aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/CloneDetection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/CloneDetection.cpp')
-rw-r--r--lib/Analysis/CloneDetection.cpp894
1 files changed, 894 insertions, 0 deletions
diff --git a/lib/Analysis/CloneDetection.cpp b/lib/Analysis/CloneDetection.cpp
new file mode 100644
index 000000000000..e761738214c6
--- /dev/null
+++ b/lib/Analysis/CloneDetection.cpp
@@ -0,0 +1,894 @@
+//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// This file implements classes for searching and anlyzing source code clones.
+///
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/CloneDetection.h"
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+
+StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context,
+ unsigned StartIndex, unsigned EndIndex)
+ : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) {
+ assert(Stmt && "Stmt must not be a nullptr");
+ assert(StartIndex < EndIndex && "Given array should not be empty");
+ assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
+}
+
+StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context)
+ : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {}
+
+StmtSequence::StmtSequence()
+ : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {}
+
+bool StmtSequence::contains(const StmtSequence &Other) const {
+ // If both sequences reside in different translation units, they can never
+ // contain each other.
+ if (Context != Other.Context)
+ return false;
+
+ const SourceManager &SM = Context->getSourceManager();
+
+ // Otherwise check if the start and end locations of the current sequence
+ // surround the other sequence.
+ bool StartIsInBounds =
+ SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) ||
+ getStartLoc() == Other.getStartLoc();
+ if (!StartIsInBounds)
+ return false;
+
+ bool EndIsInBounds =
+ SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
+ Other.getEndLoc() == getEndLoc();
+ return EndIsInBounds;
+}
+
+StmtSequence::iterator StmtSequence::begin() const {
+ if (!holdsSequence()) {
+ return &S;
+ }
+ auto CS = cast<CompoundStmt>(S);
+ return CS->body_begin() + StartIndex;
+}
+
+StmtSequence::iterator StmtSequence::end() const {
+ if (!holdsSequence()) {
+ return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
+ }
+ auto CS = cast<CompoundStmt>(S);
+ return CS->body_begin() + EndIndex;
+}
+
+SourceLocation StmtSequence::getStartLoc() const {
+ return front()->getLocStart();
+}
+
+SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); }
+
+SourceRange StmtSequence::getSourceRange() const {
+ return SourceRange(getStartLoc(), getEndLoc());
+}
+
+namespace {
+
+/// \brief Analyzes the pattern of the referenced variables in a statement.
+class VariablePattern {
+
+ /// \brief Describes an occurence of a variable reference in a statement.
+ struct VariableOccurence {
+ /// The index of the associated VarDecl in the Variables vector.
+ size_t KindID;
+ /// The statement in the code where the variable was referenced.
+ const Stmt *Mention;
+
+ VariableOccurence(size_t KindID, const Stmt *Mention)
+ : KindID(KindID), Mention(Mention) {}
+ };
+
+ /// All occurences of referenced variables in the order of appearance.
+ std::vector<VariableOccurence> Occurences;
+ /// List of referenced variables in the order of appearance.
+ /// Every item in this list is unique.
+ std::vector<const VarDecl *> Variables;
+
+ /// \brief Adds a new variable referenced to this pattern.
+ /// \param VarDecl The declaration of the variable that is referenced.
+ /// \param Mention The SourceRange where this variable is referenced.
+ void addVariableOccurence(const VarDecl *VarDecl, const Stmt *Mention) {
+ // First check if we already reference this variable
+ for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
+ if (Variables[KindIndex] == VarDecl) {
+ // If yes, add a new occurence that points to the existing entry in
+ // the Variables vector.
+ Occurences.emplace_back(KindIndex, Mention);
+ return;
+ }
+ }
+ // If this variable wasn't already referenced, add it to the list of
+ // referenced variables and add a occurence that points to this new entry.
+ Occurences.emplace_back(Variables.size(), Mention);
+ Variables.push_back(VarDecl);
+ }
+
+ /// \brief Adds each referenced variable from the given statement.
+ void addVariables(const Stmt *S) {
+ // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
+ // children). We skip such statements as they don't reference any
+ // variables.
+ if (!S)
+ return;
+
+ // Check if S is a reference to a variable. If yes, add it to the pattern.
