aboutsummaryrefslogtreecommitdiff
path: root/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/Analysis/Analyses/ThreadSafetyTraverse.h')
-rw-r--r--include/clang/Analysis/Analyses/ThreadSafetyTraverse.h936
1 files changed, 936 insertions, 0 deletions
diff --git a/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h b/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
new file mode 100644
index 000000000000..bc1490b4a448
--- /dev/null
+++ b/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
@@ -0,0 +1,936 @@
+//===- ThreadSafetyTraverse.h ----------------------------------*- C++ --*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a framework for doing generic traversals and rewriting
+// operations over the Thread Safety TIL.
+//
+// UNDER CONSTRUCTION. USE AT YOUR OWN RISK.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_THREAD_SAFETY_TRAVERSE_H
+#define LLVM_CLANG_THREAD_SAFETY_TRAVERSE_H
+
+#include "ThreadSafetyTIL.h"
+
+namespace clang {
+namespace threadSafety {
+namespace til {
+
+// Defines an interface used to traverse SExprs. Traversals have been made as
+// generic as possible, and are intended to handle any kind of pass over the
+// AST, e.g. visiters, copying, non-destructive rewriting, destructive
+// (in-place) rewriting, hashing, typing, etc.
+//
+// Traversals implement the functional notion of a "fold" operation on SExprs.
+// Each SExpr class provides a traverse method, which does the following:
+// * e->traverse(v):
+// // compute a result r_i for each subexpression e_i
+// for (i = 1..n) r_i = v.traverse(e_i);
+// // combine results into a result for e, where X is the class of e
+// return v.reduceX(*e, r_1, .. r_n).
+//
+// A visitor can control the traversal by overriding the following methods:
+// * v.traverse(e):
+// return v.traverseByCase(e), which returns v.traverseX(e)
+// * v.traverseX(e): (X is the class of e)
+// return e->traverse(v).
+// * v.reduceX(*e, r_1, .. r_n):
+// compute a result for a node of type X
+//
+// The reduceX methods control the kind of traversal (visitor, copy, etc.).
+// They are defined in derived classes.
+//
+// Class R defines the basic interface types (R_SExpr).
+template <class Self, class R>
+class Traversal {
+public:
+ Self *self() { return static_cast<Self *>(this); }
+
+ // Traverse an expression -- returning a result of type R_SExpr.
+ // Override this method to do something for every expression, regardless
+ // of which kind it is.
+ typename R::R_SExpr traverse(SExprRef &E, typename R::R_Ctx Ctx) {
+ return traverse(E.get(), Ctx);
+ }
+
+ typename R::R_SExpr traverse(SExpr *E, typename R::R_Ctx Ctx) {
+ return traverseByCase(E, Ctx);
+ }
+
+ // Helper method to call traverseX(e) on the appropriate type.
+ typename R::R_SExpr traverseByCase(SExpr *E, typename R::R_Ctx Ctx) {
+ switch (E->opcode()) {
+#define TIL_OPCODE_DEF(X) \
+ case COP_##X: \
+ return self()->traverse##X(cast<X>(E), Ctx);
+#include "ThreadSafetyOps.def"
+#undef TIL_OPCODE_DEF
+ }
+ }
+
+// Traverse e, by static dispatch on the type "X" of e.
+// Override these methods to do something for a particular kind of term.
+#define TIL_OPCODE_DEF(X) \
+ typename R::R_SExpr traverse##X(X *e, typename R::R_Ctx Ctx) { \
+ return e->traverse(*self(), Ctx); \
+ }
+#include "ThreadSafetyOps.def"
+#undef TIL_OPCODE_DEF
+};
+
+
+// Base class for simple reducers that don't much care about the context.
+class SimpleReducerBase {
+public:
+ enum TraversalKind {
+ TRV_Normal,
+ TRV_Decl,
+ TRV_Lazy,
+ TRV_Type
+ };
+
+ // R_Ctx defines a "context" for the traversal, which encodes information
+ // about where a term appears. This can be used to encoding the
+ // "current continuation" for CPS transforms, or other information.
