aboutsummaryrefslogtreecommitdiff
path: root/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/Analysis/Analyses/ThreadSafetyTIL.h')
-rw-r--r--include/clang/Analysis/Analyses/ThreadSafetyTIL.h1107
1 files changed, 606 insertions, 501 deletions
diff --git a/include/clang/Analysis/Analyses/ThreadSafetyTIL.h b/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
index 8e4299ea70e8..2cd8c6d6d2d6 100644
--- a/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
+++ b/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
@@ -44,17 +44,16 @@
//
//===----------------------------------------------------------------------===//
-#ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H
-#define LLVM_CLANG_THREAD_SAFETY_TIL_H
+#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
+#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTIL_H
// All clang include dependencies for this file must be put in
// ThreadSafetyUtil.h.
#include "ThreadSafetyUtil.h"
-
-#include <stdint.h>
#include <algorithm>
#include <cassert>
#include <cstddef>
+#include <stdint.h>
#include <utility>
@@ -63,24 +62,27 @@ namespace threadSafety {
namespace til {
+/// Enum for the different distinct classes of SExpr
enum TIL_Opcode {
#define TIL_OPCODE_DEF(X) COP_##X,
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
};
+/// Opcode for unary arithmetic operations.
enum TIL_UnaryOpcode : unsigned char {
UOP_Minus, // -
UOP_BitNot, // ~
UOP_LogicNot // !
};
+/// Opcode for binary arithmetic operations.
enum TIL_BinaryOpcode : unsigned char {
+ BOP_Add, // +
+ BOP_Sub, // -
BOP_Mul, // *
BOP_Div, // /
BOP_Rem, // %
- BOP_Add, // +
- BOP_Sub, // -
BOP_Shl, // <<
BOP_Shr, // >>
BOP_BitAnd, // &
@@ -90,37 +92,42 @@ enum TIL_BinaryOpcode : unsigned char {
BOP_Neq, // !=
BOP_Lt, // <
BOP_Leq, // <=
- BOP_LogicAnd, // &&
- BOP_LogicOr // ||
+ BOP_LogicAnd, // && (no short-circuit)
+ BOP_LogicOr // || (no short-circuit)
};
+/// Opcode for cast operations.
enum TIL_CastOpcode : unsigned char {
CAST_none = 0,
CAST_extendNum, // extend precision of numeric type
CAST_truncNum, // truncate precision of numeric type
CAST_toFloat, // convert to floating point type
CAST_toInt, // convert to integer type
+ CAST_objToPtr // convert smart pointer to pointer (C++ only)
};
const TIL_Opcode COP_Min = COP_Future;
const TIL_Opcode COP_Max = COP_Branch;
const TIL_UnaryOpcode UOP_Min = UOP_Minus;
const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;
-const TIL_BinaryOpcode BOP_Min = BOP_Mul;
+const TIL_BinaryOpcode BOP_Min = BOP_Add;
const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;
const TIL_CastOpcode CAST_Min = CAST_none;
const TIL_CastOpcode CAST_Max = CAST_toInt;
+/// Return the name of a unary opcode.
StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
+
+/// Return the name of a binary opcode.
StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
-// ValueTypes are data types that can actually be held in registers.
-// All variables and expressions must have a vBNF_Nonealue type.
-// Pointer types are further subdivided into the various heap-allocated
-// types, such as functions, records, etc.
-// Structured types that are passed by value (e.g. complex numbers)
-// require special handling; they use BT_ValueRef, and size ST_0.
+/// ValueTypes are data types that can actually be held in registers.
+/// All variables and expressions must have a value type.
+/// Pointer types are further subdivided into the various heap-allocated
+/// types, such as functions, records, etc.
+/// Structured types that are passed by value (e.g. complex numbers)
+/// require special handling; they use BT_ValueRef, and size ST_0.
struct ValueType {
enum BaseType : unsigned char {
BT_Void = 0,
@@ -246,8 +253,10 @@ inline ValueType ValueType::getValueType<void*>() {
}
+class BasicBlock;
+
-// Base class for AST nodes in the typed intermediate language.
+/// Base class for AST nodes in the typed intermediate language.
class SExpr {
public:
TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
@@ -266,71 +275,47 @@ public:
// template <class C> typename C::CType compare(CType* E, C& Cmp) {
// compare all subexpressions, following the comparator interface
// }
-
void *operator new(size_t S, MemRegionRef &R) {
return ::operator new(S, R);
}
- // SExpr objects cannot be deleted.
+ /// SExpr objects cannot be deleted.
// This declaration is public to workaround a gcc bug that breaks building
// with REQUIRES_EH=1.
void operator delete(void *) LLVM_DELETED_FUNCTION;
+ /// Returns the instruction ID for this expression.
+ /// All basic block instructions have a unique ID (i.e. virtual register).
+ unsigned id() const { return SExprID; }
+
+ /// Returns the block, if this is an instruction in a basic block,
+ /// otherwise returns null.
+ BasicBlock* block() const { return Block; }
+
+ /// Set the basic block and instruction ID for this expression.
+ void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }
+
protected:
- SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
- SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
+ SExpr(TIL_Opcode Op)
+ : Opcode(Op), Reserved(0), Flags(0), SExprID(0), Block(nullptr) {}
+ SExpr(const SExpr &E)
+ : Opcode(E.Opcode), Reserved(0), Flags(E.Flags), SExprID(0),
+ Block(nullptr) {}
const unsigned char Opcode;
unsigned char Reserved;
unsigned short Flags;
+ unsigned SExprID;
+ BasicBlock* Block;
private:
SExpr() LLVM_DELETED_FUNCTION;
- // SExpr objects must be created in an arena.
+ /// SExpr objects must be created in an arena.
void *operator new(size_t) LLVM_DELETED_FUNCTION;
};
-// Class for owning references to SExprs.
-// Includes attach/detach logic for counting variable references and lazy
-// rewriting strategies.
-class SExprRef {
-public:
- SExprRef() : Ptr(nullptr) { }
- SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
- SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
-
- // Defined after Variable and Future, below.
- inline SExprRef(SExpr *P);
- inline ~SExprRef();
-
- SExpr *get() { return Ptr; }
- const SExpr *get() const { return Ptr; }
-
- SExpr *operator->() { return get(); }
- const SExpr *operator->() const { return get(); }
-
- SExpr &operator*() { return *Ptr; }
- const SExpr &operator*() const { return *Ptr; }
-
- bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
- bool operator!=(const SExprRef &R) const { return !operator==(R); }
- bool operator==(const SExpr *P) const { return Ptr == P; }
- bool operator!=(const SExpr *P) const { return !operator==(P); }
- bool operator==(std::nullptr_t) const { return Ptr == nullptr; }
- bool operator!=(std::nullptr_t) const { return Ptr != nullptr; }
-
- inline void reset(SExpr *E);
-
-private:
- inline void attach();
- inline void detach();
-
- SExpr *Ptr;
-};
-
-
// Contains various helper functions for SExprs.
namespace ThreadSafetyTIL {
inline bool isTrivial(const SExpr *E) {
@@ -342,62 +327,64 @@ namespace ThreadSafetyTIL {
// Nodes which declare variables
class Function;
class SFunction;
-class BasicBlock;
class Let;
-// A named variable, e.g. "x".
