
+* Renamed Commands::
+
+* Formatting Documentation:: How to format and print GDB documentation
+* Installing GDB:: Installing GDB
+
+* Index:: Index
+
+
+File: gdb.info, Node: Summary, Next: New Features, Prev: Top, Up: Top
+
+Summary of GDB
+**************
+
+ The purpose of a debugger such as GDB is to allow you to see what is
+going on "inside" another program while it executes--or what another
+program was doing at the moment it crashed.
+
+ GDB can do four main kinds of things (plus other things in support of
+these) to help you catch bugs in the act:
+
+ * Start your program, specifying anything that might affect its
+ behavior.
+
+ * Make your program stop on specified conditions.
+
+ * Examine what has happened, when your program has stopped.
+
+ * Change things in your program, so you can experiment with
+ correcting the effects of one bug and go on to learn about another.
+
+ You can use GDB to debug programs written in C, C++, and Modula-2.
+G{No Value For "DBN"} can be used to debug programs written in Fortran,
+although it does not yet support entering expressions, printing values,
+etc. using Fortran syntax. It may be necessary to refer to some
+variables with a trailing underscore.
+
+* Menu:
+
+* Free Software:: Freely redistributable software
+* Contributors:: Contributors to GDB
+
+
+File: gdb.info, Node: Free Software, Next: Contributors, Up: Summary
+
+Free software
+=============
+
+ GDB is "free software", protected by the GNU General Public License
+(GPL). The GPL gives you the freedom to copy or adapt a licensed
+program--but every person getting a copy also gets with it the freedom
+to modify that copy (which means that they must get access to the
+source code), and the freedom to distribute further copies. Typical
+software companies use copyrights to limit your freedoms; the Free
+Software Foundation uses the GPL to preserve these freedoms.
+
+ Fundamentally, the General Public License is a license which says
+that you have these freedoms and that you cannot take these freedoms
+away from anyone else.
+
+
+File: gdb.info, Node: Contributors, Prev: Free Software, Up: Summary
+
+Contributors to GDB
+===================
+
+ Richard Stallman was the original author of GDB, and of many other
+GNU programs. Many others have contributed to its development. This
+section attempts to credit major contributors. One of the virtues of
+free software is that everyone is free to contribute to it; with
+regret, we cannot actually acknowledge everyone here. The file
+`ChangeLog' in the GDB distribution approximates a blow-by-blow account.
+
+ Changes much prior to version 2.0 are lost in the mists of time.
+
+ *Plea:* Additions to this section are particularly welcome. If you
+ or your friends (or enemies, to be evenhanded) have been unfairly
+ omitted from this list, we would like to add your names!
+
+ So that they may not regard their long labor as thankless, we
+particularly thank those who shepherded GDB through major releases: Fred
+Fish (releases 4.11, 4.10, 4.9), Stu Grossman and John Gilmore (releases
+4.8, 4.7, 4.6, 4.5, 4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and
+3.9); Jim Kingdon (releases 3.5, 3.4, 3.3); and Randy Smith (releases
+3.2, 3.1, 3.0). As major maintainer of GDB for some period, each
+contributed significantly to the structure, stability, and capabilities
+of the entire debugger.
+
+ Richard Stallman, assisted at various times by Peter TerMaat, Chris
+Hanson, and Richard Mlynarik, handled releases through 2.8.
+
+ Michael Tiemann is the author of most of the GNU C++ support in GDB,
+with significant additional contributions from Per Bothner. James
+Clark wrote the GNU C++ demangler. Early work on C++ was by Peter
+TerMaat (who also did much general update work leading to release 3.0).
+
+ GDB 4 uses the BFD subroutine library to examine multiple
+object-file formats; BFD was a joint project of David V.
+Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
+
+ David Johnson wrote the original COFF support; Pace Willison did the
+original support for encapsulated COFF.
+
+ Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
+Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
+support. Jean-Daniel Fekete contributed Sun 386i support. Chris
+Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki
+Hasei contributed Sony/News OS 3 support. David Johnson contributed
+Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support.
+Keith Packard contributed NS32K support. Doug Rabson contributed Acorn
+Risc Machine support. Chris Smith contributed Convex support (and
+Fortran debugging). Jonathan Stone contributed Pyramid support.
+Michael Tiemann contributed SPARC support. Tim Tucker contributed
+support for the Gould NP1 and Gould Powernode. Pace Willison
+contributed Intel 386 support. Jay Vosburgh contributed Symmetry
+support.
+
+ Rich Schaefer and Peter Schauer helped with support of SunOS shared
+libraries.
+
+ Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about
+several machine instruction sets.
+
+ Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped
+develop remote debugging. Intel Corporation and Wind River Systems
+contributed remote debugging modules for their products.
+
+ Brian Fox is the author of the readline libraries providing
+command-line editing and command history.
+
+ Andrew Beers of SUNY Buffalo wrote the language-switching code, the
+Modula-2 support, and contributed the Languages chapter of this manual.
+
+ Fred Fish wrote most of the support for Unix System Vr4. He also
+enhanced the command-completion support to cover C++ overloaded symbols.
+
+ Hitachi America, Ltd. sponsored the support for Hitachi
+microprocessors.