+ typedef TraversalKind R_Ctx;
+
+ // Create context for an ordinary subexpression.
+ R_Ctx subExprCtx(R_Ctx Ctx) { return TRV_Normal; }
+
+ // Create context for a subexpression that occurs in a declaration position
+ // (e.g. function body).
+ R_Ctx declCtx(R_Ctx Ctx) { return TRV_Decl; }
+
+ // Create context for a subexpression that occurs in a position that
+ // should be reduced lazily. (e.g. code body).
+ R_Ctx lazyCtx(R_Ctx Ctx) { return TRV_Lazy; }
+
+ // Create context for a subexpression that occurs in a type position.
+ R_Ctx typeCtx(R_Ctx Ctx) { return TRV_Type; }
+};
+
+
+// Base class for traversals that rewrite an SExpr to another SExpr.
+class CopyReducerBase : public SimpleReducerBase {
+public:
+ // R_SExpr is the result type for a traversal.
+ // A copy or non-destructive rewrite returns a newly allocated term.
+ typedef SExpr *R_SExpr;
+ typedef BasicBlock *R_BasicBlock;
+
+ // Container is a minimal interface used to store results when traversing
+ // SExprs of variable arity, such as Phi, Goto, and SCFG.
+ template <class T> class Container {
+ public:
+ // Allocate a new container with a capacity for n elements.
+ Container(CopyReducerBase &S, unsigned N) : Elems(S.Arena, N) {}
+
+ // Push a new element onto the container.
+ void push_back(T E) { Elems.push_back(E); }
+
+ SimpleArray<T> Elems;
+ };
+
+ CopyReducerBase(MemRegionRef A) : Arena(A) {}
+
+protected:
+ MemRegionRef Arena;
+};
+
+
+// Implements a traversal that makes a deep copy of an SExpr.
+// The default behavior of reduce##X(...) is to create a copy of the original.
+// Subclasses can override reduce##X to implement non-destructive rewriting
+// passes.
+template<class Self>
+class CopyReducer : public Traversal<Self, CopyReducerBase>,
+ public CopyReducerBase {
+public:
+ CopyReducer(MemRegionRef A) : CopyReducerBase(A) {}
+
+public:
+ R_SExpr reduceNull() {
+ return nullptr;
+ }
+ // R_SExpr reduceFuture(...) is never used.
+
+ R_SExpr reduceUndefined(Undefined &Orig) {
+ return new (Arena) Undefined(Orig);
+ }
+ R_SExpr reduceWildcard(Wildcard &Orig) {
+ return new (Arena) Wildcard(Orig);
+ }
+
+ R_SExpr reduceLiteral(Literal &Orig) {
+ return new (Arena) Literal(Orig);
+ }
+ template<class T>
+ R_SExpr reduceLiteralT(LiteralT<T> &Orig) {
+ return new (Arena) LiteralT<T>(Orig);
+ }
+ R_SExpr reduceLiteralPtr(LiteralPtr &Orig) {
+ return new (Arena) LiteralPtr(Orig);
+ }
+
+ R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) {
+ return new (Arena) Function(Orig, Nvd, E0);
+ }
+ R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) {
+ return new (Arena) SFunction(Orig, Nvd, E0);
+ }
+ R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) Code(Orig, E0, E1);
+ }
+ R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) Field(Orig, E0, E1);
+ }
+
+ R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) Apply(Orig, E0, E1);
+ }
+ R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) SApply(Orig, E0, E1);
+ }
+ R_SExpr reduceProject(Project &Orig, R_SExpr E0) {
+ return new (Arena) Project(Orig, E0);
+ }
+ R_SExpr reduceCall(Call &Orig, R_SExpr E0) {
+ return new (Arena) Call(Orig, E0);
+ }
+
+ R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) {
+ return new (Arena) Alloc(Orig, E0);