-//
-// There are two distinct places in which a Variable can appear in the AST.
-// A variable declaration introduces a new variable, and can occur in 3 places:
-// Let-expressions: (Let (x = t) u)
-// Functions: (Function (x : t) u)
-// Self-applicable functions (SFunction (x) t)
-//
-// If a variable occurs in any other location, it is a reference to an existing
-// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
-// allocate a separate AST node for variable references; a reference is just a
-// pointer to the original declaration.
+/// A named variable, e.g. "x".
+///
+/// There are two distinct places in which a Variable can appear in the AST.
+/// A variable declaration introduces a new variable, and can occur in 3 places:
+/// Let-expressions: (Let (x = t) u)
+/// Functions: (Function (x : t) u)
+/// Self-applicable functions (SFunction (x) t)
+///
+/// If a variable occurs in any other location, it is a reference to an existing
+/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
+/// allocate a separate AST node for variable references; a reference is just a
+/// pointer to the original declaration.
class Variable : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
- // Let-variable, function parameter, or self-variable
enum VariableKind {
- VK_Let,
- VK_LetBB,
- VK_Fun,
- VK_SFun
+ VK_Let, ///< Let-variable
+ VK_Fun, ///< Function parameter
+ VK_SFun ///< SFunction (self) parameter
};
- // These are defined after SExprRef contructor, below
- inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
- inline Variable(StringRef s, SExpr *D = nullptr);
- inline Variable(const Variable &Vd, SExpr *D);
+ Variable(StringRef s, SExpr *D = nullptr)
+ : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr) {
+ Flags = VK_Let;
+ }
+ Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr)
+ : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
+ Definition(D), Cvdecl(Cvd) {
+ Flags = VK_Let;
+ }
+ Variable(const Variable &Vd, SExpr *D) // rewrite constructor
+ : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {
+ Flags = Vd.kind();
+ }
+ /// Return the kind of variable (let, function param, or self)
VariableKind kind() const { return static_cast<VariableKind>(Flags); }
- const StringRef name() const { return Name; }
- const clang::ValueDecl *clangDecl() const { return Cvdecl; }
-
- // Returns the definition (for let vars) or type (for parameter & self vars)
- SExpr *definition() { return Definition.get(); }
- const SExpr *definition() const { return Definition.get(); }
+ /// Return the name of the variable, if any.
+ StringRef name() const { return Name; }
- void attachVar() const { ++NumUses; }
- void detachVar() const { assert(NumUses > 0); --NumUses; }
+ /// Return the clang declaration for this variable, if any.
+ const clang::ValueDecl *clangDecl() const { return Cvdecl; }
- unsigned getID() const { return Id; }
- unsigned getBlockID() const { return BlockID; }
+ /// Return the definition of the variable.
+ /// For let-vars, this is the setting expression.
+ /// For function and self parameters, it is the type of the variable.
+ SExpr *definition() { return Definition; }
+ const SExpr *definition() const { return Definition; }
- void setName(StringRef S) { Name = S; }
- void setID(unsigned Bid, unsigned I) {
- BlockID = static_cast<unsigned short>(Bid);
- Id = static_cast<unsigned short>(I);
- }
- void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
- void setDefinition(SExpr *E);
+ void setName(StringRef S) { Name = S; }
void setKind(VariableKind K) { Flags = K; }
+ void setDefinition(SExpr *E) { Definition = E; }
+ void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -405,7 +392,8 @@ public:
return Vs.reduceVariableRef(this);
}
- template <class C> typename C::CType compare(Variable* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Variable* E, C& Cmp) const {
return Cmp.compareVariableRefs(this, E);
}
@@ -416,17 +404,13 @@ private:
friend class Let;
StringRef Name; // The name of the variable.
- SExprRef Definition; // The TIL type or definition
+ SExpr* Definition; // The TIL type or definition
const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.
-
- unsigned short BlockID;
- unsigned short Id;
- mutable unsigned NumUses;
};
-// Placeholder for an expression that has not yet been created.
-// Used to implement lazy copy and rewriting strategies.
+/// Placeholder for an expression that has not yet been created.
+/// Used to implement lazy copy and rewriting strategies.
class Future : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
@@ -437,25 +421,17 @@ public:
FS_done
};
- Future() :
- SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
- {}
+ Future() : SExpr(COP_Future), Status(FS_pending), Result(nullptr) {}
+
private:
virtual ~Future() LLVM_DELETED_FUNCTION;
-public:
-
- // Registers the location in the AST where this future is stored.
- // Forcing the future will automatically update the AST.
- static inline void registerLocation(SExprRef *Member) {
- if (Future *F = dyn_cast_or_null<Future>(Member->get()))
- F->Location = Member;
- }
+public:
// A lazy rewriting strategy should subclass Future and override this method.
- virtual SExpr *create() { return nullptr; }
+ virtual SExpr *compute() { return nullptr; }
// Return the result of this future if it exists, otherwise return null.
- SExpr *maybeGetResult() {
+ SExpr *maybeGetResult() const {
return Result;
}
@@ -463,8 +439,7 @@ public:
SExpr *result() {
switch (Status) {
case FS_pending:
- force();
- return Result;
+ return force();
case FS_evaluating:
return nullptr; // infinite loop; illegal recursion.
case FS_done:
@@ -478,88 +453,22 @@ public:
return Vs.traverse(Result, Ctx);
}
- template <class C> typename C::CType compare(Future* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Future* E, C& Cmp) const {
if (!Result || !E->Result)
return Cmp.comparePointers(this, E);
return Cmp.compare(Result, E->Result);
}
private:
- // Force the future.
- inline void force();
+ SExpr* force();
FutureStatus Status;
SExpr *Result;
- SExprRef *Location;
};
-inline void SExprRef::attach() {
- if (!Ptr)
- return;
-
- TIL_Opcode Op = Ptr->opcode();
- if (Op == COP_Variable) {
- cast<Variable>(Ptr)->attachVar();
- } else if (Op == COP_Future) {
- cast<Future>(Ptr)->registerLocation(this);
- }
-}
-
-inline void SExprRef::detach() {
- if (Ptr && Ptr->opcode() == COP_Variable) {
- cast<Variable>(Ptr)->detachVar();
- }
-}
-
-inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
- attach();
-}
-
-inline SExprRef::~SExprRef() {
- detach();
-}
-
-inline void SExprRef::reset(SExpr *P) {
- detach();
- Ptr = P;
- attach();
-}
-
-
-inline Variable::Variable(StringRef s, SExpr *D)
- : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
- BlockID(0), Id(0), NumUses(0) {
- Flags = VK_Let;
-}
-
-inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
- : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
- Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
- Flags = VK_Let;
-}
-
-inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
- : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
- BlockID(0), Id(0), NumUses(0) {
- Flags = Vd.kind();
-}
-
-inline void Variable::setDefinition(SExpr *E) {
- Definition.reset(E);
-}
-
-void Future::force() {
- Status = FS_evaluating;
- SExpr *R = create();
- Result = R;
- if (Location)
- Location->reset(R);
- Status = FS_done;
-}
-
-
-// Placeholder for C++ expressions that cannot be represented in the TIL.
