diff options
Diffstat (limited to 'lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r-- | lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp | 5821 |
1 files changed, 5821 insertions, 0 deletions
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp new file mode 100644 index 000000000000..57d89036a808 --- /dev/null +++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp @@ -0,0 +1,5821 @@ +//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "SelectionDAGBuilder.h" +#include "FunctionLoweringInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Constants.h" +#include "llvm/CallingConv.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/DwarfWriter.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +using namespace llvm; + +/// LimitFloatPrecision - Generate low-precision inline sequences for +/// some float libcalls (6, 8 or 12 bits). +static unsigned LimitFloatPrecision; + +static cl::opt<unsigned, true> +LimitFPPrecision("limit-float-precision", + cl::desc("Generate low-precision inline sequences " + "for some float libcalls"), + cl::location(LimitFloatPrecision), + cl::init(0)); + +namespace { + /// RegsForValue - This struct represents the registers (physical or virtual) + /// that a particular set of values is assigned, and the type information about + /// the value. The most common situation is to represent one value at a time, + /// but struct or array values are handled element-wise as multiple values. + /// The splitting of aggregates is performed recursively, so that we never + /// have aggregate-typed registers. The values at this point do not necessarily + /// have legal types, so each value may require one or more registers of some + /// legal type. + /// + struct RegsForValue { + /// TLI - The TargetLowering object. + /// + const TargetLowering *TLI; + + /// ValueVTs - The value types of the values, which may not be legal, and + /// may need be promoted or synthesized from one or more registers. + /// + SmallVector<EVT, 4> ValueVTs; + + /// RegVTs - The value types of the registers. This is the same size as + /// ValueVTs and it records, for each value, what the type of the assigned + /// register or registers are. (Individual values are never synthesized + /// from more than one type of register.) + /// + /// With virtual registers, the contents of RegVTs is redundant with TLI's + /// getRegisterType member function, however when with physical registers + /// it is necessary to have a separate record of the types. + /// + SmallVector<EVT, 4> RegVTs; + + /// Regs - This list holds the registers assigned to the values. + /// Each legal or promoted value requires one register, and each + /// expanded value requires multiple registers. + /// + SmallVector<unsigned, 4> Regs; + + RegsForValue() : TLI(0) {} + + RegsForValue(const TargetLowering &tli, + const SmallVector<unsigned, 4> ®s, + EVT regvt, EVT valuevt) + : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} + RegsForValue(const TargetLowering &tli, + const SmallVector<unsigned, 4> ®s, + const SmallVector<EVT, 4> ®vts, + const SmallVector<EVT, 4> &valuevts) + : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} + RegsForValue(LLVMContext &Context, const TargetLowering &tli, + unsigned Reg, const Type *Ty) : TLI(&tli) { + ComputeValueVTs(tli, Ty, ValueVTs); + + for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); + EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); + for (unsigned i = 0; i != NumRegs; ++i) + Regs.push_back(Reg + i); + RegVTs.push_back(RegisterVT); + Reg += NumRegs; + } + } + + /// append - Add the specified values to this one. + void append(const RegsForValue &RHS) { + TLI = RHS.TLI; + ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); + RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); + Regs.append(RHS.Regs.begin(), RHS.Regs.end()); + } + + + /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from + /// this value and returns the result as a ValueVTs value. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const; + + /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the + /// specified value into the registers specified by this object. This uses + /// Chain/Flag as the input and updates them for the output Chain/Flag. + /// If the Flag pointer is NULL, no flag is used. + void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const; + + /// AddInlineAsmOperands - Add this value to the specified inlineasm node + /// operand list. This adds the code marker, matching input operand index + /// (if applicable), and includes the number of values added into it. + void AddInlineAsmOperands(unsigned Code, + bool HasMatching, unsigned MatchingIdx, + SelectionDAG &DAG, std::vector<SDValue> &Ops) const; + }; +} + +/// getCopyFromParts - Create a value that contains the specified legal parts +/// combined into the value they represent. If the parts combine to a type +/// larger then ValueVT then AssertOp can be used to specify whether the extra +/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT +/// (ISD::AssertSext). +static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, + const SDValue *Parts, + unsigned NumParts, EVT PartVT, EVT ValueVT, + ISD::NodeType AssertOp = ISD::DELETED_NODE) { + assert(NumParts > 0 && "No parts to assemble!"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Val = Parts[0]; + + if (NumParts > 1) { + // Assemble the value from multiple parts. + if (!ValueVT.isVector() && ValueVT.isInteger()) { + unsigned PartBits = PartVT.getSizeInBits(); + unsigned ValueBits = ValueVT.getSizeInBits(); + + // Assemble the power of 2 part. + unsigned RoundParts = NumParts & (NumParts - 1) ? + 1 << Log2_32(NumParts) : NumParts; + unsigned RoundBits = PartBits * RoundParts; + EVT RoundVT = RoundBits == ValueBits ? + ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); + SDValue Lo, Hi; + + EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); + + if (RoundParts > 2) { + Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); + Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, + PartVT, HalfVT); + } else { + Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); + Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); + } + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); + + if (RoundParts < NumParts) { + // Assemble the trailing non-power-of-2 part. + unsigned OddParts = NumParts - RoundParts; + EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); + Hi = getCopyFromParts(DAG, dl, + Parts+RoundParts, OddParts, PartVT, OddVT); + + // Combine the round and odd parts. + Lo = Val; + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); + Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, + DAG.getConstant(Lo.getValueType().getSizeInBits(), + TLI.getPointerTy())); + Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); + Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); + } + } else if (ValueVT.isVector()) { + // Handle a multi-element vector. + EVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = + TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, + NumIntermediates, RegisterVT); + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + assert(RegisterVT == Parts[0].getValueType() && + "Part type doesn't match part!"); + + // Assemble the parts into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + if (NumIntermediates == NumParts) { + // If the register was not expanded, truncate or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, + PartVT, IntermediateVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, build the intermediate operands + // from the parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, + PartVT, IntermediateVT); + } + + // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate + // operands. + Val = DAG.getNode(IntermediateVT.isVector() ? + ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, + ValueVT, &Ops[0], NumIntermediates); + } else if (PartVT.isFloatingPoint()) { + // FP split into multiple FP parts (for ppcf128) + assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && + "Unexpected split"); + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); + Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); + if (TLI.isBigEndian()) + std::swap(Lo, Hi); + Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); + } else { + // FP split into integer parts (soft fp) + assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && + !PartVT.isVector() && "Unexpected split"); + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); + Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); + } + } + + // There is now one part, held in Val. Correct it to match ValueVT. + PartVT = Val.getValueType(); + + if (PartVT == ValueVT) + return Val; + + if (PartVT.isVector()) { + assert(ValueVT.isVector() && "Unknown vector conversion!"); + return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); + } + + if (ValueVT.isVector()) { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial scalar-to-vector conversions should get here!"); + return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); + } + + if (PartVT.isInteger() && + ValueVT.isInteger()) { + if (ValueVT.bitsLT(PartVT)) { + // For a truncate, see if we have any information to + // indicate whether the truncated bits will always be + // zero or sign-extension. + if (AssertOp != ISD::DELETED_NODE) + Val = DAG.getNode(AssertOp, dl, PartVT, Val, + DAG.getValueType(ValueVT)); + return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } else { + return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); + } + } + + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + if (ValueVT.bitsLT(Val.getValueType())) + // FP_ROUND's are always exact here. + return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, + DAG.getIntPtrConstant(1)); + return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); + } + + if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) + return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); + + llvm_unreachable("Unknown mismatch!"); + return SDValue(); +} + +/// getCopyToParts - Create a series of nodes that contain the specified value +/// split into legal parts. If the parts contain more bits than Val, then, for +/// integers, ExtendKind can be used to specify how to generate the extra bits. +static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, + SDValue *Parts, unsigned NumParts, EVT PartVT, + ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT PtrVT = TLI.getPointerTy(); + EVT ValueVT = Val.getValueType(); + unsigned PartBits = PartVT.getSizeInBits(); + unsigned OrigNumParts = NumParts; + assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); + + if (!NumParts) + return; + + if (!ValueVT.isVector()) { + if (PartVT == ValueVT) { + assert(NumParts == 1 && "No-op copy with multiple parts!"); + Parts[0] = Val; + return; + } + + if (NumParts * PartBits > ValueVT.getSizeInBits()) { + // If the parts cover more bits than the value has, promote the value. + if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { + assert(NumParts == 1 && "Do not know what to promote to!"); + Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); + } else if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); + } else { + llvm_unreachable("Unknown mismatch!"); + } + } else if (PartBits == ValueVT.getSizeInBits()) { + // Different types of the same size. + assert(NumParts == 1 && PartVT != ValueVT); + Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); + } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { + // If the parts cover less bits than value has, truncate the value. + if (PartVT.isInteger() && ValueVT.isInteger()) { + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } else { + llvm_unreachable("Unknown mismatch!"); + } + } + + // The value may have changed - recompute ValueVT. + ValueVT = Val.getValueType(); + assert(NumParts * PartBits == ValueVT.getSizeInBits() && + "Failed to tile the value with PartVT!"); + + if (NumParts == 1) { + assert(PartVT == ValueVT && "Type conversion failed!"); + Parts[0] = Val; + return; + } + + // Expand the value into multiple parts. + if (NumParts & (NumParts - 1)) { + // The number of parts is not a power of 2. Split off and copy the tail. + assert(PartVT.isInteger() && ValueVT.isInteger() && + "Do not know what to expand to!"); + unsigned RoundParts = 1 << Log2_32(NumParts); + unsigned RoundBits = RoundParts * PartBits; + unsigned OddParts = NumParts - RoundParts; + SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, + DAG.getConstant(RoundBits, + TLI.getPointerTy())); + getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); + if (TLI.isBigEndian()) + // The odd parts were reversed by getCopyToParts - unreverse them. + std::reverse(Parts + RoundParts, Parts + NumParts); + NumParts = RoundParts; + ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); + Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); + } + + // The number of parts is a power of 2. Repeatedly bisect the value using + // EXTRACT_ELEMENT. + Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, + EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), + Val); + for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { + for (unsigned i = 0; i < NumParts; i += StepSize) { + unsigned ThisBits = StepSize * PartBits / 2; + EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); + SDValue &Part0 = Parts[i]; + SDValue &Part1 = Parts[i+StepSize/2]; + + Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + ThisVT, Part0, + DAG.getConstant(1, PtrVT)); + Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, + ThisVT, Part0, + DAG.getConstant(0, PtrVT)); + + if (ThisBits == PartBits && ThisVT != PartVT) { + Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, + PartVT, Part0); + Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, + PartVT, Part1); + } + } + } + + if (TLI.isBigEndian()) + std::reverse(Parts, Parts + OrigNumParts); + + return; + } + + // Vector ValueVT. + if (NumParts == 1) { + if (PartVT != ValueVT) { + if (PartVT.isVector()) { + Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); + } else { + assert(ValueVT.getVectorElementType() == PartVT && + ValueVT.getVectorNumElements() == 1 && + "Only trivial vector-to-scalar conversions should get here!"); + Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + PartVT, Val, + DAG.getConstant(0, PtrVT)); + } + } + + Parts[0] = Val; + return; + } + + // Handle a multi-element vector. + EVT IntermediateVT, RegisterVT; + unsigned NumIntermediates; + unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, + IntermediateVT, NumIntermediates, RegisterVT); + unsigned NumElements = ValueVT.getVectorNumElements(); + + assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); + NumParts = NumRegs; // Silence a compiler warning. + assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); + + // Split the vector into intermediate operands. + SmallVector<SDValue, 8> Ops(NumIntermediates); + for (unsigned i = 0; i != NumIntermediates; ++i) + if (IntermediateVT.isVector()) + Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, + IntermediateVT, Val, + DAG.getConstant(i * (NumElements / NumIntermediates), + PtrVT)); + else + Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + IntermediateVT, Val, + DAG.getConstant(i, PtrVT)); + + // Split the intermediate operands into legal parts. + if (NumParts == NumIntermediates) { + // If the register was not expanded, promote or