+ }
+ R_SExpr reduceLoad(Load &Orig, R_SExpr E0) {
+ return new (Arena) Load(Orig, E0);
+ }
+ R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) Store(Orig, E0, E1);
+ }
+ R_SExpr reduceArrayIndex(ArrayIndex &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) ArrayIndex(Orig, E0, E1);
+ }
+ R_SExpr reduceArrayAdd(ArrayAdd &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) ArrayAdd(Orig, E0, E1);
+ }
+ R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) {
+ return new (Arena) UnaryOp(Orig, E0);
+ }
+ R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) {
+ return new (Arena) BinaryOp(Orig, E0, E1);
+ }
+ R_SExpr reduceCast(Cast &Orig, R_SExpr E0) {
+ return new (Arena) Cast(Orig, E0);
+ }
+
+ R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> &Bbs) {
+ return nullptr; // FIXME: implement CFG rewriting
+ }
+ R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,
+ Container<Variable *> &Is, R_SExpr T) {
+ return nullptr; // FIXME: implement CFG rewriting
+ }
+ R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {
+ return new (Arena) Phi(Orig, std::move(As.Elems));
+ }
+ R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) {
+ return new (Arena) Goto(Orig, B, 0); // FIXME: set index
+ }
+ R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {
+ return new (Arena) Branch(O, C, B0, B1, 0, 0); // FIXME: set indices
+ }
+
+ R_SExpr reduceIdentifier(Identifier &Orig) {
+ return new (Arena) Identifier(Orig);
+ }
+ R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) {
+ return new (Arena) IfThenElse(Orig, C, T, E);
+ }
+ R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) {
+ return new (Arena) Let(Orig, Nvd, B);
+ }
+
+ // Create a new variable from orig, and push it onto the lexical scope.
+ Variable *enterScope(Variable &Orig, R_SExpr E0) {
+ return new (Arena) Variable(Orig, E0);
+ }
+ // Exit the lexical scope of orig.
+ void exitScope(const Variable &Orig) {}
+
+ void enterCFG(SCFG &Cfg) {}
+ void exitCFG(SCFG &Cfg) {}
+ void enterBasicBlock(BasicBlock &BB) {}
+ void exitBasicBlock(BasicBlock &BB) {}
+
+ // Map Variable references to their rewritten definitions.
+ Variable *reduceVariableRef(Variable *Ovd) { return Ovd; }
+
+ // Map BasicBlock references to their rewritten definitions.
+ BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }
+};
+
+
+class SExprCopier : public CopyReducer<SExprCopier> {
+public:
+ typedef SExpr *R_SExpr;
+
+ SExprCopier(MemRegionRef A) : CopyReducer(A) { }
+
+ // Create a copy of e in region a.
+ static SExpr *copy(SExpr *E, MemRegionRef A) {
+ SExprCopier Copier(A);
+ return Copier.traverse(E, TRV_Normal);
+ }
+};
+
+
+
+// Base class for visit traversals.
+class VisitReducerBase : public SimpleReducerBase {
+public:
+ // A visitor returns a bool, representing success or failure.
+ typedef bool R_SExpr;
+ typedef bool R_BasicBlock;
+
+ // A visitor "container" is a single bool, which accumulates success.
+ template <class T> class Container {
+ public:
+ Container(VisitReducerBase &S, unsigned N) : Success(true) {}
+ void push_back(bool E) { Success = Success && E; }
+
+ bool Success;
+ };
+};
+
+
+// Implements a traversal that visits each subexpression, and returns either
+// true or false.