+/// Placeholder for expressions that cannot be represented in the TIL.
class Undefined : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
@@ -572,8 +481,9 @@ public:
return Vs.reduceUndefined(*this);
}
- template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
- return Cmp.comparePointers(Cstmt, E->Cstmt);
+ template <class C>
+ typename C::CType compare(const Undefined* E, C& Cmp) const {
+ return Cmp.trueResult();
}
private:
@@ -581,7 +491,7 @@ private:
};
-// Placeholder for a wildcard that matches any other expression.
+/// Placeholder for a wildcard that matches any other expression.
class Wildcard : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
@@ -593,7 +503,8 @@ public:
return Vs.reduceWildcard(*this);
}
- template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Wildcard* E, C& Cmp) const {
return Cmp.trueResult();
}
};
@@ -626,9 +537,10 @@ public:
template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
- template <class C> typename C::CType compare(Literal* E, C& Cmp) {
- // TODO -- use value, not pointer equality
- return Cmp.comparePointers(Cexpr, E->Cexpr);
+ template <class C>
+ typename C::CType compare(const Literal* E, C& Cmp) const {
+ // TODO: defer actual comparison to LiteralT
+ return Cmp.trueResult();
}
private:
@@ -710,8 +622,8 @@ typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
}
-// Literal pointer to an object allocated in memory.
-// At compile time, pointer literals are represented by symbolic names.
+/// A Literal pointer to an object allocated in memory.
+/// At compile time, pointer literals are represented by symbolic names.
class LiteralPtr : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
@@ -727,7 +639,8 @@ public:
return Vs.reduceLiteralPtr(*this);
}
- template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const LiteralPtr* E, C& Cmp) const {
return Cmp.comparePointers(Cvdecl, E->Cvdecl);
}
@@ -736,9 +649,9 @@ private:
};
-// A function -- a.k.a. lambda abstraction.
-// Functions with multiple arguments are created by currying,
-// e.g. (function (x: Int) (function (y: Int) (add x y)))
+/// A function -- a.k.a. lambda abstraction.
+/// Functions with multiple arguments are created by currying,
+/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))
class Function : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
@@ -755,8 +668,8 @@ public:
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
- SExpr *body() { return Body.get(); }
- const SExpr *body() const { return Body.get(); }
+ SExpr *body() { return Body; }
+ const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -769,7 +682,8 @@ public:
return Vs.reduceFunction(*this, Nvd, E1);
}
- template <class C> typename C::CType compare(Function* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Function* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
@@ -782,13 +696,13 @@ public:
private:
Variable *VarDecl;
- SExprRef Body;
+ SExpr* Body;
};
-// A self-applicable function.
-// A self-applicable function can be applied to itself. It's useful for
-// implementing objects and late binding
+/// A self-applicable function.
+/// A self-applicable function can be applied to itself. It's useful for
+/// implementing objects and late binding.
class SFunction : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
@@ -797,20 +711,20 @@ public:
: SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
- Vd->Definition.reset(this);
+ Vd->Definition = this;
}
SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
: SExpr(F), VarDecl(Vd), Body(B) {
assert(Vd->Definition == nullptr);
Vd->setKind(Variable::VK_SFun);
- Vd->Definition.reset(this);
+ Vd->Definition = this;
}
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
- SExpr *body() { return Body.get(); }
- const SExpr *body() const { return Body.get(); }
+ SExpr *body() { return Body; }
+ const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -824,7 +738,8 @@ public:
return Vs.reduceSFunction(*this, Nvd, E1);
}
- template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const SFunction* E, C& Cmp) const {
Cmp.enterScope(variableDecl(), E->variableDecl());
typename C::CType Ct = Cmp.compare(body(), E->body());
Cmp.leaveScope();
@@ -833,11 +748,11 @@ public:
private:
Variable *VarDecl;
- SExprRef Body;
+ SExpr* Body;
};
-// A block of code -- e.g. the body of a function.
+/// A block of code -- e.g. the body of a function.
class Code : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
@@ -846,11 +761,11 @@ public:
Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
: SExpr(C), ReturnType(T), Body(B) {}
- SExpr *returnType() { return ReturnType.get(); }
- const SExpr *returnType() const { return ReturnType.get(); }
+ SExpr *returnType() { return ReturnType; }
+ const SExpr *returnType() const { return ReturnType; }
- SExpr *body() { return Body.get(); }
- const SExpr *body() const { return Body.get(); }
+ SExpr *body() { return Body; }
+ const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -859,7 +774,8 @@ public:
return Vs.reduceCode(*this, Nt, Nb);
}
- template <class C> typename C::CType compare(Code* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Code* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
if (Cmp.notTrue(Ct))
return Ct;
@@ -867,12 +783,12 @@ public:
}
private:
- SExprRef ReturnType;
- SExprRef Body;
+ SExpr* ReturnType;
+ SExpr* Body;
};
-// A typed, writable location in memory
+/// A typed, writable location in memory
class Field : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
@@ -881,11 +797,11 @@ public:
Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
: SExpr(C), Range(R), Body(B) {}
- SExpr *range() { return Range.get(); }
- const SExpr *range() const { return Range.get(); }
+ SExpr *range() { return Range; }
+ const SExpr *range() const { return Range; }
- SExpr *body() { return Body.get(); }
- const SExpr *body() const { return Body.get(); }
+ SExpr *body() { return Body; }
+ const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -894,7 +810,8 @@ public:
return Vs.reduceField(*this, Nr, Nb);
}
- template <class C> typename C::CType compare(Field* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Field* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(range(), E->range());
if (Cmp.notTrue(Ct))
return Ct;
@@ -902,12 +819,16 @@ public:
}
private:
- SExprRef Range;
- SExprRef Body;
+ SExpr* Range;
+ SExpr* Body;
};
-// Apply an argument to a function
+/// Apply an argument to a function.
+/// Note that this does not actually call the function. Functions are curried,
+/// so this returns a closure in which the first parameter has been applied.