+
+
+File: gdb.info, Node: New Features, Next: Sample Session, Prev: Summary, Up: Top
+
+New Features since GDB Version 3.5
+**********************************
+
+*Targets*
+ Using the new command `target', you can select at runtime whether
+ you are debugging local files, local processes, standalone systems
+ over a serial port, realtime systems over a TCP/IP connection,
+ etc. The command `load' can download programs into a remote
+ system. Serial stubs are available for Motorola 680x0, Intel
+ 80386, and Sparc remote systems; GDB also supports debugging
+ realtime processes running under VxWorks, using SunRPC Remote
+ Procedure Calls over TCP/IP to talk to a debugger stub on the
+ target system. Internally, GDB now uses a function vector to
+ mediate access to different targets; if you need to add your own
+ support for a remote protocol, this makes it much easier.
+
+*Watchpoints*
+ GDB now sports watchpoints as well as breakpoints. You can use a
+ watchpoint to stop execution whenever the value of an expression
+ changes, without having to predict a particular place in your
+ program where this may happen.
+
+*Wide Output*
+ Commands that issue wide output now insert newlines at places
+ designed to make the output more readable.
+
+*Object Code Formats*
+ GDB uses a new library called the Binary File Descriptor (BFD)
+ Library to permit it to switch dynamically, without
+ reconfiguration or recompilation, between different object-file
+ formats. Formats currently supported are COFF, ELF, a.out, Intel
+ 960 b.out, MIPS ECOFF, HPPA SOM (with stabs debugging), and
+ S-records; files may be read as .o files, archive libraries, or
+ core dumps. BFD is available as a subroutine library so that
+ other programs may take advantage of it, and the other GNU binary
+ utilities are being converted to use it.
+
+*Configuration and Ports*
+ Compile-time configuration (to select a particular architecture and
+ operating system) is much easier. The script `configure' now
+ allows you to configure GDB as either a native debugger or a
+ cross-debugger. *Note Installing GDB::, for details on how to
+ configure.
+
+*Interaction*
+ The user interface to the GDB control variables is simpler, and is
+ consolidated in two commands, `set' and `show'. Output lines are
+ now broken at readable places, rather than overflowing onto the
+ next line. You can suppress output of machine-level addresses,
+ displaying only source language information.
+
+*C++*
+ GDB now supports C++ multiple inheritance (if used with a GCC
+ version 2 compiler), and also has limited support for C++ exception
+ handling, with the commands `catch' and `info catch': GDB can
+ break when an exception is raised, before the stack is peeled back
+ to the exception handler's context.
+
+*Modula-2*
+ GDB now has preliminary support for the GNU Modula-2 compiler,
+ currently under development at the State University of New York at
+ Buffalo. Coordinated development of both GDB and the GNU Modula-2
+ compiler will continue. Other Modula-2 compilers are currently
+ not supported, and attempting to debug programs compiled with them
+ will likely result in an error as the symbol table of the
+ executable is read in.
+
+*Command Rationalization*
+ Many GDB commands have been renamed to make them easier to remember
+ and use. In particular, the subcommands of `info' and
+ `show'/`set' are grouped to make the former refer to the state of
+ your program, and the latter refer to the state of GDB itself.
+ *Note Renamed Commands::, for details on what commands were
+ renamed.
+
+*Shared Libraries*
+ GDB 4 can debug programs and core files that use SunOS, SVR4, or
+ IBM RS/6000 shared libraries.
+
+*Reference Card*
+ GDB 4 has a reference card. *Note Formatting the Documentation:
+ Formatting Documentation, for instructions about how to print it.
+
+
+File: gdb.info, Node: Sample Session, Next: Invocation, Prev: New Features, Up: Top
+
+A Sample GDB Session
+********************
+
+ You can use this manual at your leisure to read all about GDB.
+However, a handful of commands are enough to get started using the
+debugger. This chapter illustrates those commands.
+
+ One of the preliminary versions of GNU `m4' (a generic macro
+processor) exhibits the following bug: sometimes, when we change its
+quote strings from the default, the commands used to capture one macro
+definition within another stop working. In the following short `m4'
+session, we define a macro `foo' which expands to `0000'; we then use
+the `m4' built-in `defn' to define `bar' as the same thing. However,
+when we change the open quote string to `<QUOTE>' and the close quote
+string to `<UNQUOTE>', the same procedure fails to define a new synonym
+`baz':
+
+ $ cd gnu/m4
+ $ ./m4
+ define(foo,0000)
+
+ foo
+ 0000
+ define(bar,defn(`foo'))
+
+ bar
+ 0000
+ changequote(<QUOTE>,<UNQUOTE>)
+
+ define(baz,defn(<QUOTE>foo<UNQUOTE>))
+ baz
+ C-d
+ m4: End of input: 0: fatal error: EOF in string
+
+Let us use GDB to try to see what is going on.
+
+ $ gdb m4
+ GDB is free software and you are welcome to distribute copies
+ of it under certain conditions; type "show copying" to see
+ the conditions.
+ There is absolutely no warranty for GDB; type "show warranty"
+ for details.
+ GDB 4.11, Copyright 1993 Free Software Foundation, Inc...
+ (gdb)
+
+GDB reads only enough symbol data to know where to find the rest when
+needed; as a result, the first prompt comes up very quickly. We now
+tell GDB to use a narrower display width than usual, so that examples
+will fit in this manual.
+
+ (gdb) set width 70
+
+We need to see how the `m4' built-in `changequote' works. Having
+looked at the source, we know the relevant subroutine is
+`m4_changequote', so we set a breakpoint there with the GDB `break'
+command.