+template <class Self>
+class VisitReducer : public Traversal<Self, VisitReducerBase>,
+ public VisitReducerBase {
+public:
+ VisitReducer() {}
+
+public:
+ R_SExpr reduceNull() { return true; }
+ R_SExpr reduceUndefined(Undefined &Orig) { return true; }
+ R_SExpr reduceWildcard(Wildcard &Orig) { return true; }
+
+ R_SExpr reduceLiteral(Literal &Orig) { return true; }
+ template<class T>
+ R_SExpr reduceLiteralT(LiteralT<T> &Orig) { return true; }
+ R_SExpr reduceLiteralPtr(Literal &Orig) { return true; }
+
+ R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) {
+ return Nvd && E0;
+ }
+ R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) {
+ return Nvd && E0;
+ }
+ R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceProject(Project &Orig, R_SExpr E0) { return E0; }
+ R_SExpr reduceCall(Call &Orig, R_SExpr E0) { return E0; }
+ R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) { return E0; }
+ R_SExpr reduceLoad(Load &Orig, R_SExpr E0) { return E0; }
+ R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }
+ R_SExpr reduceArrayIndex(Store &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceArrayAdd(Store &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) { return E0; }
+ R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) {
+ return E0 && E1;
+ }
+ R_SExpr reduceCast(Cast &Orig, R_SExpr E0) { return E0; }
+
+ R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> Bbs) {
+ return Bbs.Success;
+ }
+ R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,
+ Container<Variable *> &Is, R_SExpr T) {
+ return (As.Success && Is.Success && T);
+ }
+ R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {
+ return As.Success;
+ }
+ R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) {
+ return true;
+ }
+ R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {
+ return C;
+ }
+
+ R_SExpr reduceIdentifier(Identifier &Orig) {
+ return true;
+ }
+ R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) {
+ return C && T && E;
+ }
+ R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) {
+ return Nvd && B;
+ }
+
+ Variable *enterScope(Variable &Orig, R_SExpr E0) { return &Orig; }
+ void exitScope(const Variable &Orig) {}
+ void enterCFG(SCFG &Cfg) {}
+ void exitCFG(SCFG &Cfg) {}
+ void enterBasicBlock(BasicBlock &BB) {}
+ void exitBasicBlock(BasicBlock &BB) {}
+
+ Variable *reduceVariableRef (Variable *Ovd) { return Ovd; }
+ BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }
+
+public:
+ bool traverse(SExpr *E, TraversalKind K = TRV_Normal) {
+ Success = Success && this->traverseByCase(E);
+ return Success;
+ }
+
+ static bool visit(SExpr *E) {
+ Self Visitor;
+ return Visitor.traverse(E, TRV_Normal);
+ }
+
+private:
+ bool Success;
+};
+
+
+// Basic class for comparison operations over expressions.
+template <typename Self>
+class Comparator {
+protected:
+ Self *self() { return reinterpret_cast<Self *>(this); }
+
+public:
+ bool compareByCase(SExpr *E1, SExpr* E2) {
+ switch (E1->opcode()) {
+#define TIL_OPCODE_DEF(X) \
+ case COP_##X: \
+ return cast<X>(E1)->compare(cast<X>(E2), *self());
+#include "ThreadSafetyOps.def"
+#undef TIL_OPCODE_DEF
+ }
+ }
+};
+
+
+class EqualsComparator : public Comparator<EqualsComparator> {
+public:
+ // Result type for the comparison, e.g. bool for simple equality,
+ // or int for lexigraphic comparison (-1, 0, 1). Must have one value which
+ // denotes "true".
+ typedef bool CType;
+
+ CType trueResult() { return true; }
+ bool notTrue(CType ct) { return !ct; }
+
+ bool compareIntegers(unsigned i, unsigned j) { return i == j; }
+ bool compareStrings (StringRef s, StringRef r) { return s == r; }
+ bool comparePointers(const void* P, const void* Q) { return P == Q; }
+
+ bool compare(SExpr *E1, SExpr* E2) {
+ if (E1->opcode() != E2->opcode())
+ return false;
+ return compareByCase(E1, E2);
+ }
+
+ // TODO -- handle alpha-renaming of variables
+ void enterScope(Variable* V1, Variable* V2) { }
+ void leaveScope() { }
+
+ bool compareVariableRefs(Variable* V1, Variable* V2) {
+ return V1 == V2;
+ }
+
+ static bool compareExprs(SExpr *E1, SExpr* E2) {
+ EqualsComparator Eq;
+ return Eq.compare(E1, E2);
+ }
+};
+
+
+// Pretty printer for TIL expressions
+template <typename Self, typename StreamType>
+class PrettyPrinter {
+private:
+ bool Verbose; // Print out additional information
+ bool Cleanup; // Omit redundant decls.
