aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/InstructionSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/InstructionSimplify.cpp')
-rw-r--r--lib/Analysis/InstructionSimplify.cpp877
1 files changed, 692 insertions, 185 deletions
diff --git a/lib/Analysis/InstructionSimplify.cpp b/lib/Analysis/InstructionSimplify.cpp
index 7a820a58f6f0..3fbbd7cbd22a 100644
--- a/lib/Analysis/InstructionSimplify.cpp
+++ b/lib/Analysis/InstructionSimplify.cpp
@@ -20,6 +20,7 @@
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
@@ -31,6 +32,7 @@
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
+#include <algorithm>
using namespace llvm;
using namespace llvm::PatternMatch;
@@ -41,14 +43,20 @@ enum { RecursionLimit = 3 };
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumReassoc, "Number of reassociations");
+namespace {
struct Query {
const DataLayout *DL;
const TargetLibraryInfo *TLI;
const DominatorTree *DT;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
Query(const DataLayout *DL, const TargetLibraryInfo *tli,
- const DominatorTree *dt) : DL(DL), TLI(tli), DT(dt) {}
+ const DominatorTree *dt, AssumptionCache *ac = nullptr,
+ const Instruction *cxti = nullptr)
+ : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
};
+} // end anonymous namespace
static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
@@ -575,8 +583,9 @@ static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -624,7 +633,7 @@ static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
}
assert(V->getType()->getScalarType()->isPointerTy() &&
"Unexpected operand type!");
- } while (Visited.insert(V));
+ } while (Visited.insert(V).second);
Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
if (V->getType()->isVectorTy())
@@ -676,6 +685,10 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
+ // 0 - X -> 0 if the sub is NUW.
+ if (isNUW && match(Op0, m_Zero()))
+ return Op0;
+
// (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
// For example, (X + Y) - Y -> X; (Y + X) - Y -> X
Value *X = nullptr, *Y = nullptr, *Z = Op1;
@@ -769,8 +782,9 @@ static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -946,29 +960,38 @@ static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
}
Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DataLayout *DL,
+ const TargetLibraryInfo *TLI,
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
-Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
- FastMathFlags FMF,
+Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
@@ -988,6 +1011,10 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (match(Op1, m_Undef()))
return Op1;
+ // X / 0 -> undef, we don't need to preserve faults!
+ if (match(Op1, m_Zero()))
+ return UndefValue::get(Op1->getType());
+
// undef / X -> 0
if (match(Op0, m_Undef()))
return Constant::getNullValue(Op0->getType());
@@ -1028,6 +1055,16 @@ static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
(!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
return Constant::getNullValue(Op0->getType());
+ // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
+ ConstantInt *C1, *C2;
+ if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
+ match(Op1, m_ConstantInt(C2))) {
+ bool Overflow;
+ C1->getValue().umul_ov(C2->getValue(), Overflow);
+ if (Overflow)
+ return Constant::getNullValue(Op0->getType());
+ }
+
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1055,8 +1092,10 @@ static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyUDivInst - Given operands for a UDiv, see if we can
@@ -1071,8 +1110,10 @@ static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1090,8 +1131,10 @@ static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyRem - Given operands for an SRem or URem, see if we can
@@ -1133,6 +1176,13 @@ static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Op0 == Op1)
return Constant::getNullValue(Op0->getType());
+ // (X % Y) % Y -> X % Y
+ if ((Opcode == Instruction::SRem &&
+ match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
+ (Opcode == Instruction::URem &&
+ match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
+ return Op0;
+
// If the operation is with the result of a select instruction, check whether
// operating on either branch of the select always yields the same value.
if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
@@ -1160,8 +1210,10 @@ static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyURemInst - Given operands for a URem, see if we can
@@ -1176,8 +1228,10 @@ static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
@@ -1195,8 +1249,10 @@ static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// isUndefShift - Returns true if a shift by \c Amount always yields undef.
@@ -1264,6 +1320,37 @@ static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
return nullptr;
}
+/// \brief Given operands for an Shl, LShr or AShr, see if we can
+/// fold the result. If not, this returns null.
+static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
+ bool isExact, const Query &Q,
+ unsigned MaxRecurse) {
+ if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
+ return V;
+
+ // X >> X -> 0
+ if (Op0 == Op1)
+ return Constant::getNullValue(Op0->getType());
+
+ // undef >> X -> 0
+ // undef >> X -> undef (if it's exact)
+ if (match(Op0, m_Undef()))
+ return isExact ? Op0 : Constant::getNullValue(Op0->getType());
+
+ // The low bit cannot be shifted out of an exact shift if it is set.