+
+ (gdb) break m4_changequote
+ Breakpoint 1 at 0x62f4: file builtin.c, line 879.
+
+Using the `run' command, we start `m4' running under GDB control; as
+long as control does not reach the `m4_changequote' subroutine, the
+program runs as usual:
+
+ (gdb) run
+ Starting program: /work/Editorial/gdb/gnu/m4/m4
+ define(foo,0000)
+
+ foo
+ 0000
+
+To trigger the breakpoint, we call `changequote'. GDB suspends
+execution of `m4', displaying information about the context where it
+stops.
+
+ changequote(<QUOTE>,<UNQUOTE>)
+
+ Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
+ at builtin.c:879
+ 879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
+
+Now we use the command `n' (`next') to advance execution to the next
+line of the current function.
+
+ (gdb) n
+ 882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
+ : nil,
+
+`set_quotes' looks like a promising subroutine. We can go into it by
+using the command `s' (`step') instead of `next'. `step' goes to the
+next line to be executed in *any* subroutine, so it steps into
+`set_quotes'.
+
+ (gdb) s
+ set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
+ at input.c:530
+ 530 if (lquote != def_lquote)
+
+The display that shows the subroutine where `m4' is now suspended (and
+its arguments) is called a stack frame display. It shows a summary of
+the stack. We can use the `backtrace' command (which can also be
+spelled `bt'), to see where we are in the stack as a whole: the
+`backtrace' command displays a stack frame for each active subroutine.
+
+ (gdb) bt
+ #0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
+ at input.c:530
+ #1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
+ at builtin.c:882
+ #2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
+ #3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
+ at macro.c:71
+ #4 0x79dc in expand_input () at macro.c:40
+ #5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
+
+We will step through a few more lines to see what happens. The first
+two times, we can use `s'; the next two times we use `n' to avoid
+falling into the `xstrdup' subroutine.
+
+ (gdb) s
+ 0x3b5c 532 if (rquote != def_rquote)
+ (gdb) s
+ 0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
+ def_lquote : xstrdup(lq);
+ (gdb) n
+ 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
+ : xstrdup(rq);
+ (gdb) n
+ 538 len_lquote = strlen(rquote);
+
+The last line displayed looks a little odd; we can examine the variables
+`lquote' and `rquote' to see if they are in fact the new left and right
+quotes we specified. We use the command `p' (`print') to see their
+values.
+
+ (gdb) p lquote
+ $1 = 0x35d40 "<QUOTE>"
+ (gdb) p rquote
+ $2 = 0x35d50 "<UNQUOTE>"
+
+`lquote' and `rquote' are indeed the new left and right quotes. To
+look at some context, we can display ten lines of source surrounding
+the current line with the `l' (`list') command.
+
+ (gdb) l
+ 533 xfree(rquote);
+ 534
+ 535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
+ : xstrdup (lq);
+ 536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
+ : xstrdup (rq);
+ 537
+ 538 len_lquote = strlen(rquote);
+ 539 len_rquote = strlen(lquote);
+ 540 }
+ 541
+ 542 void
+
+Let us step past the two lines that set `len_lquote' and `len_rquote',
+and then examine the values of those variables.
+
+ (gdb) n
+ 539 len_rquote = strlen(lquote);
+ (gdb) n
+ 540 }
+ (gdb) p len_lquote
+ $3 = 9
+ (gdb) p len_rquote
+ $4 = 7
+
+That certainly looks wrong, assuming `len_lquote' and `len_rquote' are
+meant to be the lengths of `lquote' and `rquote' respectively. We can
+set them to better values using the `p' command, since it can print the
+value of any expression--and that expression can include subroutine
+calls and assignments.
+
+ (gdb) p len_lquote=strlen(lquote)
+ $5 = 7
+ (gdb) p len_rquote=strlen(rquote)
+ $6 = 9
+
+Is that enough to fix the problem of using the new quotes with the `m4'
+built-in `defn'? We can allow `m4' to continue executing with the `c'
+(`continue') command, and then try the example that caused trouble
+initially:
+
+ (gdb) c
+ Continuing.
+
+ define(baz,defn(<QUOTE>foo<UNQUOTE>))
+
+ baz
+ 0000
+
+Success! The new quotes now work just as well as the default ones. The
+problem seems to have been just the two typos defining the wrong
+lengths. We allow `m4' exit by giving it an EOF as input:
+
+ C-d
+ Program exited normally.
+
+The message `Program exited normally.' is from GDB; it indicates `m4'
+has finished executing. We can end our GDB session with the GDB `quit'
+command.
+
+ (gdb) quit
+
+
+File: gdb.info, Node: Invocation, Next: Commands, Prev: Sample Session, Up: Top
+
+Getting In and Out of GDB
+*************************
+
+ This chapter discusses how to start GDB, and how to get out of it.
+(The essentials: type `gdb' to start GDB, and type `quit' or `C-d' to
+exit.)
+
+* Menu:
+
+* Invoking GDB:: How to start GDB
+* Quitting GDB:: How to quit GDB
+* Shell Commands:: How to use shell commands inside GDB
+
+
+File: gdb.info, Node: Invoking GDB, Next: Quitting GDB, Up: Invocation
+
+Invoking GDB
+============
+
+ Invoke GDB by running the program `gdb'. Once started, GDB reads
+commands from the terminal until you tell it to exit.