+
+public:
+ PrettyPrinter(bool V = false, bool C = true) : Verbose(V), Cleanup(C) { }
+
+ static void print(SExpr *E, StreamType &SS) {
+ Self printer;
+ printer.printSExpr(E, SS, Prec_MAX);
+ }
+
+protected:
+ Self *self() { return reinterpret_cast<Self *>(this); }
+
+ void newline(StreamType &SS) {
+ SS << "\n";
+ }
+
+ // TODO: further distinguish between binary operations.
+ static const unsigned Prec_Atom = 0;
+ static const unsigned Prec_Postfix = 1;
+ static const unsigned Prec_Unary = 2;
+ static const unsigned Prec_Binary = 3;
+ static const unsigned Prec_Other = 4;
+ static const unsigned Prec_Decl = 5;
+ static const unsigned Prec_MAX = 6;
+
+ // Return the precedence of a given node, for use in pretty printing.
+ unsigned precedence(SExpr *E) {
+ switch (E->opcode()) {
+ case COP_Future: return Prec_Atom;
+ case COP_Undefined: return Prec_Atom;
+ case COP_Wildcard: return Prec_Atom;
+
+ case COP_Literal: return Prec_Atom;
+ case COP_LiteralPtr: return Prec_Atom;
+ case COP_Variable: return Prec_Atom;
+ case COP_Function: return Prec_Decl;
+ case COP_SFunction: return Prec_Decl;
+ case COP_Code: return Prec_Decl;
+ case COP_Field: return Prec_Decl;
+
+ case COP_Apply: return Prec_Postfix;
+ case COP_SApply: return Prec_Postfix;
+ case COP_Project: return Prec_Postfix;
+
+ case COP_Call: return Prec_Postfix;
+ case COP_Alloc: return Prec_Other;
+ case COP_Load: return Prec_Postfix;
+ case COP_Store: return Prec_Other;
+ case COP_ArrayIndex: return Prec_Postfix;
+ case COP_ArrayAdd: return Prec_Postfix;
+
+ case COP_UnaryOp: return Prec_Unary;
+ case COP_BinaryOp: return Prec_Binary;
+ case COP_Cast: return Prec_Unary;
+
+ case COP_SCFG: return Prec_Decl;
+ case COP_BasicBlock: return Prec_MAX;
+ case COP_Phi: return Prec_Atom;
+ case COP_Goto: return Prec_Atom;
+ case COP_Branch: return Prec_Atom;
+
+ case COP_Identifier: return Prec_Atom;
+ case COP_IfThenElse: return Prec_Other;
+ case COP_Let: return Prec_Decl;
+ }
+ return Prec_MAX;
+ }
+
+ void printBlockLabel(StreamType & SS, BasicBlock *BB, unsigned index) {
+ if (!BB) {
+ SS << "BB_null";
+ return;
+ }
+ SS << "BB_";
+ SS << BB->blockID();
+ SS << ":";
+ SS << index;
+ }
+
+ void printSExpr(SExpr *E, StreamType &SS, unsigned P) {
+ if (!E) {
+ self()->printNull(SS);
+ return;
+ }
+ if (self()->precedence(E) > P) {
+ // Wrap expr in () if necessary.