+ if (auto D = dyn_cast<DeclRefExpr>(S)) {
+ if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
+ addVariableOccurence(VD, D);
+ }
+
+ // Recursively check all children of the given statement.
+ for (const Stmt *Child : S->children()) {
+ addVariables(Child);
+ }
+ }
+
+public:
+ /// \brief Creates an VariablePattern object with information about the given
+ /// StmtSequence.
+ VariablePattern(const StmtSequence &Sequence) {
+ for (const Stmt *S : Sequence)
+ addVariables(S);
+ }
+
+ /// \brief Counts the differences between this pattern and the given one.
+ /// \param Other The given VariablePattern to compare with.
+ /// \param FirstMismatch Output parameter that will be filled with information
+ /// about the first difference between the two patterns. This parameter
+ /// can be a nullptr, in which case it will be ignored.
+ /// \return Returns the number of differences between the pattern this object
+ /// is following and the given VariablePattern.
+ ///
+ /// For example, the following statements all have the same pattern and this
+ /// function would return zero:
+ ///
+ /// if (a < b) return a; return b;
+ /// if (x < y) return x; return y;
+ /// if (u2 < u1) return u2; return u1;
+ ///
+ /// But the following statement has a different pattern (note the changed
+ /// variables in the return statements) and would have two differences when
+ /// compared with one of the statements above.
+ ///
+ /// if (a < b) return b; return a;
+ ///
+ /// This function should only be called if the related statements of the given
+ /// pattern and the statements of this objects are clones of each other.
+ unsigned countPatternDifferences(
+ const VariablePattern &Other,
+ CloneDetector::SuspiciousClonePair *FirstMismatch = nullptr) {
+ unsigned NumberOfDifferences = 0;
+
+ assert(Other.Occurences.size() == Occurences.size());
+ for (unsigned i = 0; i < Occurences.size(); ++i) {
+ auto ThisOccurence = Occurences[i];
+ auto OtherOccurence = Other.Occurences[i];
+ if (ThisOccurence.KindID == OtherOccurence.KindID)
+ continue;
+
+ ++NumberOfDifferences;
+
+ // If FirstMismatch is not a nullptr, we need to store information about
+ // the first difference between the two patterns.
+ if (FirstMismatch == nullptr)
+ continue;
+
+ // Only proceed if we just found the first difference as we only store
+ // information about the first difference.
+ if (NumberOfDifferences != 1)
+ continue;
+
+ const VarDecl *FirstSuggestion = nullptr;
+ // If there is a variable available in the list of referenced variables
+ // which wouldn't break the pattern if it is used in place of the
+ // current variable, we provide this variable as the suggested fix.
+ if (OtherOccurence.KindID < Variables.size())
+ FirstSuggestion = Variables[OtherOccurence.KindID];
+
+ // Store information about the first clone.
+ FirstMismatch->FirstCloneInfo =
+ CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo(
+ Variables[ThisOccurence.KindID], ThisOccurence.Mention,
+ FirstSuggestion);
+
+ // Same as above but with the other clone. We do this for both clones as
+ // we don't know which clone is the one containing the unintended
+ // pattern error.
+ const VarDecl *SecondSuggestion = nullptr;
+ if (ThisOccurence.KindID < Other.Variables.size())
+ SecondSuggestion = Other.Variables[ThisOccurence.KindID];
+
+ // Store information about the second clone.
+ FirstMismatch->SecondCloneInfo =
+ CloneDetector::SuspiciousClonePair::SuspiciousCloneInfo(
+ Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
+ SecondSuggestion);
+
+ // SuspiciousClonePair guarantees that the first clone always has a
+ // suggested variable associated with it. As we know that one of the two
+ // clones in the pair always has suggestion, we swap the two clones
+ // in case the first clone has no suggested variable which means that
+ // the second clone has a suggested variable and should be first.
+ if (!FirstMismatch->FirstCloneInfo.Suggestion)
+ std::swap(FirstMismatch->FirstCloneInfo,
+ FirstMismatch->SecondCloneInfo);
+
+ // This ensures that we always have at least one suggestion in a pair.
