aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp159
1 files changed, 99 insertions, 60 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 01dca0793145..800354d2f5b4 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -584,7 +584,7 @@ CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
static int CompareSCEVComplexity(
SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
- unsigned Depth = 0) {
+ DominatorTree &DT, unsigned Depth = 0) {
// Fast-path: SCEVs are uniqued so we can do a quick equality check.
if (LHS == RHS)
return 0;
@@ -629,9 +629,16 @@ static int CompareSCEVComplexity(
const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
- // Compare addrec loop depths.
+ // If there is a dominance relationship between the loops, sort by the
+ // dominance. Otherwise, sort by depth. We require such order in getAddExpr.
const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
if (LLoop != RLoop) {
+ const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
+ assert(LHead != RHead && "Two loops share the same header?");
+ if (DT.dominates(LHead, RHead))
+ return 1;
+ else if (DT.dominates(RHead, LHead))
+ return -1;
unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth();
if (LDepth != RDepth)
return (int)LDepth - (int)RDepth;
@@ -645,7 +652,7 @@ static int CompareSCEVComplexity(
// Lexicographically compare.
for (unsigned i = 0; i != LNumOps; ++i) {
int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
- RA->getOperand(i), Depth + 1);
+ RA->getOperand(i), DT, Depth + 1);
if (X != 0)
return X;
}
@@ -669,7 +676,7 @@ static int CompareSCEVComplexity(
if (i >= RNumOps)
return 1;
int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
- RC->getOperand(i), Depth + 1);
+ RC->getOperand(i), DT, Depth + 1);
if (X != 0)
return X;
}
@@ -683,10 +690,10 @@ static int CompareSCEVComplexity(
// Lexicographically compare udiv expressions.
int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
- Depth + 1);
+ DT, Depth + 1);
if (X != 0)
return X;
- X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(),
+ X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT,
Depth + 1);
if (X == 0)
EqCacheSCEV.insert({LHS, RHS});
@@ -701,7 +708,7 @@ static int CompareSCEVComplexity(
// Compare cast expressions by operand.
int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
- RC->getOperand(), Depth + 1);
+ RC->getOperand(), DT, Depth + 1);
if (X == 0)
EqCacheSCEV.insert({LHS, RHS});
return X;
@@ -724,7 +731,7 @@ static int CompareSCEVComplexity(
/// land in memory.
///
static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
- LoopInfo *LI) {
+ LoopInfo *LI, DominatorTree &DT) {
if (Ops.size() < 2) return; // Noop
SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
@@ -732,15 +739,16 @@ static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
// This is the common case, which also happens to be trivially simple.
// Special case it.
const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
- if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0)
+ if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0)
std::swap(LHS, RHS);
return;
}
// Do the rough sort by complexity.
std::stable_sort(Ops.begin(), Ops.end(),
- [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) {
- return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0;
+ [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) {
+ return
+ CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0;
});
// Now that we are sorted by complexity, group elements of the same
@@ -2186,7 +2194,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
#endif
// Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI);
+ GroupByComplexity(Ops, &LI, DT);
Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
@@ -2492,7 +2500,13 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
// added together. If so, we can fold them.
for (unsigned OtherIdx = Idx+1;
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx)
+ ++OtherIdx) {
+ // We expect the AddRecExpr's to be sorted in reverse dominance order,
+ // so that the 1st found AddRecExpr is dominated by all others.
+ assert(DT.dominates(
+ cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
+ AddRec->getLoop()->getHeader()) &&
+ "AddRecExprs are not sorted in reverse dominance order?");
if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
// Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
@@ -2518,6 +2532,7 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
}
+ }
// Otherwise couldn't fold anything into this recurrence. Move onto the
// next one.
@@ -2614,7 +2629,7 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
#endif
// Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI);
+ GroupByComplexity(Ops, &LI, DT);
Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
@@ -3211,7 +3226,7 @@ ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
#endif
// Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI);
+ GroupByComplexity(Ops, &LI, DT);
// If there are any constants, fold them together.
unsigned Idx = 0;
@@ -3312,7 +3327,7 @@ ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
#endif
// Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI);
+ GroupByComplexity(Ops, &LI, DT);
// If there are any constants, fold them together.