+ SS << "(";
+ self()->printSExpr(E, SS, Prec_MAX);
+ SS << ")";
+ return;
+ }
+
+ switch (E->opcode()) {
+#define TIL_OPCODE_DEF(X) \
+ case COP_##X: \
+ self()->print##X(cast<X>(E), SS); \
+ return;
+#include "ThreadSafetyOps.def"
+#undef TIL_OPCODE_DEF
+ }
+ }
+
+ void printNull(StreamType &SS) {
+ SS << "#null";
+ }
+
+ void printFuture(Future *E, StreamType &SS) {
+ self()->printSExpr(E->maybeGetResult(), SS, Prec_Atom);
+ }
+
+ void printUndefined(Undefined *E, StreamType &SS) {
+ SS << "#undefined";
+ }
+
+ void printWildcard(Wildcard *E, StreamType &SS) {
+ SS << "_";
+ }
+
+ template<class T>
+ void printLiteralT(LiteralT<T> *E, StreamType &SS) {
+ SS << E->value();
+ }
+
+ void printLiteralT(LiteralT<uint8_t> *E, StreamType &SS) {
+ SS << "'" << E->value() << "'";
+ }
+
+ void printLiteral(Literal *E, StreamType &SS) {
+ if (E->clangExpr()) {
+ SS << getSourceLiteralString(E->clangExpr());
+ return;
+ }
+ else {
+ ValueType VT = E->valueType();
+ switch (VT.Base) {
+ case ValueType::BT_Void: {
+ SS << "void";
+ return;
+ }
+ case ValueType::BT_Bool: {
+ if (E->as<bool>().value())
+ SS << "true";
+ else
+ SS << "false";
+ return;
+ }
+ case ValueType::BT_Int: {
+ switch (VT.Size) {
+ case ValueType::ST_8:
+ if (VT.Signed)
+ printLiteralT(&E->as<int8_t>(), SS);
+ else
+ printLiteralT(&E->as<uint8_t>(), SS);
+ return;
+ case ValueType::ST_16:
+ if (VT.Signed)
+ printLiteralT(&E->as<int16_t>(), SS);
+ else
+ printLiteralT(&E->as<uint16_t>(), SS);
+ return;
+ case ValueType::ST_32:
+ if (VT.Signed)
+ printLiteralT(&E->as<int32_t>(), SS);
+ else
+ printLiteralT(&E->as<uint32_t>(), SS);
+ return;
+ case ValueType::ST_64:
+ if (VT.Signed)
+ printLiteralT(&E->as<int64_t>(), SS);
+ else
+ printLiteralT(&E->as<uint64_t>(), SS);
+ return;
+ default:
+ break;
+ }
+ break;
+ }
+ case ValueType::BT_Float: {
+ switch (VT.Size) {
+ case ValueType::ST_32:
+ printLiteralT(&E->as<float>(), SS);
+ return;
+ case ValueType::ST_64:
+ printLiteralT(&E->as<double>(), SS);
+ return;
+ default:
+ break;
+ }
+ break;
+ }
+ case ValueType::BT_String: {
+ SS << "\"";
+ printLiteralT(&E->as<StringRef>(), SS);
+ SS << "\"";
+ return;
+ }
+ case ValueType::BT_Pointer: {
+ SS << "#ptr";
+ return;
+ }
+ case ValueType::BT_ValueRef: {
+ SS << "#vref";
+ return;
+ }
+ }
+ }
+ SS << "#lit";
+ }
+
+ void printLiteralPtr(LiteralPtr *E, StreamType &SS) {
+ SS << E->clangDecl()->getNameAsString();
+ }
+
+ void printVariable(Variable *V, StreamType &SS, bool IsVarDecl = false) {
+ if (!IsVarDecl && Cleanup) {
+ SExpr* E = getCanonicalVal(V);
+ if (E != V) {
+ printSExpr(E, SS, Prec_Atom);
+ return;
+ }
+ }
+ if (V->kind() == Variable::VK_LetBB)
+ SS << V->name() << V->getBlockID() << "_" << V->getID();
+ else
+ SS << V->name() << V->getID();
+ }
+