+ if (isExact) {
+ unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
+ APInt Op0KnownZero(BitWidth, 0);
+ APInt Op0KnownOne(BitWidth, 0);
+ computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
+ Q.CxtI, Q.DT);
+ if (Op0KnownOne[0])
+ return Op0;
+ }
+
+ return nullptr;
+}
+
/// SimplifyShlInst - Given operands for an Shl, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
@@ -1272,8 +1359,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
return V;
// undef << X -> 0
+ // undef << X -> undef if (if it's NSW/NUW)
if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
+ return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
// (X >> A) << A -> X
Value *X;
@@ -1284,8 +1372,9 @@ static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -1293,21 +1382,13 @@ Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
/// fold the result. If not, this returns null.
static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // undef >>l X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Op0->getType());
+ if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
+ return V;
// (X << A) >> A -> X
Value *X;
- if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
+ if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
return X;
return nullptr;
@@ -1316,8 +1397,9 @@ static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -1325,29 +1407,21 @@ Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
/// fold the result. If not, this returns null.
static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const Query &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
+ if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
+ MaxRecurse))
return V;
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
// all ones >>a X -> all ones
if (match(Op0, m_AllOnes()))
return Op0;
- // undef >>a X -> all ones
- if (match(Op0, m_Undef()))
- return Constant::getAllOnesValue(Op0->getType());
-
// (X << A) >> A -> X
Value *X;
- if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
+ if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
return X;
// Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL);
+ unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
return Op0;
@@ -1357,11 +1431,105 @@ static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
+static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
+ ICmpInst *UnsignedICmp, bool IsAnd) {
+ Value *X, *Y;
+
+ ICmpInst::Predicate EqPred;
+ if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
+ !ICmpInst::isEquality(EqPred))
+ return nullptr;
+
+ ICmpInst::Predicate UnsignedPred;
+ if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ ;
+ else if (match(UnsignedICmp,
+ m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
+ ICmpInst::isUnsigned(UnsignedPred))
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+ else
+ return nullptr;
+
+ // X < Y && Y != 0 --> X < Y
+ // X < Y || Y != 0 --> Y != 0
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
+ return IsAnd ? UnsignedICmp : ZeroICmp;
+
+ // X >= Y || Y != 0 --> true
+ // X >= Y || Y == 0 --> X >= Y
+ if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
+ if (EqPred == ICmpInst::ICMP_NE)
+ return getTrue(UnsignedICmp->getType());
+ return UnsignedICmp;
+ }
+
+ // X < Y && Y == 0 --> false
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
+ IsAnd)
+ return getFalse(UnsignedICmp->getType());
+
+ return nullptr;
+}
+
+// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
+// of possible values cannot be satisfied.
+static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ ConstantInt *CI1, *CI2;
+ Value *V;
+
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
+ return X;
+
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+ m_ConstantInt(CI2))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ bool isNSW = AddInst->hasNoSignedWrap();
+ bool isNUW = AddInst->hasNoUnsignedWrap();
+
+ const APInt &CI1V = CI1->getValue();
+ const APInt &CI2V = CI2->getValue();
+ const APInt Delta = CI2V - CI1V;
+ if (CI1V.isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
+ return getFalse(ITy);
+ if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
+ return getFalse(ITy);
+ }
+ }
+ if (CI1V.getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ }
+
+ return nullptr;
+}
+
/// SimplifyAndInst - Given operands for an And, see if we can
/// fold the result. If not, this returns null.
static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
@@ -1412,12 +1580,21 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
// A & (-A) = A if A is a power of two or zero.
if (match(Op0, m_Neg(m_Specific(Op1))) ||
match(Op1, m_Neg(m_Specific(Op0)))) {
- if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
+ if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
return Op0;
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
return Op1;
}
+ if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+ if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+ if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
+ return V;
+ if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
+ return V;
+ }
+ }
+
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
MaxRecurse))
@@ -1452,8 +1629,62 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
+}
+
+// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
+// contains all possible values.