unsigned Idx = 0;
@@ -4636,7 +4651,7 @@ uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
KnownBits Known(BitWidth);
computeKnownBits(U->getValue(), Known, getDataLayout(), 0, &AC,
nullptr, &DT);
- return Known.Zero.countTrailingOnes();
+ return Known.countMinTrailingZeros();
}
// SCEVUDivExpr
@@ -5955,6 +5970,30 @@ bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
return false;
}
+ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
+ : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) {}
+
+ScalarEvolution::ExitLimit::ExitLimit(
+ const SCEV *E, const SCEV *M, bool MaxOrZero,
+ ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
+ : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
+ assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
+ !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
+ "Exact is not allowed to be less precise than Max");
+ for (auto *PredSet : PredSetList)
+ for (auto *P : *PredSet)
+ addPredicate(P);
+}
+
+ScalarEvolution::ExitLimit::ExitLimit(
+ const SCEV *E, const SCEV *M, bool MaxOrZero,
+ const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
+ : ExitLimit(E, M, MaxOrZero, {&PredSet}) {}
+
+ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
+ bool MaxOrZero)
+ : ExitLimit(E, M, MaxOrZero, None) {}
+
/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
/// computable exit into a persistent ExitNotTakenInfo array.
ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
@@ -6637,13 +6676,12 @@ ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
// {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
// bitwidth(K) iterations.
Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
- bool KnownZero, KnownOne;
- ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
- Predecessor->getTerminator(), &DT);
+ KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
+ Predecessor->getTerminator(), &DT);
auto *Ty = cast<IntegerType>(RHS->getType());
- if (KnownZero)
+ if (Known.isNonNegative())
StableValue = ConstantInt::get(Ty, 0);
- else if (KnownOne)
+ else if (Known.isNegative())
StableValue = ConstantInt::get(Ty, -1, true);
else
return getCouldNotCompute();
@@ -7377,48 +7415,49 @@ SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
const APInt &N = NC->getAPInt();
APInt Two(BitWidth, 2);
- {
- using namespace APIntOps;
- const APInt& C = L;
- // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
- // The B coefficient is M-N/2
- APInt B(M);
- B -= N.sdiv(Two);
+ // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
- // The A coefficient is N/2
- APInt A(N.sdiv(Two));
+ // The A coefficient is N/2
+ APInt A = N.sdiv(Two);
- // Compute the B^2-4ac term.
- APInt SqrtTerm(B);
- SqrtTerm *= B;
- SqrtTerm -= 4 * (A * C);
+ // The B coefficient is M-N/2
+ APInt B = M;
+ B -= A; // A is the same as N/2.
- if (SqrtTerm.isNegative()) {
- // The loop is provably infinite.
- return None;
- }
+ // The C coefficient is L.
+ const APInt& C = L;
- // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
- // integer value or else APInt::sqrt() will assert.
- APInt SqrtVal(SqrtTerm.sqrt());
+ // Compute the B^2-4ac term.
+ APInt SqrtTerm = B;
+ SqrtTerm *= B;
+ SqrtTerm -= 4 * (A * C);
- // Compute the two solutions for the quadratic formula.
- // The divisions must be performed as signed divisions.
- APInt NegB(-B);
- APInt TwoA(A << 1);
- if (TwoA.isMinValue())
- return None;
+ if (SqrtTerm.isNegative()) {
+ // The loop is provably infinite.
+ return None;
+ }
+
+ // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
+ // integer value or else APInt::sqrt() will assert.
+ APInt SqrtVal = SqrtTerm.sqrt();
+
+ // Compute the two solutions for the quadratic formula.
+ // The divisions must be performed as signed divisions.
+ APInt NegB = -std::move(B);
+ APInt TwoA = std::move(A);
+ TwoA <<= 1;
+ if (TwoA.isNullValue())
+ return None;
- LLVMContext &Context = SE.getContext();
+ LLVMContext &Context = SE.getContext();
- ConstantInt *Solution1 =
- ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
- ConstantInt *Solution2 =
- ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
+ ConstantInt *Solution1 =
+ ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
+ ConstantInt *Solution2 =
+ ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
- return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
- cast<SCEVConstant>(SE.getConstant(Solution2)));
- } // end APIntOps namespace
+ return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
+ cast<SCEVConstant>(SE.getConstant(Solution2)));
}
ScalarEvolution::ExitLimit
@@ -8976,7 +9015,7 @@ bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
.getSignedMax();
// SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
- return (std::move(MaxValue) - std::move(MaxStrideMinusOne)).slt(MaxRHS);
+ return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
}
APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
@@ -8985,7 +9024,7 @@ bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
.getUnsignedMax();
// UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
- return (std::move(MaxValue) - std::move(MaxStrideMinusOne)).ult(MaxRHS);
+ return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
}
bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
@@ -9002,7 +9041,7 @@ bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
.getSignedMax();
// SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
- return (std::move(MinValue) + std::move(MaxStrideMinusOne)).sgt(MinRHS);
+ return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
}
APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
@@ -9011,7 +9050,7 @@ bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
.getUnsignedMax();
// UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
- return (std::move(MinValue) + std::move(MaxStrideMinusOne)).ugt(MinRHS);
+ return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
}
const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,