+ assert(FirstMismatch->FirstCloneInfo.Suggestion);
+ }
+
+ return NumberOfDifferences;
+ }
+};
+}
+
+/// \brief Prints the macro name that contains the given SourceLocation into
+/// the given raw_string_ostream.
+static void printMacroName(llvm::raw_string_ostream &MacroStack,
+ ASTContext &Context, SourceLocation Loc) {
+ MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(),
+ Context.getLangOpts());
+
+ // Add an empty space at the end as a padding to prevent
+ // that macro names concatenate to the names of other macros.
+ MacroStack << " ";
+}
+
+/// \brief Returns a string that represents all macro expansions that
+/// expanded into the given SourceLocation.
+///
+/// If 'getMacroStack(A) == getMacroStack(B)' is true, then the SourceLocations
+/// A and B are expanded from the same macros in the same order.
+static std::string getMacroStack(SourceLocation Loc, ASTContext &Context) {
+ std::string MacroStack;
+ llvm::raw_string_ostream MacroStackStream(MacroStack);
+ SourceManager &SM = Context.getSourceManager();
+
+ // Iterate over all macros that expanded into the given SourceLocation.
+ while (Loc.isMacroID()) {
+ // Add the macro name to the stream.
+ printMacroName(MacroStackStream, Context, Loc);
+ Loc = SM.getImmediateMacroCallerLoc(Loc);
+ }
+ MacroStackStream.flush();
+ return MacroStack;
+}
+
+namespace {
+/// \brief Collects the data of a single Stmt.
+///
+/// This class defines what a code clone is: If it collects for two statements
+/// the same data, then those two statements are considered to be clones of each
+/// other.
+///
+/// All collected data is forwarded to the given data consumer of the type T.
+/// The data consumer class needs to provide a member method with the signature:
+/// update(StringRef Str)
+template <typename T>
+class StmtDataCollector : public ConstStmtVisitor<StmtDataCollector<T>> {
+
+ ASTContext &Context;
+ /// \brief The data sink to which all data is forwarded.
+ T &DataConsumer;
+
+public:
+ /// \brief Collects data of the given Stmt.
+ /// \param S The given statement.
+ /// \param Context The ASTContext of S.
+ /// \param DataConsumer The data sink to which all data is forwarded.
+ StmtDataCollector(const Stmt *S, ASTContext &Context, T &DataConsumer)
+ : Context(Context), DataConsumer(DataConsumer) {
+ this->Visit(S);
+ }
+
+ // Below are utility methods for appending different data to the vector.
+
+ void addData(CloneDetector::DataPiece Integer) {
+ DataConsumer.update(
+ StringRef(reinterpret_cast<char *>(&Integer), sizeof(Integer)));
+ }
+
+ void addData(llvm::StringRef Str) { DataConsumer.update(Str); }
+
+ void addData(const QualType &QT) { addData(QT.getAsString()); }
+
+// The functions below collect the class specific data of each Stmt subclass.
+
+// Utility macro for defining a visit method for a given class. This method
+// calls back to the ConstStmtVisitor to visit all parent classes.
+#define DEF_ADD_DATA(CLASS, CODE) \
+ void Visit##CLASS(const CLASS *S) { \
+ CODE; \
+ ConstStmtVisitor<StmtDataCollector>::Visit##CLASS(S); \
+ }
+
+ DEF_ADD_DATA(Stmt, {
+ addData(S->getStmtClass());
+ // This ensures that macro generated code isn't identical to macro-generated
+ // code.
+ addData(getMacroStack(S->getLocStart(), Context));
+ addData(getMacroStack(S->getLocEnd(), Context));
+ })
+ DEF_ADD_DATA(Expr, { addData(S->getType()); })
+
+ //--- Builtin functionality ----------------------------------------------//
+ DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); })
+ DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); })
+ DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); })
+ DEF_ADD_DATA(TypeTraitExpr, {
+ addData(S->getTrait());
+ for (unsigned i = 0; i < S->getNumArgs(); ++i)
+ addData(S->getArg(i)->getType());
+ })
+
+ //--- Calls --------------------------------------------------------------//
+ DEF_ADD_DATA(CallExpr, {
+ // Function pointers don't have a callee and we just skip hashing it.
+ if (const FunctionDecl *D = S->getDirectCallee()) {
+ // If the function is a template specialization, we also need to handle
+ // the template arguments as they are not included in the qualified name.