+
+ You can also run `gdb' with a variety of arguments and options, to
+specify more of your debugging environment at the outset.
+
+ The command-line options described here are designed to cover a
+variety of situations; in some environments, some of these options may
+effectively be unavailable.
+
+ The most usual way to start GDB is with one argument, specifying an
+executable program:
+
+ gdb PROGRAM
+
+You can also start with both an executable program and a core file
+specified:
+
+ gdb PROGRAM CORE
+
+ You can, instead, specify a process ID as a second argument, if you
+want to debug a running process:
+
+ gdb PROGRAM 1234
+
+would attach GDB to process `1234' (unless you also have a file named
+`1234'; GDB does check for a core file first).
+
+ Taking advantage of the second command-line argument requires a
+fairly complete operating system; when you use GDB as a remote debugger
+attached to a bare board, there may not be any notion of "process", and
+there is often no way to get a core dump.
+
+You can further control how GDB starts up by using command-line
+options. GDB itself can remind you of the options available.
+
+Type
+
+ gdb -help
+
+to display all available options and briefly describe their use (`gdb
+-h' is a shorter equivalent).
+
+ All options and command line arguments you give are processed in
+sequential order. The order makes a difference when the `-x' option is
+used.
+
+* Menu:
+
+
+
+* File Options:: Choosing files
+* Mode Options:: Choosing modes
+
+
+File: gdb.info, Node: File Options, Next: Mode Options, Up: Invoking GDB
+
+Choosing files
+--------------
+
+ When GDB starts, it reads any arguments other than options as
+specifying an executable file and core file (or process ID). This is
+the same as if the arguments were specified by the `-se' and `-c'
+options respectively. (GDB reads the first argument that does not have
+an associated option flag as equivalent to the `-se' option followed by
+that argument; and the second argument that does not have an associated
+option flag, if any, as equivalent to the `-c' option followed by that
+argument.)
+
+ Many options have both long and short forms; both are shown in the
+following list. GDB also recognizes the long forms if you truncate
+them, so long as enough of the option is present to be unambiguous.
+(If you prefer, you can flag option arguments with `--' rather than
+`-', though we illustrate the more usual convention.)
+
+`-symbols FILE'
+`-s FILE'
+ Read symbol table from file FILE.
+
+`-exec FILE'
+`-e FILE'
+ Use file FILE as the executable file to execute when appropriate,
+ and for examining pure data in conjunction with a core dump.
+
+`-se FILE'
+ Read symbol table from file FILE and use it as the executable file.
+
+`-core FILE'
+`-c FILE'
+ Use file FILE as a core dump to examine.
+
+`-c NUMBER'
+ Connect to process ID NUMBER, as with the `attach' command (unless
+ there is a file in core-dump format named NUMBER, in which case
+ `-c' specifies that file as a core dump to read).
+
+`-command FILE'
+`-x FILE'
+ Execute GDB commands from file FILE. *Note Command files: Command
+ Files.
+
+`-directory DIRECTORY'
+`-d DIRECTORY'
+ Add DIRECTORY to the path to search for source files.
+
+`-m'
+`-mapped'
+ *Warning: this option depends on operating system facilities that
+ are not supported on all systems.*
+ If memory-mapped files are available on your system through the
+ `mmap' system call, you can use this option to have GDB write the
+ symbols from your program into a reusable file in the current
+ directory. If the program you are debugging is called
+ `/tmp/fred', the mapped symbol file will be `./fred.syms'. Future
+ GDB debugging sessions will notice the presence of this file, and
+ will quickly map in symbol information from it, rather than reading
+ the symbol table from the executable program.
+
+ The `.syms' file is specific to the host machine where GDB is run.
+ It holds an exact image of the internal GDB symbol table. It
+ cannot be shared across multiple host platforms.
+
+`-r'
+`-readnow'
+ Read each symbol file's entire symbol table immediately, rather
+ than the default, which is to read it incrementally as it is
+ needed. This makes startup slower, but makes future operations
+ faster.
+
+ The `-mapped' and `-readnow' options are typically combined in order
+to build a `.syms' file that contains complete symbol information.
+(*Note Commands to specify files: Files, for information on `.syms'
+files.) A simple GDB invocation to do nothing but build a `.syms' file
+for future use is:
+
+ gdb -batch -nx -mapped -readnow programname
+
+
+File: gdb.info, Node: Mode Options, Prev: File Options, Up: Invoking GDB
+
+Choosing modes
+--------------
+
+ You can run GDB in various alternative modes--for example, in batch
+mode or quiet mode.
+
+`-nx'
+`-n'
+ Do not execute commands from any initialization files (normally
+ called `.gdbinit'). Normally, the commands in these files are
+ executed after all the command options and arguments have been
+ processed. *Note Command files: Command Files.
+
+`-quiet'
+`-q'
+ "Quiet". Do not print the introductory and copyright messages.
+ These messages are also suppressed in batch mode.
+
+`-batch'
+ Run in batch mode. Exit with status `0' after processing all the
+ command files specified with `-x' (and all commands from
+ initialization files, if not inhibited with `-n'). Exit with
+ nonzero status if an error occurs in executing the GDB commands in
+ the command files.
+
+ Batch mode may be useful for running GDB as a filter, for example
+ to download and run a program on another computer; in order to
+ make this more useful, the message
+
+ Program exited normally.
+
+ (which is ordinarily issued whenever a program running under GDB
+ control terminates) is not issued when running in batch mode.
