aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/MustExecute.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/MustExecute.cpp')
-rw-r--r--lib/Analysis/MustExecute.cpp269
1 files changed, 269 insertions, 0 deletions
diff --git a/lib/Analysis/MustExecute.cpp b/lib/Analysis/MustExecute.cpp
new file mode 100644
index 000000000000..fc4049874622
--- /dev/null
+++ b/lib/Analysis/MustExecute.cpp
@@ -0,0 +1,269 @@
+//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+/// Computes loop safety information, checks loop body & header
+/// for the possibility of may throw exception.
+///
+void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) {
+ assert(CurLoop != nullptr && "CurLoop can't be null");
+ BasicBlock *Header = CurLoop->getHeader();
+ // Setting default safety values.
+ SafetyInfo->MayThrow = false;
+ SafetyInfo->HeaderMayThrow = false;
+ // Iterate over header and compute safety info.
+ SafetyInfo->HeaderMayThrow =
+ !isGuaranteedToTransferExecutionToSuccessor(Header);
+
+ SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
+ // Iterate over loop instructions and compute safety info.
+ // Skip header as it has been computed and stored in HeaderMayThrow.
+ // The first block in loopinfo.Blocks is guaranteed to be the header.
+ assert(Header == *CurLoop->getBlocks().begin() &&
+ "First block must be header");
+ for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
+ BBE = CurLoop->block_end();
+ (BB != BBE) && !SafetyInfo->MayThrow; ++BB)
+ SafetyInfo->MayThrow |=
+ !isGuaranteedToTransferExecutionToSuccessor(*BB);
+
+ // Compute funclet colors if we might sink/hoist in a function with a funclet
+ // personality routine.
+ Function *Fn = CurLoop->getHeader()->getParent();
+ if (Fn->hasPersonalityFn())
+ if (Constant *PersonalityFn = Fn->getPersonalityFn())
+ if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
+ SafetyInfo->BlockColors = colorEHFunclets(*Fn);
+}
+
+/// Return true if we can prove that the given ExitBlock is not reached on the
+/// first iteration of the given loop. That is, the backedge of the loop must
+/// be executed before the ExitBlock is executed in any dynamic execution trace.
+static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock,
+ const DominatorTree *DT,
+ const Loop *CurLoop) {
+ auto *CondExitBlock = ExitBlock->getSinglePredecessor();
+ if (!CondExitBlock)
+ // expect unique exits
+ return false;
+ assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
+ auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+ // If condition is constant and false leads to ExitBlock then we always
+ // execute the true branch.
+ if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
+ return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
+ auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
+ if (!Cond)
+ return false;
+ // todo: this would be a lot more powerful if we used scev, but all the
+ // plumbing is currently missing to pass a pointer in from the pass
+ // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
+ auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
+ auto *RHS = Cond->getOperand(1);
+ if (!LHS || LHS->getParent() != CurLoop->getHeader())
+ return false;
+ auto DL = ExitBlock->getModule()->getDataLayout();
+ auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
+ auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
+ IVStart, RHS,
+ {DL, /*TLI*/ nullptr,
+ DT, /*AC*/ nullptr, BI});
+ auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
+ if (!SimpleCst)
+ return false;
+ if (ExitBlock == BI->getSuccessor(0))
+ return SimpleCst->isZeroValue();
+ assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
+ return SimpleCst->isAllOnesValue();
+}
+
+/// Returns true if the instruction in a loop is guaranteed to execute at least
+/// once.
+bool llvm::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo) {
+ // We have to check to make sure that the instruction dominates all
+ // of the exit blocks. If it doesn't, then there is a path out of the loop
+ // which does not execute this instruction, so we can't hoist it.
+
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ // If there's a throw in the header block, we can't guarantee we'll reach
+ // Inst unless we can prove that Inst comes before the potential implicit
+ // exit. At the moment, we use a (cheap) hack for the common case where
+ // the instruction of interest is the first one in the block.
+ return !SafetyInfo->HeaderMayThrow ||
+ Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
+
+ // Somewhere in this loop there is an instruction which may throw and make us
+ // exit the loop.
+ if (SafetyInfo->MayThrow)
+ return false;
+
+ // Note: There are two styles of reasoning intermixed below for
+ // implementation efficiency reasons. They are:
+ // 1) If we can prove that the instruction dominates all exit blocks, then we
+ // know the instruction must have executed on *some* iteration before we
+ // exit. We do not prove *which* iteration the instruction must execute on.
+ // 2) If we can prove that the instruction dominates the latch and all exits
+ // which might be taken on the first iteration, we know the instruction must
+ // execute on the first iteration. This second style allows a conditional
+ // exit before the instruction of interest which is provably not taken on the
+ // first iteration. This is a quite common case for range check like
+ // patterns. TODO: support loops with multiple latches.
+
+ const bool InstDominatesLatch =
+ CurLoop->getLoopLatch() != nullptr &&
+ DT->dominates(Inst.getParent(), CurLoop->getLoopLatch());
+
+ // Get the exit blocks for the current loop.
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ // Verify that the block dominates each of the exit blocks of the loop.
+ for (BasicBlock *ExitBlock : ExitBlocks)
+ if (!DT->dominates(Inst.getParent(), ExitBlock))
+ if (!InstDominatesLatch ||
+ !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop))
+ return false;
+
+ // As a degenerate case, if the loop is statically infinite then we haven't
+ // proven anything since there are no exit blocks.
+ if (ExitBlocks.empty())
+ return false;
+
+ // FIXME: In general, we have to prove that the loop isn't an infinite loop.
+ // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
+ // just a special case of this.)
+ return true;
+}
+
+
+namespace {
+ struct MustExecutePrinter : public FunctionPass {
+
+ static char ID; // Pass identification, replacement for typeid
+ MustExecutePrinter() : FunctionPass(ID) {
+ initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ }
+ bool runOnFunction(Function &F) override;
+ };
+}
+
+char MustExecutePrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+
+FunctionPass *llvm::createMustExecutePrinter() {
+ return new MustExecutePrinter();
+}
+
+static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
+ // TODO: merge these two routines. For the moment, we display the best
+ // result obtained by *either* implementation. This is a bit unfair since no
+ // caller actually gets the full power at the moment.
+ LoopSafetyInfo LSI;
+ computeLoopSafetyInfo(&LSI, L);
+ return isGuaranteedToExecute(I, DT, L, &LSI) ||
+ isGuaranteedToExecuteForEveryIteration(&I, L);
+}
+
+namespace {
+/// An assembly annotator class to print must execute information in
+/// comments.
+class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
+ DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
+
+public:
+ MustExecuteAnnotatedWriter(const Function &F,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+ MustExecuteAnnotatedWriter(const Module &M,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &F : M)
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+
+
+ void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
+ if (!MustExec.count(&V))
+ return;
+
+ const auto &Loops = MustExec.lookup(&V);
+ const auto NumLoops = Loops.size();
+ if (NumLoops > 1)
+ OS << " ; (mustexec in " << NumLoops << " loops: ";
+ else
+ OS << " ; (mustexec in: ";
+
+ bool first = true;
+ for (const Loop *L : Loops) {
+ if (!first)
+ OS << ", ";
+ first = false;
+ OS << L->getHeader()->getName();
+ }
+ OS << ")";
+ }
+};
+} // namespace
+
+bool MustExecutePrinter::runOnFunction(Function &F) {
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ MustExecuteAnnotatedWriter Writer(F, DT, LI);
+ F.print(dbgs(), &Writer);
+
+ return false;
+}