+ if (auto Args = D->getTemplateSpecializationArgs()) {
+ std::string ArgString;
+
+ // Print all template arguments into ArgString
+ llvm::raw_string_ostream OS(ArgString);
+ for (unsigned i = 0; i < Args->size(); ++i) {
+ Args->get(i).print(Context.getLangOpts(), OS);
+ // Add a padding character so that 'foo<X, XX>()' != 'foo<XX, X>()'.
+ OS << '\n';
+ }
+ OS.flush();
+
+ addData(ArgString);
+ }
+ addData(D->getQualifiedNameAsString());
+ }
+ })
+
+ //--- Exceptions ---------------------------------------------------------//
+ DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); })
+
+ //--- C++ OOP Stmts ------------------------------------------------------//
+ DEF_ADD_DATA(CXXDeleteExpr, {
+ addData(S->isArrayFormAsWritten());
+ addData(S->isGlobalDelete());
+ })
+
+ //--- Casts --------------------------------------------------------------//
+ DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); })
+
+ //--- Miscellaneous Exprs ------------------------------------------------//
+ DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); })
+ DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); })
+
+ //--- Control flow -------------------------------------------------------//
+ DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); })
+ DEF_ADD_DATA(IndirectGotoStmt, {
+ if (S->getConstantTarget())
+ addData(S->getConstantTarget()->getName());
+ })
+ DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); })
+ DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); })
+ DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); })
+
+ //--- Objective-C --------------------------------------------------------//
+ DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); })
+ DEF_ADD_DATA(ObjCPropertyRefExpr, {
+ addData(S->isSuperReceiver());
+ addData(S->isImplicitProperty());
+ })
+ DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); })
+
+ //--- Miscellaneous Stmts ------------------------------------------------//
+ DEF_ADD_DATA(CXXFoldExpr, {
+ addData(S->isRightFold());
+ addData(S->getOperator());
+ })
+ DEF_ADD_DATA(GenericSelectionExpr, {
+ for (unsigned i = 0; i < S->getNumAssocs(); ++i) {
+ addData(S->getAssocType(i));
+ }
+ })
+ DEF_ADD_DATA(LambdaExpr, {
+ for (const LambdaCapture &C : S->captures()) {
+ addData(C.isPackExpansion());
+ addData(C.getCaptureKind());
+ if (C.capturesVariable())
+ addData(C.getCapturedVar()->getType());
+ }
+ addData(S->isGenericLambda());
+ addData(S->isMutable());
+ })
+ DEF_ADD_DATA(DeclStmt, {
+ auto numDecls = std::distance(S->decl_begin(), S->decl_end());
+ addData(static_cast<CloneDetector::DataPiece>(numDecls));
+ for (const Decl *D : S->decls()) {
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ addData(VD->getType());
+ }
+ }
+ })
+ DEF_ADD_DATA(AsmStmt, {
+ addData(S->isSimple());
+ addData(S->isVolatile());
+ addData(S->generateAsmString(Context));
+ for (unsigned i = 0; i < S->getNumInputs(); ++i) {
+ addData(S->getInputConstraint(i));
+ }
+ for (unsigned i = 0; i < S->getNumOutputs(); ++i) {
+ addData(S->getOutputConstraint(i));
+ }
+ for (unsigned i = 0; i < S->getNumClobbers(); ++i) {
+ addData(S->getClobber(i));
+ }
+ })
+ DEF_ADD_DATA(AttributedStmt, {
+ for (const Attr *A : S->getAttrs()) {
+ addData(std::string(A->getSpelling()));
+ }
+ })
+};
+} // end anonymous namespace
+
+namespace {
+/// Generates CloneSignatures for a set of statements and stores the results in
+/// a CloneDetector object.
+class CloneSignatureGenerator {
+
+ CloneDetector &CD;
+ ASTContext &Context;
+
+ /// \brief Generates CloneSignatures for all statements in the given statement
+ /// tree and stores them in the CloneDetector.
+ ///
+ /// \param S The root of the given statement tree.
+ /// \param ParentMacroStack A string representing the macros that generated
+ /// the parent statement or an empty string if no
+ /// macros generated the parent statement.