+ void printFunction(Function *E, StreamType &SS, unsigned sugared = 0) {
+ switch (sugared) {
+ default:
+ SS << "\\("; // Lambda
+ break;
+ case 1:
+ SS << "("; // Slot declarations
+ break;
+ case 2:
+ SS << ", "; // Curried functions
+ break;
+ }
+ self()->printVariable(E->variableDecl(), SS, true);
+ SS << ": ";
+ self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX);
+
+ SExpr *B = E->body();
+ if (B && B->opcode() == COP_Function)
+ self()->printFunction(cast<Function>(B), SS, 2);
+ else {
+ SS << ")";
+ self()->printSExpr(B, SS, Prec_Decl);
+ }
+ }
+
+ void printSFunction(SFunction *E, StreamType &SS) {
+ SS << "@";
+ self()->printVariable(E->variableDecl(), SS, true);
+ SS << " ";
+ self()->printSExpr(E->body(), SS, Prec_Decl);
+ }
+
+ void printCode(Code *E, StreamType &SS) {
+ SS << ": ";
+ self()->printSExpr(E->returnType(), SS, Prec_Decl-1);
+ SS << " -> ";
+ self()->printSExpr(E->body(), SS, Prec_Decl);
+ }
+
+ void printField(Field *E, StreamType &SS) {
+ SS << ": ";
+ self()->printSExpr(E->range(), SS, Prec_Decl-1);
+ SS << " = ";
+ self()->printSExpr(E->body(), SS, Prec_Decl);
+ }
+
+ void printApply(Apply *E, StreamType &SS, bool sugared = false) {
+ SExpr *F = E->fun();
+ if (F->opcode() == COP_Apply) {
+ printApply(cast<Apply>(F), SS, true);
+ SS << ", ";
+ } else {
+ self()->printSExpr(F, SS, Prec_Postfix);
+ SS << "(";
+ }
+ self()->printSExpr(E->arg(), SS, Prec_MAX);
+ if (!sugared)
+ SS << ")$";
+ }
+
+ void printSApply(SApply *E, StreamType &SS) {
+ self()->printSExpr(E->sfun(), SS, Prec_Postfix);
+ if (E->isDelegation()) {
+ SS << "@(";
+ self()->printSExpr(E->arg(), SS, Prec_MAX);
+ SS << ")";
+ }
+ }
+
+ void printProject(Project *E, StreamType &SS) {
+ self()->printSExpr(E->record(), SS, Prec_Postfix);
+ SS << ".";
+ SS << E->slotName();
+ }
+
+ void printCall(Call *E, StreamType &SS) {
+ SExpr *T = E->target();
+ if (T->opcode() == COP_Apply) {
+ self()->printApply(cast<Apply>(T), SS, true);
+ SS << ")";
+ }
+ else {
+ self()->printSExpr(T, SS, Prec_Postfix);
+ SS << "()";
+ }
+ }
+
+ void printAlloc(Alloc *E, StreamType &SS) {
+ SS << "new ";
+ self()->printSExpr(E->dataType(), SS, Prec_Other-1);
+ }
+
+ void printLoad(Load *E, StreamType &SS) {
+ self()->printSExpr(E->pointer(), SS, Prec_Postfix);
+ SS << "^";
+ }
+
+ void printStore(Store *E, StreamType &SS) {
+ self()->printSExpr(E->destination(), SS, Prec_Other-1);
+ SS << " := ";
+ self()->printSExpr(E->source(), SS, Prec_Other-1);
+ }
+
+ void printArrayIndex(ArrayIndex *E, StreamType &SS) {
+ self()->printSExpr(E->array(), SS, Prec_Postfix);
+ SS << "[";
+ self()->printSExpr(E->index(), SS, Prec_MAX);
+ SS << "]";
+ }
+
+ void printArrayAdd(ArrayAdd *E, StreamType &SS) {
+ self()->printSExpr(E->array(), SS, Prec_Postfix);
+ SS << " + ";
+ self()->printSExpr(E->index(), SS, Prec_Atom);