+static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
+ ICmpInst::Predicate Pred0, Pred1;
+ ConstantInt *CI1, *CI2;
+ Value *V;
+
+ if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
+ return X;
+
+ if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
+ m_ConstantInt(CI2))))
+ return nullptr;
+
+ if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
+ return nullptr;
+
+ Type *ITy = Op0->getType();
+
+ auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
+ bool isNSW = AddInst->hasNoSignedWrap();
+ bool isNUW = AddInst->hasNoUnsignedWrap();
+
+ const APInt &CI1V = CI1->getValue();
+ const APInt &CI2V = CI2->getValue();
+ const APInt Delta = CI2V - CI1V;
+ if (CI1V.isStrictlyPositive()) {
+ if (Delta == 2) {
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ if (Delta == 1) {
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
+ return getTrue(ITy);
+ if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
+ return getTrue(ITy);
+ }
+ }
+ if (CI1V.getBoolValue() && isNUW) {
+ if (Delta == 2)
+ if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Delta == 1)
+ if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+
+ return nullptr;
}
/// SimplifyOrInst - Given operands for an Or, see if we can
@@ -1513,6 +1744,15 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
(A == Op0 || B == Op0))
return Constant::getAllOnesValue(Op0->getType());
+ if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
+ if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
+ if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
+ return V;
+ if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
+ return V;
+ }
+ }
+
// Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
MaxRecurse))
@@ -1545,18 +1785,22 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
match(A, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
- if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
+ if (V1 == B &&
+ MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return A;
- if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
+ if (V2 == B &&
+ MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return A;
}
// Or commutes, try both ways.
if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
match(B, m_Add(m_Value(V1), m_Value(V2)))) {
// Add commutes, try both ways.
- if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
+ if (V1 == A &&
+ MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return B;
- if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
+ if (V2 == A &&
+ MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return B;
}
}
@@ -1573,8 +1817,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyXorInst - Given operands for a Xor, see if we can
@@ -1628,8 +1874,10 @@ static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
static Type *GetCompareTy(Value *Op) {
@@ -1804,6 +2052,50 @@ static Constant *computePointerICmp(const DataLayout *DL,
return ConstantExpr::getICmp(Pred,
ConstantExpr::getAdd(LHSOffset, LHSNoBound),
ConstantExpr::getAdd(RHSOffset, RHSNoBound));
+
+ // If one side of the equality comparison must come from a noalias call
+ // (meaning a system memory allocation function), and the other side must
+ // come from a pointer that cannot overlap with dynamically-allocated
+ // memory within the lifetime of the current function (allocas, byval
+ // arguments, globals), then determine the comparison result here.
+ SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
+ GetUnderlyingObjects(LHS, LHSUObjs, DL);
+ GetUnderlyingObjects(RHS, RHSUObjs, DL);
+
+ // Is the set of underlying objects all noalias calls?
+ auto IsNAC = [](SmallVectorImpl<Value *> &Objects) {
+ return std::all_of(Objects.begin(), Objects.end(),
+ [](Value *V){ return isNoAliasCall(V); });
+ };
+
+ // Is the set of underlying objects all things which must be disjoint from
+ // noalias calls. For allocas, we consider only static ones (dynamic
+ // allocas might be transformed into calls to malloc not simultaneously
+ // live with the compared-to allocation). For globals, we exclude symbols
+ // that might be resolve lazily to symbols in another dynamically-loaded
+ // library (and, thus, could be malloc'ed by the implementation).
+ auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) {
+ return std::all_of(Objects.begin(), Objects.end(),
+ [](Value *V){
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ return AI->getParent() && AI->getParent()->getParent() &&
+ AI->isStaticAlloca();
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ return (GV->hasLocalLinkage() ||
+ GV->hasHiddenVisibility() ||
+ GV->hasProtectedVisibility() ||
+ GV->hasUnnamedAddr()) &&
+ !GV->isThreadLocal();
+ if (const Argument *A = dyn_cast<Argument>(V))
+ return A->hasByValAttr();
+ return false;
+ });
+ };
+
+ if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
+ (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
+ return ConstantInt::get(GetCompareTy(LHS),
+ !CmpInst::isTrueWhenEqual(Pred));
}
// Otherwise, fail.