copy the value, + // as appropriate. + for (unsigned i = 0; i != NumParts; ++i) + getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); + } else if (NumParts > 0) { + // If the intermediate type was expanded, split each the value into + // legal parts. + assert(NumParts % NumIntermediates == 0 && + "Must expand into a divisible number of parts!"); + unsigned Factor = NumParts / NumIntermediates; + for (unsigned i = 0; i != NumIntermediates; ++i) + getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); + } +} + + +void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { + AA = &aa; + GFI = gfi; + TD = DAG.getTarget().getTargetData(); +} + +/// clear - Clear out the curret SelectionDAG and the associated +/// state and prepare this SelectionDAGBuilder object to be used +/// for a new block. This doesn't clear out information about +/// additional blocks that are needed to complete switch lowering +/// or PHI node updating; that information is cleared out as it is +/// consumed. +void SelectionDAGBuilder::clear() { + NodeMap.clear(); + PendingLoads.clear(); + PendingExports.clear(); + EdgeMapping.clear(); + DAG.clear(); + CurDebugLoc = DebugLoc::getUnknownLoc(); + HasTailCall = false; +} + +/// getRoot - Return the current virtual root of the Selection DAG, +/// flushing any PendingLoad items. This must be done before emitting +/// a store or any other node that may need to be ordered after any +/// prior load instructions. +/// +SDValue SelectionDAGBuilder::getRoot() { + if (PendingLoads.empty()) + return DAG.getRoot(); + + if (PendingLoads.size() == 1) { + SDValue Root = PendingLoads[0]; + DAG.setRoot(Root); + PendingLoads.clear(); + return Root; + } + + // Otherwise, we have to make a token factor node. + SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &PendingLoads[0], PendingLoads.size()); + PendingLoads.clear(); + DAG.setRoot(Root); + return Root; +} + +/// getControlRoot - Similar to getRoot, but instead of flushing all the +/// PendingLoad items, flush all the PendingExports items. It is necessary +/// to do this before emitting a terminator instruction. +/// +SDValue SelectionDAGBuilder::getControlRoot() { + SDValue Root = DAG.getRoot(); + + if (PendingExports.empty()) + return Root; + + // Turn all of the CopyToReg chains into one factored node. + if (Root.getOpcode() != ISD::EntryToken) { + unsigned i = 0, e = PendingExports.size(); + for (; i != e; ++i) { + assert(PendingExports[i].getNode()->getNumOperands() > 1); + if (PendingExports[i].getNode()->getOperand(0) == Root) + break; // Don't add the root if we already indirectly depend on it. + } + + if (i == e) + PendingExports.push_back(Root); + } + + Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &PendingExports[0], + PendingExports.size()); + PendingExports.clear(); + DAG.setRoot(Root); + return Root; +} + +void SelectionDAGBuilder::visit(Instruction &I) { + visit(I.getOpcode(), I); +} + +void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { + // Note: this doesn't use InstVisitor, because it has to work with + // ConstantExpr's in addition to instructions. + switch (Opcode) { + default: llvm_unreachable("Unknown instruction type encountered!"); + // Build the switch statement using the Instruction.def file. +#define HANDLE_INST(NUM, OPCODE, CLASS) \ + case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); +#include "llvm/Instruction.def" + } +} + +SDValue SelectionDAGBuilder::getValue(const Value *V) { + SDValue &N = NodeMap[V]; + if (N.getNode()) return N; + + if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { + EVT VT = TLI.getValueType(V->getType(), true); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) + return N = DAG.getConstant(*CI, VT); + + if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) + return N = DAG.getGlobalAddress(GV, VT); + + if (isa<ConstantPointerNull>(C)) + return N = DAG.getConstant(0, TLI.getPointerTy()); + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) + return N = DAG.getConstantFP(*CFP, VT); + + if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) + return N = DAG.getUNDEF(VT); + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + visit(CE->getOpcode(), *CE); + SDValue N1 = NodeMap[V]; + assert(N1.getNode() && "visit didn't populate the ValueMap!"); + return N1; + } + + if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { + SmallVector<SDValue, 4> Constants; + for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); + OI != OE; ++OI) { + SDNode *Val = getValue(*OI).getNode(); + // If the operand is an empty aggregate, there are no values. + if (!Val) continue; + // Add each leaf value from the operand to the Constants list + // to form a flattened list of all the values. + for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) + Constants.push_back(SDValue(Val, i)); + } + return DAG.getMergeValues(&Constants[0], Constants.size(), + getCurDebugLoc()); + } + + if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { + assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && + "Unknown struct or array constant!"); + + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, C->getType(), ValueVTs); + unsigned NumElts = ValueVTs.size(); + if (NumElts == 0) + return SDValue(); // empty struct + SmallVector<SDValue, 4> Constants(NumElts); + for (unsigned i = 0; i != NumElts; ++i) { + EVT EltVT = ValueVTs[i]; + if (isa<UndefValue>(C)) + Constants[i] = DAG.getUNDEF(EltVT); + else if (EltVT.isFloatingPoint()) + Constants[i] = DAG.getConstantFP(0, EltVT); + else + Constants[i] = DAG.getConstant(0, EltVT); + } + return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc()); + } + + if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) + return DAG.getBlockAddress(BA, VT); + + const VectorType *VecTy = cast<VectorType>(V->getType()); + unsigned NumElements = VecTy->getNumElements(); + + // Now that we know the number and type of the elements, get that number of + // elements into the Ops array based on what kind of constant it is. + SmallVector<SDValue, 16> Ops; + if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { + for (unsigned i = 0; i != NumElements; ++i) + Ops.push_back(getValue(CP->getOperand(i))); + } else { + assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); + EVT EltVT = TLI.getValueType(VecTy->getElementType()); + + SDValue Op; + if (EltVT.isFloatingPoint()) + Op = DAG.getConstantFP(0, EltVT); + else + Op = DAG.getConstant(0, EltVT); + Ops.assign(NumElements, Op); + } + + // Create a BUILD_VECTOR node. + return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), + VT, &Ops[0], Ops.size()); + } + + // If this is a static alloca, generate it as the frameindex instead of + // computation. + if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI != FuncInfo.StaticAllocaMap.end()) + return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); + } + + unsigned InReg = FuncInfo.ValueMap[V]; + assert(InReg && "Value not in map!"); + + RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); +} + +/// Get the EVTs and ArgFlags collections that represent the return type +/// of the given function. This does not require a DAG or a return value, and +/// is suitable for use before any DAGs for the function are constructed. +static void getReturnInfo(const Type* ReturnType, + Attributes attr, SmallVectorImpl<EVT> &OutVTs, + SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, + TargetLowering &TLI, + SmallVectorImpl<uint64_t> *Offsets = 0) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); + unsigned NumValues = ValueVTs.size(); + if ( NumValues == 0 ) return; + + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (attr & Attribute::SExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (attr & Attribute::ZExt) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); + EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (attr & Attribute::InReg) + Flags.setInReg(); + + // Propagate extension type if any + if (attr & Attribute::SExt) + Flags.setSExt(); + else if (attr & Attribute::ZExt) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) { + OutVTs.push_back(PartVT); + OutFlags.push_back(Flags); + } + } +} + +void SelectionDAGBuilder::visitRet(ReturnInst &I) { + SDValue Chain = getControlRoot(); + SmallVector<ISD::OutputArg, 8> Outs; + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + + if (!FLI.CanLowerReturn) { + unsigned DemoteReg = FLI.DemoteRegister; + const Function *F = I.getParent()->getParent(); + + // Emit a store of the return value through the virtual register. + // Leave Outs empty so that LowerReturn won't try to load return + // registers the usual way. + SmallVector<EVT, 1> PtrValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), + PtrValueVTs); + + SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); + SDValue RetOp = getValue(I.getOperand(0)); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + + SmallVector<SDValue, 4> Chains(NumValues); + EVT PtrVT = PtrValueVTs[0]; + for (unsigned i = 0; i != NumValues; ++i) + Chains[i] = DAG.getStore(Chain, getCurDebugLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + i), + DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, + DAG.getConstant(Offsets[i], PtrVT)), + NULL, Offsets[i], false, 0); + Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues); + } + else { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) continue; + + SDValue RetOp = getValue(I.getOperand(i)); + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + const Function *F = I.getParent()->getParent(); + if (F->paramHasAttr(0, Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (F->paramHasAttr(0, Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); + EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); + SmallVector<SDValue, 4> Parts(NumParts); + getCopyToParts(DAG, getCurDebugLoc(), + SDValue(RetOp.getNode(), RetOp.getResNo() + j), + &Parts[0], NumParts, PartVT, ExtendKind); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (F->paramHasAttr(0, Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (F->paramHasAttr(0, Attribute::SExt)) + Flags.setSExt(); + else if (F->paramHasAttr(0, Attribute::ZExt)) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) + Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); + } + } + } + + bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); + CallingConv::ID CallConv = + DAG.getMachineFunction().getFunction()->getCallingConv(); + Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, + Outs, getCurDebugLoc(), DAG); + + // Verify that the target's LowerReturn behaved as expected. + assert(Chain.getNode() && Chain.getValueType() == MVT::Other && + "LowerReturn didn't return a valid chain!"); + + // Update the DAG with the new chain value resulting from return lowering. + DAG.setRoot(Chain); +} + +/// CopyToExportRegsIfNeeded - If the given value has virtual registers +/// created for it, emit nodes to copy the value into the virtual +/// registers. +void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { + if (!V->use_empty()) { + DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); + if (VMI != FuncInfo.ValueMap.end()) + CopyValueToVirtualRegister(V, VMI->second); + } +} + +/// ExportFromCurrentBlock - If this condition isn't known to be exported from +/// the current basic block, add it to ValueMap now so that we'll get a +/// CopyTo/FromReg. +void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { + // No need to export constants. + if (!isa<Instruction>(V) && !isa<Argument>(V)) return; + + // Already exported? + if (FuncInfo.isExportedInst(V)) return; + + unsigned Reg = FuncInfo.InitializeRegForValue(V); + CopyValueToVirtualRegister(V, Reg); +} + +bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, + const BasicBlock *FromBB) { + // The operands of the setcc have to be in this block. We don't know + // how to export them from some other block. + if (Instruction *VI = dyn_cast<Instruction>(V)) { + // Can export from current BB. + if (VI->getParent() == FromBB) + return true; + + // Is already exported, noop. + return FuncInfo.isExportedInst(V); + } + + // If this is an argument, we can export it if the BB is the entry block or + // if it is already exported. + if (isa<Argument>(V)) { + if (FromBB == &FromBB->getParent()->getEntryBlock()) + return true; + + // Otherwise, can only export this if it is already exported. + return FuncInfo.isExportedInst(V); + } + + // Otherwise, constants can always be exported. + return true; +} + +static bool InBlock(const Value *V, const BasicBlock *BB) { + if (const Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() == BB; + return true; +} + +/// getFCmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR floating-point condition code. This includes +/// consideration of global floating-point math flags. +/// +static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { + ISD::CondCode FPC, FOC; + switch (Pred) { + case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; + case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; + case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; + case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; + case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; + case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; + case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; + case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; + case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; + case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; + case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; + case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; + case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; + case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; + case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; + case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; + default: + llvm_unreachable("Invalid FCmp predicate opcode!"); + FOC = FPC = ISD::SETFALSE; + break; + } + if (FiniteOnlyFPMath()) + return FOC; + else + return FPC; +} + +/// getICmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR integer condition code. +/// +static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { + switch (Pred) { + case ICmpInst::ICMP_EQ: return ISD::SETEQ; + case ICmpInst::ICMP_NE: return ISD::SETNE; + case ICmpInst::ICMP_SLE: return ISD::SETLE; + case ICmpInst::ICMP_ULE: return ISD::SETULE; + case ICmpInst::ICMP_SGE: return ISD::SETGE; + case ICmpInst::ICMP_UGE: return ISD::SETUGE; + case ICmpInst::ICMP_SLT: return ISD::SETLT; + case ICmpInst::ICMP_ULT: return ISD::SETULT; + case ICmpInst::ICMP_SGT: return ISD::SETGT; + case ICmpInst::ICMP_UGT: return ISD::SETUGT; + default: + llvm_unreachable("Invalid ICmp predicate opcode!"); + return ISD::SETNE; + } +} + +/// EmitBranchForMergedCondition - Helper method for FindMergedConditions. +/// This function emits a branch and is used at the leaves of an OR or an +/// AND operator tree. +/// +void +SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB) { + const BasicBlock *BB = CurBB->getBasicBlock(); + + // If the leaf of the tree is a comparison, merge the condition into + // the caseblock. + if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { + // The operands of the cmp have to be in this block. We don't know + // how to export them from some other block. If this is the first block + // of the sequence, no exporting is needed. + if (CurBB == CurMBB || + (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && + isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { + ISD::CondCode Condition; + if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { + Condition = getICmpCondCode(IC->getPredicate()); + } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { + Condition = getFCmpCondCode(FC->getPredicate()); + } else { + Condition = ISD::SETEQ; // silence warning. + llvm_unreachable("Unknown compare instruction"); + } + + CaseBlock CB(Condition, BOp->getOperand(0), + BOp->getOperand(1), NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); + return; + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), + NULL, TBB, FBB, CurBB); + SwitchCases.push_back(CB); +} + +/// FindMergedConditions - If Cond is an expression like +void SelectionDAGBuilder::FindMergedConditions(Value *Cond, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + MachineBasicBlock *CurBB, + unsigned Opc) { + // If this node is not part of the or/and tree, emit it as a branch. + Instruction *BOp = dyn_cast<Instruction>(Cond); + if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || + (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || + BOp->getParent() != CurBB->getBasicBlock() || + !