aboutsummaryrefslogtreecommitdiff
path: root/include/clang/Parse/Ownership.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/clang/Parse/Ownership.h')
-rw-r--r--include/clang/Parse/Ownership.h830
1 files changed, 830 insertions, 0 deletions
diff --git a/include/clang/Parse/Ownership.h b/include/clang/Parse/Ownership.h
new file mode 100644
index 000000000000..59517930de95
--- /dev/null
+++ b/include/clang/Parse/Ownership.h
@@ -0,0 +1,830 @@
+//===--- Ownership.h - Parser Ownership Helpers -----------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains classes for managing ownership of Stmt and Expr nodes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_PARSE_OWNERSHIP_H
+#define LLVM_CLANG_PARSE_OWNERSHIP_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+
+//===----------------------------------------------------------------------===//
+// OpaquePtr
+//===----------------------------------------------------------------------===//
+
+namespace clang {
+ class ActionBase;
+
+ /// OpaquePtr - This is a very simple POD type that wraps a pointer that the
+ /// Parser doesn't know about but that Sema or another client does. The UID
+ /// template argument is used to make sure that "Decl" pointers are not
+ /// compatible with "Type" pointers for example.
+ template<int UID>
+ class OpaquePtr {
+ void *Ptr;
+ public:
+ OpaquePtr() : Ptr(0) {}
+
+ template <typename T>
+ T* getAs() const {
+ return llvm::PointerLikeTypeTraits<T*>::getFromVoidPointer(Ptr);
+ }
+
+ template <typename T>
+ T getAsVal() const {
+ return llvm::PointerLikeTypeTraits<T>::getFromVoidPointer(Ptr);
+ }
+
+ void *get() const { return Ptr; }
+
+ template<typename T>
+ static OpaquePtr make(T P) {
+ OpaquePtr R; R.set(P); return R;
+ }
+
+ template<typename T>
+ void set(T P) {
+ Ptr = llvm::PointerLikeTypeTraits<T>::getAsVoidPointer(P);
+ }
+
+ operator bool() const { return Ptr != 0; }
+ };
+}
+
+namespace llvm {
+ template <int UID>
+ class PointerLikeTypeTraits<clang::OpaquePtr<UID> > {
+ public:
+ static inline void *getAsVoidPointer(clang::OpaquePtr<UID> P) {
+ // FIXME: Doesn't work? return P.getAs< void >();
+ return P.get();
+ }
+ static inline clang::OpaquePtr<UID> getFromVoidPointer(void *P) {
+ return clang::OpaquePtr<UID>::make(P);
+ }
+ enum { NumLowBitsAvailable = 3 };
+ };
+}
+
+
+
+// -------------------------- About Move Emulation -------------------------- //
+// The smart pointer classes in this file attempt to emulate move semantics
+// as they appear in C++0x with rvalue references. Since C++03 doesn't have
+// rvalue references, some tricks are needed to get similar results.
+// Move semantics in C++0x have the following properties:
+// 1) "Moving" means transferring the value of an object to another object,
+// similar to copying, but without caring what happens to the old object.
+// In particular, this means that the new object can steal the old object's
+// resources instead of creating a copy.
+// 2) Since moving can modify the source object, it must either be explicitly
+// requested by the user, or the modifications must be unnoticeable.
+// 3) As such, C++0x moving is only allowed in three contexts:
+// * By explicitly using std::move() to request it.
+// * From a temporary object, since that object cannot be accessed
+// afterwards anyway, thus making the state unobservable.
+// * On function return, since the object is not observable afterwards.
+//
+// To sum up: moving from a named object should only be possible with an
+// explicit std::move(), or on function return. Moving from a temporary should
+// be implicitly done. Moving from a const object is forbidden.
+//
+// The emulation is not perfect, and has the following shortcomings:
+// * move() is not in namespace std.
+// * move() is required on function return.
+// * There are difficulties with implicit conversions.
+// * Microsoft's compiler must be given the /Za switch to successfully compile.
+//
+// -------------------------- Implementation -------------------------------- //
+// The move emulation relies on the peculiar reference binding semantics of
+// C++03: as a rule, a non-const reference may not bind to a temporary object,
+// except for the implicit object parameter in a member function call, which
+// can refer to a temporary even when not being const.