+
+`-cd DIRECTORY'
+ Run GDB using DIRECTORY as its working directory, instead of the
+ current directory.
+
+`-fullname'
+`-f'
+ Emacs sets this option when it runs GDB as a subprocess. It tells
+ GDB to output the full file name and line number in a standard,
+ recognizable fashion each time a stack frame is displayed (which
+ includes each time your program stops). This recognizable format
+ looks like two `\032' characters, followed by the file name, line
+ number and character position separated by colons, and a newline.
+ The Emacs-to-GDB interface program uses the two `\032' characters
+ as a signal to display the source code for the frame.
+
+`-b BPS'
+ Set the line speed (baud rate or bits per second) of any serial
+ interface used by GDB for remote debugging.
+
+`-tty DEVICE'
+ Run using DEVICE for your program's standard input and output.
+
+
+File: gdb.info, Node: Quitting GDB, Next: Shell Commands, Prev: Invoking GDB, Up: Invocation
+
+Quitting GDB
+============
+
+`quit'
+ To exit GDB, use the `quit' command (abbreviated `q'), or type an
+ end-of-file character (usually `C-d').
+
+ An interrupt (often `C-c') will not exit from GDB, but rather will
+terminate the action of any GDB command that is in progress and return
+to GDB command level. It is safe to type the interrupt character at
+any time because GDB does not allow it to take effect until a time when
+it is safe.
+
+ If you have been using GDB to control an attached process or device,
+you can release it with the `detach' command (*note Debugging an
+already-running process: Attach.).
+
+
+File: gdb.info, Node: Shell Commands, Prev: Quitting GDB, Up: Invocation
+
+Shell commands
+==============
+
+ If you need to execute occasional shell commands during your
+debugging session, there is no need to leave or suspend GDB; you can
+just use the `shell' command.
+
+`shell COMMAND STRING'
+ Invoke a the standard shell to execute COMMAND STRING. If it
+ exists, the environment variable `SHELL' determines which shell to
+ run. Otherwise GDB uses `/bin/sh'.
+
+ The utility `make' is often needed in development environments. You
+do not have to use the `shell' command for this purpose in GDB:
+
+`make MAKE-ARGS'
+ Execute the `make' program with the specified arguments. This is
+ equivalent to `shell make MAKE-ARGS'.
+
+
+File: gdb.info, Node: Commands, Next: Running, Prev: Invocation, Up: Top
+
+GDB Commands
+************
+
+ You can abbreviate a GDB command to the first few letters of the
+command name, if that abbreviation is unambiguous; and you can repeat
+certain GDB commands by typing just RET. You can also use the TAB key
+to get GDB to fill out the rest of a word in a command (or to show you
+the alternatives available, if there is more than one possibility).
+
+* Menu:
+
+* Command Syntax:: How to give commands to GDB
+* Completion:: Command completion
+* Help:: How to ask GDB for help
+
+
+File: gdb.info, Node: Command Syntax, Next: Completion, Up: Commands
+
+Command syntax
+==============
+
+ A GDB command is a single line of input. There is no limit on how
+long it can be. It starts with a command name, which is followed by
+arguments whose meaning depends on the command name. For example, the
+command `step' accepts an argument which is the number of times to
+step, as in `step 5'. You can also use the `step' command with no
+arguments. Some command names do not allow any arguments.
+
+ GDB command names may always be truncated if that abbreviation is
+unambiguous. Other possible command abbreviations are listed in the
+documentation for individual commands. In some cases, even ambiguous
+abbreviations are allowed; for example, `s' is specially defined as
+equivalent to `step' even though there are other commands whose names
+start with `s'. You can test abbreviations by using them as arguments
+to the `help' command.
+
+ A blank line as input to GDB (typing just RET) means to repeat the
+previous command. Certain commands (for example, `run') will not repeat
+this way; these are commands for which unintentional repetition might
+cause trouble and which you are unlikely to want to repeat.
+
+ The `list' and `x' commands, when you repeat them with RET,
+construct new arguments rather than repeating exactly as typed. This
+permits easy scanning of source or memory.
+
+ GDB can also use RET in another way: to partition lengthy output, in
+a way similar to the common utility `more' (*note Screen size: Screen
+Size.). Since it is easy to press one RET too many in this situation,
+GDB disables command repetition after any command that generates this
+sort of display.
+
+ Any text from a `#' to the end of the line is a comment; it does
+nothing. This is useful mainly in command files (*note Command files:
+Command Files.).
+
+
+File: gdb.info, Node: Completion, Next: Help, Prev: Command Syntax, Up: Commands
+
+Command completion
+==================
+
+ GDB can fill in the rest of a word in a command for you, if there is
+only one possibility; it can also show you what the valid possibilities
+are for the next word in a command, at any time. This works for GDB
+commands, GDB subcommands, and the names of symbols in your program.
+
+ Press the TAB key whenever you want GDB to fill out the rest of a
+word. If there is only one possibility, GDB will fill in the word, and
+wait for you to finish the command (or press RET to enter it). For
+example, if you type
+
+ (gdb) info bre TAB
+
+GDB fills in the rest of the word `breakpoints', since that is the only
+`info' subcommand beginning with `bre':
+
+ (gdb) info breakpoints
+
+You can either press RET at this point, to run the `info breakpoints'
+command, or backspace and enter something else, if `breakpoints' does
+not look like the command you expected. (If you were sure you wanted
+`info breakpoints' in the first place, you might as well just type RET
+immediately after `info bre', to exploit command abbreviations rather
+than command completion).