@@ -1883,40 +2175,46 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_EQ:
case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.DL))
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_NE:
case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.DL))
+ if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
case ICmpInst::ICMP_SLT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
if (LHSKnownNonNegative)
return getFalse(ITy);
break;
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getTrue(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+ if (LHSKnownNonNegative &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getFalse(ITy);
break;
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
if (LHSKnownNonNegative)
return getTrue(ITy);
break;
case ICmpInst::ICMP_SGT:
- ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL);
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (LHSKnownNegative)
return getFalse(ITy);
- if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL))
+ if (LHSKnownNonNegative &&
+ isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
return getTrue(ITy);
break;
}
@@ -1981,6 +2279,22 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Upper = Upper + 1;
assert(Upper != Lower && "Upper part of range has wrapped!");
}
+ } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
+ // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
+ Lower = CI2->getValue();
+ Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+ } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
+ if (CI2->isNegative()) {
+ // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
+ unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
+ Lower = CI2->getValue().shl(ShiftAmount);
+ Upper = CI2->getValue() + 1;
+ } else {
+ // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
+ unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
+ Lower = CI2->getValue();
+ Upper = CI2->getValue().shl(ShiftAmount) + 1;
+ }
} else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
// 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
APInt NegOne = APInt::getAllOnesValue(Width);
@@ -2189,25 +2503,6 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
- // If a bit is known to be zero for A and known to be one for B,
- // then A and B cannot be equal.
- if (ICmpInst::isEquality(Pred)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- uint32_t BitWidth = CI->getBitWidth();
- APInt LHSKnownZero(BitWidth, 0);
- APInt LHSKnownOne(BitWidth, 0);
- computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
- APInt RHSKnownZero(BitWidth, 0);
- APInt RHSKnownOne(BitWidth, 0);
- computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
- if (((LHSKnownOne & RHSKnownZero) != 0) ||
- ((LHSKnownZero & RHSKnownOne) != 0))
- return (Pred == ICmpInst::ICMP_EQ)
- ? ConstantInt::getFalse(CI->getContext())
- : ConstantInt::getTrue(CI->getContext());
- }
- }
-
// Special logic for binary operators.
BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
@@ -2271,6 +2566,40 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // icmp pred (or X, Y), X
+ if (LBO && match(LBO, m_CombineOr(m_Or(m_Value(), m_Specific(RHS)),
+ m_Or(m_Specific(RHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ }
+ // icmp pred X, (or X, Y)
+ if (RBO && match(RBO, m_CombineOr(m_Or(m_Value(), m_Specific(LHS)),
+ m_Or(m_Specific(LHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ }
+
+ // icmp pred (and X, Y), X
+ if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
+ m_And(m_Specific(RHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return getFalse(ITy);
+ if (Pred == ICmpInst::ICMP_ULE)
+ return getTrue(ITy);
+ }
+ // icmp pred X, (and X, Y)
+ if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
+ m_And(m_Specific(LHS), m_Value())))) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ return getTrue(ITy);
+ if (Pred == ICmpInst::ICMP_ULT)
+ return getFalse(ITy);
+ }
+
// 0 - (zext X) pred C
if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
@@ -2301,7 +2630,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2311,7 +2641,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getFalse(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2330,7 +2661,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2340,7 +2672,8 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
- ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL);
+ ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
+ Q.CxtI, Q.DT);
if (!KnownNonNegative)
break;
// fall-through
@@ -2360,6 +2693,41 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
return getTrue(ITy);
}
+ // handle:
+ // CI2 << X == CI
+ // CI2 << X != CI
+ //
+ // where CI2 is a power of 2 and CI isn't
+ if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
+ const APInt *CI2Val, *CIVal = &CI->getValue();
+ if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
+ CI2Val->isPowerOf2()) {
+ if (!CIVal->isPowerOf2()) {
+ // CI2 << X can equal zero in some circumstances,
+ // this simplification is unsafe if CI is zero.
+ //
+ // We know it is safe if:
+ // - The shift is nsw, we can't shift out the one bit.
+ // - The shift is nuw, we can't shift out the one bit.
+ // - CI2 is one
+ // - CI isn't zero
+ if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
+ *CI2Val == 1 || !CI->isZero()) {
+ if (Pred == ICmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_NE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ if (CIVal->isSignBit() && *CI2Val == 1) {
+ if (Pred == ICmpInst::ICMP_UGT)
+ return ConstantInt::getFalse(RHS->getContext());
+ if (Pred == ICmpInst::ICMP_ULE)
+ return ConstantInt::getTrue(RHS->getContext());
+ }
+ }
+ }
+
if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
LBO->getOperand(1) == RBO->getOperand(1)) {
switch (LBO->getOpcode()) {
@@ -2607,6 +2975,23 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
}
}
+ // If a bit is known to be zero for A and known to be one for B,
+ // then A and B cannot be equal.