+/// Once all parameters have been applied, Call can be used to invoke the
+/// function.
class Apply : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
@@ -917,11 +838,11 @@ public:
: SExpr(A), Fun(F), Arg(Ar)
{}
- SExpr *fun() { return Fun.get(); }
- const SExpr *fun() const { return Fun.get(); }
+ SExpr *fun() { return Fun; }
+ const SExpr *fun() const { return Fun; }
- SExpr *arg() { return Arg.get(); }
- const SExpr *arg() const { return Arg.get(); }
+ SExpr *arg() { return Arg; }
+ const SExpr *arg() const { return Arg; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -930,7 +851,8 @@ public:
return Vs.reduceApply(*this, Nf, Na);
}
- template <class C> typename C::CType compare(Apply* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Apply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(fun(), E->fun());
if (Cmp.notTrue(Ct))
return Ct;
@@ -938,12 +860,12 @@ public:
}
private:
- SExprRef Fun;
- SExprRef Arg;
+ SExpr* Fun;
+ SExpr* Arg;
};
-// Apply a self-argument to a self-applicable function
+/// Apply a self-argument to a self-applicable function.
class SApply : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
@@ -952,23 +874,24 @@ public:
SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
: SExpr(A), Sfun(Sf), Arg(Ar) {}
- SExpr *sfun() { return Sfun.get(); }
- const SExpr *sfun() const { return Sfun.get(); }
+ SExpr *sfun() { return Sfun; }
+ const SExpr *sfun() const { return Sfun; }
- SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
- const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
+ SExpr *arg() { return Arg ? Arg : Sfun; }
+ const SExpr *arg() const { return Arg ? Arg : Sfun; }
- bool isDelegation() const { return Arg == nullptr; }
+ bool isDelegation() const { return Arg != nullptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
- typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
+ typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
: nullptr;
return Vs.reduceSApply(*this, Nf, Na);
}
- template <class C> typename C::CType compare(SApply* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const SApply* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
return Ct;
@@ -976,12 +899,12 @@ public:
}
private:
- SExprRef Sfun;
- SExprRef Arg;
+ SExpr* Sfun;
+ SExpr* Arg;
};
-// Project a named slot from a C++ struct or class.
+/// Project a named slot from a C++ struct or class.
class Project : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
@@ -989,17 +912,23 @@ public:
Project(SExpr *R, StringRef SName)
: SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
{ }
- Project(SExpr *R, clang::ValueDecl *Cvd)
+ Project(SExpr *R, const clang::ValueDecl *Cvd)
: SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
{ }
Project(const Project &P, SExpr *R)
: SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
{ }
- SExpr *record() { return Rec.get(); }
- const SExpr *record() const { return Rec.get(); }
+ SExpr *record() { return Rec; }
+ const SExpr *record() const { return Rec; }
+
+ const clang::ValueDecl *clangDecl() const { return Cvdecl; }
- const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
+ bool isArrow() const { return (Flags & 0x01) != 0; }
+ void setArrow(bool b) {
+ if (b) Flags |= 0x01;
+ else Flags &= 0xFFFE;
+ }
StringRef slotName() const {
if (Cvdecl)
@@ -1014,7 +943,8 @@ public:
return Vs.reduceProject(*this, Nr);
}
- template <class C> typename C::CType compare(Project* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Project* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(record(), E->record());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1022,13 +952,13 @@ public:
}
private:
- SExprRef Rec;
+ SExpr* Rec;
StringRef SlotName;
- clang::ValueDecl *Cvdecl;
+ const clang::ValueDecl *Cvdecl;
};
-// Call a function (after all arguments have been applied).
+/// Call a function (after all arguments have been applied).
class Call : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
@@ -1037,8 +967,8 @@ public:
: SExpr(COP_Call), Target(T), Cexpr(Ce) {}
Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
- SExpr *target() { return Target.get(); }
- const SExpr *target() const { return Target.get(); }
+ SExpr *target() { return Target; }
+ const SExpr *target() const { return Target; }
const clang::CallExpr *clangCallExpr() const { return Cexpr; }
@@ -1048,17 +978,18 @@ public:
return Vs.reduceCall(*this, Nt);
}
- template <class C> typename C::CType compare(Call* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Call* E, C& Cmp) const {
return Cmp.compare(target(), E->target());
}
private:
- SExprRef Target;
+ SExpr* Target;
const clang::CallExpr *Cexpr;
};
-// Allocate memory for a new value on the heap or stack.
+/// Allocate memory for a new value on the heap or stack.
class Alloc : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
@@ -1073,8 +1004,8 @@ public:
AllocKind kind() const { return static_cast<AllocKind>(Flags); }
- SExpr *dataType() { return Dtype.get(); }
- const SExpr *dataType() const { return Dtype.get(); }
+ SExpr *dataType() { return Dtype; }
+ const SExpr *dataType() const { return Dtype; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1082,7 +1013,8 @@ public:
return Vs.reduceAlloc(*this, Nd);
}
- template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Alloc* E, C& Cmp) const {
typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1090,11 +1022,11 @@ public:
}
private:
- SExprRef Dtype;
+ SExpr* Dtype;
};
-// Load a value from memory.
+/// Load a value from memory.
class Load : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
@@ -1102,8 +1034,8 @@ public:
Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
- SExpr *pointer() { return Ptr.get(); }
- const SExpr *pointer() const { return Ptr.get(); }
+ SExpr *pointer() { return Ptr; }
+ const SExpr *pointer() const { return Ptr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1111,17 +1043,18 @@ public:
return Vs.reduceLoad(*this, Np);
}
- template <class C> typename C::CType compare(Load* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Load* E, C& Cmp) const {
return Cmp.compare(pointer(), E->pointer());
}
private:
- SExprRef Ptr;
+ SExpr* Ptr;
};
-// Store a value to memory.
-// Source is a pointer, destination is the value to store.
+/// Store a value to memory.
+/// The destination is a pointer to a field, the source is the value to store.
class Store : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
@@ -1129,11 +1062,11 @@ public:
Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
- SExpr *destination() { return Dest.get(); } // Address to store to
- const SExpr *destination() const { return Dest.get(); }
+ SExpr *destination() { return Dest; } // Address to store to
+ const SExpr *destination() const { return Dest; }
- SExpr *source() { return Source.get(); } // Value to store
- const SExpr *source() const { return Source.get(); }
+ SExpr *source() { return Source; } // Value to store
+ const SExpr *source() const { return Source; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1142,7 +1075,8 @@ public:
return Vs.reduceStore(*this, Np, Nv);
}
- template <class C> typename C::CType compare(Store* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Store* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(destination(), E->destination());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1150,13 +1084,13 @@ public:
}
private:
- SExprRef Dest;
- SExprRef Source;
+ SExpr* Dest;
+ SExpr* Source;
};
-// If p is a reference to an array, then first(p) is a reference to the first
-// element. The usual array notation p[i] becomes first(p + i).
+/// If p is a reference to an array, then p[i] is a reference to the i'th
+/// element of the array.
class ArrayIndex : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
@@ -1165,11 +1099,11 @@ public:
ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
- SExpr *array() { return Array.get(); }
- const SExpr *array() const { return Array.get(); }
+ SExpr *array() { return Array; }
+ const SExpr *array() const { return Array; }
- SExpr *index() { return Index.get(); }
- const SExpr *index() const { return Index.get(); }
+ SExpr *index() { return Index; }
+ const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1178,7 +1112,8 @@ public:
return Vs.reduceArrayIndex(*this, Na, Ni);
}
- template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const ArrayIndex* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1186,14 +1121,14 @@ public:
}
private:
- SExprRef Array;
- SExprRef Index;
+ SExpr* Array;
+ SExpr* Index;
};
-// Pointer arithmetic, restricted to arrays only.