+
+ If there is more than one possibility for the next word when you
+press TAB, GDB will sound a bell. You can either supply more
+characters and try again, or just press TAB a second time, and GDB will
+display all the possible completions for that word. For example, you
+might want to set a breakpoint on a subroutine whose name begins with
+`make_', but when you type `b make_TAB' GDB just sounds the bell.
+Typing TAB again will display all the function names in your program
+that begin with those characters, for example:
+
+ (gdb) b make_ TAB
+GDB sounds bell; press TAB again, to see:
+ make_a_section_from_file make_environ
+ make_abs_section make_function_type
+ make_blockvector make_pointer_type
+ make_cleanup make_reference_type
+ make_command make_symbol_completion_list
+ (gdb) b make_
+
+After displaying the available possibilities, GDB copies your partial
+input (`b make_' in the example) so you can finish the command.
+
+ If you just want to see the list of alternatives in the first place,
+you can press `M-?' rather than pressing TAB twice. `M-?' means `META
+?'. You can type this either by holding down a key designated as the
+META shift on your keyboard (if there is one) while typing `?', or as
+ESC followed by `?'.
+
+ Sometimes the string you need, while logically a "word", may contain
+parentheses or other characters that GDB normally excludes from its
+notion of a word. To permit word completion to work in this situation,
+you may enclose words in `'' (single quote marks) in GDB commands.
+
+ The most likely situation where you might need this is in typing the
+name of a C++ function. This is because C++ allows function overloading
+(multiple definitions of the same function, distinguished by argument
+type). For example, when you want to set a breakpoint you may need to
+distinguish whether you mean the version of `name' that takes an `int'
+parameter, `name(int)', or the version that takes a `float' parameter,
+`name(float)'. To use the word-completion facilities in this
+situation, type a single quote `'' at the beginning of the function
+name. This alerts GDB that it may need to consider more information
+than usual when you press TAB or `M-?' to request word completion:
+
+ (gdb) b 'bubble( M-?
+ bubble(double,double) bubble(int,int)
+ (gdb) b 'bubble(
+
+ In some cases, GDB can tell that completing a name will require
+quotes. When this happens, GDB will insert the quote for you (while
+completing as much as it can) if you do not type the quote in the first
+place:
+
+ (gdb) b bub TAB
+GDB alters your input line to the following, and rings a bell:
+ (gdb) b 'bubble(
+
+In general, GDB can tell that a quote is needed (and inserts it) if you
+have not yet started typing the argument list when you ask for
+completion on an overloaded symbol.
+
+
+File: gdb.info, Node: Help, Prev: Completion, Up: Commands
+
+Getting help
+============
+
+ You can always ask GDB itself for information on its commands, using
+the command `help'.
+
+`help'
+`h'
+ You can use `help' (abbreviated `h') with no arguments to display
+ a short list of named classes of commands:
+
+ (gdb) help
+ List of classes of commands:
+
+ running -- Running the program
+ stack -- Examining the stack
+ data -- Examining data
+ breakpoints -- Making program stop at certain points
+ files -- Specifying and examining files
+ status -- Status inquiries
+ support -- Support facilities
+ user-defined -- User-defined commands
+ aliases -- Aliases of other commands
+ obscure -- Obscure features
+
+ Type "help" followed by a class name for a list of
+ commands in that class.
+ Type "help" followed by command name for full
+ documentation.
+ Command name abbreviations are allowed if unambiguous.
+ (gdb)
+
+`help CLASS'
+ Using one of the general help classes as an argument, you can get a
+ list of the individual commands in that class. For example, here
+ is the help display for the class `status':
+
+ (gdb) help status
+ Status inquiries.
+
+ List of commands:
+
+ show -- Generic command for showing things set
+ with "set"
+ info -- Generic command for printing status
+
+ Type "help" followed by command name for full
+ documentation.
+ Command name abbreviations are allowed if unambiguous.
+ (gdb)
+
+`help COMMAND'
+ With a command name as `help' argument, GDB will display a short
+ paragraph on how to use that command.
+
+ In addition to `help', you can use the GDB commands `info' and
+`show' to inquire about the state of your program, or the state of GDB
+itself. Each command supports many topics of inquiry; this manual
+introduces each of them in the appropriate context. The listings under
+`info' and under `show' in the Index point to all the sub-commands.
+*Note Index::.
+
+`info'
+ This command (abbreviated `i') is for describing the state of your
+ program. For example, you can list the arguments given to your
+ program with `info args', list the registers currently in use with
+ `info registers', or list the breakpoints you have set with `info
+ breakpoints'. You can get a complete list of the `info'
+ sub-commands with `help info'.
+
+`show'
+ In contrast, `show' is for describing the state of GDB itself.
+ You can change most of the things you can `show', by using the
+ related command `set'; for example, you can control what number
+ system is used for displays with `set radix', or simply inquire
+ which is currently in use with `show radix'.
+
+ To display all the settable parameters and their current values,
+ you can use `show' with no arguments; you may also use `info set'.
+ Both commands produce the same display.