+ /// See getMacroStack() for generating such a string.
+ /// \return The CloneSignature of the root statement.
+ CloneDetector::CloneSignature
+ generateSignatures(const Stmt *S, const std::string &ParentMacroStack) {
+ // Create an empty signature that will be filled in this method.
+ CloneDetector::CloneSignature Signature;
+
+ llvm::MD5 Hash;
+
+ // Collect all relevant data from S and hash it.
+ StmtDataCollector<llvm::MD5>(S, Context, Hash);
+
+ // Look up what macros expanded into the current statement.
+ std::string StartMacroStack = getMacroStack(S->getLocStart(), Context);
+ std::string EndMacroStack = getMacroStack(S->getLocEnd(), Context);
+
+ // First, check if ParentMacroStack is not empty which means we are currently
+ // dealing with a parent statement which was expanded from a macro.
+ // If this parent statement was expanded from the same macros as this
+ // statement, we reduce the initial complexity of this statement to zero.
+ // This causes that a group of statements that were generated by a single
+ // macro expansion will only increase the total complexity by one.
+ // Note: This is not the final complexity of this statement as we still
+ // add the complexity of the child statements to the complexity value.
+ if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack &&
+ EndMacroStack == ParentMacroStack)) {
+ Signature.Complexity = 0;
+ }
+
+ // Storage for the signatures of the direct child statements. This is only
+ // needed if the current statement is a CompoundStmt.
+ std::vector<CloneDetector::CloneSignature> ChildSignatures;
+ const CompoundStmt *CS = dyn_cast<const CompoundStmt>(S);
+
+ // The signature of a statement includes the signatures of its children.
+ // Therefore we create the signatures for every child and add them to the
+ // current signature.
+ for (const Stmt *Child : S->children()) {
+ // Some statements like 'if' can have nullptr children that we will skip.
+ if (!Child)
+ continue;
+
+ // Recursive call to create the signature of the child statement. This
+ // will also create and store all clone groups in this child statement.
+ // We pass only the StartMacroStack along to keep things simple.
+ auto ChildSignature = generateSignatures(Child, StartMacroStack);
+
+ // Add the collected data to the signature of the current statement.
+ Signature.Complexity += ChildSignature.Complexity;
+ Hash.update(StringRef(reinterpret_cast<char *>(&ChildSignature.Hash),
+ sizeof(ChildSignature.Hash)));
+
+ // If the current statement is a CompoundStatement, we need to store the
+ // signature for the generation of the sub-sequences.
+ if (CS)
+ ChildSignatures.push_back(ChildSignature);
+ }
+
+ // If the current statement is a CompoundStmt, we also need to create the
+ // clone groups from the sub-sequences inside the children.
+ if (CS)
+ handleSubSequences(CS, ChildSignatures);
+
+ // Create the final hash code for the current signature.
+ llvm::MD5::MD5Result HashResult;
+ Hash.final(HashResult);
+
+ // Copy as much of the generated hash code to the signature's hash code.
+ std::memcpy(&Signature.Hash, &HashResult,
+ std::min(sizeof(Signature.Hash), sizeof(HashResult)));
+
+ // Save the signature for the current statement in the CloneDetector object.
+ CD.add(StmtSequence(S, Context), Signature);
+
+ return Signature;
+ }
+
+ /// \brief Adds all possible sub-sequences in the child array of the given
+ /// CompoundStmt to the CloneDetector.
+ /// \param CS The given CompoundStmt.
+ /// \param ChildSignatures A list of calculated signatures for each child in
+ /// the given CompoundStmt.
+ void handleSubSequences(
+ const CompoundStmt *CS,
+ const std::vector<CloneDetector::CloneSignature> &ChildSignatures) {
+
+ // FIXME: This function has quadratic runtime right now. Check if skipping
+ // this function for too long CompoundStmts is an option.
+
+ // The length of the sub-sequence. We don't need to handle sequences with
+ // the length 1 as they are already handled in CollectData().
+ for (unsigned Length = 2; Length <= CS->size(); ++Length) {
+ // The start index in the body of the CompoundStmt. We increase the
+ // position until the end of the sub-sequence reaches the end of the
+ // CompoundStmt body.