-// If p is a reference to an array, then p + n, where n is an integer, is
-// a reference to a subarray.
+/// Pointer arithmetic, restricted to arrays only.
+/// If p is a reference to an array, then p + n, where n is an integer, is
+/// a reference to a subarray.
class ArrayAdd : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
@@ -1202,11 +1137,11 @@ public:
ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
: SExpr(E), Array(A), Index(N) {}
- SExpr *array() { return Array.get(); }
- const SExpr *array() const { return Array.get(); }
+ SExpr *array() { return Array; }
+ const SExpr *array() const { return Array; }
- SExpr *index() { return Index.get(); }
- const SExpr *index() const { return Index.get(); }
+ SExpr *index() { return Index; }
+ const SExpr *index() const { return Index; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1215,7 +1150,8 @@ public:
return Vs.reduceArrayAdd(*this, Na, Ni);
}
- template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const ArrayAdd* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(array(), E->array());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1223,12 +1159,13 @@ public:
}
private:
- SExprRef Array;
- SExprRef Index;
+ SExpr* Array;
+ SExpr* Index;
};
-// Simple unary operation -- e.g. !, ~, etc.
+/// Simple arithmetic unary operations, e.g. negate and not.
+/// These operations have no side-effects.
class UnaryOp : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
@@ -1242,8 +1179,8 @@ public:
return static_cast<TIL_UnaryOpcode>(Flags);
}
- SExpr *expr() { return Expr0.get(); }
- const SExpr *expr() const { return Expr0.get(); }
+ SExpr *expr() { return Expr0; }
+ const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1251,7 +1188,8 @@ public:
return Vs.reduceUnaryOp(*this, Ne);
}
- template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const UnaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
if (Cmp.notTrue(Ct))
@@ -1260,11 +1198,12 @@ public:
}
private:
- SExprRef Expr0;
+ SExpr* Expr0;
};
-// Simple binary operation -- e.g. +, -, etc.
+/// Simple arithmetic binary operations, e.g. +, -, etc.
+/// These operations have no side effects.
class BinaryOp : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
@@ -1282,11 +1221,11 @@ public:
return static_cast<TIL_BinaryOpcode>(Flags);
}
- SExpr *expr0() { return Expr0.get(); }
- const SExpr *expr0() const { return Expr0.get(); }
+ SExpr *expr0() { return Expr0; }
+ const SExpr *expr0() const { return Expr0; }
- SExpr *expr1() { return Expr1.get(); }
- const SExpr *expr1() const { return Expr1.get(); }
+ SExpr *expr1() { return Expr1; }
+ const SExpr *expr1() const { return Expr1; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1295,7 +1234,8 @@ public:
return Vs.reduceBinaryOp(*this, Ne0, Ne1);
}
- template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const BinaryOp* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
if (Cmp.notTrue(Ct))
@@ -1307,12 +1247,14 @@ public:
}
private:
- SExprRef Expr0;
- SExprRef Expr1;
+ SExpr* Expr0;
+ SExpr* Expr1;
};
-// Cast expression
+/// Cast expressions.
+/// Cast expressions are essentially unary operations, but we treat them
+/// as a distinct AST node because they only change the type of the result.
class Cast : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
@@ -1324,8 +1266,8 @@ public:
return static_cast<TIL_CastOpcode>(Flags);
}
- SExpr *expr() { return Expr0.get(); }
- const SExpr *expr() const { return Expr0.get(); }
+ SExpr *expr() { return Expr0; }
+ const SExpr *expr() const { return Expr0; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1333,7 +1275,8 @@ public:
return Vs.reduceCast(*this, Ne);
}
- template <class C> typename C::CType compare(Cast* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Cast* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compareIntegers(castOpcode(), E->castOpcode());
if (Cmp.notTrue(Ct))
@@ -1342,16 +1285,18 @@ public:
}
private:
- SExprRef Expr0;
+ SExpr* Expr0;
};
class SCFG;
+/// Phi Node, for code in SSA form.
+/// Each Phi node has an array of possible values that it can take,
+/// depending on where control flow comes from.
class Phi : public SExpr {
public:
- // TODO: change to SExprRef
typedef SimpleArray<SExpr *> ValArray;
// In minimal SSA form, all Phi nodes are MultiVal.
@@ -1365,9 +1310,12 @@ public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
- Phi() : SExpr(COP_Phi) {}
- Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
- Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}
+ Phi()
+ : SExpr(COP_Phi), Cvdecl(nullptr) {}
+ Phi(MemRegionRef A, unsigned Nvals)
+ : SExpr(COP_Phi), Values(A, Nvals), Cvdecl(nullptr) {}
+ Phi(const Phi &P, ValArray &&Vs)
+ : SExpr(P), Values(std::move(Vs)), Cvdecl(nullptr) {}
const ValArray &values() const { return Values; }
ValArray &values() { return Values; }
@@ -1375,6 +1323,12 @@ public:
Status status() const { return static_cast<Status>(Flags); }
void setStatus(Status s) { Flags = s; }
+ /// Return the clang declaration of the variable for this Phi node, if any.
+ const clang::ValueDecl *clangDecl() const { return Cvdecl; }
+
+ /// Set the clang variable associated with this Phi node.
+ void setClangDecl(const clang::ValueDecl *Cvd) { Cvdecl = Cvd; }
+
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
typename V::template Container<typename V::R_SExpr>
@@ -1386,72 +1340,268 @@ public:
return Vs.reducePhi(*this, Nvs);
}
- template <class C> typename C::CType compare(Phi *E, C &Cmp) {
+ template <class C>
+ typename C::CType compare(const Phi *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
ValArray Values;
+ const clang::ValueDecl* Cvdecl;
+};
+
+
+/// Base class for basic block terminators: Branch, Goto, and Return.
+class Terminator : public SExpr {
+public:
+ static bool classof(const SExpr *E) {
+ return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;
+ }
+
+protected:
+ Terminator(TIL_Opcode Op) : SExpr(Op) {}
+ Terminator(const SExpr &E) : SExpr(E) {}
+
+public:
+ /// Return the list of basic blocks that this terminator can branch to.
+ ArrayRef<BasicBlock*> successors();
+
+ ArrayRef<BasicBlock*> successors() const {
+ return const_cast<Terminator*>(this)->successors();
+ }
};
-// A basic block is part of an SCFG, and can be treated as a function in
-// continuation passing style. It consists of a sequence of phi nodes, which
-// are "arguments" to the function, followed by a sequence of instructions.
-// Both arguments and instructions define new variables. It ends with a
-// branch or goto to another basic block in the same SCFG.
+/// Jump to another basic block.