+
+ Here are three miscellaneous `show' subcommands, all of which are
+exceptional in lacking corresponding `set' commands:
+
+`show version'
+ Show what version of GDB is running. You should include this
+ information in GDB bug-reports. If multiple versions of GDB are in
+ use at your site, you may occasionally want to determine which
+ version of GDB you are running; as GDB evolves, new commands are
+ introduced, and old ones may wither away. The version number is
+ also announced when you start GDB.
+
+`show copying'
+ Display information about permission for copying GDB.
+
+`show warranty'
+ Display the GNU "NO WARRANTY" statement.
+
+
+File: gdb.info, Node: Running, Next: Stopping, Prev: Commands, Up: Top
+
+Running Programs Under GDB
+**************************
+
+ When you run a program under GDB, you must first generate debugging
+information when you compile it. You may start it with its arguments,
+if any, in an environment of your choice. You may redirect your
+program's input and output, debug an already running process, or kill a
+child process.
+
+* Menu:
+
+* Compilation:: Compiling for debugging
+* Starting:: Starting your program
+
+* Arguments:: Your program's arguments
+* Environment:: Your program's environment
+* Working Directory:: Your program's working directory
+* Input/Output:: Your program's input and output
+* Attach:: Debugging an already-running process
+* Kill Process:: Killing the child process
+* Process Information:: Additional process information
+
+
+File: gdb.info, Node: Compilation, Next: Starting, Up: Running
+
+Compiling for debugging
+=======================
+
+ In order to debug a program effectively, you need to generate
+debugging information when you compile it. This debugging information
+is stored in the object file; it describes the data type of each
+variable or function and the correspondence between source line numbers
+and addresses in the executable code.
+
+ To request debugging information, specify the `-g' option when you
+run the compiler.
+
+ Many C compilers are unable to handle the `-g' and `-O' options
+together. Using those compilers, you cannot generate optimized
+executables containing debugging information.
+
+ GCC, the GNU C compiler, supports `-g' with or without `-O', making
+it possible to debug optimized code. We recommend that you *always*
+use `-g' whenever you compile a program. You may think your program is
+correct, but there is no sense in pushing your luck.
+
+ When you debug a program compiled with `-g -O', remember that the
+optimizer is rearranging your code; the debugger will show you what is
+really there. Do not be too surprised when the execution path does not
+exactly match your source file! An extreme example: if you define a
+variable, but never use it, GDB will never see that variable--because
+the compiler optimizes it out of existence.
+
+ Some things do not work as well with `-g -O' as with just `-g',
+particularly on machines with instruction scheduling. If in doubt,
+recompile with `-g' alone, and if this fixes the problem, please report
+it as a bug (including a test case!).
+
+ Older versions of the GNU C compiler permitted a variant option
+`-gg' for debugging information. GDB no longer supports this format;
+if your GNU C compiler has this option, do not use it.
+
+
+File: gdb.info, Node: Starting, Next: Arguments, Prev: Compilation, Up: Running
+
+Starting your program
+=====================
+
+`run'
+`r'
+ Use the `run' command to start your program under GDB. You must
+ first specify the program name (except on VxWorks) with an
+ argument to GDB (*note Getting In and Out of GDB: Invocation.), or
+ by using the `file' or `exec-file' command (*note Commands to
+ specify files: Files.).
+
+ If you are running your program in an execution environment that
+supports processes, `run' creates an inferior process and makes that
+process run your program. (In environments without processes, `run'
+jumps to the start of your program.)
+
+ The execution of a program is affected by certain information it
+receives from its superior. GDB provides ways to specify this
+information, which you must do *before* starting your program. (You
+can change it after starting your program, but such changes will only
+affect your program the next time you start it.) This information may
+be divided into four categories:
+
+The *arguments.*
+ Specify the arguments to give your program as the arguments of the
+ `run' command. If a shell is available on your target, the shell
+ is used to pass the arguments, so that you may use normal
+ conventions (such as wildcard expansion or variable substitution)
+ in describing the arguments. In Unix systems, you can control
+ which shell is used with the `SHELL' environment variable. *Note
+ Your program's arguments: Arguments.
+
+The *environment.*
+ Your program normally inherits its environment from GDB, but you
+ can use the GDB commands `set environment' and `unset environment'
+ to change parts of the environment that will be given to your
+ program. *Note Your program's environment: Environment.
+
+The *working directory.*
+ Your program inherits its working directory from GDB. You can set
+ the GDB working directory with the `cd' command in GDB. *Note
+ Your program's working directory: Working Directory.
+
+The *standard input and output.*
+ Your program normally uses the same device for standard input and
+ standard output as GDB is using. You can redirect input and output
+ in the `run' command line, or you can use the `tty' command to set
+ a different device for your program. *Note Your program's input
+ and output: Input/Output.
+
+ *Warning:* While input and output redirection work, you cannot use
+ pipes to pass the output of the program you are debugging to
+ another program; if you attempt this, GDB is likely to wind up
+ debugging the wrong program.
+
+ When you issue the `run' command, your program begins to execute
+immediately. *Note Stopping and continuing: Stopping, for discussion
+of how to arrange for your program to stop. Once your program has
+stopped, you may call functions in your program, using the `print' or
+`call' commands. *Note Examining Data: Data.
+
+ If the modification time of your symbol file has changed since the
+last time GDB read its symbols, GDB will discard its symbol table and
+re-read it. When it does this, GDB tries to retain your current
+breakpoints.
