aboutsummaryrefslogtreecommitdiff
path: root/gnu/usr.bin/kgdb/symseg.h
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/usr.bin/kgdb/symseg.h')
-rw-r--r--gnu/usr.bin/kgdb/symseg.h523
1 files changed, 523 insertions, 0 deletions
diff --git a/gnu/usr.bin/kgdb/symseg.h b/gnu/usr.bin/kgdb/symseg.h
new file mode 100644
index 000000000000..6a61a1791a20
--- /dev/null
+++ b/gnu/usr.bin/kgdb/symseg.h
@@ -0,0 +1,523 @@
+/*-
+ * This code is derived from software copyrighted by the Free Software
+ * Foundation.
+ *
+ * Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
+ * Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
+ *
+ * @(#)symseg.h 6.3 (Berkeley) 5/8/91
+ */
+
+/* GDB symbol table format definitions.
+ Copyright (C) 1986, 1989 Free Software Foundation, Inc.
+ Hacked by Michael Tiemann (tiemann@mcc.com)
+
+This file is part of GDB.
+
+GDB is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 1, or (at your option)
+any later version.
+
+GDB is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GDB; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* Format of GDB symbol table data.
+ There is one symbol segment for each source file or
+ independant compilation. These segments are simply concatenated
+ to form the GDB symbol table. A zero word where the beginning
+ of a segment is expected indicates there are no more segments.
+
+Format of a symbol segment:
+
+ The symbol segment begins with a word containing 1
+ if it is in the format described here. Other formats may
+ be designed, with other code numbers.
+
+ The segment contains many objects which point at each other.
+ The pointers are offsets in bytes from the beginning of the segment.
+ Thus, each segment can be loaded into core and its pointers relocated
+ to make valid in-core pointers.
+
+ All the data objects in the segment can be found indirectly from
+ one of them, the root object, of type `struct symbol_root'.
+ It appears at the beginning of the segment.
+
+ The total size of the segment, in bytes, appears as the `length'
+ field of this object. This size includes the size of the
+ root object.
+
+ All the object data types are defined here to contain pointer types
+ appropriate for in-core use on a relocated symbol segment.
+ Casts to and from type int are required for working with
+ unrelocated symbol segments such as are found in the file.
+
+ The ldsymaddr word is filled in by the loader to contain
+ the offset (in bytes) within the ld symbol table
+ of the first nonglobal symbol from this compilation.
+ This makes it possible to match those symbols
+ (which contain line number information) reliably with
+ the segment they go with.
+
+ Core addresses within the program that appear in the symbol segment
+ are not relocated by the loader. They are inserted by the assembler
+ and apply to addresses as output by the assembler, so GDB must
+ relocate them when it loads the symbol segment. It gets the information
+ on how to relocate from the textrel, datarel, bssrel, databeg and bssbeg
+ words of the root object.
+
+ The words textrel, datarel and bssrel
+ are filled in by ld with the amounts to relocate within-the-file
+ text, data and bss addresses by; databeg and bssbeg can be
+ used to tell which kind of relocation an address needs. */
+
+enum language {language_c};
+
+struct symbol_root
+{
+ int format; /* Data format version */
+ int length; /* # bytes in this symbol segment */
+ int ldsymoff; /* Offset in ld symtab of this file's syms */
+ int textrel; /* Relocation for text addresses */
+ int datarel; /* Relocation for data addresses */
+ int bssrel; /* Relocation for bss addresses */
+ char *filename; /* Name of main source file compiled */
+ char *filedir; /* Name of directory it was reached from */
+ struct blockvector *blockvector; /* Vector of all symbol-naming blocks */
+ struct typevector *typevector; /* Vector of all data types */
+ enum language language; /* Code identifying the language used */
+ char *version; /* Version info. Not fully specified */
+ char *compilation; /* Compilation info. Not fully specified */
+ int databeg; /* Address within the file of data start */
+ int bssbeg; /* Address within the file of bss start */
+ struct sourcevector *sourcevector; /* Vector of line-number info */
+};
+
+/* All data types of symbols in the compiled program
+ are represented by `struct type' objects.
+ All of these objects are pointed to by the typevector.