+/// A goto instruction is essentially a tail-recursive call into another
+/// block. In addition to the block pointer, it specifies an index into the
+/// phi nodes of that block. The index can be used to retrieve the "arguments"
+/// of the call.
+class Goto : public Terminator {
+public:
+ static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
+
+ Goto(BasicBlock *B, unsigned I)
+ : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
+ Goto(const Goto &G, BasicBlock *B, unsigned I)
+ : Terminator(COP_Goto), TargetBlock(B), Index(I) {}
+
+ const BasicBlock *targetBlock() const { return TargetBlock; }
+ BasicBlock *targetBlock() { return TargetBlock; }
+
+ /// Returns the index into the
+ unsigned index() const { return Index; }
+
+ /// Return the list of basic blocks that this terminator can branch to.
+ ArrayRef<BasicBlock*> successors() {
+ return ArrayRef<BasicBlock*>(&TargetBlock, 1);
+ }
+
+ template <class V>
+ typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
+ BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
+ return Vs.reduceGoto(*this, Ntb);
+ }
+
+ template <class C>
+ typename C::CType compare(const Goto *E, C &Cmp) const {
+ // TODO: implement CFG comparisons
+ return Cmp.comparePointers(this, E);
+ }
+
+private:
+ BasicBlock *TargetBlock;
+ unsigned Index;
+};
+
+
+/// A conditional branch to two other blocks.
+/// Note that unlike Goto, Branch does not have an index. The target blocks
+/// must be child-blocks, and cannot have Phi nodes.
+class Branch : public Terminator {
+public:
+ static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
+
+ Branch(SExpr *C, BasicBlock *T, BasicBlock *E)
+ : Terminator(COP_Branch), Condition(C) {
+ Branches[0] = T;
+ Branches[1] = E;
+ }
+ Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)
+ : Terminator(Br), Condition(C) {
+ Branches[0] = T;
+ Branches[1] = E;
+ }
+
+ const SExpr *condition() const { return Condition; }
+ SExpr *condition() { return Condition; }
+
+ const BasicBlock *thenBlock() const { return Branches[0]; }
+ BasicBlock *thenBlock() { return Branches[0]; }
+
+ const BasicBlock *elseBlock() const { return Branches[1]; }
+ BasicBlock *elseBlock() { return Branches[1]; }
+
+ /// Return the list of basic blocks that this terminator can branch to.
+ ArrayRef<BasicBlock*> successors() {
+ return ArrayRef<BasicBlock*>(Branches, 2);
+ }
+
+ template <class V>
+ typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
+ auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
+ BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);
+ BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);
+ return Vs.reduceBranch(*this, Nc, Ntb, Nte);
+ }
+
+ template <class C>
+ typename C::CType compare(const Branch *E, C &Cmp) const {
+ // TODO: implement CFG comparisons
+ return Cmp.comparePointers(this, E);
+ }
+
+private:
+ SExpr* Condition;
+ BasicBlock *Branches[2];
+};
+
+
+/// Return from the enclosing function, passing the return value to the caller.
+/// Only the exit block should end with a return statement.
+class Return : public Terminator {
+public:
+ static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }
+
+ Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}
+ Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}
+
+ /// Return an empty list.
+ ArrayRef<BasicBlock*> successors() {
+ return ArrayRef<BasicBlock*>();
+ }
+
+ SExpr *returnValue() { return Retval; }
+ const SExpr *returnValue() const { return Retval; }
+
+ template <class V>
+ typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
+ auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));
+ return Vs.reduceReturn(*this, Ne);
+ }
+
+ template <class C>
+ typename C::CType compare(const Return *E, C &Cmp) const {
+ return Cmp.compare(Retval, E->Retval);
+ }
+
+private:
+ SExpr* Retval;
+};
+
+
+inline ArrayRef<BasicBlock*> Terminator::successors() {
+ switch (opcode()) {
+ case COP_Goto: return cast<Goto>(this)->successors();
+ case COP_Branch: return cast<Branch>(this)->successors();
+ case COP_Return: return cast<Return>(this)->successors();
+ default:
+ return ArrayRef<BasicBlock*>();
+ }
+}
+
+
+/// A basic block is part of an SCFG. It can be treated as a function in
+/// continuation passing style. A block consists of a sequence of phi nodes,
+/// which are "arguments" to the function, followed by a sequence of
+/// instructions. It ends with a Terminator, which is a Branch or Goto to
+/// another basic block in the same SCFG.
class BasicBlock : public SExpr {
public:
- typedef SimpleArray<Variable*> VarArray;
+ typedef SimpleArray<SExpr*> InstrArray;
typedef SimpleArray<BasicBlock*> BlockArray;
+ // TopologyNodes are used to overlay tree structures on top of the CFG,
+ // such as dominator and postdominator trees. Each block is assigned an
+ // ID in the tree according to a depth-first search. Tree traversals are
+ // always up, towards the parents.
+ struct TopologyNode {
+ TopologyNode() : NodeID(0), SizeOfSubTree(0), Parent(nullptr) {}
+
+ bool isParentOf(const TopologyNode& OtherNode) {
+ return OtherNode.NodeID > NodeID &&
+ OtherNode.NodeID < NodeID + SizeOfSubTree;
+ }
+
+ bool isParentOfOrEqual(const TopologyNode& OtherNode) {
+ return OtherNode.NodeID >= NodeID &&
+ OtherNode.NodeID < NodeID + SizeOfSubTree;
+ }
+
+ int NodeID;
+ int SizeOfSubTree; // Includes this node, so must be > 1.
+ BasicBlock *Parent; // Pointer to parent.
+ };
+
static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
- explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
+ explicit BasicBlock(MemRegionRef A)
: SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
- Parent(P), Terminator(nullptr)
- { }
- BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
- : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
- Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
- Terminator(T)
- { }
+ Visited(0), TermInstr(nullptr) {}
+ BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,
+ Terminator *T)
+ : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),Visited(0),
+ Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}
+
+ /// Returns the block ID. Every block has a unique ID in the CFG.
+ int blockID() const { return BlockID; }
- unsigned blockID() const { return BlockID; }
- unsigned numPredecessors() const { return Predecessors.size(); }
+ /// Returns the number of predecessors.
+ size_t numPredecessors() const { return Predecessors.size(); }
+ size_t numSuccessors() const { return successors().size(); }
const SCFG* cfg() const { return CFGPtr; }
SCFG* cfg() { return CFGPtr; }
- const BasicBlock *parent() const { return Parent; }
- BasicBlock *parent() { return Parent; }
+ const BasicBlock *parent() const { return DominatorNode.Parent; }
+ BasicBlock *parent() { return DominatorNode.Parent; }
- const VarArray &arguments() const { return Args; }
- VarArray &arguments() { return Args; }
+ const InstrArray &arguments() const { return Args; }
+ InstrArray &arguments() { return Args; }
- const VarArray &instructions() const { return Instrs; }
- VarArray &instructions() { return Instrs; }
+ InstrArray &instructions() { return Instrs; }
+ const InstrArray &instructions() const { return Instrs; }
- const BlockArray &predecessors() const { return Predecessors; }
+ /// Returns a list of predecessors.
