aboutsummaryrefslogtreecommitdiff
path: root/include/lldb/Host/Predicate.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/lldb/Host/Predicate.h')
-rw-r--r--include/lldb/Host/Predicate.h509
1 files changed, 509 insertions, 0 deletions
diff --git a/include/lldb/Host/Predicate.h b/include/lldb/Host/Predicate.h
new file mode 100644
index 000000000000..6ddf20b67c69
--- /dev/null
+++ b/include/lldb/Host/Predicate.h
@@ -0,0 +1,509 @@
+//===-- Predicate.h ---------------------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef liblldb_Predicate_h_
+#define liblldb_Predicate_h_
+#if defined(__cplusplus)
+
+#include "lldb/Host/Mutex.h"
+#include "lldb/Host/Condition.h"
+#include <stdint.h>
+#include <time.h>
+
+//#define DB_PTHREAD_LOG_EVENTS
+
+//----------------------------------------------------------------------
+/// Enumerations for broadcasting.
+//----------------------------------------------------------------------
+namespace lldb_private {
+
+typedef enum
+{
+ eBroadcastNever, ///< No broadcast will be sent when the value is modified.
+ eBroadcastAlways, ///< Always send a broadcast when the value is modified.
+ eBroadcastOnChange ///< Only broadcast if the value changes when the value is modified.
+
+} PredicateBroadcastType;
+
+//----------------------------------------------------------------------
+/// @class Predicate Predicate.h "lldb/Host/Predicate.h"
+/// @brief A C++ wrapper class for providing threaded access to a value
+/// of type T.
+///
+/// A templatized class that provides multi-threaded access to a value
+/// of type T. Threads can efficiently wait for bits within T to be set
+/// or reset, or wait for T to be set to be equal/not equal to a
+/// specified values.
+//----------------------------------------------------------------------
+template <class T>
+class Predicate
+{
+public:
+
+ //------------------------------------------------------------------
+ /// Default constructor.
+ ///
+ /// Initializes the mutex, condition and value with their default
+ /// constructors.
+ //------------------------------------------------------------------
+ Predicate () :
+ m_value(),
+ m_mutex(),
+ m_condition()
+ {
+ }
+
+ //------------------------------------------------------------------
+ /// Construct with initial T value \a initial_value.
+ ///
+ /// Initializes the mutex and condition with their default
+ /// constructors, and initializes the value with \a initial_value.
+ ///
+ /// @param[in] initial_value
+ /// The initial value for our T object.
+ //------------------------------------------------------------------
+ Predicate (T initial_value) :
+ m_value(initial_value),
+ m_mutex(),
+ m_condition()
+ {
+ }
+
+ //------------------------------------------------------------------
+ /// Destructor.
+ ///
+ /// Destrory the condition, mutex, and T objects.
+ //------------------------------------------------------------------
+ ~Predicate ()
+ {
+ }
+
+
+ //------------------------------------------------------------------
+ /// Value get accessor.
+ ///
+ /// Copies the current \a m_value in a thread safe manor and returns
+ /// the copied value.
+ ///
+ /// @return
+ /// A copy of the current value.
+ //------------------------------------------------------------------
+ T
+ GetValue () const
+ {
+ Mutex::Locker locker(m_mutex);
+ T value = m_value;
+ return value;
+ }
+
+ //------------------------------------------------------------------
+ /// Value set accessor.
+ ///
+ /// Set the contained \a m_value to \a new_value in a thread safe
+ /// way and broadcast if needed.
+ ///
+ /// @param[in] value
+ /// The new value to set.
+ ///
+ /// @param[in] broadcast_type
+ /// A value indicating when and if to broadast. See the
+ /// PredicateBroadcastType enumeration for details.
+ ///
+ /// @see Predicate::Broadcast()
+ //------------------------------------------------------------------
+ void
+ SetValue (T value, PredicateBroadcastType broadcast_type)
+ {
+ Mutex::Locker locker(m_mutex);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (value = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, value, broadcast_type);
+#endif
+ const T old_value = m_value;
+ m_value = value;
+
+ Broadcast(old_value, broadcast_type);
+ }
+
+ //------------------------------------------------------------------
+ /// Set some bits in \a m_value.
+ ///
+ /// Logically set the bits \a bits in the contained \a m_value in a
+ /// thread safe way and broadcast if needed.
+ ///
+ /// @param[in] bits
+ /// The bits to set in \a m_value.
+ ///
+ /// @param[in] broadcast_type
+ /// A value indicating when and if to broadast. See the
+ /// PredicateBroadcastType enumeration for details.
