aboutsummaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gdb/gdb/target.h
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/gdb/gdb/target.h')
-rw-r--r--gnu/usr.bin/gdb/gdb/target.h465
1 files changed, 465 insertions, 0 deletions
diff --git a/gnu/usr.bin/gdb/gdb/target.h b/gnu/usr.bin/gdb/gdb/target.h
new file mode 100644
index 000000000000..c112b4ac122f
--- /dev/null
+++ b/gnu/usr.bin/gdb/gdb/target.h
@@ -0,0 +1,465 @@
+/* Interface between GDB and target environments, including files and processes
+ Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
+ Contributed by Cygnus Support. Written by John Gilmore.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#if !defined (TARGET_H)
+#define TARGET_H
+
+/* This include file defines the interface between the main part
+ of the debugger, and the part which is target-specific, or
+ specific to the communications interface between us and the
+ target.
+
+ A TARGET is an interface between the debugger and a particular
+ kind of file or process. Targets can be STACKED in STRATA,
+ so that more than one target can potentially respond to a request.
+ In particular, memory accesses will walk down the stack of targets
+ until they find a target that is interested in handling that particular
+ address. STRATA are artificial boundaries on the stack, within
+ which particular kinds of targets live. Strata exist so that
+ people don't get confused by pushing e.g. a process target and then
+ a file target, and wondering why they can't see the current values
+ of variables any more (the file target is handling them and they
+ never get to the process target). So when you push a file target,
+ it goes into the file stratum, which is always below the process
+ stratum. */
+
+#include "bfd.h"
+
+enum strata {
+ dummy_stratum, /* The lowest of the low */
+ file_stratum, /* Executable files, etc */
+ core_stratum, /* Core dump files */
+ process_stratum /* Executing processes */
+};
+
+struct target_ops
+{
+ char *to_shortname; /* Name this target type */
+ char *to_longname; /* Name for printing */
+ char *to_doc; /* Documentation. Does not include trailing
+ newline, and starts with a one-line descrip-
+ tion (probably similar to to_longname). */
+ void (*to_open) PARAMS ((char *, int));
+ void (*to_close) PARAMS ((int));
+ void (*to_attach) PARAMS ((char *, int));
+ void (*to_detach) PARAMS ((char *, int));
+ void (*to_resume) PARAMS ((int, int, int));
+ int (*to_wait) PARAMS ((int, int *));
+ void (*to_fetch_registers) PARAMS ((int));
+ void (*to_store_registers) PARAMS ((int));
+ void (*to_prepare_to_store) PARAMS ((void));
+
+ /* Transfer LEN bytes of memory between GDB address MYADDR and
+ target address MEMADDR. If WRITE, transfer them to the target, else
+ transfer them from the target. TARGET is the target from which we
+ get this function.
+
+ Return value, N, is one of the following:
+
+ 0 means that we can't handle this. If errno has been set, it is the
+ error which prevented us from doing it (FIXME: What about bfd_error?).
+
+ positive (call it N) means that we have transferred N bytes
+ starting at MEMADDR. We might be able to handle more bytes
+ beyond this length, but no promises.