+ The type vector may have empty slots that contain zero. */
+
+struct typevector
+{
+ int length; /* Number of types described */
+ struct type *type[1];
+};
+
+/* Different kinds of data types are distinguished by the `code' field. */
+
+enum type_code
+{
+ TYPE_CODE_UNDEF, /* Not used; catches errors */
+ TYPE_CODE_PTR, /* Pointer type */
+ TYPE_CODE_ARRAY, /* Array type, lower bound zero */
+ TYPE_CODE_STRUCT, /* C struct or Pascal record */
+ TYPE_CODE_UNION, /* C union or Pascal variant part */
+ TYPE_CODE_ENUM, /* Enumeration type */
+ TYPE_CODE_FUNC, /* Function type */
+ TYPE_CODE_INT, /* Integer type */
+ TYPE_CODE_FLT, /* Floating type */
+ TYPE_CODE_VOID, /* Void type (values zero length) */
+ TYPE_CODE_SET, /* Pascal sets */
+ TYPE_CODE_RANGE, /* Range (integers within spec'd bounds) */
+ TYPE_CODE_PASCAL_ARRAY, /* Array with explicit type of index */
+
+ /* C++ */
+ TYPE_CODE_MEMBER, /* Member type */
+ TYPE_CODE_METHOD, /* Method type */
+ TYPE_CODE_REF, /* C++ Reference types */
+};
+
+/* This appears in a type's flags word for an unsigned integer type. */
+#define TYPE_FLAG_UNSIGNED 1
+/* This appears in a type's flags word
+ if it is a (pointer to a|function returning a)* built in scalar type.
+ These types are never freed. */
+#define TYPE_FLAG_PERM 4
+/* This appears in a type's flags word if it is a stub type (eg. if
+ someone referenced a type that wasn't definined in a source file
+ via (struct sir_not_appearing_in_this_film *)). */
+#define TYPE_FLAG_STUB 8
+/* Set when a class has a constructor defined */
+#define TYPE_FLAG_HAS_CONSTRUCTOR 256
+/* Set when a class has a destructor defined */
+#define TYPE_FLAG_HAS_DESTRUCTOR 512
+/* Indicates that this type is a public baseclass of another class,
+ i.e. that all its public methods are available in the derived
+ class. */
+#define TYPE_FLAG_VIA_PUBLIC 1024
+/* Indicates that this type is a virtual baseclass of another class,
+ i.e. that if this class is inherited more than once by another
+ class, only one set of member variables will be included. */
+#define TYPE_FLAG_VIA_VIRTUAL 2048
+
+struct type
+{
+ /* Code for kind of type */
+ enum type_code code;
+ /* Name of this type, or zero if none.
+ This is used for printing only.
+ Type names specified as input are defined by symbols. */
+ char *name;
+ /* Length in bytes of storage for a value of this type */
+ int length;
+ /* For a pointer type, describes the type of object pointed to.
+ For an array type, describes the type of the elements.
+ For a function or method type, describes the type of the value.
+ For a range type, describes the type of the full range.
+ Unused otherwise. */
+ struct type *target_type;
+ /* Type that is a pointer to this type.
+ Zero if no such pointer-to type is known yet.
+ The debugger may add the address of such a type
+ if it has to construct one later. */
+ struct type *pointer_type;
+ /* C++: also need a reference type. */
+ struct type *reference_type;
+ struct type **arg_types;
+
+ /* Type that is a function returning this type.
+ Zero if no such function type is known here.
+ The debugger may add the address of such a type
+ if it has to construct one later. */
+ struct type *function_type;
+
+/* Handling of pointers to members:
+ TYPE_MAIN_VARIANT is used for pointer and pointer
+ to member types. Normally it the value of the address of its
+ containing type. However, for pointers to members, we must be
+ able to allocate pointer to member types and look them up
+ from some place of reference.
+ NEXT_VARIANT is the next element in the chain. */
+ struct type *main_variant, *next_variant;
+
+ /* Flags about this type. */
+ short flags;
+ /* Number of fields described for this type */
+ short nfields;
+ /* For structure and union types, a description of each field.
+ For set and pascal array types, there is one "field",
+ whose type is the domain type of the set or array.
+ For range types, there are two "fields",
+ the minimum and maximum values (both inclusive).
+ For enum types, each possible value is described by one "field".
+
+ Using a pointer to a separate array of fields
+ allows all types to have the same size, which is useful
+ because we can allocate the space for a type before
+ we know what to put in it. */
+ struct field
+ {
+ /* Position of this field, counting in bits from start of
+ containing structure. For a function type, this is the
+ position in the argument list of this argument.
+ For a range bound or enum value, this is the value itself. */
+ int bitpos;
+ /* Size of this field, in bits, or zero if not packed.
+ For an unpacked field, the field's type's length
+ says how many bytes the field occupies. */
+ int bitsize;
+ /* In a struct or enum type, type of this field.
+ In a function type, type of this argument.
+ In an array type, the domain-type of the array. */
+ struct type *type;
+ /* Name of field, value or argument.