+// The moveable object has five important functions to facilitate moving:
+// * A private, unimplemented constructor taking a non-const reference to its
+// own class. This constructor serves a two-fold purpose.
+// - It prevents the creation of a copy constructor that takes a const
+// reference. Temporaries would be able to bind to the argument of such a
+// constructor, and that would be bad.
+// - Named objects will bind to the non-const reference, but since it's
+// private, this will fail to compile. This prevents implicit moving from
+// named objects.
+// There's also a copy assignment operator for the same purpose.
+// * An implicit, non-const conversion operator to a special mover type. This
+// type represents the rvalue reference of C++0x. Being a non-const member,
+// its implicit this parameter can bind to temporaries.
+// * A constructor that takes an object of this mover type. This constructor
+// performs the actual move operation. There is an equivalent assignment
+// operator.
+// There is also a free move() function that takes a non-const reference to
+// an object and returns a temporary. Internally, this function uses explicit
+// constructor calls to move the value from the referenced object to the return
+// value.
+//
+// There are now three possible scenarios of use.
+// * Copying from a const object. Constructor overload resolution will find the
+// non-const copy constructor, and the move constructor. The first is not
+// viable because the const object cannot be bound to the non-const reference.
+// The second fails because the conversion to the mover object is non-const.
+// Moving from a const object fails as intended.
+// * Copying from a named object. Constructor overload resolution will select
+// the non-const copy constructor, but fail as intended, because this
+// constructor is private.
+// * Copying from a temporary. Constructor overload resolution cannot select
+// the non-const copy constructor, because the temporary cannot be bound to
+// the non-const reference. It thus selects the move constructor. The
+// temporary can be bound to the implicit this parameter of the conversion
+// operator, because of the special binding rule. Construction succeeds.
+// Note that the Microsoft compiler, as an extension, allows binding
+// temporaries against non-const references. The compiler thus selects the
+// non-const copy constructor and fails, because the constructor is private.
+// Passing /Za (disable extensions) disables this behaviour.
+// The free move() function is used to move from a named object.
+//
+// Note that when passing an object of a different type (the classes below
+// have OwningResult and OwningPtr, which should be mixable), you get a problem.
+// Argument passing and function return use copy initialization rules. The
+// effect of this is that, when the source object is not already of the target
+// type, the compiler will first seek a way to convert the source object to the
+// target type, and only then attempt to copy the resulting object. This means
+// that when passing an OwningResult where an OwningPtr is expected, the
+// compiler will first seek a conversion from OwningResult to OwningPtr, then
+// copy the OwningPtr. The resulting conversion sequence is:
+// OwningResult object -> ResultMover -> OwningResult argument to
+// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
+// This conversion sequence is too complex to be allowed. Thus the special
+// move_* functions, which help the compiler out with some explicit
+// conversions.
+
+// Flip this switch to measure performance impact of the smart pointers.
+//#define DISABLE_SMART_POINTERS
+
+namespace llvm {
+ template<>
+ class PointerLikeTypeTraits<clang::ActionBase*> {
+ typedef clang::ActionBase* PT;
+ public:
+ static inline void *getAsVoidPointer(PT P) { return P; }
+ static inline PT getFromVoidPointer(void *P) {
+ return static_cast<PT>(P);
+ }
+ enum { NumLowBitsAvailable = 2 };
+ };
+}
+
+namespace clang {
+ // Basic
+ class DiagnosticBuilder;
+
+ // Determines whether the low bit of the result pointer for the
+ // given UID is always zero. If so, ActionResult will use that bit
+ // for it's "invalid" flag.
+ template<unsigned UID>
+ struct IsResultPtrLowBitFree {
+ static const bool value = false;
+ };
+
+ /// ActionBase - A small part split from Action because of the horrible
+ /// definition order dependencies between Action and the smart pointers.
+ class ActionBase {
+ public:
+ /// Out-of-line virtual destructor to provide home for this class.
+ virtual ~ActionBase();
+
+ // Types - Though these don't actually enforce strong typing, they document
+ // what types are required to be identical for the actions.