+ for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) {
+ // Create an empty signature and add the signatures of all selected
+ // child statements to it.
+ CloneDetector::CloneSignature SubSignature;
+ llvm::MD5 SubHash;
+
+ for (unsigned i = Pos; i < Pos + Length; ++i) {
+ SubSignature.Complexity += ChildSignatures[i].Complexity;
+ size_t ChildHash = ChildSignatures[i].Hash;
+
+ SubHash.update(StringRef(reinterpret_cast<char *>(&ChildHash),
+ sizeof(ChildHash)));
+ }
+
+ // Create the final hash code for the current signature.
+ llvm::MD5::MD5Result HashResult;
+ SubHash.final(HashResult);
+
+ // Copy as much of the generated hash code to the signature's hash code.
+ std::memcpy(&SubSignature.Hash, &HashResult,
+ std::min(sizeof(SubSignature.Hash), sizeof(HashResult)));
+
+ // Save the signature together with the information about what children
+ // sequence we selected.
+ CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature);
+ }
+ }
+ }
+
+public:
+ explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context)
+ : CD(CD), Context(Context) {}
+
+ /// \brief Generates signatures for all statements in the given function body.
+ void consumeCodeBody(const Stmt *S) { generateSignatures(S, ""); }
+};
+} // end anonymous namespace
+
+void CloneDetector::analyzeCodeBody(const Decl *D) {
+ assert(D);
+ assert(D->hasBody());
+ CloneSignatureGenerator Generator(*this, D->getASTContext());
+ Generator.consumeCodeBody(D->getBody());
+}
+
+void CloneDetector::add(const StmtSequence &S,
+ const CloneSignature &Signature) {
+ Sequences.push_back(std::make_pair(Signature, S));
+}
+
+namespace {
+/// \brief Returns true if and only if \p Stmt contains at least one other
+/// sequence in the \p Group.
+bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) {
+ for (StmtSequence &GroupStmt : Group.Sequences) {
+ if (Stmt.contains(GroupStmt))
+ return true;
+ }
+ return false;
+}
+
+/// \brief Returns true if and only if all sequences in \p OtherGroup are
+/// contained by a sequence in \p Group.
+bool containsGroup(CloneDetector::CloneGroup &Group,
+ CloneDetector::CloneGroup &OtherGroup) {
+ // We have less sequences in the current group than we have in the other,
+ // so we will never fulfill the requirement for returning true. This is only
+ // possible because we know that a sequence in Group can contain at most
+ // one sequence in OtherGroup.
+ if (Group.Sequences.size() < OtherGroup.Sequences.size())
+ return false;
+
+ for (StmtSequence &Stmt : Group.Sequences) {
+ if (!containsAnyInGroup(Stmt, OtherGroup))
+ return false;
+ }
+ return true;
+}
+} // end anonymous namespace
+
+namespace {
+/// \brief Wrapper around FoldingSetNodeID that it can be used as the template
+/// argument of the StmtDataCollector.
+class FoldingSetNodeIDWrapper {
+
+ llvm::FoldingSetNodeID &FS;
+
+public:
+ FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
+
+ void update(StringRef Str) { FS.AddString(Str); }
+};
+} // end anonymous namespace
+
+/// \brief Writes the relevant data from all statements and child statements
+/// in the given StmtSequence into the given FoldingSetNodeID.
+static void CollectStmtSequenceData(const StmtSequence &Sequence,
+ FoldingSetNodeIDWrapper &OutputData) {
+ for (const Stmt *S : Sequence) {
+ StmtDataCollector<FoldingSetNodeIDWrapper>(S, Sequence.getASTContext(),
+ OutputData);
+
+ for (const Stmt *Child : S->children()) {
+ if (!Child)
+ continue;
+
+ CollectStmtSequenceData(StmtSequence(Child, Sequence.getASTContext()),
+ OutputData);
+ }
+ }
+}
+
+/// \brief Returns true if both sequences are clones of each other.
+static bool areSequencesClones(const StmtSequence &LHS,
+ const StmtSequence &RHS) {
+ // We collect the data from all statements in the sequence as we did before
+ // when generating a hash value for each sequence. But this time we don't
+ // hash the collected data and compare the whole data set instead. This
+ // prevents any false-positives due to hash code collisions.