+ }
+
+ void printUnaryOp(UnaryOp *E, StreamType &SS) {
+ SS << getUnaryOpcodeString(E->unaryOpcode());
+ self()->printSExpr(E->expr(), SS, Prec_Unary);
+ }
+
+ void printBinaryOp(BinaryOp *E, StreamType &SS) {
+ self()->printSExpr(E->expr0(), SS, Prec_Binary-1);
+ SS << " " << getBinaryOpcodeString(E->binaryOpcode()) << " ";
+ self()->printSExpr(E->expr1(), SS, Prec_Binary-1);
+ }
+
+ void printCast(Cast *E, StreamType &SS) {
+ SS << "%";
+ self()->printSExpr(E->expr(), SS, Prec_Unary);
+ }
+
+ void printSCFG(SCFG *E, StreamType &SS) {
+ SS << "CFG {\n";
+ for (auto BBI : *E) {
+ printBasicBlock(BBI, SS);
+ }
+ SS << "}";
+ newline(SS);
+ }
+
+ void printBasicBlock(BasicBlock *E, StreamType &SS) {
+ SS << "BB_" << E->blockID() << ":";
+ if (E->parent())
+ SS << " BB_" << E->parent()->blockID();
+ newline(SS);
+ for (auto *A : E->arguments()) {
+ SS << "let ";
+ self()->printVariable(A, SS, true);
+ SS << " = ";
+ self()->printSExpr(A->definition(), SS, Prec_MAX);
+ SS << ";";
+ newline(SS);
+ }
+ for (auto *I : E->instructions()) {
+ if (I->definition()->opcode() != COP_Store) {
+ SS << "let ";
+ self()->printVariable(I, SS, true);
+ SS << " = ";
+ }
+ self()->printSExpr(I->definition(), SS, Prec_MAX);
+ SS << ";";
+ newline(SS);
+ }
+ SExpr *T = E->terminator();
+ if (T) {
+ self()->printSExpr(T, SS, Prec_MAX);
+ SS << ";";
+ newline(SS);
+ }
+ newline(SS);
+ }
+
+ void printPhi(Phi *E, StreamType &SS) {
+ SS << "phi(";
+ if (E->status() == Phi::PH_SingleVal)
+ self()->printSExpr(E->values()[0], SS, Prec_MAX);
+ else {
+ unsigned i = 0;
+ for (auto V : E->values()) {
+ if (i++ > 0)
+ SS << ", ";
+ self()->printSExpr(V, SS, Prec_MAX);
+ }
+ }
+ SS << ")";
+ }
+
+ void printGoto(Goto *E, StreamType &SS) {
+ SS << "goto ";
+ printBlockLabel(SS, E->targetBlock(), E->index());
+ }
+
+ void printBranch(Branch *E, StreamType &SS) {
+ SS << "branch (";
+ self()->printSExpr(E->condition(), SS, Prec_MAX);
+ SS << ") ";
+ printBlockLabel(SS, E->thenBlock(), E->thenIndex());
+ SS << " ";
+ printBlockLabel(SS, E->elseBlock(), E->elseIndex());
+ }
+
+ void printIdentifier(Identifier *E, StreamType &SS) {
+ SS << E->name();
+ }
+
+ void printIfThenElse(IfThenElse *E, StreamType &SS) {
+ SS << "if (";
+ printSExpr(E->condition(), SS, Prec_MAX);
+ SS << ") then ";
+ printSExpr(E->thenExpr(), SS, Prec_Other);
+ SS << " else ";
+ printSExpr(E->elseExpr(), SS, Prec_Other);
+ }
+
+ void printLet(Let *E, StreamType &SS) {
+ SS << "let ";
+ printVariable(E->variableDecl(), SS, true);
+ SS << " = ";
+ printSExpr(E->variableDecl()->definition(), SS, Prec_Decl-1);
+ SS << "; ";
+ printSExpr(E->body(), SS, Prec_Decl-1);
+ }
+};
+
+
+} // end namespace til
+} // end namespace threadSafety
+} // end namespace clang
+
+#endif // LLVM_CLANG_THREAD_SAFETY_TRAVERSE_H