+ /// The order of predecessors in the list is important; each phi node has
+ /// exactly one argument for each precessor, in the same order.
BlockArray &predecessors() { return Predecessors; }
+ const BlockArray &predecessors() const { return Predecessors; }
+
+ ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }
+ ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }
+
+ const Terminator *terminator() const { return TermInstr; }
+ Terminator *terminator() { return TermInstr; }
- const SExpr *terminator() const { return Terminator.get(); }
- SExpr *terminator() { return Terminator.get(); }
+ void setTerminator(Terminator *E) { TermInstr = E; }
- void setBlockID(unsigned i) { BlockID = i; }
- void setParent(BasicBlock *P) { Parent = P; }
- void setTerminator(SExpr *E) { Terminator.reset(E); }
+ bool Dominates(const BasicBlock &Other) {
+ return DominatorNode.isParentOfOrEqual(Other.DominatorNode);
+ }
+
+ bool PostDominates(const BasicBlock &Other) {
+ return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);
+ }
- // Add a new argument. V must define a phi-node.
- void addArgument(Variable *V) {
- V->setKind(Variable::VK_LetBB);
+ /// Add a new argument.
+ void addArgument(Phi *V) {
Args.reserveCheck(1, Arena);
Args.push_back(V);
}
- // Add a new instruction.
- void addInstruction(Variable *V) {
- V->setKind(Variable::VK_LetBB);
+ /// Add a new instruction.
+ void addInstruction(SExpr *V) {
Instrs.reserveCheck(1, Arena);
Instrs.push_back(V);
}
@@ -1468,34 +1618,29 @@ public:
// Reserve space for NumPreds predecessors, including space in phi nodes.
void reservePredecessors(unsigned NumPreds);
- // Return the index of BB, or Predecessors.size if BB is not a predecessor.
+ /// Return the index of BB, or Predecessors.size if BB is not a predecessor.
unsigned findPredecessorIndex(const BasicBlock *BB) const {
auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
return std::distance(Predecessors.cbegin(), I);
}
- // Set id numbers for variables.
- void renumberVars();
-
template <class V>
typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
- typename V::template Container<Variable*> Nas(Vs, Args.size());
- typename V::template Container<Variable*> Nis(Vs, Instrs.size());
+ typename V::template Container<SExpr*> Nas(Vs, Args.size());
+ typename V::template Container<SExpr*> Nis(Vs, Instrs.size());
// Entering the basic block should do any scope initialization.
Vs.enterBasicBlock(*this);
- for (auto *A : Args) {
- auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
- Variable *Nvd = Vs.enterScope(*A, Ne);
- Nas.push_back(Nvd);
+ for (auto *E : Args) {
+ auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
+ Nas.push_back(Ne);
}
- for (auto *I : Instrs) {
- auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
- Variable *Nvd = Vs.enterScope(*I, Ne);
- Nis.push_back(Nvd);
+ for (auto *E : Instrs) {
+ auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));
+ Nis.push_back(Ne);
}
- auto Nt = Vs.traverse(Terminator, Ctx);
+ auto Nt = Vs.traverse(TermInstr, Ctx);
// Exiting the basic block should handle any scope cleanup.
Vs.exitBasicBlock(*this);
@@ -1503,7 +1648,8 @@ public:
return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
}
- template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
+ template <class C>
+ typename C::CType compare(const BasicBlock *E, C &Cmp) const {
// TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
@@ -1511,22 +1657,32 @@ public:
private:
friend class SCFG;
- MemRegionRef Arena;
+ int renumberInstrs(int id); // assign unique ids to all instructions
+ int topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
+ int topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID);
+ void computeDominator();
+ void computePostDominator();
- SCFG *CFGPtr; // The CFG that contains this block.
- unsigned BlockID; // unique id for this BB in the containing CFG
- BasicBlock *Parent; // The parent block is the enclosing lexical scope.
- // The parent dominates this block.
- BlockArray Predecessors; // Predecessor blocks in the CFG.
- VarArray Args; // Phi nodes. One argument per predecessor.
- VarArray Instrs; // Instructions.
- SExprRef Terminator; // Branch or Goto
+private:
+ MemRegionRef Arena; // The arena used to allocate this block.
+ SCFG *CFGPtr; // The CFG that contains this block.
+ int BlockID : 31; // unique id for this BB in the containing CFG.
+ // IDs are in topological order.
+ bool Visited : 1; // Bit to determine if a block has been visited
+ // during a traversal.
+ BlockArray Predecessors; // Predecessor blocks in the CFG.
+ InstrArray Args; // Phi nodes. One argument per predecessor.
+ InstrArray Instrs; // Instructions.
+ Terminator* TermInstr; // Terminating instruction
+
+ TopologyNode DominatorNode; // The dominator tree
+ TopologyNode PostDominatorNode; // The post-dominator tree
};
-// An SCFG is a control-flow graph. It consists of a set of basic blocks, each
-// of which terminates in a branch to another basic block. There is one
-// entry point, and one exit point.
+/// An SCFG is a control-flow graph. It consists of a set of basic blocks,
+/// each of which terminates in a branch to another basic block. There is one
+/// entry point, and one exit point.
class SCFG : public SExpr {
public:
typedef SimpleArray<BasicBlock *> BlockArray;
@@ -1537,20 +1693,29 @@ public:
SCFG(MemRegionRef A, unsigned Nblocks)
: SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
- Entry(nullptr), Exit(nullptr) {
- Entry = new (A) BasicBlock(A, nullptr);
- Exit = new (A) BasicBlock(A, Entry);
- auto *V = new (A) Variable(new (A) Phi());
+ Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
+ Entry = new (A) BasicBlock(A);
+ Exit = new (A) BasicBlock(A);
+ auto *V = new (A) Phi();
Exit->addArgument(V);
+ Exit->setTerminator(new (A) Return(V));
add(Entry);
add(Exit);
}
SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
: SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
- Entry(nullptr), Exit(nullptr) {
+ Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {
// TODO: set entry and exit!
}
+ /// Return true if this CFG is valid.
+ bool valid() const { return Entry && Exit && Blocks.size() > 0; }
+
+ /// Return true if this CFG has been normalized.
+ /// After normalization, blocks are in topological order, and block and
+ /// instruction IDs have been assigned.
+ bool normal() const { return Normal; }
+
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
@@ -1565,9 +1730,17 @@ public:
const BasicBlock *exit() const { return Exit; }
BasicBlock *exit() { return Exit; }
+ /// Return the number of blocks in the CFG.
+ /// Block::blockID() will return a number less than numBlocks();
+ size_t numBlocks() const { return Blocks.size(); }
+
+ /// Return the total number of instructions in the CFG.
+ /// This is useful for building instruction side-tables;
+ /// A call to SExpr::id() will return a number less than numInstructions().