+ if (ICmpInst::isEquality(Pred)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ uint32_t BitWidth = CI->getBitWidth();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
+ Q.CxtI, Q.DT);
+ const APInt &RHSVal = CI->getValue();
+ if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0))
+ return Pred == ICmpInst::ICMP_EQ
+ ? ConstantInt::getFalse(CI->getContext())
+ : ConstantInt::getTrue(CI->getContext());
+ }
+ }
+
// If the comparison is with the result of a select instruction, check whether
// comparing with either branch of the select always yields the same value.
if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
@@ -2625,8 +3010,9 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ Instruction *CxtI) {
+ return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2722,8 +3108,9 @@ static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2755,15 +3142,71 @@ static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
return TrueVal;
+ const auto *ICI = dyn_cast<ICmpInst>(CondVal);
+ unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
+ if (ICI && BitWidth) {
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ APInt MinSignedValue = APInt::getSignBit(BitWidth);
+ Value *X;
+ const APInt *Y;
+ bool TrueWhenUnset;
+ bool IsBitTest = false;
+ if (ICmpInst::isEquality(Pred) &&
+ match(ICI->getOperand(0), m_And(m_Value(X), m_APInt(Y))) &&
+ match(ICI->getOperand(1), m_Zero())) {
+ IsBitTest = true;
+ TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
+ } else if (Pred == ICmpInst::ICMP_SLT &&
+ match(ICI->getOperand(1), m_Zero())) {
+ X = ICI->getOperand(0);
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = false;
+ } else if (Pred == ICmpInst::ICMP_SGT &&
+ match(ICI->getOperand(1), m_AllOnes())) {
+ X = ICI->getOperand(0);
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = true;
+ }
+ if (IsBitTest) {
+ const APInt *C;
+ // (X & Y) == 0 ? X & ~Y : X --> X
+ // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
+ if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+ // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
+ // (X & Y) != 0 ? X : X & ~Y --> X
+ if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
+ *Y == ~*C)
+ return TrueWhenUnset ? FalseVal : TrueVal;
+
+ if (Y->isPowerOf2()) {
+ // (X & Y) == 0 ? X | Y : X --> X | Y
+ // (X & Y) != 0 ? X | Y : X --> X
+ if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+ // (X & Y) == 0 ? X : X | Y --> X
+ // (X & Y) != 0 ? X : X | Y --> X | Y
+ if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
+ *Y == *C)
+ return TrueWhenUnset ? TrueVal : FalseVal;
+ }
+ }
+ }
+
return nullptr;
}
Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (DL, TLI, DT),
- RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
+ Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
@@ -2771,29 +3214,72 @@ Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
// The type of the GEP pointer operand.
PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
+ unsigned AS = PtrTy->getAddressSpace();
// getelementptr P -> P.
if (Ops.size() == 1)
return Ops[0];
- if (isa<UndefValue>(Ops[0])) {
- // Compute the (pointer) type returned by the GEP instruction.
- Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
- Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
- if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+ // Compute the (pointer) type returned by the GEP instruction.
+ Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
+ Type *GEPTy = PointerType::get(LastType, AS);
+ if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
+ GEPTy = VectorType::get(GEPTy, VT->getNumElements());
+
+ if (isa<UndefValue>(Ops[0]))
return UndefValue::get(GEPTy);
- }
if (Ops.size() == 2) {
// getelementptr P, 0 -> P.
if (match(Ops[1], m_Zero()))
return Ops[0];
- // getelementptr P, N -> P if P points to a type of zero size.
- if (Q.DL) {
- Type *Ty = PtrTy->getElementType();
- if (Ty->isSized() && Q.DL->getTypeAllocSize(Ty) == 0)
+
+ Type *Ty = PtrTy->getElementType();
+ if (Q.DL && Ty->isSized()) {
+ Value *P;
+ uint64_t C;
+ uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
+ // getelementptr P, N -> P if P points to a type of zero size.
+ if (TyAllocSize == 0)
return Ops[0];
+
+ // The following transforms are only safe if the ptrtoint cast
+ // doesn't truncate the pointers.
+ if (Ops[1]->getType()->getScalarSizeInBits() ==
+ Q.DL->getPointerSizeInBits(AS)) {
+ auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
+ if (match(P, m_Zero()))
+ return Constant::getNullValue(GEPTy);
+ Value *Temp;
+ if (match(P, m_PtrToInt(m_Value(Temp))))
+ if (Temp->getType() == GEPTy)
+ return Temp;
+ return nullptr;
+ };
+
+ // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
+ if (TyAllocSize == 1 &&
+ match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (ashr (sub P, V), C) -> Q
+ // if P points to a type of size 1 << C.