+ typedef OpaquePtr<0> DeclPtrTy;
+ typedef OpaquePtr<1> DeclGroupPtrTy;
+ typedef OpaquePtr<2> TemplateTy;
+ typedef void AttrTy;
+ typedef void BaseTy;
+ typedef void MemInitTy;
+ typedef void ExprTy;
+ typedef void StmtTy;
+ typedef void TemplateParamsTy;
+ typedef void CXXScopeTy;
+ typedef void TypeTy; // FIXME: Change TypeTy to use OpaquePtr<N>.
+
+ /// ActionResult - This structure is used while parsing/acting on
+ /// expressions, stmts, etc. It encapsulates both the object returned by
+ /// the action, plus a sense of whether or not it is valid.
+ /// When CompressInvalid is true, the "invalid" flag will be
+ /// stored in the low bit of the Val pointer.
+ template<unsigned UID,
+ typename PtrTy = void*,
+ bool CompressInvalid = IsResultPtrLowBitFree<UID>::value>
+ class ActionResult {
+ PtrTy Val;
+ bool Invalid;
+
+ public:
+ ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
+ template<typename ActualExprTy>
+ ActionResult(ActualExprTy val) : Val(val), Invalid(false) {}
+ ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
+
+ PtrTy get() const { return Val; }
+ void set(PtrTy V) { Val = V; }
+ bool isInvalid() const { return Invalid; }
+
+ const ActionResult &operator=(PtrTy RHS) {
+ Val = RHS;
+ Invalid = false;
+ return *this;
+ }
+ };
+
+ // This ActionResult partial specialization places the "invalid"
+ // flag into the low bit of the pointer.
+ template<unsigned UID, typename PtrTy>
+ class ActionResult<UID, PtrTy, true> {
+ // A pointer whose low bit is 1 if this result is invalid, 0
+ // otherwise.
+ uintptr_t PtrWithInvalid;
+ typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
+ public:
+ ActionResult(bool Invalid = false)
+ : PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
+
+ template<typename ActualExprTy>
+ ActionResult(ActualExprTy *val) {
+ PtrTy V(val);
+ void *VP = PtrTraits::getAsVoidPointer(V);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ }
+
+ ActionResult(PtrTy V) {
+ void *VP = PtrTraits::getAsVoidPointer(V);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ }
+
+ ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
+
+ PtrTy get() const {
+ void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
+ return PtrTraits::getFromVoidPointer(VP);
+ }
+
+ void set(PtrTy V) {
+ void *VP = PtrTraits::getAsVoidPointer(V);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ }
+
+ bool isInvalid() const { return PtrWithInvalid & 0x01; }
+
+ const ActionResult &operator=(PtrTy RHS) {
+ void *VP = PtrTraits::getAsVoidPointer(RHS);
+ PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
+ assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
+ return *this;
+ }
+ };
+
+ /// Deletion callbacks - Since the parser doesn't know the concrete types of
+ /// the AST nodes being generated, it must do callbacks to delete objects
+ /// when recovering from errors. These are in ActionBase because the smart
+ /// pointers need access to them.
+ virtual void DeleteExpr(ExprTy *E) {}
+ virtual void DeleteStmt(StmtTy *S) {}
+ virtual void DeleteTemplateParams(TemplateParamsTy *P) {}
+ };
+
+ /// ASTDestroyer - The type of an AST node destruction function pointer.
+ typedef void (ActionBase::*ASTDestroyer)(void *);
+
+ /// For the transition phase: translate from an ASTDestroyer to its
+ /// ActionResult UID.
+ template <ASTDestroyer Destroyer> struct DestroyerToUID;
+ template <> struct DestroyerToUID<&ActionBase::DeleteExpr> {
+ static const unsigned UID = 0;
+ };
+ template <> struct DestroyerToUID<&ActionBase::DeleteStmt> {
+ static const unsigned UID = 1;
+ };
+ /// ASTOwningResult - A moveable smart pointer for AST nodes that also
+ /// has an extra flag to indicate an additional success status.
+ template <ASTDestroyer Destroyer> class ASTOwningResult;
+
+ /// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
+ /// the individual pointers, not the array holding them.
+ template <ASTDestroyer Destroyer> class ASTMultiPtr;
+
+#if !defined(DISABLE_SMART_POINTERS)
+ namespace moving {
+ /// Move emulation helper for ASTOwningResult. NEVER EVER use this class
+ /// directly if you don't know what you're doing.