+
+ negative (call its absolute value N) means that we cannot
+ transfer right at MEMADDR, but we could transfer at least
+ something at MEMADDR + N. */
+
+ int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
+ int len, int write,
+ struct target_ops * target));
+
+ void (*to_files_info) PARAMS ((struct target_ops *));
+ int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
+ int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
+ void (*to_terminal_init) PARAMS ((void));
+ void (*to_terminal_inferior) PARAMS ((void));
+ void (*to_terminal_ours_for_output) PARAMS ((void));
+ void (*to_terminal_ours) PARAMS ((void));
+ void (*to_terminal_info) PARAMS ((char *, int));
+ void (*to_kill) PARAMS ((void));
+ void (*to_load) PARAMS ((char *, int));
+ int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
+ void (*to_create_inferior) PARAMS ((char *, char *, char **));
+ void (*to_mourn_inferior) PARAMS ((void));
+ int (*to_can_run) PARAMS ((void));
+ void (*to_notice_signals) PARAMS ((int pid));
+ enum strata to_stratum;
+ struct target_ops
+ *to_next;
+ int to_has_all_memory;
+ int to_has_memory;
+ int to_has_stack;
+ int to_has_registers;
+ int to_has_execution;
+ struct section_table
+ *to_sections;
+ struct section_table
+ *to_sections_end;
+ int to_magic;
+ /* Need sub-structure for target machine related rather than comm related? */
+};
+
+/* Magic number for checking ops size. If a struct doesn't end with this
+ number, somebody changed the declaration but didn't change all the
+ places that initialize one. */
+
+#define OPS_MAGIC 3840
+
+/* The ops structure for our "current" target process. This should
+ never be NULL. If there is no target, it points to the dummy_target. */
+
+extern struct target_ops *current_target;
+
+/* Define easy words for doing these operations on our current target. */
+
+#define target_shortname (current_target->to_shortname)
+#define target_longname (current_target->to_longname)
+
+/* The open routine takes the rest of the parameters from the command,
+ and (if successful) pushes a new target onto the stack.
+ Targets should supply this routine, if only to provide an error message. */
+#define target_open(name, from_tty) \
+ (*current_target->to_open) (name, from_tty)
+
+/* Does whatever cleanup is required for a target that we are no longer
+ going to be calling. Argument says whether we are quitting gdb and
+ should not get hung in case of errors, or whether we want a clean
+ termination even if it takes a while. This routine is automatically
+ always called just before a routine is popped off the target stack.
+ Closing file descriptors and freeing memory are typical things it should
+ do. */
+
+#define target_close(quitting) \
+ (*current_target->to_close) (quitting)
+
+/* Attaches to a process on the target side. Arguments are as passed
+ to the `attach' command by the user. This routine can be called
+ when the target is not on the target-stack, if the target_can_run
+ routine returns 1; in that case, it must push itself onto the stack.
+ Upon exit, the target should be ready for normal operations, and
+ should be ready to deliver the status of the process immediately
+ (without waiting) to an upcoming target_wait call. */
+
+#define target_attach(args, from_tty) \
+ (*current_target->to_attach) (args, from_tty)
+
+/* Takes a program previously attached to and detaches it.
+ The program may resume execution (some targets do, some don't) and will
+ no longer stop on signals, etc. We better not have left any breakpoints
+ in the program or it'll die when it hits one. ARGS is arguments
+ typed by the user (e.g. a signal to send the process). FROM_TTY
+ says whether to be verbose or not. */
+
+extern void
+target_detach PARAMS ((char *, int));
+
+/* Resume execution of the target process PID. STEP says whether to
+ single-step or to run free; SIGGNAL is the signal value (e.g. SIGINT) to be
+ given to the target, or zero for no signal. */
+
+#define target_resume(pid, step, siggnal) \
+ (*current_target->to_resume) (pid, step, siggnal)
+
+/* Wait for process pid to do something. Pid = -1 to wait for any pid to do
+ something. Return pid of child, or -1 in case of error; store status
+ through argument pointer STATUS. */
+
+#define target_wait(pid, status) \
+ (*current_target->to_wait) (pid, status)
+
+/* Fetch register REGNO, or all regs if regno == -1. No result. */
+
+#define target_fetch_registers(regno) \
+ (*current_target->to_fetch_registers) (regno)
+
+/* Store at least register REGNO, or all regs if REGNO == -1.