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || + !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { + EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); + return; + } + + // Create TmpBB after CurBB. + MachineFunction::iterator BBI = CurBB; + MachineFunction &MF = DAG.getMachineFunction(); + MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); + CurBB->getParent()->insert(++BBI, TmpBB); + + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } else { + assert(Opc == Instruction::And && "Unknown merge op!"); + // Codegen X & Y as: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // Emit the LHS condition. + FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); + + // Emit the RHS condition into TmpBB. + FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); + } +} + +/// If the set of cases should be emitted as a series of branches, return true. +/// If we should emit this as a bunch of and/or'd together conditions, return +/// false. +bool +SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ + if (Cases.size() != 2) return true; + + // If this is two comparisons of the same values or'd or and'd together, they + // will get folded into a single comparison, so don't emit two blocks. + if ((Cases[0].CmpLHS == Cases[1].CmpLHS && + Cases[0].CmpRHS == Cases[1].CmpRHS) || + (Cases[0].CmpRHS == Cases[1].CmpLHS && + Cases[0].CmpLHS == Cases[1].CmpRHS)) { + return false; + } + + return true; +} + +void SelectionDAGBuilder::visitBr(BranchInst &I) { + // Update machine-CFG edges. + MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (I.isUnconditional()) { + // Update machine-CFG edges. + CurMBB->addSuccessor(Succ0MBB); + + // If this is not a fall-through branch, emit the branch. + if (Succ0MBB != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Succ0MBB))); + return; + } + + // If this condition is one of the special cases we handle, do special stuff + // now. + Value *CondVal = I.getCondition(); + MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; + + // If this is a series of conditions that are or'd or and'd together, emit + // this as a sequence of branches instead of setcc's with and/or operations. + // For example, instead of something like: + // cmp A, B + // C = seteq + // cmp D, E + // F = setle + // or C, F + // jnz foo + // Emit: + // cmp A, B + // je foo + // cmp D, E + // jle foo + // + if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { + if (BOp->hasOneUse() && + (BOp->getOpcode() == Instruction::And || + BOp->getOpcode() == Instruction::Or)) { + FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); + // If the compares in later blocks need to use values not currently + // exported from this block, export them now. This block should always + // be the first entry. + assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); + + // Allow some cases to be rejected. + if (ShouldEmitAsBranches(SwitchCases)) { + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { + ExportFromCurrentBlock(SwitchCases[i].CmpLHS); + ExportFromCurrentBlock(SwitchCases[i].CmpRHS); + } + + // Emit the branch for this block. + visitSwitchCase(SwitchCases[0]); + SwitchCases.erase(SwitchCases.begin()); + return; + } + + // Okay, we decided not to do this, remove any inserted MBB's and clear + // SwitchCases. + for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) + FuncInfo.MF->erase(SwitchCases[i].ThisBB); + + SwitchCases.clear(); + } + } + + // Create a CaseBlock record representing this branch. + CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), + NULL, Succ0MBB, Succ1MBB, CurMBB); + // Use visitSwitchCase to actually insert the fast branch sequence for this + // cond branch. + visitSwitchCase(CB); +} + +/// visitSwitchCase - Emits the necessary code to represent a single node in +/// the binary search tree resulting from lowering a switch instruction. +void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { + SDValue Cond; + SDValue CondLHS = getValue(CB.CmpLHS); + DebugLoc dl = getCurDebugLoc(); + + // Build the setcc now. + if (CB.CmpMHS == NULL) { + // Fold "(X == true)" to X and "(X == false)" to !X to + // handle common cases produced by branch lowering. + if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && + CB.CC == ISD::SETEQ) + Cond = CondLHS; + else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && + CB.CC == ISD::SETEQ) { + SDValue True = DAG.getConstant(1, CondLHS.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); + } else + Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); + } else { + assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); + + const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); + const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); + + SDValue CmpOp = getValue(CB.CmpMHS); + EVT VT = CmpOp.getValueType(); + + if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { + Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), + ISD::SETLE); + } else { + SDValue SUB = DAG.getNode(ISD::SUB, dl, + VT, CmpOp, DAG.getConstant(Low, VT)); + Cond = DAG.getSetCC(dl, MVT::i1, SUB, + DAG.getConstant(High-Low, VT), ISD::SETULE); + } + } + + // Update successor info + CurMBB->addSuccessor(CB.TrueBB); + CurMBB->addSuccessor(CB.FalseBB); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + // If the lhs block is the next block, invert the condition so that we can + // fall through to the lhs instead of the rhs block. + if (CB.TrueBB == NextBlock) { + std::swap(CB.TrueBB, CB.FalseBB); + SDValue True = DAG.getConstant(1, Cond.getValueType()); + Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); + } + SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, + MVT::Other, getControlRoot(), Cond, + DAG.getBasicBlock(CB.TrueBB)); + + // If the branch was constant folded, fix up the CFG. + if (BrCond.getOpcode() == ISD::BR) { + CurMBB->removeSuccessor(CB.FalseBB); + DAG.setRoot(BrCond); + } else { + // Otherwise, go ahead and insert the false branch. + if (BrCond == getControlRoot()) + CurMBB->removeSuccessor(CB.TrueBB); + + if (CB.FalseBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, + DAG.getBasicBlock(CB.FalseBB))); + } +} + +/// visitJumpTable - Emit JumpTable node in the current MBB +void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { + // Emit the code for the jump table + assert(JT.Reg != -1U && "Should lower JT Header first!"); + EVT PTy = TLI.getPointerTy(); + SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), + JT.Reg, PTy); + SDValue Table = DAG.getJumpTable(JT.JTI, PTy); + DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(), + MVT::Other, Index.getValue(1), + Table, Index)); +} + +/// visitJumpTableHeader - This function emits necessary code to produce index +/// in the JumpTable from switch case. +void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, + JumpTableHeader &JTH) { + // Subtract the lowest switch case value from the value being switched on and + // conditional branch to default mbb if the result is greater than the + // difference between smallest and largest cases. + SDValue SwitchOp = getValue(JTH.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, + DAG.getConstant(JTH.First, VT)); + + // The SDNode we just created, which holds the value being switched on minus + // the the smallest case value, needs to be copied to a virtual register so it + // can be used as an index into the jump table in a subsequent basic block. + // This value may be smaller or larger than the target's pointer type, and + // therefore require extension or truncating. + SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); + + unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), + JumpTableReg, SwitchOp); + JT.Reg = JumpTableReg; + + // Emit the range check for the jump table, and branch to the default block + // for the switch statement if the value being switched on exceeds the largest + // case in the switch. + SDValue CMP = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(SUB.getValueType()), SUB, + DAG.getConstant(JTH.Last-JTH.First,VT), + ISD::SETUGT); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, CopyTo, CMP, + DAG.getBasicBlock(JT.Default)); + + if (JT.MBB == NextBlock) + DAG.setRoot(BrCond); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, + DAG.getBasicBlock(JT.MBB))); +} + +/// visitBitTestHeader - This function emits necessary code to produce value +/// suitable for "bit tests" +void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { + // Subtract the minimum value + SDValue SwitchOp = getValue(B.SValue); + EVT VT = SwitchOp.getValueType(); + SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, + DAG.getConstant(B.First, VT)); + + // Check range + SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(SUB.getValueType()), + SUB, DAG.getConstant(B.Range, VT), + ISD::SETUGT); + + SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy()); + + B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); + SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), + B.Reg, ShiftOp); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + MachineBasicBlock* MBB = B.Cases[0].ThisBB; + + CurMBB->addSuccessor(B.Default); + CurMBB->addSuccessor(MBB); + + SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, CopyTo, RangeCmp, + DAG.getBasicBlock(B.Default)); + + if (MBB == NextBlock) + DAG.setRoot(BrRange); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, + DAG.getBasicBlock(MBB))); +} + +/// visitBitTestCase - this function produces one "bit test" +void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, + unsigned Reg, + BitTestCase &B) { + // Make desired shift + SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, + TLI.getPointerTy()); + SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), + TLI.getPointerTy(), + DAG.getConstant(1, TLI.getPointerTy()), + ShiftOp); + + // Emit bit tests and jumps + SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), + TLI.getPointerTy(), SwitchVal, + DAG.getConstant(B.Mask, TLI.getPointerTy())); + SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), + TLI.getSetCCResultType(AndOp.getValueType()), + AndOp, DAG.getConstant(0, TLI.getPointerTy()), + ISD::SETNE); + + CurMBB->addSuccessor(B.TargetBB); + CurMBB->addSuccessor(NextMBB); + + SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), + MVT::Other, getControlRoot(), + AndCmp, DAG.getBasicBlock(B.TargetBB)); + + // Set NextBlock to be the MBB immediately after the current one, if any. + // This is used to avoid emitting unnecessary branches to the next block. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CurMBB; + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + if (NextMBB == NextBlock) + DAG.setRoot(BrAnd); + else + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, + DAG.getBasicBlock(NextMBB))); +} + +void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { + // Retrieve successors. + MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; + MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; + + const Value *Callee(I.getCalledValue()); + if (isa<InlineAsm>(Callee)) + visitInlineAsm(&I); + else + LowerCallTo(&I, getValue(Callee), false, LandingPad); + + // If the value of the invoke is used outside of its defining block, make it + // available as a virtual register. + CopyToExportRegsIfNeeded(&I); + + // Update successor info + CurMBB->addSuccessor(Return); + CurMBB->addSuccessor(LandingPad); + + // Drop into normal successor. + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Return))); +} + +void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { +} + +/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for +/// small case ranges). +bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& BackCase = *(CR.Range.second-1); + + // Size is the number of Cases represented by this range. + size_t Size = CR.Range.second - CR.Range.first; + if (Size > 3) + return false; + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + MachineFunction::iterator BBI = CR.CaseBB; + + if (++BBI != FuncInfo.MF->end()) + NextBlock = BBI; + + // TODO: If any two of the cases has the same destination, and if one value + // is the same as the other, but has one bit unset that the other has set, + // use bit manipulation to do two compares at once. For example: + // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" + + // Rearrange the case blocks so that the last one falls through if possible. + if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { + // The last case block won't fall through into 'NextBlock' if we emit the + // branches in this order. See if rearranging a case value would help. + for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { + if (I->BB == NextBlock) { + std::swap(*I, BackCase); + break; + } + } + } + + // Create a CaseBlock record representing a conditional branch to + // the Case's target mbb if the value being switched on SV is equal + // to C. + MachineBasicBlock *CurBlock = CR.CaseBB; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { + MachineBasicBlock *FallThrough; + if (I != E-1) { + FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); + CurMF->insert(BBI, FallThrough); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } else { + // If the last case doesn't match, go to the default block. + FallThrough = Default; + } + + Value *RHS, *LHS, *MHS; + ISD::CondCode CC; + if (I->High == I->Low) { + // This is just small small case range :) containing exactly 1 case + CC = ISD::SETEQ; + LHS = SV; RHS = I->High; MHS = NULL; + } else { + CC = ISD::SETLE; + LHS = I->Low; MHS = SV; RHS = I->High; + } + CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); + + // If emitting the first comparison, just call visitSwitchCase to emit the + // code into the current block. Otherwise, push the CaseBlock onto the + // vector to be later processed by SDISel, and insert the node's MBB + // before the next MBB. + if (CurBlock == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + CurBlock = FallThrough; + } + + return true; +} + +static inline bool areJTsAllowed(const TargetLowering &TLI) { + return !DisableJumpTables && + (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || + TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); +} + +static