+ ///
+ /// @see Predicate::Broadcast()
+ //------------------------------------------------------------------
+ void
+ SetValueBits (T bits, PredicateBroadcastType broadcast_type)
+ {
+ Mutex::Locker locker(m_mutex);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, bits, broadcast_type);
+#endif
+ const T old_value = m_value;
+ m_value |= bits;
+
+ Broadcast(old_value, broadcast_type);
+ }
+
+ //------------------------------------------------------------------
+ /// Reset some bits in \a m_value.
+ ///
+ /// Logically reset (clear) the bits \a bits in the contained
+ /// \a m_value in a thread safe way and broadcast if needed.
+ ///
+ /// @param[in] bits
+ /// The bits to clear in \a m_value.
+ ///
+ /// @param[in] broadcast_type
+ /// A value indicating when and if to broadast. See the
+ /// PredicateBroadcastType enumeration for details.
+ ///
+ /// @see Predicate::Broadcast()
+ //------------------------------------------------------------------
+ void
+ ResetValueBits (T bits, PredicateBroadcastType broadcast_type)
+ {
+ Mutex::Locker locker(m_mutex);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, bits, broadcast_type);
+#endif
+ const T old_value = m_value;
+ m_value &= ~bits;
+
+ Broadcast(old_value, broadcast_type);
+ }
+
+ //------------------------------------------------------------------
+ /// Wait for bits to be set in \a m_value.
+ ///
+ /// Waits in a thread safe way for any bits in \a bits to get
+ /// logically set in \a m_value. If any bits are already set in
+ /// \a m_value, this function will return without waiting.
+ ///
+ /// It is possible for the value to be changed between the time
+ /// the bits are set and the time the waiting thread wakes up.
+ /// If the bits are no longer set when the waiting thread wakes
+ /// up, it will go back into a wait state. It may be necessary
+ /// for the calling code to use additional thread synchronization
+ /// methods to detect transitory states.
+ ///
+ /// @param[in] bits
+ /// The bits we are waiting to be set in \a m_value.
+ ///
+ /// @param[in] abstime
+ /// If non-NULL, the absolute time at which we should stop
+ /// waiting, else wait an infinite amount of time.
+ ///
+ /// @return
+ /// Any bits of the requested bits that actually were set within
+ /// the time specified. Zero if a timeout or unrecoverable error
+ /// occurred.
+ //------------------------------------------------------------------
+ T
+ WaitForSetValueBits (T bits, const TimeValue *abstime = NULL)
+ {
+ int err = 0;
+ // pthread_cond_timedwait() or pthread_cond_wait() will atomically
+ // unlock the mutex and wait for the condition to be set. When either
+ // function returns, they will re-lock the mutex. We use an auto lock/unlock
+ // class (Mutex::Locker) to allow us to return at any point in this
+ // function and not have to worry about unlocking the mutex.
+ Mutex::Locker locker(m_mutex);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x, abstime = %p), m_value = 0x%8.8x\n", __FUNCTION__, bits, abstime, m_value);
+#endif
+ while (err == 0 && ((m_value & bits) == 0))
+ {
+ err = m_condition.Wait (m_mutex, abstime);
+ }
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x), m_value = 0x%8.8x, returning 0x%8.8x\n", __FUNCTION__, bits, m_value, m_value & bits);
+#endif
+
+ return m_value & bits;
+ }
+
+ //------------------------------------------------------------------
+ /// Wait for bits to be reset in \a m_value.
+ ///
+ /// Waits in a thread safe way for any bits in \a bits to get
+ /// logically reset in \a m_value. If all bits are already reset in
+ /// \a m_value, this function will return without waiting.
+ ///
+ /// It is possible for the value to be changed between the time
+ /// the bits are reset and the time the waiting thread wakes up.
+ /// If the bits are no set when the waiting thread wakes up, it will
+ /// go back into a wait state. It may be necessary for the calling
+ /// code to use additional thread synchronization methods to detect
+ /// transitory states.
+ ///
+ /// @param[in] bits
+ /// The bits we are waiting to be reset in \a m_value.
+ ///
+ /// @param[in] abstime
+ /// If non-NULL, the absolute time at which we should stop
+ /// waiting, else wait an infinite amount of time.
+ ///
+ /// @return
+ /// Zero on successful waits, or non-zero if a timeout or
+ /// unrecoverable error occurs.
+ //------------------------------------------------------------------
+ T
+ WaitForResetValueBits (T bits, const TimeValue *abstime = NULL)
+ {
+ int err = 0;
+
+ // pthread_cond_timedwait() or pthread_cond_wait() will atomically
+ // unlock the mutex and wait for the condition to be set. When either
+ // function returns, they will re-lock the mutex. We use an auto lock/unlock
+ // class (Mutex::Locker) to allow us to return at any point in this
+ // function and not have to worry about unlocking the mutex.