+
+
+File: gdb.info, Node: Arguments, Next: Environment, Prev: Starting, Up: Running
+
+Your program's arguments
+========================
+
+ The arguments to your program can be specified by the arguments of
+the `run' command. They are passed to a shell, which expands wildcard
+characters and performs redirection of I/O, and thence to your program.
+Your `SHELL' environment variable (if it exists) specifies what shell
+GDB if you do not define `SHELL', GDB uses `/bin/sh'.
+
+ `run' with no arguments uses the same arguments used by the previous
+`run', or those set by the `set args' command.
+
+`set args'
+ Specify the arguments to be used the next time your program is
+ run. If `set args' has no arguments, `run' will execute your
+ program with no arguments. Once you have run your program with
+ arguments, using `set args' before the next `run' is the only way
+ to run it again without arguments.
+
+`show args'
+ Show the arguments to give your program when it is started.
+
+
+File: gdb.info, Node: Environment, Next: Working Directory, Prev: Arguments, Up: Running
+
+Your program's environment
+==========================
+
+ The "environment" consists of a set of environment variables and
+their values. Environment variables conventionally record such things
+as your user name, your home directory, your terminal type, and your
+search path for programs to run. Usually you set up environment
+variables with the shell and they are inherited by all the other
+programs you run. When debugging, it can be useful to try running your
+program with a modified environment without having to start GDB over
+again.
+
+`path DIRECTORY'
+ Add DIRECTORY to the front of the `PATH' environment variable (the
+ search path for executables), for both GDB and your program. You
+ may specify several directory names, separated by `:' or
+ whitespace. If DIRECTORY is already in the path, it is moved to
+ the front, so it will be searched sooner.
+
+ You can use the string `$cwd' to refer to whatever is the current
+ working directory at the time GDB searches the path. If you use
+ `.' instead, it refers to the directory where you executed the
+ `path' command. GDB replaces `.' in the DIRECTORY argument (with
+ the current path) before adding DIRECTORY to the search path.
+
+`show paths'
+ Display the list of search paths for executables (the `PATH'
+ environment variable).
+
+`show environment [VARNAME]'
+ Print the value of environment variable VARNAME to be given to
+ your program when it starts. If you do not supply VARNAME, print
+ the names and values of all environment variables to be given to
+ your program. You can abbreviate `environment' as `env'.
+
+`set environment VARNAME [=] VALUE'
+ Set environment variable VARNAME to VALUE. The value changes for
+ your program only, not for GDB itself. VALUE may be any string;
+ the values of environment variables are just strings, and any
+ interpretation is supplied by your program itself. The VALUE
+ parameter is optional; if it is eliminated, the variable is set to
+ a null value.
+
+ For example, this command:
+
+ set env USER = foo
+
+ tells a Unix program, when subsequently run, that its user is named
+ `foo'. (The spaces around `=' are used for clarity here; they are
+ not actually required.)
+
+`unset environment VARNAME'
+ Remove variable VARNAME from the environment to be passed to your
+ program. This is different from `set env VARNAME ='; `unset
+ environment' removes the variable from the environment, rather
+ than assigning it an empty value.
+
+ *Warning:* GDB runs your program using the shell indicated by your
+`SHELL' environment variable if it exists (or `/bin/sh' if not). If
+your `SHELL' variable names a shell that runs an initialization
+file--such as `.cshrc' for C-shell, or `.bashrc' for BASH--any
+variables you set in that file will affect your program. You may wish
+to move setting of environment variables to files that are only run
+when you sign on, such as `.login' or `.profile'.
+
+
+File: gdb.info, Node: Working Directory, Next: Input/Output, Prev: Environment, Up: Running
+
+Your program's working directory
+================================
+
+ Each time you start your program with `run', it inherits its working
+directory from the current working directory of GDB. The GDB working
+directory is initially whatever it inherited from its parent process
+(typically the shell), but you can specify a new working directory in
+GDB with the `cd' command.
+
+ The GDB working directory also serves as a default for the commands
+that specify files for GDB to operate on. *Note Commands to specify
+files: Files.
+
+`cd DIRECTORY'
+ Set the GDB working directory to DIRECTORY.
+
+`pwd'
+ Print the GDB working directory.
+
+
+File: gdb.info, Node: Input/Output, Next: Attach, Prev: Working Directory, Up: Running
+
+Your program's input and output
+===============================
+
+ By default, the program you run under GDB does input and output to
+the same terminal that GDB uses. GDB switches the terminal to its own
+terminal modes to interact with you, but it records the terminal modes
+your program was using and switches back to them when you continue
+running your program.
+
+`info terminal'
+ Displays information recorded by GDB about the terminal modes your
+ program is using.
+
+ You can redirect your program's input and/or output using shell
+redirection with the `run' command. For example,
+
+ run > outfile
+
+starts your program, diverting its output to the file `outfile'.
+
+ Another way to specify where your program should do input and output
+is with the `tty' command. This command accepts a file name as
+argument, and causes this file to be the default for future `run'
+commands. It also resets the controlling terminal for the child
+process, for future `run' commands. For example,
+
+ tty /dev/ttyb
+
+directs that processes started with subsequent `run' commands default
+to do input and output on the terminal `/dev/ttyb' and have that as
+their controlling terminal.
+
+ An explicit redirection in `run' overrides the `tty' command's
+effect on the input/output device, but not its effect on the controlling
+terminal.
+
+ When you use the `tty' command or redirect input in the `run'
+command, only the input *for your program* is affected. The input for
+GDB still comes from your terminal.
+