APInt ComputeRange(const APInt &First, const APInt &Last) { + APInt LastExt(Last), FirstExt(First); + uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; + LastExt.sext(BitWidth); FirstExt.sext(BitWidth); + return (LastExt - FirstExt + 1ULL); +} + +/// handleJTSwitchCase - Emit jumptable for current switch case range +bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); + + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) + return false; + + APInt Range = ComputeRange(First, Last); + double Density = TSize.roundToDouble() / Range.roundToDouble(); + if (Density < 0.4) + return false; + + DEBUG(errs() << "Lowering jump table\n" + << "First entry: " << First << ". Last entry: " << Last << '\n' + << "Range: " << Range + << "Size: " << TSize << ". Density: " << Density << "\n\n"); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Create a new basic block to hold the code for loading the address + // of the jump table, and jumping to it. Update successor information; + // we will either branch to the default case for the switch, or the jump + // table. + MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, JumpTableBB); + CR.CaseBB->addSuccessor(Default); + CR.CaseBB->addSuccessor(JumpTableBB); + + // Build a vector of destination BBs, corresponding to each target + // of the jump table. If the value of the jump table slot corresponds to + // a case statement, push the case's BB onto the vector, otherwise, push + // the default BB. + std::vector<MachineBasicBlock*> DestBBs; + APInt TEI = First; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { + const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); + const APInt& High = cast<ConstantInt>(I->High)->getValue(); + + if (Low.sle(TEI) && TEI.sle(High)) { + DestBBs.push_back(I->BB); + if (TEI==High) + ++I; + } else { + DestBBs.push_back(Default); + } + } + + // Update successor info. Add one edge to each unique successor. + BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); + for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), + E = DestBBs.end(); I != E; ++I) { + if (!SuccsHandled[(*I)->getNumber()]) { + SuccsHandled[(*I)->getNumber()] = true; + JumpTableBB->addSuccessor(*I); + } + } + + // Create a jump table index for this jump table, or return an existing + // one. + unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); + + // Set the jump table information so that we can codegen it as a second + // MachineBasicBlock + JumpTable JT(-1U, JTI, JumpTableBB, Default); + JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); + if (CR.CaseBB == CurMBB) + visitJumpTableHeader(JT, JTH); + + JTCases.push_back(JumpTableBlock(JTH, JT)); + + return true; +} + +/// handleBTSplitSwitchCase - emit comparison and split binary search tree into +/// 2 subtrees. +bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default) { + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + // Size is the number of Cases represented by this range. + unsigned Size = CR.Range.second - CR.Range.first; + + const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); + double FMetric = 0; + CaseItr Pivot = CR.Range.first + Size/2; + + // Select optimal pivot, maximizing sum density of LHS and RHS. This will + // (heuristically) allow us to emit JumpTable's later. + APInt TSize(First.getBitWidth(), 0); + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) + TSize += I->size(); + + APInt LSize = FrontCase.size(); + APInt RSize = TSize-LSize; + DEBUG(errs() << "Selecting best pivot: \n" + << "First: " << First << ", Last: " << Last <<'\n' + << "LSize: " << LSize << ", RSize: " << RSize << '\n'); + for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; + J!=E; ++I, ++J) { + const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); + const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); + APInt Range = ComputeRange(LEnd, RBegin); + assert((Range - 2ULL).isNonNegative() && + "Invalid case distance"); + double LDensity = (double)LSize.roundToDouble() / + (LEnd - First + 1ULL).roundToDouble(); + double RDensity = (double)RSize.roundToDouble() / + (Last - RBegin + 1ULL).roundToDouble(); + double Metric = Range.logBase2()*(LDensity+RDensity); + // Should always split in some non-trivial place + DEBUG(errs() <<"=>Step\n" + << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' + << "LDensity: " << LDensity + << ", RDensity: " << RDensity << '\n' + << "Metric: " << Metric << '\n'); + if (FMetric < Metric) { + Pivot = J; + FMetric = Metric; + DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); + } + + LSize += J->size(); + RSize -= J->size(); + } + if (areJTsAllowed(TLI)) { + // If our case is dense we *really* should handle it earlier! + assert((FMetric > 0) && "Should handle dense range earlier!"); + } else { + Pivot = CR.Range.first + Size/2; + } + + CaseRange LHSR(CR.Range.first, Pivot); + CaseRange RHSR(Pivot, CR.Range.second); + Constant *C = Pivot->Low; + MachineBasicBlock *FalseBB = 0, *TrueBB = 0; + + // We know that we branch to the LHS if the Value being switched on is + // less than the Pivot value, C. We use this to optimize our binary + // tree a bit, by recognizing that if SV is greater than or equal to the + // LHS's Case Value, and that Case Value is exactly one less than the + // Pivot's Value, then we can branch directly to the LHS's Target, + // rather than creating a leaf node for it. + if ((LHSR.second - LHSR.first) == 1 && + LHSR.first->High == CR.GE && + cast<ConstantInt>(C)->getValue() == + (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { + TrueBB = LHSR.first->BB; + } else { + TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, TrueBB); + WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Similar to the optimization above, if the Value being switched on is + // known to be less than the Constant CR.LT, and the current Case Value + // is CR.LT - 1, then we can branch directly to the target block for + // the current Case Value, rather than emitting a RHS leaf node for it. + if ((RHSR.second - RHSR.first) == 1 && CR.LT && + cast<ConstantInt>(RHSR.first->Low)->getValue() == + (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { + FalseBB = RHSR.first->BB; + } else { + FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, FalseBB); + WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + // Create a CaseBlock record representing a conditional branch to + // the LHS node if the value being switched on SV is less than C. + // Otherwise, branch to LHS. + CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); + + if (CR.CaseBB == CurMBB) + visitSwitchCase(CB); + else + SwitchCases.push_back(CB); + + return true; +} + +/// handleBitTestsSwitchCase - if current case range has few destination and +/// range span less, than machine word bitwidth, encode case range into series +/// of masks and emit bit tests with these masks. +bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, + CaseRecVector& WorkList, + Value* SV, + MachineBasicBlock* Default){ + EVT PTy = TLI.getPointerTy(); + unsigned IntPtrBits = PTy.getSizeInBits(); + + Case& FrontCase = *CR.Range.first; + Case& BackCase = *(CR.Range.second-1); + + // Get the MachineFunction which holds the current MBB. This is used when + // inserting any additional MBBs necessary to represent the switch. + MachineFunction *CurMF = FuncInfo.MF; + + // If target does not have legal shift left, do not emit bit tests at all. + if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) + return false; + + size_t numCmps = 0; + for (CaseItr I = CR.Range.first, E = CR.Range.second; + I!=E; ++I) { + // Single case counts one, case range - two. + numCmps += (I->Low == I->High ? 1 : 2); + } + + // Count unique destinations + SmallSet<MachineBasicBlock*, 4> Dests; + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + Dests.insert(I->BB); + if (Dests.size() > 3) + // Don't bother the code below, if there are too much unique destinations + return false; + } + DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' + << "Total number of comparisons: " << numCmps << '\n'); + + // Compute span of values. + const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); + const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); + APInt cmpRange = maxValue - minValue; + + DEBUG(errs() << "Compare range: " << cmpRange << '\n' + << "Low bound: " << minValue << '\n' + << "High bound: " << maxValue << '\n'); + + if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || + (!(Dests.size() == 1 && numCmps >= 3) && + !(Dests.size() == 2 && numCmps >= 5) && + !(Dests.size() >= 3 && numCmps >= 6))) + return false; + + DEBUG(errs() << "Emitting bit tests\n"); + APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); + + // Optimize the case where all the case values fit in a + // word without having to subtract minValue. In this case, + // we can optimize away the subtraction. + if (minValue.isNonNegative() && + maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { + cmpRange = maxValue; + } else { + lowBound = minValue; + } + + CaseBitsVector CasesBits; + unsigned i, count = 0; + + for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { + MachineBasicBlock* Dest = I->BB; + for (i = 0; i < count; ++i) + if (Dest == CasesBits[i].BB) + break; + + if (i == count) { + assert((count < 3) && "Too much destinations to test!"); + CasesBits.push_back(CaseBits(0, Dest, 0)); + count++; + } + + const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); + const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); + + uint64_t lo = (lowValue - lowBound).getZExtValue(); + uint64_t hi = (highValue - lowBound).getZExtValue(); + + for (uint64_t j = lo; j <= hi; j++) { + CasesBits[i].Mask |= 1ULL << j; + CasesBits[i].Bits++; + } + + } + std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); + + BitTestInfo BTC; + + // Figure out which block is immediately after the current one. + MachineFunction::iterator BBI = CR.CaseBB; + ++BBI; + + const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); + + DEBUG(errs() << "Cases:\n"); + for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { + DEBUG(errs() << "Mask: " << CasesBits[i].Mask + << ", Bits: " << CasesBits[i].Bits + << ", BB: " << CasesBits[i].BB << '\n'); + + MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); + CurMF->insert(BBI, CaseBB); + BTC.push_back(BitTestCase(CasesBits[i].Mask, + CaseBB, + CasesBits[i].BB)); + + // Put SV in a virtual register to make it available from the new blocks. + ExportFromCurrentBlock(SV); + } + + BitTestBlock BTB(lowBound, cmpRange, SV, + -1U, (CR.CaseBB == CurMBB), + CR.CaseBB, Default, BTC); + + if (CR.CaseBB == CurMBB) + visitBitTestHeader(BTB); + + BitTestCases.push_back(BTB); + + return true; +} + + +/// Clusterify - Transform simple list of Cases into list of CaseRange's +size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, + const SwitchInst& SI) { + size_t numCmps = 0; + + // Start with "simple" cases + for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { + MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; + Cases.push_back(Case(SI.getSuccessorValue(i), + SI.getSuccessorValue(i), + SMBB)); + } + std::sort(Cases.begin(), Cases.end(), CaseCmp()); + + // Merge case into clusters + if (Cases.size() >= 2) + // Must recompute end() each iteration because it may be + // invalidated by erase if we hold on to it + for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { + const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); + const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); + MachineBasicBlock* nextBB = J->BB; + MachineBasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { + I->High = J->High; + J = Cases.erase(J); + } else { + I = J++; + } + } + + for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { + if (I->Low != I->High) + // A range counts double, since it requires two compares. + ++numCmps; + } + + return numCmps; +} + +void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { + // Figure out which block is immediately after the current one. + MachineBasicBlock *NextBlock = 0; + + MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; + + // If there is only the default destination, branch to it if it is not the + // next basic block. Otherwise, just fall through. + if (SI.getNumOperands() == 2) { + // Update machine-CFG edges. + + // If this is not a fall-through branch, emit the branch. + CurMBB->addSuccessor(Default); + if (Default != NextBlock) + DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), + MVT::Other, getControlRoot(), + DAG.getBasicBlock(Default))); + return; + } + + // If there are any non-default case statements, create a vector of Cases + // representing each one, and sort the vector so that we can efficiently + // create a binary search tree from them. + CaseVector Cases; + size_t numCmps = Clusterify(Cases, SI); + DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total compares: " << numCmps << '\n'); + numCmps = 0; + + // Get the Value to be switched on and default basic blocks, which will be + // inserted into CaseBlock records, representing basic blocks in the binary + // search tree. + Value *SV = SI.getOperand(0); + + // Push the initial CaseRec onto the worklist + CaseRecVector WorkList; + WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); + + while (!WorkList.empty()) { + // Grab a record representing a case range to process off the worklist + CaseRec CR = WorkList.back(); + WorkList.pop_back(); + + if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) + continue; + + // If the range has few cases (two or less) emit a series of specific + // tests. + if (handleSmallSwitchRange(CR, WorkList, SV, Default)) + continue; + + // If the switch has more than 5 blocks, and at least 40% dense, and the + // target supports indirect branches, then emit a jump table rather than + // lowering the switch to a binary tree of conditional branches. + if (handleJTSwitchCase(CR, WorkList, SV, Default)) + continue; + + // Emit binary tree. We need to pick a pivot, and push left and right ranges + // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. + handleBTSplitSwitchCase(CR, WorkList, SV, Default); + } +} + +void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { + // Update machine-CFG edges. + for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) + CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); + + DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), + MVT::Other, getControlRoot(), + getValue(I.getAddress()))); +} + + +void SelectionDAGBuilder::visitFSub(User &I) { + // -0.0 - X --> fneg + const Type *Ty = I.getType(); + if (isa<VectorType>(Ty)) { + if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { + const VectorType *DestTy = cast<VectorType>(I.getType()); + const Type *ElTy = DestTy->getElementType(); + unsigned VL = DestTy->getNumElements(); + std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); + Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); + if (CV == CNZ) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), + Op2.getValueType(), Op2)); + return; + } + } + } + if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) + if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { + SDValue Op2 = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), + Op2.getValueType(), Op2)); + return; + } + + visitBinary(I, ISD::FSUB); +} + +void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + + setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + if (!isa<VectorType>(I.getType()) && + Op2.getValueType() != TLI.getShiftAmountTy()) { + // If the operand is smaller than the shift count type, promote it. + EVT PTy = TLI.getPointerTy(); + EVT STy = TLI.getShiftAmountTy(); + if (STy.bitsGT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), + TLI.getShiftAmountTy(), Op2); + // If the operand is larger than the shift count type but the shift + // count type has enough bits to represent any shift value, truncate + // it now. This is a common case and it exposes the truncate to + // optimization early. + else if (STy.getSizeInBits() >= + Log2_32_Ceil(Op2.getValueType().getSizeInBits())) + Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getShiftAmountTy(), Op2); + // Otherwise we'll need to temporarily settle for some other + // convenient type; type legalization will make adjustments as + // needed. + else if (PTy.bitsLT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getPointerTy(), Op2); + else if (PTy.bitsGT(Op2.getValueType())) + Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), Op2); + } + + setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), + Op1.getValueType(), Op1, Op2)); +} + +void SelectionDAGBuilder::visitICmp(User &I) { + ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; + if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) + predicate = IC->getPredicate(); + else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) + predicate = ICmpInst::Predicate(IC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Opcode = getICmpCondCode(predicate); + + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); +} + +void SelectionDAGBuilder::visitFCmp(User &I) { + FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; + if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) + predicate = FC->getPredicate(); + else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) + predicate = FCmpInst::Predicate(FC->getPredicate()); + SDValue Op1 = getValue(I.getOperand(0)); + SDValue Op2 = getValue(I.getOperand(1)); + ISD::CondCode Condition = getFCmpCondCode(predicate); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); +} + +void SelectionDAGBuilder::visitSelect(User &I) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, I.getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues != 0) { + SmallVector<SDValue, 4> Values(NumValues); + SDValue Cond = getValue(I.getOperand(0)); + SDValue TrueVal = getValue(I.getOperand(1)); + SDValue FalseVal = getValue(I.getOperand(2)); + + for (unsigned i = 0; i != NumValues; ++i) + Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), + TrueVal.getValueType(), Cond, + SDValue(TrueVal.getNode(), TrueVal.getResNo() + i), + SDValue(FalseVal.getNode(), FalseVal.getResNo() + i)); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); + } +} + + +void SelectionDAGBuilder::visitTrunc(User &I) { + // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitZExt(User &I) { + // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // ZExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSExt(User &I) { + // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). + // SExt also can't be a cast to bool for same reason. So, nothing much to do + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPTrunc(User &I) { + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), + DestVT, N, DAG.getIntPtrConstant(0))); +} + +void SelectionDAGBuilder::visitFPExt(User &I){ + // FPTrunc is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToUI(User &I) { + // FPToUI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitFPToSI(User &I) { + // FPToSI is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitUIToFP(User &I) { + // UIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitSIToFP(User &I){ + // SIToFP is never a no-op cast, no need to check + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); +} + +void SelectionDAGBuilder::visitPtrToInt(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT SrcVT = N.getValueType(); + EVT DestVT = TLI.getValueType(I.getType()); + SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); + setValue(&I, Result); +} + +void SelectionDAGBuilder::visitIntToPtr(User &I) { + // What to do depends on the size of the integer and the size of the pointer. + // We can either truncate, zero extend, or no-op, accordingly. + SDValue N = getValue(I.getOperand(0)); + EVT SrcVT = N.getValueType(); + EVT DestVT = TLI.getValueType(I.getType()); + setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); +} + +void SelectionDAGBuilder::visitBitCast(User &I) { + SDValue N = getValue(I.getOperand(0)); + EVT DestVT = TLI.getValueType(I.getType()); + + // BitCast assures us that source and destination are the same size so this + // is either a BIT_CONVERT or a no-op. + if (DestVT != N.getValueType()) + setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + DestVT, N)); // convert types + else + setValue(&I, N); // noop cast. +} + +void SelectionDAGBuilder::visitInsertElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InVal = getValue(I.getOperand(1)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), + getValue(I.getOperand(2))); + + setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), + TLI.getValueType(I.getType()), + InVec, InVal, InIdx)); +} + +void SelectionDAGBuilder::visitExtractElement(User &I) { + SDValue InVec = getValue(I.getOperand(0)); + SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), + TLI.getPointerTy(), + getValue(I.getOperand(1))); + setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + TLI.getValueType(I.getType()), InVec, InIdx)); +} + + +// Utility for visitShuffleVector - Returns true if the mask is mask starting +// from SIndx and increasing to the element length (undefs are allowed). +static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { + unsigned MaskNumElts = Mask.size(); + for (unsigned i = 0; i != MaskNumElts; ++i) + if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) + return false; + return true; +} + +void SelectionDAGBuilder::visitShuffleVector(User &I) { + SmallVector<int, 8> Mask; + SDValue Src1 = getValue(I.getOperand(0)); + SDValue Src2 = getValue(I.getOperand(1)); + + // Convert the ConstantVector mask operand into an array of ints, with -1 + // representing undef values. + SmallVector<Constant*, 8> MaskElts; + cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), + MaskElts); + unsigned MaskNumElts = MaskElts.size(); + for (unsigned i = 0; i != MaskNumElts; ++i) { + if (isa<UndefValue>(MaskElts[i])) + Mask.push_back(-1); + else + Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); + } + + EVT VT = TLI.getValueType(I.getType()); + EVT SrcVT = Src1.getValueType(); + unsigned SrcNumElts = SrcVT.getVectorNumElements(); + + if (SrcNumElts == MaskNumElts) { + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &Mask[0])); + return; + } + + // Normalize the shuffle vector since mask and vector length don't match. + if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { + // Mask is longer than the source vectors and is a multiple of the source + // vectors. We can use concatenate vector to make the mask and vectors + // lengths match. + if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { + // The shuffle is concatenating two vectors together. + setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), + VT, Src1, Src2)); + return; + } + + // Pad both vectors with undefs to make them the same length as the mask. + unsigned NumConcat = MaskNumElts / SrcNumElts; + bool Src1U = Src1.getOpcode() == ISD::UNDEF; + bool Src2U = Src2.getOpcode() == ISD::UNDEF; + SDValue UndefVal = DAG.getUNDEF(SrcVT); + + SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); + SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); + MOps1[0] = Src1; + MOps2[0] = Src2; + + Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurDebugLoc(), VT, + &MOps1[0], NumConcat); + Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, + getCurDebugLoc(), VT, + &MOps2[0], NumConcat); + + // Readjust mask for new input vector length. + SmallVector<int, 8> MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx < (int)SrcNumElts) + MappedOps.push_back(Idx); + else + MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); + } + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + + if (SrcNumElts > MaskNumElts) { + // Analyze the access pattern of the vector to see if we can extract + // two subvectors and do the shuffle. The analysis is done by calculating + // the range of elements the mask access on both vectors. + int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; + int MaxRange[2] = {-1, -1}; + + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + int Input = 0; + if (Idx < 0) + continue; + + if (Idx >= (int)SrcNumElts) { + Input = 1; + Idx -= SrcNumElts; + } + if (Idx > MaxRange[Input]) + MaxRange[Input] = Idx; + if (Idx < MinRange[Input]) + MinRange[Input] = Idx; + } + + // Check if the access is smaller than the vector size and can we find + // a reasonable extract index. + int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. + int StartIdx[2]; // StartIdx to extract from + for (int Input=0; Input < 2; ++Input) { + if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { + RangeUse[Input] = 0; // Unused + StartIdx[Input] = 0; + } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { + // Fits within range but we should see if we can find a good + // start index that is a multiple of the mask length. + if (MaxRange[Input] < (int)MaskNumElts) { + RangeUse[Input] = 1; // Extract from beginning of the vector + StartIdx[Input] = 0; + } else { + StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; + if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && + StartIdx[Input] + MaskNumElts < SrcNumElts) + RangeUse[Input] = 1; // Extract from a multiple of the mask length. + } + } + } + + if (RangeUse[0] == 0 && RangeUse[1] == 0) { + setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. + return; + } + else if (RangeUse[0] < 2 && RangeUse[1] < 2) { + // Extract appropriate subvector and generate a vector shuffle + for (int Input=0; Input < 2; ++Input) { + SDValue& Src = Input == 0 ? Src1 : Src2; + if (RangeUse[Input] == 0) { + Src = DAG.getUNDEF(VT); + } else { + Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, + Src, DAG.getIntPtrConstant(StartIdx[Input])); + } + } + // Calculate new mask. + SmallVector<int, 8> MappedOps; + for (unsigned i = 0; i != MaskNumElts; ++i) { + int Idx = Mask[i]; + if (Idx < 0) + MappedOps.push_back(Idx); + else if (Idx < (int)SrcNumElts) + MappedOps.push_back(Idx - StartIdx[0]); + else + MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); + } + setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, + &MappedOps[0])); + return; + } + } + + // We can't use either concat vectors or extract subvectors so fall back to + // replacing the shuffle with extract and build vector. + // to insert and build vector. + EVT EltVT = VT.getVectorElementType(); + EVT PtrVT = TLI.getPointerTy(); + SmallVector<SDValue,8> Ops; + for (unsigned i = 0; i != MaskNumElts; ++i) { + if (Mask[i] < 0) { + Ops.push_back(DAG.getUNDEF(EltVT)); + } else { + int Idx = Mask[i]; + if (Idx < (int)SrcNumElts) + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + EltVT, Src1, DAG.getConstant(Idx, PtrVT))); + else + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), + EltVT, Src2, + DAG.getConstant(Idx - SrcNumElts, PtrVT))); + } + } + setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), + VT, &Ops[0], Ops.size())); +} + +void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Value *Op1 = I.getOperand(1); + const Type *AggTy = I.getType(); + const Type *ValTy = Op1->getType(); + bool IntoUndef = isa<UndefValue>(Op0); + bool FromUndef = isa<UndefValue>(Op1); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector<EVT, 4> AggValueVTs; + ComputeValueVTs(TLI, AggTy, AggValueVTs); + SmallVector<EVT, 4> ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumAggValues = AggValueVTs.size(); + unsigned NumValValues = ValValueVTs.size(); + SmallVector<SDValue, 4> Values(NumAggValues); + + SDValue Agg = getValue(Op0); + SDValue Val = getValue(Op1); + unsigned i = 0; + // Copy the beginning value(s) from the original aggregate. + for (; i != LinearIndex; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + // Copy values from the inserted value(s). + for (; i != LinearIndex + NumValValues; ++i) + Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); + // Copy remaining value(s) from the original aggregate. + for (; i != NumAggValues; ++i) + Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&AggValueVTs[0], NumAggValues), + &Values[0], NumAggValues)); +} + +void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { + const Value *Op0 = I.getOperand(0); + const Type *AggTy = Op0->getType(); + const Type *ValTy = I.getType(); + bool OutOfUndef = isa<UndefValue>(Op0); + + unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, + I.idx_begin(), I.idx_end()); + + SmallVector<EVT, 4> ValValueVTs; + ComputeValueVTs(TLI, ValTy, ValValueVTs); + + unsigned NumValValues = ValValueVTs.size(); + SmallVector<SDValue, 4> Values(NumValValues); + + SDValue Agg = getValue(Op0); + // Copy out the selected value(s). + for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) + Values[i - LinearIndex] = + OutOfUndef ? + DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : + SDValue(Agg.getNode(), Agg.getResNo() + i); + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValValueVTs[0], NumValValues), + &Values[0], NumValValues)); +} + + +void SelectionDAGBuilder::visitGetElementPtr(User &I) { + SDValue N = getValue(I.getOperand(0)); + const Type *Ty = I.getOperand(0)->getType(); + + for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); + OI != E; ++OI) { + Value *Idx = *OI; + if (const StructType *StTy = dyn_cast<StructType>(Ty)) { + unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); + if (Field) { + // N = N + Offset + uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, + DAG.getIntPtrConstant(Offset)); + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { + if (CI->getZExtValue() == 0) continue; + uint64_t Offs = + TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); + SDValue OffsVal; + EVT PTy = TLI.getPointerTy(); + unsigned PtrBits = PTy.getSizeInBits(); + if (PtrBits < 64) { + OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), + TLI.getPointerTy(), + DAG.getConstant(Offs, MVT::i64)); + } else + OffsVal = DAG.getIntPtrConstant(Offs); + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, + OffsVal); + continue; + } + + // N = N + Idx * ElementSize; + APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), + TD->getTypeAllocSize(Ty)); + SDValue IdxN = getValue(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend + // it. + IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); + + // If this is a multiply by a power of two, turn it into a shl + // immediately. This is a very common case. + if (ElementSize != 1) { + if (ElementSize.isPowerOf2()) { + unsigned Amt = ElementSize.logBase2(); + IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), + N.getValueType(), IdxN, + DAG.getConstant(Amt, TLI.getPointerTy())); + } else { + SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); + IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), + N.getValueType(), IdxN, Scale); + } + } + + N = DAG.getNode(ISD::ADD, getCurDebugLoc(), + N.getValueType(), N, IdxN); + } + } + setValue(&I, N); +} + +void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { + // If this is a fixed sized alloca in the entry block of the function, + // allocate it statically on the stack. + if (FuncInfo.StaticAllocaMap.count(&I)) + return; // getValue will auto-populate this. + + const Type *Ty = I.getAllocatedType(); + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); + unsigned Align = + std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), + I.getAlignment()); + + SDValue AllocSize = getValue(I.getArraySize()); + + AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), + AllocSize, + DAG.getConstant(TySize, AllocSize.getValueType())); + + + + EVT IntPtr = TLI.getPointerTy(); + AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); + + // Handle alignment. If the requested alignment is less than or equal to + // the stack alignment, ignore it. If the size is greater than or equal to + // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. + unsigned StackAlign = + TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); + if (Align <= StackAlign) + Align = 0; + + // Round the size of the allocation up to the stack alignment size + // by add SA-1 to the size. + AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(StackAlign-1)); + // Mask out the low bits for alignment purposes. + AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), + AllocSize.getValueType(), AllocSize, + DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); + + SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; + SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); + SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), + VTs, Ops, 3); + setValue(&I, DSA); + DAG.setRoot(DSA.getValue(1)); + + // Inform the Frame Information that we have just allocated a variable-sized + // object. + FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); +} + +void SelectionDAGBuilder::visitLoad(LoadInst &I) { + const Value *SV = I.getOperand(0); + SDValue Ptr = getValue(SV); + + const Type *Ty = I.getType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + SDValue Root; + bool ConstantMemory = false; + if (I.isVolatile()) + // Serialize volatile loads with other side effects. + Root = getRoot(); + else if (AA->pointsToConstantMemory(SV)) { + // Do not serialize (non-volatile) loads of constant memory with anything. + Root = DAG.getEntryNode(); + ConstantMemory = true; + } else { + // Do not serialize non-volatile loads against each other. + Root = DAG.getRoot(); + } + + SmallVector<SDValue, 4> Values(NumValues); + SmallVector<SDValue, 4> Chains(NumValues); + EVT PtrVT = Ptr.getValueType(); + for (unsigned i = 0; i != NumValues; ++i) { + SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, + DAG.getNode(ISD::ADD, getCurDebugLoc(), + PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + SV, Offsets[i], isVolatile, Alignment); + Values[i] = L; + Chains[i] = L.getValue(1); + } + + if (!ConstantMemory) { + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, + &Chains[0], NumValues); + if (isVolatile) + DAG.setRoot(Chain); + else + PendingLoads.push_back(Chain); + } + + setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), + DAG.getVTList(&ValueVTs[0], NumValues), + &Values[0], NumValues)); +} + + +void SelectionDAGBuilder::visitStore(StoreInst &I) { + Value *SrcV = I.getOperand(0); + Value *PtrV = I.getOperand(1); + + SmallVector<EVT, 4> ValueVTs; + SmallVector<uint64_t, 4> Offsets; + ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) + return; + + // Get the lowered operands. Note that we do this after + // checking if NumResults is zero, because with zero results + // the operands won't have values in the map. + SDValue Src = getValue(SrcV); + SDValue Ptr = getValue(PtrV); + + SDValue Root = getRoot(); + SmallVector<SDValue, 4> Chains(NumValues); + EVT PtrVT = Ptr.getValueType(); + bool isVolatile = I.isVolatile(); + unsigned Alignment = I.getAlignment(); + for (unsigned i = 0; i != NumValues; ++i) + Chains[i] = DAG.getStore(Root, getCurDebugLoc(), + SDValue(Src.getNode(), Src.getResNo() + i), + DAG.getNode(ISD::ADD, getCurDebugLoc(), + PtrVT, Ptr, + DAG.getConstant(Offsets[i], PtrVT)), + PtrV, Offsets[i], isVolatile, Alignment); + + DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues)); +} + +/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC +/// node. +void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, + unsigned Intrinsic) { + bool HasChain = !I.doesNotAccessMemory(); + bool OnlyLoad = HasChain && I.onlyReadsMemory(); + + // Build the operand list. + SmallVector<SDValue, 8> Ops; + if (HasChain) { // If this intrinsic has side-effects, chainify it. + if (OnlyLoad) { + // We don't need to serialize loads against other loads. + Ops.push_back(DAG.getRoot()); + } else { + Ops.push_back(getRoot()); + } + } + + // Info is set by getTgtMemInstrinsic + TargetLowering::IntrinsicInfo Info; + bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); + + // Add the intrinsic ID as an integer operand if it's not a target intrinsic. + if (!IsTgtIntrinsic) + Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); + + // Add all operands of the call to the operand list. + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { + SDValue Op = getValue(I.getOperand(i)); + assert(TLI.isTypeLegal(Op.getValueType()) && + "Intrinsic uses a non-legal type?"); + Ops.push_back(Op); + } + + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, I.getType(), ValueVTs); +#ifndef NDEBUG + for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { + assert(TLI.isTypeLegal(ValueVTs[Val]) && + "Intrinsic uses a non-legal type?"); + } +#endif // NDEBUG + if (HasChain) + ValueVTs.push_back(MVT::Other); + + SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); + + // Create the node. + SDValue Result; + if (IsTgtIntrinsic) { + // This is target intrinsic that touches memory + Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), + VTs, &Ops[0], Ops.size(), + Info.memVT, Info.ptrVal, Info.offset, + Info.align, Info.vol, + Info.readMem, Info.writeMem); + } + else if (!HasChain) + Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + else if (I.getType() != Type::getVoidTy(*DAG.getContext())) + Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + else + Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), + VTs, &Ops[0], Ops.size()); + + if (HasChain) { + SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); + if (OnlyLoad) + PendingLoads.push_back(Chain); + else + DAG.setRoot(Chain); + } + if (I.getType() != Type::getVoidTy(*DAG.getContext())) { + if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { + EVT VT = TLI.getValueType(PTy); + Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); + } + setValue(&I, Result); + } +} + +/// GetSignificand - Get the significand and build it into a floating-point +/// number with exponent of 1: +/// +/// Op = (Op & 0x007fffff) | 0x3f800000; +/// +/// where Op is the hexidecimal representation of floating point value. +static SDValue +GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { + SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x007fffff, MVT::i32)); + SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, + DAG.getConstant(0x3f800000, MVT::i32)); + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); +} + +/// GetExponent - Get the exponent: +/// +/// (float)(int)(((Op & 0x7f800000) >> 23) - 127); +/// +/// where Op is the hexidecimal representation of floating point value. +static SDValue +GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, + DebugLoc dl) { + SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, + DAG.getConstant(0x7f800000, MVT::i32)); + SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, + DAG.getConstant(23, TLI.getPointerTy())); + SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, + DAG.getConstant(127, MVT::i32)); + return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); +} + +/// getF32Constant - Get 32-bit floating point constant. +static SDValue +getF32Constant(SelectionDAG &DAG, unsigned Flt) { + return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); +} + +/// Inlined utility function to implement binary input atomic intrinsics for +/// visitIntrinsicCall: I is a call instruction +/// Op is the associated NodeType for I +const char * +SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { + SDValue Root = getRoot(); + SDValue L = + DAG.getAtomic(Op, getCurDebugLoc(), + getValue(I.getOperand(2)).getValueType().getSimpleVT(), + Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + I.getOperand(1)); + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; +} + +// implVisitAluOverflow - Lower arithmetic overflow instrinsics. +const char * +SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + + SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); + SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); + + setValue(&I, Result); + return 0; +} + +/// visitExp - Lower an exp intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitExp(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OFe 1.4426950f + // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, + getF32Constant(DAG, 0x3fb8aa3b)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); + + // Add the exponent into the result in integer domain. + SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // 0.000107046256 error, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); + + // Add the exponent into the result in integer domain. + SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::i32, t13); + + // Add the exponent into the result in integer domain. + SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, + TwoToFracPartOfX, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FEXP, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog - Lower a log intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Scale the exponent by log(2) [0.69314718f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3f317218)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // LogofMantissa = + // -1.1609546f + + // (1.4034025f - 0.23903021f * x) * x; + // + // error 0.0034276066, which is better than 8 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbe74c456)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3fb3a2b1)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f949a29)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // LogOfMantissa = + // -1.7417939f + + // (2.8212026f + + // (-1.4699568f + + // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; + // + // error 0.000061011436, which is 14 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbd67b6d6)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ee4f4b8)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fbc278b)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40348e95)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fdef31a)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // LogOfMantissa = + // -2.1072184f + + // (4.2372794f + + // (-3.7029485f + + // (2.2781945f + + // (-0.87823314f + + // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; + // + // error 0.0000023660568, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbc91e5ac)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e4350aa)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f60d3e3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x4011cdf0)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x406cfd1c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x408797cb)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4006dcab)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, LogOfMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog2(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Get the exponent. + SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + // Different possible minimax approximations of significand in + // floating-point for various degrees of accuracy over [1,2]. + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; + // + // error 0.0049451742, which is more than 7 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbeb08fe0)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x40019463)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fd6633d)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log2ofMantissa = + // -2.51285454f + + // (4.07009056f + + // (-2.12067489f + + // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; + // + // error 0.0000876136000, which is better than 13 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbda7262e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f25280b)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x4007b923)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40823e2f)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x4020d29c)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log2ofMantissa = + // -3.0400495f + + // (6.1129976f + + // (-5.3420409f + + // (3.2865683f + + // (-1.2669343f + + // (0.27515199f - + // 0.25691327e-1f * x) * x) * x) * x) * x) * x; + // + // error 0.0000018516, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbcd2769e)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e8ce0b9)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3fa22ae7)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x40525723)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, + getF32Constant(DAG, 0x40aaf200)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x40c39dad)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, + getF32Constant(DAG, 0x4042902c)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log2ofMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG2, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitLog10(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); + + // Scale the exponent by log10(2) [0.30102999f]. + SDValue Exp = GetExponent(DAG, Op1, TLI, dl); + SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, + getF32Constant(DAG, 0x3e9a209a)); + + // Get the significand and build it into a floating-point number with + // exponent of 1. + SDValue X = GetSignificand(DAG, Op1, dl); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // Log10ofMantissa = + // -0.50419619f + + // (0.60948995f - 0.10380950f * x) * x; + // + // error 0.0014886165, which is 6 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0xbdd49a13)); + SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3f1c0789)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f011300)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // Log10ofMantissa = + // -0.64831180f + + // (0.91751397f + + // (-0.31664806f + 0.47637168e-1f * x) * x) * x; + // + // error 0.00019228036, which is better than 12 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3d431f31)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3ea21fb2)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f6ae232)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f25f7c3)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // Log10ofMantissa = + // -0.84299375f + + // (1.5327582f + + // (-1.0688956f + + // (0.49102474f + + // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; + // + // error 0.0000037995730, which is better than 18 bits + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3c5d51ce)); + SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, + getF32Constant(DAG, 