+ unsigned numInstructions() { return NumInstructions; }
+
inline void add(BasicBlock *BB) {
- assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
- BB->setBlockID(Blocks.size());
+ assert(BB->CFGPtr == nullptr);
BB->CFGPtr = this;
Blocks.reserveCheck(1, Arena);
Blocks.push_back(BB);
@@ -1576,13 +1749,13 @@ public:
void setEntry(BasicBlock *BB) { Entry = BB; }
void setExit(BasicBlock *BB) { Exit = BB; }
- // Set varable ids in all blocks.
- void renumberVars();
+ void computeNormalForm();
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
Vs.enterCFG(*this);
typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
+
for (auto *B : Blocks) {
Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
}
@@ -1590,100 +1763,28 @@ public:
return Vs.reduceSCFG(*this, Bbs);
}
- template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
- // TODO -- implement CFG comparisons
+ template <class C>
+ typename C::CType compare(const SCFG *E, C &Cmp) const {
+ // TODO: implement CFG comparisons
return Cmp.comparePointers(this, E);
}
private:
+ void renumberInstrs(); // assign unique ids to all instructions
+
+private:
MemRegionRef Arena;
BlockArray Blocks;
BasicBlock *Entry;
BasicBlock *Exit;
+ unsigned NumInstructions;
+ bool Normal;
};
-class Goto : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
-
- Goto(BasicBlock *B, unsigned I)
- : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
- Goto(const Goto &G, BasicBlock *B, unsigned I)
- : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
- const BasicBlock *targetBlock() const { return TargetBlock; }
- BasicBlock *targetBlock() { return TargetBlock; }
-
- unsigned index() const { return Index; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
- return Vs.reduceGoto(*this, Ntb);
- }
-
- template <class C> typename C::CType compare(Goto *E, C &Cmp) {
- // TODO -- implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- BasicBlock *TargetBlock;
- unsigned Index; // Index into Phi nodes of target block.
-};
-
-
-class Branch : public SExpr {
-public:
- static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
-
- Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
- : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
- ThenIndex(TI), ElseIndex(EI)
- {}
- Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
- unsigned TI, unsigned EI)
- : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
- ThenIndex(TI), ElseIndex(EI)
- {}
-
- const SExpr *condition() const { return Condition; }
- SExpr *condition() { return Condition; }
-
- const BasicBlock *thenBlock() const { return ThenBlock; }
- BasicBlock *thenBlock() { return ThenBlock; }
-
- const BasicBlock *elseBlock() const { return ElseBlock; }
- BasicBlock *elseBlock() { return ElseBlock; }
-
- unsigned thenIndex() const { return ThenIndex; }
- unsigned elseIndex() const { return ElseIndex; }
-
- template <class V>
- typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
- auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
- BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
- BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
- return Vs.reduceBranch(*this, Nc, Ntb, Nte);
- }
-
- template <class C> typename C::CType compare(Branch *E, C &Cmp) {
- // TODO -- implement CFG comparisons
- return Cmp.comparePointers(this, E);
- }
-
-private:
- SExpr *Condition;
- BasicBlock *ThenBlock;
- BasicBlock *ElseBlock;
- unsigned ThenIndex;
- unsigned ElseIndex;
-};
-
-
-// An identifier, e.g. 'foo' or 'x'.
-// This is a pseduo-term; it will be lowered to a variable or projection.
+/// An identifier, e.g. 'foo' or 'x'.
+/// This is a pseduo-term; it will be lowered to a variable or projection.
class Identifier : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
@@ -1698,7 +1799,8 @@ public:
return Vs.reduceIdentifier(*this);
}
- template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Identifier* E, C& Cmp) const {
return Cmp.compareStrings(name(), E->name());
}
@@ -1707,8 +1809,8 @@ private:
};
-// An if-then-else expression.
-// This is a pseduo-term; it will be lowered to a branch in a CFG.
+/// An if-then-else expression.
+/// This is a pseduo-term; it will be lowered to a branch in a CFG.
class IfThenElse : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
@@ -1720,14 +1822,14 @@ public:
: SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
{ }
- SExpr *condition() { return Condition.get(); } // Address to store to
- const SExpr *condition() const { return Condition.get(); }
+ SExpr *condition() { return Condition; } // Address to store to
+ const SExpr *condition() const { return Condition; }
- SExpr *thenExpr() { return ThenExpr.get(); } // Value to store
- const SExpr *thenExpr() const { return ThenExpr.get(); }
+ SExpr *thenExpr() { return ThenExpr; } // Value to store
+ const SExpr *thenExpr() const { return ThenExpr; }
- SExpr *elseExpr() { return ElseExpr.get(); } // Value to store
- const SExpr *elseExpr() const { return ElseExpr.get(); }
+ SExpr *elseExpr() { return ElseExpr; } // Value to store
+ const SExpr *elseExpr() const { return ElseExpr; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1737,7 +1839,8 @@ public:
return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
}
- template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const IfThenElse* E, C& Cmp) const {
typename C::CType Ct = Cmp.compare(condition(), E->condition());
if (Cmp.notTrue(Ct))
return Ct;
@@ -1748,14 +1851,14 @@ public:
}
private:
- SExprRef Condition;
- SExprRef ThenExpr;
- SExprRef ElseExpr;
+ SExpr* Condition;
+ SExpr* ThenExpr;
+ SExpr* ElseExpr;
};
-// A let-expression, e.g. let x=t; u.
-// This is a pseduo-term; it will be lowered to instructions in a CFG.
+/// A let-expression, e.g. let x=t; u.
+/// This is a pseduo-term; it will be lowered to instructions in a CFG.
class Let : public SExpr {
public:
static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
@@ -1770,8 +1873,8 @@ public:
Variable *variableDecl() { return VarDecl; }
const Variable *variableDecl() const { return VarDecl; }
- SExpr *body() { return Body.get(); }
- const SExpr *body() const { return Body.get(); }
+ SExpr *body() { return Body; }
+ const SExpr *body() const { return Body; }
template <class V>
typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
@@ -1784,7 +1887,8 @@ public:
return Vs.reduceLet(*this, Nvd, E1);
}
- template <class C> typename C::CType compare(Let* E, C& Cmp) {
+ template <class C>
+ typename C::CType compare(const Let* E, C& Cmp) const {
typename C::CType Ct =
Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
if (Cmp.notTrue(Ct))
@@ -1797,17 +1901,18 @@ public:
private:
Variable *VarDecl;
- SExprRef Body;
+ SExpr* Body;
};
-SExpr *getCanonicalVal(SExpr *E);
-void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
+const SExpr *getCanonicalVal(const SExpr *E);
+SExpr* simplifyToCanonicalVal(SExpr *E);
+void simplifyIncompleteArg(til::Phi *Ph);
} // end namespace til
} // end namespace threadSafety
} // end namespace clang
-#endif // LLVM_CLANG_THREAD_SAFETY_TIL_H
+#endif