+ It can store as many registers as it wants to, so target_prepare_to_store
+ must have been previously called. Calls error() if there are problems. */
+
+#define target_store_registers(regs) \
+ (*current_target->to_store_registers) (regs)
+
+/* Get ready to modify the registers array. On machines which store
+ individual registers, this doesn't need to do anything. On machines
+ which store all the registers in one fell swoop, this makes sure
+ that REGISTERS contains all the registers from the program being
+ debugged. */
+
+#define target_prepare_to_store() \
+ (*current_target->to_prepare_to_store) ()
+
+extern int
+target_read_string PARAMS ((CORE_ADDR, char *, int));
+
+extern int
+target_read_memory PARAMS ((CORE_ADDR, char *, int));
+
+extern int
+target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
+
+extern int
+target_write_memory PARAMS ((CORE_ADDR, char *, int));
+
+extern int
+xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
+
+extern int
+child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
+
+/* Transfer LEN bytes between target address MEMADDR and GDB address MYADDR.
+ Returns 0 for success, errno code for failure (which includes partial
+ transfers--if you want a more useful response to partial transfers, try
+ target_read_memory_partial). */
+
+extern int target_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr,
+ int len, int write));
+
+/* From exec.c */
+
+extern void
+print_section_info PARAMS ((struct target_ops *, bfd *));
+
+/* Print a line about the current target. */
+
+#define target_files_info() \
+ (*current_target->to_files_info) (current_target)
+
+/* Insert a breakpoint at address ADDR in the target machine.
+ SAVE is a pointer to memory allocated for saving the
+ target contents. It is guaranteed by the caller to be long enough
+ to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
+ an errno value. */
+
+#define target_insert_breakpoint(addr, save) \
+ (*current_target->to_insert_breakpoint) (addr, save)
+
+/* Remove a breakpoint at address ADDR in the target machine.
+ SAVE is a pointer to the same save area
+ that was previously passed to target_insert_breakpoint.
+ Result is 0 for success, or an errno value. */
+
+#define target_remove_breakpoint(addr, save) \
+ (*current_target->to_remove_breakpoint) (addr, save)
+
+/* Initialize the terminal settings we record for the inferior,
+ before we actually run the inferior. */
+
+#define target_terminal_init() \
+ (*current_target->to_terminal_init) ()
+
+/* Put the inferior's terminal settings into effect.
+ This is preparation for starting or resuming the inferior. */
+
+#define target_terminal_inferior() \
+ (*current_target->to_terminal_inferior) ()
+
+/* Put some of our terminal settings into effect,
+ enough to get proper results from our output,
+ but do not change into or out of RAW mode
+ so that no input is discarded.
+
+ After doing this, either terminal_ours or terminal_inferior
+ should be called to get back to a normal state of affairs. */
+
+#define target_terminal_ours_for_output() \
+ (*current_target->to_terminal_ours_for_output) ()
+
+/* Put our terminal settings into effect.
+ First record the inferior's terminal settings
+ so they can be restored properly later. */
+
+#define target_terminal_ours() \
+ (*current_target->to_terminal_ours) ()
+
+/* Print useful information about our terminal status, if such a thing
+ exists. */
+
+#define target_terminal_info(arg, from_tty) \
+ (*current_target->to_terminal_info) (arg, from_tty)
+
+/* Kill the inferior process. Make it go away. */
+
+#define target_kill() \
+ (*current_target->to_kill) ()
+
+/* Load an executable file into the target process. This is expected to
+ not only bring new code into the target process, but also to update
+ GDB's symbol tables to match. */
+
+#define target_load(arg, from_tty) \
+ (*current_target->to_load) (arg, from_tty)
+
+/* Look up a symbol in the target's symbol table. NAME is the symbol
+ name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
+ should be returned. The result is 0 if successful, nonzero if the
+ symbol does not exist in the target environment. This function should
+ not call error() if communication with the target is interrupted, since
+ it is called from symbol reading, but should return nonzero, possibly
+ doing a complain(). */
+
+#define target_lookup_symbol(name, addrp) \
+ (*current_target->to_lookup_symbol) (name, addrp)
+
+/* Start an inferior process and set inferior_pid to its pid.
+ EXEC_FILE is the file to run.
+ ALLARGS is a string containing the arguments to the program.
+ ENV is the environment vector to pass. Errors reported with error().