+ template <ASTDestroyer Destroyer>
+ class ASTResultMover
+ {
+ ASTOwningResult<Destroyer> &Moved;
+
+ public:
+ ASTResultMover(ASTOwningResult<Destroyer> &moved) : Moved(moved) {}
+
+ ASTOwningResult<Destroyer> * operator ->() { return &Moved; }
+ };
+
+ /// Move emulation helper for ASTMultiPtr. NEVER EVER use this class
+ /// directly if you don't know what you're doing.
+ template <ASTDestroyer Destroyer>
+ class ASTMultiMover
+ {
+ ASTMultiPtr<Destroyer> &Moved;
+
+ public:
+ ASTMultiMover(ASTMultiPtr<Destroyer> &moved) : Moved(moved) {}
+
+ ASTMultiPtr<Destroyer> * operator ->() { return &Moved; }
+
+ /// Reset the moved object's internal structures.
+ void release();
+ };
+ }
+#else
+
+ /// Kept only as a type-safe wrapper for a void pointer, when smart pointers
+ /// are disabled. When they are enabled, ASTOwningResult takes over.
+ template <ASTDestroyer Destroyer>
+ class ASTOwningPtr
+ {
+ void *Node;
+
+ public:
+ explicit ASTOwningPtr(ActionBase &) : Node(0) {}
+ ASTOwningPtr(ActionBase &, void *node) : Node(node) {}
+ // Normal copying operators are defined implicitly.
+ ASTOwningPtr(const ASTOwningResult<Destroyer> &o);
+
+ ASTOwningPtr & operator =(void *raw) {
+ Node = raw;
+ return *this;
+ }
+
+ /// Access to the raw pointer.
+ void * get() const { return Node; }
+
+ /// Release the raw pointer.
+ void * take() {
+ return Node;
+ }
+
+ /// Take outside ownership of the raw pointer and cast it down.
+ template<typename T>
+ T *takeAs() {
+ return static_cast<T*>(Node);
+ }
+
+ /// Alias for interface familiarity with unique_ptr.
+ void * release() {
+ return take();
+ }
+ };
+#endif
+
+ // Important: There are two different implementations of
+ // ASTOwningResult below, depending on whether
+ // DISABLE_SMART_POINTERS is defined. If you make changes that
+ // affect the interface, be sure to compile and test both ways!
+
+#if !defined(DISABLE_SMART_POINTERS)
+ template <ASTDestroyer Destroyer>
+ class ASTOwningResult
+ {
+ llvm::PointerIntPair<ActionBase*, 1, bool> ActionInv;
+ void *Ptr;
+
+ friend class moving::ASTResultMover<Destroyer>;
+
+ ASTOwningResult(ASTOwningResult&); // DO NOT IMPLEMENT
+ ASTOwningResult& operator =(ASTOwningResult&); // DO NOT IMPLEMENT
+
+ void destroy() {
+ if (Ptr) {
+ assert(ActionInv.getPointer() &&
+ "Smart pointer has node but no action.");
+ (ActionInv.getPointer()->*Destroyer)(Ptr);
+ Ptr = 0;
+ }
+ }
+
+ public:
+ typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;
+
+ explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
+ : ActionInv(&actions, invalid), Ptr(0) {}
+ ASTOwningResult(ActionBase &actions, void *node)
+ : ActionInv(&actions, false), Ptr(node) {}
+ ASTOwningResult(ActionBase &actions, const DumbResult &res)
+ : ActionInv(&actions, res.isInvalid()), Ptr(res.get()) {}
+ /// Move from another owning result
+ ASTOwningResult(moving::ASTResultMover<Destroyer> mover)
+ : ActionInv(mover->ActionInv),
+ Ptr(mover->Ptr) {
+ mover->Ptr = 0;
+ }
+
+ ~ASTOwningResult() {
+ destroy();
+ }
+
+ /// Move assignment from another owning result
+ ASTOwningResult &operator=(moving::ASTResultMover<Destroyer> mover) {
+ destroy();
+ ActionInv = mover->ActionInv;
+ Ptr = mover->Ptr;
+ mover->Ptr = 0;
+ return *this;
+ }
+
+ /// Assignment from a raw pointer. Takes ownership - beware!