+ llvm::FoldingSetNodeID DataLHS, DataRHS;
+ FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
+ FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
+
+ CollectStmtSequenceData(LHS, LHSWrapper);
+ CollectStmtSequenceData(RHS, RHSWrapper);
+
+ return DataLHS == DataRHS;
+}
+
+/// \brief Finds all actual clone groups in a single group of presumed clones.
+/// \param Result Output parameter to which all found groups are added.
+/// \param Group A group of presumed clones. The clones are allowed to have a
+/// different variable pattern and may not be actual clones of each
+/// other.
+/// \param CheckVariablePattern If true, every clone in a group that was added
+/// to the output follows the same variable pattern as the other
+/// clones in its group.
+static void createCloneGroups(std::vector<CloneDetector::CloneGroup> &Result,
+ const CloneDetector::CloneGroup &Group,
+ bool CheckVariablePattern) {
+ // We remove the Sequences one by one, so a list is more appropriate.
+ std::list<StmtSequence> UnassignedSequences(Group.Sequences.begin(),
+ Group.Sequences.end());
+
+ // Search for clones as long as there could be clones in UnassignedSequences.
+ while (UnassignedSequences.size() > 1) {
+
+ // Pick the first Sequence as a protoype for a new clone group.
+ StmtSequence Prototype = UnassignedSequences.front();
+ UnassignedSequences.pop_front();
+
+ CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Signature);
+
+ // Analyze the variable pattern of the prototype. Every other StmtSequence
+ // needs to have the same pattern to get into the new clone group.
+ VariablePattern PrototypeFeatures(Prototype);
+
+ // Search all remaining StmtSequences for an identical variable pattern
+ // and assign them to our new clone group.
+ auto I = UnassignedSequences.begin(), E = UnassignedSequences.end();
+ while (I != E) {
+ // If the sequence doesn't fit to the prototype, we have encountered
+ // an unintended hash code collision and we skip it.
+ if (!areSequencesClones(Prototype, *I)) {
+ ++I;
+ continue;
+ }
+
+ // If we weren't asked to check for a matching variable pattern in clone
+ // groups we can add the sequence now to the new clone group.
+ // If we were asked to check for matching variable pattern, we first have
+ // to check that there are no differences between the two patterns and
+ // only proceed if they match.
+ if (!CheckVariablePattern ||
+ VariablePattern(*I).countPatternDifferences(PrototypeFeatures) == 0) {
+ FilteredGroup.Sequences.push_back(*I);
+ I = UnassignedSequences.erase(I);
+ continue;
+ }
+
+ // We didn't found a matching variable pattern, so we continue with the
+ // next sequence.
+ ++I;
+ }
+
+ // Add a valid clone group to the list of found clone groups.
+ if (!FilteredGroup.isValid())
+ continue;
+
+ Result.push_back(FilteredGroup);
+ }
+}
+
+void CloneDetector::findClones(std::vector<CloneGroup> &Result,
+ unsigned MinGroupComplexity,
+ bool CheckPatterns) {
+ // A shortcut (and necessary for the for-loop later in this function).
+ if (Sequences.empty())
+ return;
+
+ // We need to search for groups of StmtSequences with the same hash code to
+ // create our initial clone groups. By sorting all known StmtSequences by
+ // their hash value we make sure that StmtSequences with the same hash code
+ // are grouped together in the Sequences vector.
+ // Note: We stable sort here because the StmtSequences are added in the order
+ // in which they appear in the source file. We want to preserve that order
+ // because we also want to report them in that order in the CloneChecker.
+ std::stable_sort(Sequences.begin(), Sequences.end(),
+ [](std::pair<CloneSignature, StmtSequence> LHS,
+ std::pair<CloneSignature, StmtSequence> RHS) {
+ return LHS.first.Hash < RHS.first.Hash;
+ });
+
+ std::vector<CloneGroup> CloneGroups;
+
+ // Check for each CloneSignature if its successor has the same hash value.
+ // We don't check the last CloneSignature as it has no successor.
+ // Note: The 'size - 1' in the condition is safe because we check for an empty
+ // Sequences vector at the beginning of this function.