+ On VxWorks and various standalone systems, we ignore exec_file. */
+
+#define target_create_inferior(exec_file, args, env) \
+ (*current_target->to_create_inferior) (exec_file, args, env)
+
+/* The inferior process has died. Do what is right. */
+
+#define target_mourn_inferior() \
+ (*current_target->to_mourn_inferior) ()
+
+/* Does target have enough data to do a run or attach command? */
+
+#define target_can_run(t) \
+ ((t)->to_can_run) ()
+
+/* post process changes to signal handling in the inferior. */
+
+#define target_notice_signals(pid) \
+ (*current_target->to_notice_signals) (pid)
+
+/* Pointer to next target in the chain, e.g. a core file and an exec file. */
+
+#define target_next \
+ (current_target->to_next)
+
+/* Does the target include all of memory, or only part of it? This
+ determines whether we look up the target chain for other parts of
+ memory if this target can't satisfy a request. */
+
+#define target_has_all_memory \
+ (current_target->to_has_all_memory)
+
+/* Does the target include memory? (Dummy targets don't.) */
+
+#define target_has_memory \
+ (current_target->to_has_memory)
+
+/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
+ we start a process.) */
+
+#define target_has_stack \
+ (current_target->to_has_stack)
+
+/* Does the target have registers? (Exec files don't.) */
+
+#define target_has_registers \
+ (current_target->to_has_registers)
+
+/* Does the target have execution? Can we make it jump (through
+ hoops), or pop its stack a few times? FIXME: If this is to work that
+ way, it needs to check whether an inferior actually exists.
+ remote-udi.c and probably other targets can be the current target
+ when the inferior doesn't actually exist at the moment. Right now
+ this just tells us whether this target is *capable* of execution. */
+
+#define target_has_execution \
+ (current_target->to_has_execution)
+
+/* Converts a process id to a string. Usually, the string just contains
+ `process xyz', but on some systems it may contain
+ `process xyz thread abc'. */
+
+#ifndef target_pid_to_str
+#define target_pid_to_str(PID) \
+ normal_pid_to_str (PID)
+extern char *normal_pid_to_str PARAMS ((int pid));
+#endif
+
+/* Routines for maintenance of the target structures...
+
+ add_target: Add a target to the list of all possible targets.
+
+ push_target: Make this target the top of the stack of currently used
+ targets, within its particular stratum of the stack. Result
+ is 0 if now atop the stack, nonzero if not on top (maybe
+ should warn user).
+
+ unpush_target: Remove this from the stack of currently used targets,
+ no matter where it is on the list. Returns 0 if no
+ change, 1 if removed from stack.
+
+ pop_target: Remove the top thing on the stack of current targets. */
+
+extern void
+add_target PARAMS ((struct target_ops *));
+
+extern int
+push_target PARAMS ((struct target_ops *));
+
+extern int
+unpush_target PARAMS ((struct target_ops *));
+
+extern void
+target_preopen PARAMS ((int));
+
+extern void
+pop_target PARAMS ((void));
+
+/* Struct section_table maps address ranges to file sections. It is
+ mostly used with BFD files, but can be used without (e.g. for handling
+ raw disks, or files not in formats handled by BFD). */
+
+struct section_table {
+ CORE_ADDR addr; /* Lowest address in section */
+ CORE_ADDR endaddr; /* 1+highest address in section */
+ sec_ptr sec_ptr; /* BFD section pointer */
+ bfd *bfd; /* BFD file pointer */
+};
+
+/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
+ Returns 0 if OK, 1 on error. */
+
+extern int
+build_section_table PARAMS ((bfd *, struct section_table **,
+ struct section_table **));
+
+/* From mem-break.c */
+
+extern int
+memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
+
+extern int
+memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
+
+/* From target.c */
+
+void
+noprocess PARAMS ((void));
+
+void
+find_default_attach PARAMS ((char *, int));
+
+void
+find_default_create_inferior PARAMS ((char *, char *, char **));
+
+struct target_ops *
+find_core_target PARAMS ((void));
+
+#endif /* !defined (TARGET_H) */