+ ASTOwningResult &operator=(void *raw) {
+ destroy();
+ Ptr = raw;
+ ActionInv.setInt(false);
+ return *this;
+ }
+
+ /// Assignment from an ActionResult. Takes ownership - beware!
+ ASTOwningResult &operator=(const DumbResult &res) {
+ destroy();
+ Ptr = res.get();
+ ActionInv.setInt(res.isInvalid());
+ return *this;
+ }
+
+ /// Access to the raw pointer.
+ void *get() const { return Ptr; }
+
+ bool isInvalid() const { return ActionInv.getInt(); }
+
+ /// Does this point to a usable AST node? To be usable, the node must be
+ /// valid and non-null.
+ bool isUsable() const { return !isInvalid() && get(); }
+
+ /// Take outside ownership of the raw pointer.
+ void *take() {
+ if (isInvalid())
+ return 0;
+ void *tmp = Ptr;
+ Ptr = 0;
+ return tmp;
+ }
+
+ /// Take outside ownership of the raw pointer and cast it down.
+ template<typename T>
+ T *takeAs() {
+ return static_cast<T*>(take());
+ }
+
+ /// Alias for interface familiarity with unique_ptr.
+ void *release() { return take(); }
+
+ /// Pass ownership to a classical ActionResult.
+ DumbResult result() {
+ if (isInvalid())
+ return true;
+ return take();
+ }
+
+ /// Move hook
+ operator moving::ASTResultMover<Destroyer>() {
+ return moving::ASTResultMover<Destroyer>(*this);
+ }
+ };
+#else
+ template <ASTDestroyer Destroyer>
+ class ASTOwningResult
+ {
+ public:
+ typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;
+
+ private:
+ DumbResult Result;
+
+ public:
+ explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
+ : Result(invalid) { }
+ ASTOwningResult(ActionBase &actions, void *node) : Result(node) { }
+ ASTOwningResult(ActionBase &actions, const DumbResult &res) : Result(res) { }
+ // Normal copying semantics are defined implicitly.
+ ASTOwningResult(const ASTOwningPtr<Destroyer> &o) : Result(o.get()) { }
+
+ /// Assignment from a raw pointer. Takes ownership - beware!
+ ASTOwningResult & operator =(void *raw)
+ {
+ Result = raw;
+ return *this;
+ }
+
+ /// Assignment from an ActionResult. Takes ownership - beware!
+ ASTOwningResult & operator =(const DumbResult &res) {
+ Result = res;
+ return *this;
+ }
+
+ /// Access to the raw pointer.
+ void * get() const { return Result.get(); }
+
+ bool isInvalid() const { return Result.isInvalid(); }
+
+ /// Does this point to a usable AST node? To be usable, the node must be
+ /// valid and non-null.
+ bool isUsable() const { return !Result.isInvalid() && get(); }
+
+ /// Take outside ownership of the raw pointer.
+ void * take() {
+ return Result.get();
+ }
+
+ /// Take outside ownership of the raw pointer and cast it down.
+ template<typename T>
+ T *takeAs() {
+ return static_cast<T*>(take());
+ }
+
+ /// Alias for interface familiarity with unique_ptr.
+ void * release() { return take(); }
+
+ /// Pass ownership to a classical ActionResult.
+ DumbResult result() { return Result; }
+ };
+#endif
+
+ template <ASTDestroyer Destroyer>
+ class ASTMultiPtr
+ {
+#if !defined(DISABLE_SMART_POINTERS)
+ ActionBase &Actions;
+#endif
+ void **Nodes;
+ unsigned Count;
+
+#if !defined(DISABLE_SMART_POINTERS)
+ friend class moving::ASTMultiMover<Destroyer>;
+
+ ASTMultiPtr(ASTMultiPtr&); // DO NOT IMPLEMENT
+ // Reference member prevents copy assignment.