+ Mutex::Locker locker(m_mutex);
+
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x, abstime = %p), m_value = 0x%8.8x\n", __FUNCTION__, bits, abstime, m_value);
+#endif
+ while (err == 0 && ((m_value & bits) != 0))
+ {
+ err = m_condition.Wait (m_mutex, abstime);
+ }
+
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (bits = 0x%8.8x), m_value = 0x%8.8x, returning 0x%8.8x\n", __FUNCTION__, bits, m_value, m_value & bits);
+#endif
+ return m_value & bits;
+ }
+
+ //------------------------------------------------------------------
+ /// Wait for \a m_value to be equal to \a value.
+ ///
+ /// Waits in a thread safe way for \a m_value to be equal to \a
+ /// value. If \a m_value is already equal to \a value, this
+ /// function will return without waiting.
+ ///
+ /// It is possible for the value to be changed between the time
+ /// the value is set and the time the waiting thread wakes up.
+ /// If the value no longer matches the requested value when the
+ /// waiting thread wakes up, it will go back into a wait state. It
+ /// may be necessary for the calling code to use additional thread
+ /// synchronization methods to detect transitory states.
+ ///
+ /// @param[in] value
+ /// The value we want \a m_value to be equal to.
+ ///
+ /// @param[in] abstime
+ /// If non-NULL, the absolute time at which we should stop
+ /// waiting, else wait an infinite amount of time.
+ ///
+ /// @param[out] timed_out
+ /// If not null, set to true if we return because of a time out,
+ /// and false if the value was set.
+ ///
+ /// @return
+ /// @li \b true if the \a m_value is equal to \a value
+ /// @li \b false otherwise
+ //------------------------------------------------------------------
+ bool
+ WaitForValueEqualTo (T value, const TimeValue *abstime = NULL, bool *timed_out = NULL)
+ {
+ int err = 0;
+ // pthread_cond_timedwait() or pthread_cond_wait() will atomically
+ // unlock the mutex and wait for the condition to be set. When either
+ // function returns, they will re-lock the mutex. We use an auto lock/unlock
+ // class (Mutex::Locker) to allow us to return at any point in this
+ // function and not have to worry about unlocking the mutex.
+ Mutex::Locker locker(m_mutex);
+
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (value = 0x%8.8x, abstime = %p), m_value = 0x%8.8x\n", __FUNCTION__, value, abstime, m_value);
+#endif
+ if (timed_out)
+ *timed_out = false;
+
+ while (err == 0 && m_value != value)
+ {
+ err = m_condition.Wait (m_mutex, abstime, timed_out);
+ }
+
+ return m_value == value;
+ }
+
+ //------------------------------------------------------------------
+ /// Wait for \a m_value to be equal to \a value and then set it to
+ /// a new value.
+ ///
+ /// Waits in a thread safe way for \a m_value to be equal to \a
+ /// value and then sets \a m_value to \a new_value. If \a m_value
+ /// is already equal to \a value, this function will immediately
+ /// set \a m_value to \a new_value and return without waiting.
+ ///
+ /// It is possible for the value to be changed between the time
+ /// the value is set and the time the waiting thread wakes up.
+ /// If the value no longer matches the requested value when the
+ /// waiting thread wakes up, it will go back into a wait state. It
+ /// may be necessary for the calling code to use additional thread
+ /// synchronization methods to detect transitory states.
+ ///
+ /// @param[in] value
+ /// The value we want \a m_value to be equal to.
+ ///
+ /// @param[in] new_value
+ /// The value to which \a m_value will be set if \b true is
+ /// returned.
+ ///
+ /// @param[in] abstime
+ /// If non-NULL, the absolute time at which we should stop
+ /// waiting, else wait an infinite amount of time.
+ ///
+ /// @param[out] timed_out
+ /// If not null, set to true if we return because of a time out,
+ /// and false if the value was set.
+ ///
+ /// @return
+ /// @li \b true if the \a m_value became equal to \a value
+ /// @li \b false otherwise
+ //------------------------------------------------------------------
+ bool
+ WaitForValueEqualToAndSetValueTo (T wait_value, T new_value, const TimeValue *abstime = NULL, bool *timed_out = NULL)
+ {
+ int err = 0;
+ // pthread_cond_timedwait() or pthread_cond_wait() will atomically
+ // unlock the mutex and wait for the condition to be set. When either
+ // function returns, they will re-lock the mutex. We use an auto lock/unlock
+ // class (Mutex::Locker) to allow us to return at any point in this
+ // function and not have to worry about unlocking the mutex.