+ for (unsigned i = 0; i < Sequences.size() - 1; ++i) {
+ const auto Current = Sequences[i];
+ const auto Next = Sequences[i + 1];
+
+ if (Current.first.Hash != Next.first.Hash)
+ continue;
+
+ // It's likely that we just found an sequence of CloneSignatures that
+ // represent a CloneGroup, so we create a new group and start checking and
+ // adding the CloneSignatures in this sequence.
+ CloneGroup Group;
+ Group.Signature = Current.first;
+
+ for (; i < Sequences.size(); ++i) {
+ const auto &Signature = Sequences[i];
+
+ // A different hash value means we have reached the end of the sequence.
+ if (Current.first.Hash != Signature.first.Hash) {
+ // The current Signature could be the start of a new CloneGroup. So we
+ // decrement i so that we visit it again in the outer loop.
+ // Note: i can never be 0 at this point because we are just comparing
+ // the hash of the Current CloneSignature with itself in the 'if' above.
+ assert(i != 0);
+ --i;
+ break;
+ }
+
+ // Skip CloneSignatures that won't pass the complexity requirement.
+ if (Signature.first.Complexity < MinGroupComplexity)
+ continue;
+
+ Group.Sequences.push_back(Signature.second);
+ }
+
+ // There is a chance that we haven't found more than two fitting
+ // CloneSignature because not enough CloneSignatures passed the complexity
+ // requirement. As a CloneGroup with less than two members makes no sense,
+ // we ignore this CloneGroup and won't add it to the result.
+ if (!Group.isValid())
+ continue;
+
+ CloneGroups.push_back(Group);
+ }
+
+ // Add every valid clone group that fulfills the complexity requirement.
+ for (const CloneGroup &Group : CloneGroups) {
+ createCloneGroups(Result, Group, CheckPatterns);
+ }
+
+ std::vector<unsigned> IndexesToRemove;
+
+ // Compare every group in the result with the rest. If one groups contains
+ // another group, we only need to return the bigger group.
+ // Note: This doesn't scale well, so if possible avoid calling any heavy
+ // function from this loop to minimize the performance impact.
+ for (unsigned i = 0; i < Result.size(); ++i) {
+ for (unsigned j = 0; j < Result.size(); ++j) {
+ // Don't compare a group with itself.
+ if (i == j)
+ continue;
+
+ if (containsGroup(Result[j], Result[i])) {
+ IndexesToRemove.push_back(i);
+ break;
+ }
+ }
+ }
+
+ // Erasing a list of indexes from the vector should be done with decreasing
+ // indexes. As IndexesToRemove is constructed with increasing values, we just
+ // reverse iterate over it to get the desired order.
+ for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
+ Result.erase(Result.begin() + *I);
+ }
+}
+
+void CloneDetector::findSuspiciousClones(
+ std::vector<CloneDetector::SuspiciousClonePair> &Result,
+ unsigned MinGroupComplexity) {
+ std::vector<CloneGroup> Clones;
+ // Reuse the normal search for clones but specify that the clone groups don't
+ // need to have a common referenced variable pattern so that we can manually
+ // search for the kind of pattern errors this function is supposed to find.
+ findClones(Clones, MinGroupComplexity, false);
+
+ for (const CloneGroup &Group : Clones) {
+ for (unsigned i = 0; i < Group.Sequences.size(); ++i) {
+ VariablePattern PatternA(Group.Sequences[i]);
+
+ for (unsigned j = i + 1; j < Group.Sequences.size(); ++j) {
+ VariablePattern PatternB(Group.Sequences[j]);
+
+ CloneDetector::SuspiciousClonePair ClonePair;
+ // For now, we only report clones which break the variable pattern just
+ // once because multiple differences in a pattern are an indicator that
+ // those differences are maybe intended (e.g. because it's actually
+ // a different algorithm).
+ // TODO: In very big clones even multiple variables can be unintended,
+ // so replacing this number with a percentage could better handle such
+ // cases. On the other hand it could increase the false-positive rate
+ // for all clones if the percentage is too high.
+ if (PatternA.countPatternDifferences(PatternB, &ClonePair) == 1) {
+ Result.push_back(ClonePair);
+ break;
+ }
+ }
+ }
+ }
+}