+
+ void destroy() {
+ assert((Count == 0 || Nodes) && "No nodes when count is not zero.");
+ for (unsigned i = 0; i < Count; ++i) {
+ if (Nodes[i])
+ (Actions.*Destroyer)(Nodes[i]);
+ }
+ }
+#endif
+
+ public:
+#if !defined(DISABLE_SMART_POINTERS)
+ explicit ASTMultiPtr(ActionBase &actions)
+ : Actions(actions), Nodes(0), Count(0) {}
+ ASTMultiPtr(ActionBase &actions, void **nodes, unsigned count)
+ : Actions(actions), Nodes(nodes), Count(count) {}
+ /// Move constructor
+ ASTMultiPtr(moving::ASTMultiMover<Destroyer> mover)
+ : Actions(mover->Actions), Nodes(mover->Nodes), Count(mover->Count) {
+ mover.release();
+ }
+#else
+ // Normal copying implicitly defined
+ explicit ASTMultiPtr(ActionBase &) : Nodes(0), Count(0) {}
+ ASTMultiPtr(ActionBase &, void **nodes, unsigned count)
+ : Nodes(nodes), Count(count) {}
+ // Fake mover in Parse/AstGuard.h needs this:
+ ASTMultiPtr(void **nodes, unsigned count) : Nodes(nodes), Count(count) {}
+#endif
+
+#if !defined(DISABLE_SMART_POINTERS)
+ /// Move assignment
+ ASTMultiPtr & operator =(moving::ASTMultiMover<Destroyer> mover) {
+ destroy();
+ Nodes = mover->Nodes;
+ Count = mover->Count;
+ mover.release();
+ return *this;
+ }
+#endif
+
+ /// Access to the raw pointers.
+ void ** get() const { return Nodes; }
+
+ /// Access to the count.
+ unsigned size() const { return Count; }
+
+ void ** release() {
+#if !defined(DISABLE_SMART_POINTERS)
+ void **tmp = Nodes;
+ Nodes = 0;
+ Count = 0;
+ return tmp;
+#else
+ return Nodes;
+#endif
+ }
+
+#if !defined(DISABLE_SMART_POINTERS)
+ /// Move hook
+ operator moving::ASTMultiMover<Destroyer>() {
+ return moving::ASTMultiMover<Destroyer>(*this);
+ }
+#endif
+ };
+
+ class ASTTemplateArgsPtr {
+#if !defined(DISABLE_SMART_POINTERS)
+ ActionBase &Actions;
+#endif
+ void **Args;
+ bool *ArgIsType;
+ mutable unsigned Count;
+
+#if !defined(DISABLE_SMART_POINTERS)
+ void destroy() {
+ if (!Count)
+ return;
+
+ for (unsigned i = 0; i != Count; ++i)
+ if (Args[i] && !ArgIsType[i])
+ Actions.DeleteExpr((ActionBase::ExprTy *)Args[i]);
+
+ Count = 0;
+ }
+#endif
+
+ public:
+ ASTTemplateArgsPtr(ActionBase &actions, void **args, bool *argIsType,
+ unsigned count) :
+#if !defined(DISABLE_SMART_POINTERS)
+ Actions(actions),
+#endif
+ Args(args), ArgIsType(argIsType), Count(count) { }
+
+ // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
+ ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
+#if !defined(DISABLE_SMART_POINTERS)
+ Actions(Other.Actions),
+#endif
+ Args(Other.Args), ArgIsType(Other.ArgIsType), Count(Other.Count) {
+#if !defined(DISABLE_SMART_POINTERS)
+ Other.Count = 0;
+#endif
+ }
+
+ // FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
+ ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other) {
+#if !defined(DISABLE_SMART_POINTERS)
+ Actions = Other.Actions;
+#endif
+ Args = Other.Args;
+ ArgIsType = Other.ArgIsType;
+ Count = Other.Count;
+#if !defined(DISABLE_SMART_POINTERS)
+ Other.Count = 0;
+#endif
+ return *this;
+ }
+
+#if !defined(DISABLE_SMART_POINTERS)
+ ~ASTTemplateArgsPtr() { destroy(); }
+#endif
+
+ void **getArgs() const { return Args; }
+ bool *getArgIsType() const {return ArgIsType; }
+ unsigned size() const { return Count; }
+
+ void reset(void **args, bool *argIsType, unsigned count) {
+#if !defined(DISABLE_SMART_POINTERS)
+ destroy();
+#endif
+ Args = args;
+ ArgIsType = argIsType;
+ Count = count;
+ }
+
+ void *operator[](unsigned Arg) const { return Args[Arg]; }
+
+ void **release() const {
+#if !defined(DISABLE_SMART_POINTERS)
+ Count = 0;
+#endif
+ return Args;
+ }
+ };
+
+ /// \brief A small vector that owns a set of AST nodes.