+ Zero for range bounds and array domains. */
+ char *name;
+ } *fields;
+
+ /* C++ */
+ int *private_field_bits;
+ int *protected_field_bits;
+
+ /* Number of methods described for this type */
+ short nfn_fields;
+ /* Number of base classes this type derives from. */
+ short n_baseclasses;
+
+ /* Number of methods described for this type plus all the
+ methods that it derives from. */
+ int nfn_fields_total;
+
+ /* For classes, structures, and unions, a description of each field,
+ which consists of an overloaded name, followed by the types of
+ arguments that the method expects, and then the name after it
+ has been renamed to make it distinct. */
+ struct fn_fieldlist
+ {
+ /* The overloaded name. */
+ char *name;
+ /* The number of methods with this name. */
+ int length;
+ /* The list of methods. */
+ struct fn_field
+ {
+#if 0
+ /* The overloaded name */
+ char *name;
+#endif
+ /* The return value of the method */
+ struct type *type;
+ /* The argument list */
+ struct type **args;
+ /* The name after it has been processed */
+ char *physname;
+ /* If this is a virtual function, the offset into the vtbl-1,
+ else 0. */
+ int voffset;
+ } *fn_fields;
+
+ int *private_fn_field_bits;
+ int *protected_fn_field_bits;
+
+ } *fn_fieldlists;
+
+ unsigned char via_protected;
+ unsigned char via_public;
+
+ /* For types with virtual functions, VPTR_BASETYPE is the base class which
+ defined the virtual function table pointer. VPTR_FIELDNO is
+ the field number of that pointer in the structure.
+
+ For types that are pointer to member types, VPTR_BASETYPE
+ ifs the type that this pointer is a member of.
+
+ Unused otherwise. */
+ struct type *vptr_basetype;
+
+ int vptr_fieldno;
+
+ /* If this type has a base class, put it here.
+ If this type is a pointer type, the chain of member pointer
+ types goes here.
+ Unused otherwise.
+
+ Contrary to all maxims of C style and common sense, the baseclasses
+ are indexed from 1 to N_BASECLASSES rather than 0 to N_BASECLASSES-1
+ (i.e. BASECLASSES points to one *before* the first element of
+ the array). */
+ struct type **baseclasses;
+};
+
+/* All of the name-scope contours of the program
+ are represented by `struct block' objects.
+ All of these objects are pointed to by the blockvector.
+
+ Each block represents one name scope.
+ Each lexical context has its own block.
+
+ The first two blocks in the blockvector are special.
+ The first one contains all the symbols defined in this compilation
+ whose scope is the entire program linked together.
+ The second one contains all the symbols whose scope is the
+ entire compilation excluding other separate compilations.
+ In C, these correspond to global symbols and static symbols.
+
+ Each block records a range of core addresses for the code that
+ is in the scope of the block. The first two special blocks
+ give, for the range of code, the entire range of code produced
+ by the compilation that the symbol segment belongs to.
+
+ The blocks appear in the blockvector
+ in order of increasing starting-address,
+ and, within that, in order of decreasing ending-address.
+
+ This implies that within the body of one function
+ the blocks appear in the order of a depth-first tree walk. */
+
+struct blockvector
+{
+ /* Number of blocks in the list. */
+ int nblocks;
+ /* The blocks themselves. */
+ struct block *block[1];
+};
+
+struct block
+{
+ /* Addresses in the executable code that are in this block.
+ Note: in an unrelocated symbol segment in a file,
+ these are always zero. They can be filled in from the
+ N_LBRAC and N_RBRAC symbols in the loader symbol table. */
+ int startaddr, endaddr;
+ /* The symbol that names this block,
+ if the block is the body of a function;
+ otherwise, zero.
+ Note: In an unrelocated symbol segment in an object file,
+ this field may be zero even when the block has a name.
+ That is because the block is output before the name
+ (since the name resides in a higher block).
+ Since the symbol does point to the block (as its value),
+ it is possible to find the block and set its name properly. */
+ struct symbol *function;
+ /* The `struct block' for the containing block, or 0 if none. */
+ /* Note that in an unrelocated symbol segment in an object file
+ this pointer may be zero when the correct value should be
+ the second special block (for symbols whose scope is one compilation).
+ This is because the compiler ouptuts the special blocks at the
+ very end, after the other blocks. */
+ struct block *superblock;
+ /* A flag indicating whether or not the fucntion corresponding
+ to this block was compiled with gcc or not. If there is no
+ function corresponding to this block, this meaning of this flag
+ is undefined. (In practice it will be 1 if the block was created
+ while processing a file compiled with gcc and 0 when not). */
+ unsigned char gcc_compile_flag;
+ /* Number of local symbols. */
+ int nsyms;
+ /* The symbols. */
+ struct symbol *sym[1];
+};
+
+/* Represent one symbol name; a variable, constant, function or typedef. */
+
+/* Different name spaces for symbols. Looking up a symbol specifies
+ a namespace and ignores symbol definitions in other name spaces.