+ Mutex::Locker locker(m_mutex);
+
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (wait_value = 0x%8.8x, new_value = 0x%8.8x, abstime = %p), m_value = 0x%8.8x\n", __FUNCTION__, wait_value, new_value, abstime, m_value);
+#endif
+ if (timed_out)
+ *timed_out = false;
+
+ while (err == 0 && m_value != wait_value)
+ {
+ err = m_condition.Wait (m_mutex, abstime, timed_out);
+ }
+
+ if (m_value == wait_value)
+ {
+ m_value = new_value;
+ return true;
+ }
+
+ return false;
+ }
+
+
+ //------------------------------------------------------------------
+ /// Wait for \a m_value to not be equal to \a value.
+ ///
+ /// Waits in a thread safe way for \a m_value to not be equal to \a
+ /// value. If \a m_value is already not equal to \a value, this
+ /// function will return without waiting.
+ ///
+ /// It is possible for the value to be changed between the time
+ /// the value is set and the time the waiting thread wakes up.
+ /// If the value is equal to the test value when the waiting thread
+ /// wakes up, it will go back into a wait state. It may be
+ /// necessary for the calling code to use additional thread
+ /// synchronization methods to detect transitory states.
+ ///
+ /// @param[in] value
+ /// The value we want \a m_value to not be equal to.
+ ///
+ /// @param[out] new_value
+ /// The new value if \b true is returned.
+ ///
+ /// @param[in] abstime
+ /// If non-NULL, the absolute time at which we should stop
+ /// waiting, else wait an infinite amount of time.
+ ///
+ /// @return
+ /// @li \b true if the \a m_value is equal to \a value
+ /// @li \b false otherwise
+ //------------------------------------------------------------------
+ bool
+ WaitForValueNotEqualTo (T value, T &new_value, const TimeValue *abstime = NULL)
+ {
+ int err = 0;
+ // pthread_cond_timedwait() or pthread_cond_wait() will atomically
+ // unlock the mutex and wait for the condition to be set. When either
+ // function returns, they will re-lock the mutex. We use an auto lock/unlock
+ // class (Mutex::Locker) to allow us to return at any point in this
+ // function and not have to worry about unlocking the mutex.
+ Mutex::Locker locker(m_mutex);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (value = 0x%8.8x, abstime = %p), m_value = 0x%8.8x\n", __FUNCTION__, value, abstime, m_value);
+#endif
+ while (err == 0 && m_value == value)
+ {
+ err = m_condition.Wait (m_mutex, abstime);
+ }
+
+ if (m_value != value)
+ {
+ new_value = m_value;
+ return true;
+ }
+ return false;
+ }
+
+protected:
+ //----------------------------------------------------------------------
+ // pthread condition and mutex variable to controll access and allow
+ // blocking between the main thread and the spotlight index thread.
+ //----------------------------------------------------------------------
+ T m_value; ///< The templatized value T that we are protecting access to
+ mutable Mutex m_mutex; ///< The mutex to use when accessing the data
+ Condition m_condition; ///< The pthread condition variable to use for signaling that data available or changed.
+
+private:
+
+ //------------------------------------------------------------------
+ /// Broadcast if needed.
+ ///
+ /// Check to see if we need to broadcast to our condition variable
+ /// depedning on the \a old_value and on the \a broadcast_type.
+ ///
+ /// If \a broadcast_type is eBroadcastNever, no broadcast will be
+ /// sent.
+ ///
+ /// If \a broadcast_type is eBroadcastAlways, the condition variable
+ /// will always be broadcast.
+ ///
+ /// If \a broadcast_type is eBroadcastOnChange, the condition
+ /// variable be broadcast if the owned value changes.
+ //------------------------------------------------------------------
+ void
+ Broadcast (T old_value, PredicateBroadcastType broadcast_type)
+ {
+ bool broadcast = (broadcast_type == eBroadcastAlways) || ((broadcast_type == eBroadcastOnChange) && old_value != m_value);
+#ifdef DB_PTHREAD_LOG_EVENTS
+ printf("%s (old_value = 0x%8.8x, broadcast_type = %i) m_value = 0x%8.8x, broadcast = %u\n", __FUNCTION__, old_value, broadcast_type, m_value, broadcast);
+#endif
+ if (broadcast)
+ m_condition.Broadcast();
+ }
+
+
+ DISALLOW_COPY_AND_ASSIGN(Predicate);
+};
+
+} // namespace lldb_private
+
+#endif // #if defined(__cplusplus)
+#endif // #ifndef liblldb_Predicate_h_