+ template <ASTDestroyer Destroyer, unsigned N = 8>
+ class ASTOwningVector : public llvm::SmallVector<void *, N> {
+#if !defined(DISABLE_SMART_POINTERS)
+ ActionBase &Actions;
+ bool Owned;
+#endif
+
+ ASTOwningVector(ASTOwningVector &); // do not implement
+ ASTOwningVector &operator=(ASTOwningVector &); // do not implement
+
+ public:
+ explicit ASTOwningVector(ActionBase &Actions)
+#if !defined(DISABLE_SMART_POINTERS)
+ : Actions(Actions), Owned(true)
+#endif
+ { }
+
+#if !defined(DISABLE_SMART_POINTERS)
+ ~ASTOwningVector() {
+ if (!Owned)
+ return;
+
+ for (unsigned I = 0, Last = this->size(); I != Last; ++I)
+ (Actions.*Destroyer)((*this)[I]);
+ }
+#endif
+
+ void **take() {
+#if !defined(DISABLE_SMART_POINTERS)
+ Owned = false;
+#endif
+ return &this->front();
+ }
+
+ template<typename T> T **takeAs() { return (T**)take(); }
+
+#if !defined(DISABLE_SMART_POINTERS)
+ ActionBase &getActions() const { return Actions; }
+#endif
+ };
+
+ /// A SmallVector of statements, with stack size 32 (as that is the only one
+ /// used.)
+ typedef ASTOwningVector<&ActionBase::DeleteStmt, 32> StmtVector;
+ /// A SmallVector of expressions, with stack size 12 (the maximum used.)
+ typedef ASTOwningVector<&ActionBase::DeleteExpr, 12> ExprVector;
+
+ template <ASTDestroyer Destroyer, unsigned N> inline
+ ASTMultiPtr<Destroyer> move_arg(ASTOwningVector<Destroyer, N> &vec) {
+#if !defined(DISABLE_SMART_POINTERS)
+ return ASTMultiPtr<Destroyer>(vec.getActions(), vec.take(), vec.size());
+#else
+ return ASTMultiPtr<Destroyer>(vec.take(), vec.size());
+#endif
+ }
+
+#if !defined(DISABLE_SMART_POINTERS)
+
+ // Out-of-line implementations due to definition dependencies
+
+ template <ASTDestroyer Destroyer> inline
+ void moving::ASTMultiMover<Destroyer>::release() {
+ Moved.Nodes = 0;
+ Moved.Count = 0;
+ }
+
+ // Move overloads.
+
+ template <ASTDestroyer Destroyer> inline
+ ASTOwningResult<Destroyer> move(ASTOwningResult<Destroyer> &ptr) {
+ return ASTOwningResult<Destroyer>(moving::ASTResultMover<Destroyer>(ptr));
+ }
+
+ template <ASTDestroyer Destroyer> inline
+ ASTMultiPtr<Destroyer> move(ASTMultiPtr<Destroyer> &ptr) {
+ return ASTMultiPtr<Destroyer>(moving::ASTMultiMover<Destroyer>(ptr));
+ }
+
+#else
+
+ template <ASTDestroyer Destroyer> inline
+ ASTOwningPtr<Destroyer>::ASTOwningPtr(const ASTOwningResult<Destroyer> &o)
+ : Node(o.get())
+ {}
+
+ // These versions are hopefully no-ops.
+ template <ASTDestroyer Destroyer> inline
+ ASTOwningResult<Destroyer>& move(ASTOwningResult<Destroyer> &ptr) {
+ return ptr;
+ }
+
+ template <ASTDestroyer Destroyer> inline
+ ASTOwningPtr<Destroyer>& move(ASTOwningPtr<Destroyer> &ptr) {
+ return ptr;
+ }
+
+ template <ASTDestroyer Destroyer> inline
+ ASTMultiPtr<Destroyer>& move(ASTMultiPtr<Destroyer> &ptr) {
+ return ptr;
+ }
+#endif
+}
+
+#endif