0x3e00685a)); + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3efb6798)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f88d192)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3fc4316c)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3f57ce70)); + + result = DAG.getNode(ISD::FADD, dl, + MVT::f32, LogOfExponent, Log10ofMantissa); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FLOG10, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for +/// limited-precision mode. +void +SelectionDAGBuilder::visitExp2(CallInst &I) { + SDValue result; + DebugLoc dl = getCurDebugLoc(); + + if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(1)); + + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // TwoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FEXP2, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1))); + } + + setValue(&I, result); +} + +/// visitPow - Lower a pow intrinsic. Handles the special sequences for +/// limited-precision mode with x == 10.0f. +void +SelectionDAGBuilder::visitPow(CallInst &I) { + SDValue result; + Value *Val = I.getOperand(1); + DebugLoc dl = getCurDebugLoc(); + bool IsExp10 = false; + + if (getValue(Val).getValueType() == MVT::f32 && + getValue(I.getOperand(2)).getValueType() == MVT::f32 && + LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + APFloat Ten(10.0f); + IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); + } + } + } + + if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { + SDValue Op = getValue(I.getOperand(2)); + + // Put the exponent in the right bit position for later addition to the + // final result: + // + // #define LOG2OF10 3.3219281f + // IntegerPartOfX = (int32_t)(x * LOG2OF10); + SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, + getF32Constant(DAG, 0x40549a78)); + SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); + + // FractionalPartOfX = x - (float)IntegerPartOfX; + SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); + SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); + + // IntegerPartOfX <<= 23; + IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, + DAG.getConstant(23, TLI.getPointerTy())); + + if (LimitFloatPrecision <= 6) { + // For floating-point precision of 6: + // + // twoToFractionalPartOfX = + // 0.997535578f + + // (0.735607626f + 0.252464424f * x) * x; + // + // error 0.0144103317, which is 6 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3e814304)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3f3c50c8)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f7f5e7e)); + SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { + // For floating-point precision of 12: + // + // TwoToFractionalPartOfX = + // 0.999892986f + + // (0.696457318f + + // (0.224338339f + 0.792043434e-1f * x) * x) * x; + // + // error 0.000107046256, which is 13 to 14 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3da235e3)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3e65b8f3)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3f324b07)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3f7ff8fd)); + SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 + // For floating-point precision of 18: + // + // TwoToFractionalPartOfX = + // 0.999999982f + + // (0.693148872f + + // (0.240227044f + + // (0.554906021e-1f + + // (0.961591928e-2f + + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; + // error 2.47208000*10^(-7), which is better than 18 bits + SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, + getF32Constant(DAG, 0x3924b03e)); + SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, + getF32Constant(DAG, 0x3ab24b87)); + SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); + SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, + getF32Constant(DAG, 0x3c1d8c17)); + SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); + SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, + getF32Constant(DAG, 0x3d634a1d)); + SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); + SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, + getF32Constant(DAG, 0x3e75fe14)); + SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); + SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, + getF32Constant(DAG, 0x3f317234)); + SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); + SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, + getF32Constant(DAG, 0x3f800000)); + SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); + SDValue TwoToFractionalPartOfX = + DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); + + result = DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::f32, TwoToFractionalPartOfX); + } + } else { + // No special expansion. + result = DAG.getNode(ISD::FPOW, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2))); + } + + setValue(&I, result); +} + +/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If +/// we want to emit this as a call to a named external function, return the name +/// otherwise lower it and return null. +const char * +SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { + DebugLoc dl = getCurDebugLoc(); + switch (Intrinsic) { + default: + // By default, turn this into a target intrinsic node. + visitTargetIntrinsic(I, Intrinsic); + return 0; + case Intrinsic::vastart: visitVAStart(I); return 0; + case Intrinsic::vaend: visitVAEnd(I); return 0; + case Intrinsic::vacopy: visitVACopy(I); return 0; + case Intrinsic::returnaddress: + setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::frameaddress: + setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::setjmp: + return "_setjmp"+!TLI.usesUnderscoreSetJmp(); + break; + case Intrinsic::longjmp: + return "_longjmp"+!TLI.usesUnderscoreLongJmp(); + break; + case Intrinsic::memcpy: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::memset: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, + I.getOperand(1), 0)); + return 0; + } + case Intrinsic::memmove: { + SDValue Op1 = getValue(I.getOperand(1)); + SDValue Op2 = getValue(I.getOperand(2)); + SDValue Op3 = getValue(I.getOperand(3)); + unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); + + // If the source and destination are known to not be aliases, we can + // lower memmove as memcpy. + uint64_t Size = -1ULL; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) + Size = C->getZExtValue(); + if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == + AliasAnalysis::NoAlias) { + DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + + DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, + I.getOperand(1), 0, I.getOperand(2), 0)); + return 0; + } + case Intrinsic::dbg_stoppoint: + case Intrinsic::dbg_region_start: + case Intrinsic::dbg_region_end: + case Intrinsic::dbg_func_start: + // FIXME - Remove this instructions once the dust settles. + return 0; + case Intrinsic::dbg_declare: { + if (OptLevel != CodeGenOpt::None) + // FIXME: Variable debug info is not supported here. + return 0; + DwarfWriter *DW = DAG.getDwarfWriter(); + if (!DW) + return 0; + DbgDeclareInst &DI = cast<DbgDeclareInst>(I); + if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) + return 0; + + MDNode *Variable = DI.getVariable(); + Value *Address = DI.getAddress(); + if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) + Address = BCI->getOperand(0); + AllocaInst *AI = dyn_cast<AllocaInst>(Address); + // Don't handle byval struct arguments or VLAs, for example. + if (!AI) + return 0; + DenseMap<const AllocaInst*, int>::iterator SI = + FuncInfo.StaticAllocaMap.find(AI); + if (SI == FuncInfo.StaticAllocaMap.end()) + return 0; // VLAs. + int FI = SI->second; + + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + if (MMI) { + MetadataContext &TheMetadata = + DI.getParent()->getContext().getMetadata(); + unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); + MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); + MMI->setVariableDbgInfo(Variable, FI, Dbg); + } + return 0; + } + case Intrinsic::eh_exception: { + // Insert the EXCEPTIONADDR instruction. + assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); + SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); + SDValue Ops[1]; + Ops[0] = DAG.getRoot(); + SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); + setValue(&I, Op); + DAG.setRoot(Op.getValue(1)); + return 0; + } + + case Intrinsic::eh_selector: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + + if (CurMBB->isLandingPad()) + AddCatchInfo(I, MMI, CurMBB); + else { +#ifndef NDEBUG + FuncInfo.CatchInfoLost.insert(&I); +#endif + // FIXME: Mark exception selector register as live in. Hack for PR1508. + unsigned Reg = TLI.getExceptionSelectorRegister(); + if (Reg) CurMBB->addLiveIn(Reg); + } + + // Insert the EHSELECTION instruction. + SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); + SDValue Ops[2]; + Ops[0] = getValue(I.getOperand(1)); + Ops[1] = getRoot(); + SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); + + DAG.setRoot(Op.getValue(1)); + + setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); + return 0; + } + + case Intrinsic::eh_typeid_for: { + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + + if (MMI) { + // Find the type id for the given typeinfo. + GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); + + unsigned TypeID = MMI->getTypeIDFor(GV); + setValue(&I, DAG.getConstant(TypeID, MVT::i32)); + } else { + // Return something different to eh_selector. + setValue(&I, DAG.getConstant(1, MVT::i32)); + } + + return 0; + } + + case Intrinsic::eh_return_i32: + case Intrinsic::eh_return_i64: + if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { + MMI->setCallsEHReturn(true); + DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, + MVT::Other, + getControlRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + } else { + setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); + } + + return 0; + case Intrinsic::eh_unwind_init: + if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { + MMI->setCallsUnwindInit(true); + } + + return 0; + + case Intrinsic::eh_dwarf_cfa: { + EVT VT = getValue(I.getOperand(1)).getValueType(); + SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, + TLI.getPointerTy()); + + SDValue Offset = DAG.getNode(ISD::ADD, dl, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, + TLI.getPointerTy()), + CfaArg); + setValue(&I, DAG.getNode(ISD::ADD, dl, + TLI.getPointerTy(), + DAG.getNode(ISD::FRAMEADDR, dl, + TLI.getPointerTy(), + DAG.getConstant(0, + TLI.getPointerTy())), + Offset)); + return 0; + } + case Intrinsic::convertff: + case Intrinsic::convertfsi: + case Intrinsic::convertfui: + case Intrinsic::convertsif: + case Intrinsic::convertuif: + case Intrinsic::convertss: + case Intrinsic::convertsu: + case Intrinsic::convertus: + case Intrinsic::convertuu: { + ISD::CvtCode Code = ISD::CVT_INVALID; + switch (Intrinsic) { + case Intrinsic::convertff: Code = ISD::CVT_FF; break; + case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; + case Intrinsic::convertfui: Code = ISD::CVT_FU; break; + case Intrinsic::convertsif: Code = ISD::CVT_SF; break; + case Intrinsic::convertuif: Code = ISD::CVT_UF; break; + case Intrinsic::convertss: Code = ISD::CVT_SS; break; + case Intrinsic::convertsu: Code = ISD::CVT_SU; break; + case Intrinsic::convertus: Code = ISD::CVT_US; break; + case Intrinsic::convertuu: Code = ISD::CVT_UU; break; + } + EVT DestVT = TLI.getValueType(I.getType()); + Value* Op1 = I.getOperand(1); + setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), + DAG.getValueType(DestVT), + DAG.getValueType(getValue(Op1).getValueType()), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + Code)); + return 0; + } + + case Intrinsic::sqrt: + setValue(&I, DAG.getNode(ISD::FSQRT, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::powi: + setValue(&I, DAG.getNode(ISD::FPOWI, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)))); + return 0; + case Intrinsic::sin: + setValue(&I, DAG.getNode(ISD::FSIN, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cos: + setValue(&I, DAG.getNode(ISD::FCOS, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::log: + visitLog(I); + return 0; + case Intrinsic::log2: + visitLog2(I); + return 0; + case Intrinsic::log10: + visitLog10(I); + return 0; + case Intrinsic::exp: + visitExp(I); + return 0; + case Intrinsic::exp2: + visitExp2(I); + return 0; + case Intrinsic::pow: + visitPow(I); + return 0; + case Intrinsic::pcmarker: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::readcyclecounter: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, + DAG.getVTList(MVT::i64, MVT::Other), + &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::bswap: + setValue(&I, DAG.getNode(ISD::BSWAP, dl, + getValue(I.getOperand(1)).getValueType(), + getValue(I.getOperand(1)))); + return 0; + case Intrinsic::cttz: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctlz: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::ctpop: { + SDValue Arg = getValue(I.getOperand(1)); + EVT Ty = Arg.getValueType(); + SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); + setValue(&I, result); + return 0; + } + case Intrinsic::stacksave: { + SDValue Op = getRoot(); + SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, + DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + case Intrinsic::stackrestore: { + SDValue Tmp = getValue(I.getOperand(1)); + DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); + return 0; + } + case Intrinsic::stackprotector: { + // Emit code into the DAG to store the stack guard onto the stack. + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + EVT PtrTy = TLI.getPointerTy(); + + SDValue Src = getValue(I.getOperand(1)); // The guard's value. + AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); + + int FI = FuncInfo.StaticAllocaMap[Slot]; + MFI->setStackProtectorIndex(FI); + + SDValue FIN = DAG.getFrameIndex(FI, PtrTy); + + // Store the stack protector onto the stack. + SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, + PseudoSourceValue::getFixedStack(FI), + 0, true); + setValue(&I, Result); + DAG.setRoot(Result); + return 0; + } + case Intrinsic::objectsize: { + // If we don't know by now, we're never going to know. + ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); + + assert(CI && "Non-constant type in __builtin_object_size?"); + + SDValue Arg = getValue(I.getOperand(0)); + EVT Ty = Arg.getValueType(); + + if (CI->getZExtValue() < 2) + setValue(&I, DAG.getConstant(-1ULL, Ty)); + else + setValue(&I, DAG.getConstant(0, Ty)); + return 0; + } + case Intrinsic::var_annotation: + // Discard annotate attributes + return 0; + + case Intrinsic::init_trampoline: { + const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); + + SDValue Ops[6]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + Ops[4] = DAG.getSrcValue(I.getOperand(1)); + Ops[5] = DAG.getSrcValue(F); + + SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, + DAG.getVTList(TLI.getPointerTy(), MVT::Other), + Ops, 6); + + setValue(&I, Tmp); + DAG.setRoot(Tmp.getValue(1)); + return 0; + } + + case Intrinsic::gcroot: + if (GFI) { + Value *Alloca = I.getOperand(1); + Constant *TypeMap = cast<Constant>(I.getOperand(2)); + + FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); + GFI->addStackRoot(FI->getIndex(), TypeMap); + } + return 0; + + case Intrinsic::gcread: + case Intrinsic::gcwrite: + llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); + return 