+
+ VAR_NAMESPACE is the usual namespace.
+ In C, this contains variables, function names, typedef names
+ and enum type values.
+
+ STRUCT_NAMESPACE is used in C to hold struct, union and enum type names.
+ Thus, if `struct foo' is used in a C program,
+ it produces a symbol named `foo' in the STRUCT_NAMESPACE.
+
+ LABEL_NAMESPACE may be used for names of labels (for gotos);
+ currently it is not used and labels are not recorded at all. */
+
+/* For a non-global symbol allocated statically,
+ the correct core address cannot be determined by the compiler.
+ The compiler puts an index number into the symbol's value field.
+ This index number can be matched with the "desc" field of
+ an entry in the loader symbol table. */
+
+enum namespace
+{
+ UNDEF_NAMESPACE, VAR_NAMESPACE, STRUCT_NAMESPACE, LABEL_NAMESPACE,
+};
+
+/* An address-class says where to find the value of the symbol in core. */
+
+enum address_class
+{
+ LOC_UNDEF, /* Not used; catches errors */
+ LOC_CONST, /* Value is constant int */
+ LOC_STATIC, /* Value is at fixed address */
+ LOC_REGISTER, /* Value is in register */
+ LOC_ARG, /* Value is at spec'd position in arglist */
+ LOC_REF_ARG, /* Value address is at spec'd position in */
+ /* arglist. */
+ LOC_REGPARM, /* Value is at spec'd position in register window */
+ LOC_LOCAL, /* Value is at spec'd pos in stack frame */
+ LOC_TYPEDEF, /* Value not used; definition in SYMBOL_TYPE
+ Symbols in the namespace STRUCT_NAMESPACE
+ all have this class. */
+ LOC_LABEL, /* Value is address in the code */
+ LOC_BLOCK, /* Value is address of a `struct block'.
+ Function names have this class. */
+ LOC_EXTERNAL, /* Value is at address not in this compilation.
+ This is used for .comm symbols
+ and for extern symbols within functions.
+ Inside GDB, this is changed to LOC_STATIC once the
+ real address is obtained from a loader symbol. */
+ LOC_CONST_BYTES /* Value is a constant byte-sequence. */
+};
+
+struct symbol
+{
+ /* Symbol name */
+ char *name;
+ /* Name space code. */
+ enum namespace namespace;
+ /* Address class */
+ enum address_class class;
+ /* Data type of value */
+ struct type *type;
+ /* constant value, or address if static, or register number,
+ or offset in arguments, or offset in stack frame. */
+ union
+ {
+ long value;
+ struct block *block; /* for LOC_BLOCK */
+ char *bytes; /* for LOC_CONST_BYTES */
+ }
+ value;
+};
+
+struct partial_symbol
+{
+ /* Symbol name */
+ char *name;
+ /* Name space code. */
+ enum namespace namespace;
+ /* Address class (for info_symbols) */
+ enum address_class class;
+ /* Associated partial symbol table */
+ struct partial_symtab *pst;
+ /* Value (only used for static functions currently). Done this
+ way so that we can use the struct symbol macros.
+ Note that the address of a function is SYMBOL_VALUE (pst)
+ in a partial symbol table, but BLOCK_START (SYMBOL_BLOCK_VALUE (st))
+ in a symbol table. */
+ union
+ {
+ long value;
+ }
+ value;
+};
+
+/*
+ * Vectors of all partial symbols read in from file; actually declared
+ * and used in dbxread.c.
+ */
+extern struct psymbol_allocation_list {
+ struct partial_symbol *list, *next;
+ int size;
+} global_psymbols, static_psymbols;
+
+
+/* Source-file information.
+ This describes the relation between source files and line numbers
+ and addresses in the program text. */
+
+struct sourcevector
+{
+ int length; /* Number of source files described */
+ struct source *source[1]; /* Descriptions of the files */
+};
+
+/* Each item represents a line-->pc (or the reverse) mapping. This is
+ somewhat more wasteful of space than one might wish, but since only
+ the files which are actually debugged are read in to core, we don't
+ waste much space.
+
+ Each item used to be an int; either minus a line number, or a
+ program counter. If it represents a line number, that is the line
+ described by the next program counter value. If it is positive, it
+ is the program counter at which the code for the next line starts. */
+
+struct linetable_entry
+{
+ int line;
+ CORE_ADDR pc;
+};
+
+struct linetable
+{
+ int nitems;
+ struct linetable_entry item[1];
+};
+
+/* All the information on one source file. */
+
+struct source
+{
+ char *name; /* Name of file */
+ struct linetable contents;
+};