+ if (match(Ops[1],
+ m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_ConstantInt(C))) &&
+ TyAllocSize == 1ULL << C)
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+
+ // getelementptr V, (sdiv (sub P, V), C) -> Q
+ // if P points to a type of size C.
+ if (match(Ops[1],
+ m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
+ m_SpecificInt(TyAllocSize))))
+ if (Value *R = PtrToIntOrZero(P))
+ return R;
+ }
}
}
@@ -2807,8 +3293,9 @@ static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyGEPInst(Ops, Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
@@ -2840,12 +3327,11 @@ static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
return nullptr;
}
-Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs,
- const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (DL, TLI, DT),
+Value *llvm::SimplifyInsertValueInst(
+ Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout *DL,
+ const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -2892,8 +3378,10 @@ static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
//=== Helper functions for higher up the class hierarchy.
@@ -2965,8 +3453,10 @@ static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT), RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
+ RecursionLimit);
}
/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
@@ -2980,8 +3470,9 @@ static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT),
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
@@ -3055,24 +3546,25 @@ static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
User::op_iterator ArgEnd, const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT),
+ const TargetLibraryInfo *TLI, const DominatorTree *DT,
+ AssumptionCache *AC, const Instruction *CxtI) {
+ return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
const DataLayout *DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return ::SimplifyCall(V, Args.begin(), Args.end(), Query(DL, TLI, DT),
- RecursionLimit);
+ const DominatorTree *DT, AssumptionCache *AC,
+ const Instruction *CxtI) {
+ return ::SimplifyCall(V, Args.begin(), Args.end(),
+ Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
}
/// SimplifyInstruction - See if we can compute a simplified version of this
/// instruction. If not, this returns null.
Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT, AssumptionCache *AC) {
Value *Result;
switch (I->getOpcode()) {
@@ -3081,109 +3573,122 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
break;
case Instruction::FAdd:
Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Add:
Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::FSub:
Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Sub:
Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::FMul:
Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), DL, TLI, DT);
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Mul:
- Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
+ AC, I);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
cast<BinaryOperator>(I)->hasNoSignedWrap(),
- cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
+ TLI, DT, AC, I);
break;
case Instruction::LShr:
Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
+ AC, I);
break;
case Instruction::AShr:
Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
- cast<BinaryOperator>(I)->isExact(),
- DL, TLI, DT);
+ cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
+ AC, I);
break;
case Instruction::And:
- Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Or:
- Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Xor:
- Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::ICmp:
- Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::FCmp:
- Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), DL, TLI, DT);
+ Result =
+ SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
+ I->getOperand(1), DL, TLI, DT, AC, I);
break;
case Instruction::Select:
Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), DL, TLI, DT);
+ I->getOperand(2), DL, TLI, DT, AC, I);
break;
case Instruction::GetElementPtr: {
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
- Result = SimplifyGEPInst(Ops, DL, TLI, DT);
+ Result = SimplifyGEPInst(Ops, DL, TLI, DT, AC, I);
break;
}
case Instruction::InsertValue: {
InsertValueInst *IV = cast<InsertValueInst>(I);
Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
IV->getInsertedValueOperand(),
- IV->getIndices(), DL, TLI, DT);
+ IV->getIndices(), DL, TLI, DT, AC, I);
break;
}
case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT));
+ Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
break;
case Instruction::Call: {
CallSite CS(cast<CallInst>(I));
- Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
- DL, TLI, DT);
+ Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
+ TLI, DT, AC, I);
break;
}
case Instruction::Trunc:
- Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT);
+ Result =
+ SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I);
break;
}
@@ -3207,7 +3712,8 @@ Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
bool Simplified = false;
SmallSetVector<Instruction *, 8> Worklist;
@@ -3234,7 +3740,7 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
I = Worklist[Idx];
// See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, DL, TLI, DT);
+ SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
if (!SimpleV)
continue;
@@ -3257,18 +3763,19 @@ static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
return Simplified;
}
-bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const DataLayout *DL,
+bool llvm::recursivelySimplifyInstruction(Instruction *I, const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
- return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT);
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
+ return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AC);
}
bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
const DataLayout *DL,
const TargetLibraryInfo *TLI,
- const DominatorTree *DT) {
+ const DominatorTree *DT,
+ AssumptionCache *AC) {
assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT);
+ return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AC);
}