0; + + case Intrinsic::flt_rounds: { + setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); + return 0; + } + + case Intrinsic::trap: { + DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); + return 0; + } + + case Intrinsic::uadd_with_overflow: + return implVisitAluOverflow(I, ISD::UADDO); + case Intrinsic::sadd_with_overflow: + return implVisitAluOverflow(I, ISD::SADDO); + case Intrinsic::usub_with_overflow: + return implVisitAluOverflow(I, ISD::USUBO); + case Intrinsic::ssub_with_overflow: + return implVisitAluOverflow(I, ISD::SSUBO); + case Intrinsic::umul_with_overflow: + return implVisitAluOverflow(I, ISD::UMULO); + case Intrinsic::smul_with_overflow: + return implVisitAluOverflow(I, ISD::SMULO); + + case Intrinsic::prefetch: { + SDValue Ops[4]; + Ops[0] = getRoot(); + Ops[1] = getValue(I.getOperand(1)); + Ops[2] = getValue(I.getOperand(2)); + Ops[3] = getValue(I.getOperand(3)); + DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); + return 0; + } + + case Intrinsic::memory_barrier: { + SDValue Ops[6]; + Ops[0] = getRoot(); + for (int x = 1; x < 6; ++x) + Ops[x] = getValue(I.getOperand(x)); + + DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); + return 0; + } + case Intrinsic::atomic_cmp_swap: { + SDValue Root = getRoot(); + SDValue L = + DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), + getValue(I.getOperand(2)).getValueType().getSimpleVT(), + Root, + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + getValue(I.getOperand(3)), + I.getOperand(1)); + setValue(&I, L); + DAG.setRoot(L.getValue(1)); + return 0; + } + case Intrinsic::atomic_load_add: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); + case Intrinsic::atomic_load_sub: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); + case Intrinsic::atomic_load_or: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); + case Intrinsic::atomic_load_xor: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); + case Intrinsic::atomic_load_and: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); + case Intrinsic::atomic_load_nand: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); + case Intrinsic::atomic_load_max: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); + case Intrinsic::atomic_load_min: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); + case Intrinsic::atomic_load_umin: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); + case Intrinsic::atomic_load_umax: + return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); + case Intrinsic::atomic_swap: + return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); + + case Intrinsic::invariant_start: + case Intrinsic::lifetime_start: + // Discard region information. + setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); + return 0; + case Intrinsic::invariant_end: + case Intrinsic::lifetime_end: + // Discard region information. + return 0; + } +} + +/// Test if the given instruction is in a position to be optimized +/// with a tail-call. This roughly means that it's in a block with +/// a return and there's nothing that needs to be scheduled +/// between it and the return. +/// +/// This function only tests target-independent requirements. +/// For target-dependent requirements, a target should override +/// TargetLowering::IsEligibleForTailCallOptimization. +/// +static bool +isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, + const TargetLowering &TLI) { + const BasicBlock *ExitBB = I->getParent(); + const TerminatorInst *Term = ExitBB->getTerminator(); + const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); + const Function *F = ExitBB->getParent(); + + // The block must end in a return statement or an unreachable. + if (!Ret && !isa<UnreachableInst>(Term)) return false; + + // If I will have a chain, make sure no other instruction that will have a + // chain interposes between I and the return. + if (I->mayHaveSideEffects() || I->mayReadFromMemory() || + !I->isSafeToSpeculativelyExecute()) + for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; + --BBI) { + if (&*BBI == I) + break; + if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || + !BBI->isSafeToSpeculativelyExecute()) + return false; + } + + // If the block ends with a void return or unreachable, it doesn't matter + // what the call's return type is. + if (!Ret || Ret->getNumOperands() == 0) return true; + + // If the return value is undef, it doesn't matter what the call's + // return type is. + if (isa<UndefValue>(Ret->getOperand(0))) return true; + + // Conservatively require the attributes of the call to match those of + // the return. Ignore noalias because it doesn't affect the call sequence. + unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); + if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) + return false; + + // Otherwise, make sure the unmodified return value of I is the return value. + for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; + U = dyn_cast<Instruction>(U->getOperand(0))) { + if (!U) + return false; + if (!U->hasOneUse()) + return false; + if (U == I) + break; + // Check for a truly no-op truncate. + if (isa<TruncInst>(U) && + TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) + continue; + // Check for a truly no-op bitcast. + if (isa<BitCastInst>(U) && + (U->getOperand(0)->getType() == U->getType() || + (isa<PointerType>(U->getOperand(0)->getType()) && + isa<PointerType>(U->getType())))) + continue; + // Otherwise it's not a true no-op. + return false; + } + + return true; +} + +void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, + bool isTailCall, + MachineBasicBlock *LandingPad) { + const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + const Type *RetTy = FTy->getReturnType(); + MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); + unsigned BeginLabel = 0, EndLabel = 0; + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Args.reserve(CS.arg_size()); + + // Check whether the function can return without sret-demotion. + SmallVector<EVT, 4> OutVTs; + SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; + SmallVector<uint64_t, 4> Offsets; + getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), + OutVTs, OutsFlags, TLI, &Offsets); + + + bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), + FTy->isVarArg(), OutVTs, OutsFlags, DAG); + + SDValue DemoteStackSlot; + + if (!CanLowerReturn) { + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( + FTy->getReturnType()); + unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( + FTy->getReturnType()); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); + + DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); + Entry.Node = DemoteStackSlot; + Entry.Ty = StackSlotPtrType; + Entry.isSExt = false; + Entry.isZExt = false; + Entry.isInReg = false; + Entry.isSRet = true; + Entry.isNest = false; + Entry.isByVal = false; + Entry.Alignment = Align; + Args.push_back(Entry); + RetTy = Type::getVoidTy(FTy->getContext()); + } + + for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + SDValue ArgNode = getValue(*i); + Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); + + unsigned attrInd = i - CS.arg_begin() + 1; + Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); + Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); + Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); + Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); + Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); + Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); + Entry.Alignment = CS.getParamAlignment(attrInd); + Args.push_back(Entry); + } + + if (LandingPad && MMI) { + // Insert a label before the invoke call to mark the try range. This can be + // used to detect deletion of the invoke via the MachineModuleInfo. + BeginLabel = MMI->NextLabelID(); + + // Both PendingLoads and PendingExports must be flushed here; + // this call might not return. + (void)getRoot(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), + getControlRoot(), BeginLabel)); + } + + // Check if target-independent constraints permit a tail call here. + // Target-dependent constraints are checked within TLI.LowerCallTo. + if (isTailCall && + !isInTailCallPosition(CS.getInstruction(), + CS.getAttributes().getRetAttributes(), + TLI)) + isTailCall = false; + + std::pair<SDValue,SDValue> Result = + TLI.LowerCallTo(getRoot(), RetTy, + CS.paramHasAttr(0, Attribute::SExt), + CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), + CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), + CS.getCallingConv(), + isTailCall, + !CS.getInstruction()->use_empty(), + Callee, Args, DAG, getCurDebugLoc()); + assert((isTailCall || Result.second.getNode()) && + "Non-null chain expected with non-tail call!"); + assert((Result.second.getNode() || !Result.first.getNode()) && + "Null value expected with tail call!"); + if (Result.first.getNode()) + setValue(CS.getInstruction(), Result.first); + else if (!CanLowerReturn && Result.second.getNode()) { + // The instruction result is the result of loading from the + // hidden sret parameter. + SmallVector<EVT, 1> PVTs; + const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); + + ComputeValueVTs(TLI, PtrRetTy, PVTs); + assert(PVTs.size() == 1 && "Pointers should fit in one register"); + EVT PtrVT = PVTs[0]; + unsigned NumValues = OutVTs.size(); + SmallVector<SDValue, 4> Values(NumValues); + SmallVector<SDValue, 4> Chains(NumValues); + + for (unsigned i = 0; i < NumValues; ++i) { + SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, + DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, + DAG.getConstant(Offsets[i], PtrVT)), + NULL, Offsets[i], false, 1); + Values[i] = L; + Chains[i] = L.getValue(1); + } + SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), + MVT::Other, &Chains[0], NumValues); + PendingLoads.push_back(Chain); + + setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, + getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), + &Values[0], NumValues)); + } + // As a special case, a null chain means that a tail call has + // been emitted and the DAG root is already updated. + if (Result.second.getNode()) + DAG.setRoot(Result.second); + else + HasTailCall = true; + + if (LandingPad && MMI) { + // Insert a label at the end of the invoke call to mark the try range. This + // can be used to detect deletion of the invoke via the MachineModuleInfo. + EndLabel = MMI->NextLabelID(); + DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), + getRoot(), EndLabel)); + + // Inform MachineModuleInfo of range. + MMI->addInvoke(LandingPad, BeginLabel, EndLabel); + } +} + + +void SelectionDAGBuilder::visitCall(CallInst &I) { + const char *RenameFn = 0; + if (Function *F = I.getCalledFunction()) { + if (F->isDeclaration()) { + const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); + if (II) { + if (unsigned IID = II->getIntrinsicID(F)) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + if (unsigned IID = F->getIntrinsicID()) { + RenameFn = visitIntrinsicCall(I, IID); + if (!RenameFn) + return; + } + } + + // Check for well-known libc/libm calls. If the function is internal, it + // can't be a library call. + if (!F->hasLocalLinkage() && F->hasName()) { + StringRef Name = F->getName(); + if (Name == "copysign" || Name == "copysignf") { + if (I.getNumOperands() == 3 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.getType() == I.getOperand(2)->getType()) { + SDValue LHS = getValue(I.getOperand(1)); + SDValue RHS = getValue(I.getOperand(2)); + setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), + LHS.getValueType(), LHS, RHS)); + return; + } + } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { + if (I.getNumOperands() == 2 && // Basic sanity checks. + I.getOperand(1)->getType()->isFloatingPoint() && + I.getType() == I.getOperand(1)->getType() && + I.onlyReadsMemory()) { + SDValue Tmp = getValue(I.getOperand(1)); + setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), + Tmp.getValueType(), Tmp)); + return; + } + } + } + } else if (isa<InlineAsm>(I.getOperand(0))) { + visitInlineAsm(&I); + return; + } + + SDValue Callee; + if (!RenameFn) + Callee = getValue(I.getOperand(0)); + else + Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); + + // Check if we can potentially perform a tail call. More detailed + // checking is be done within LowerCallTo, after more information + // about the call is known. + bool isTailCall = PerformTailCallOpt && I.isTailCall(); + + LowerCallTo(&I, Callee, isTailCall); +} + + +/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from +/// this value and returns the result as a ValueVT value. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, + SDValue *Flag) const { + // Assemble the legal parts into the final values. + SmallVector<SDValue, 4> Values(ValueVTs.size()); + SmallVector<SDValue, 8> Parts; + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + // Copy the legal parts from the registers. + EVT ValueVT = ValueVTs[Value]; + unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); + EVT RegisterVT = RegVTs[Value]; + + Parts.resize(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue P; + if (Flag == 0) + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); + else { + P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); + *Flag = P.getValue(2); + } + Chain = P.getValue(1); + + // If the source register was virtual and if we know something about it, + // add an assert node. + if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && + RegisterVT.isInteger() && !RegisterVT.isVector()) { + unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + if (FLI.LiveOutRegInfo.size() > SlotNo) { + FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; + + unsigned RegSize = RegisterVT.getSizeInBits(); + unsigned NumSignBits = LOI.NumSignBits; + unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); + + // FIXME: We capture more information than the dag can represent. For + // now, just use the tightest assertzext/assertsext possible. + bool isSExt = true; + EVT FromVT(MVT::Other); + if (NumSignBits == RegSize) + isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 + else if (NumZeroBits >= RegSize-1) + isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 + else if (NumSignBits > RegSize-8) + isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 + else if (NumZeroBits >= RegSize-8) + isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 + else if (NumSignBits > RegSize-16) + isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 + else if (NumZeroBits >= RegSize-16) + isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 + else if (NumSignBits > RegSize-32) + isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 + else if (NumZeroBits >= RegSize-32) + isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 + + if (FromVT != MVT::Other) { + P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, + RegisterVT, P, DAG.getValueType(FromVT)); + + } + } + } + + Parts[i] = P; + } + + Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), + NumRegs, RegisterVT, ValueVT); + Part += NumRegs; + Parts.clear(); + } + + return DAG.getNode(ISD::MERGE_VALUES, dl, + DAG.getVTList(&ValueVTs[0], ValueVTs.size()), + &Values[0], ValueVTs.size()); +} + +/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the +/// specified value into the registers specified by this object. This uses +/// Chain/Flag as the input and updates them for the output Chain/Flag. +/// If the Flag pointer is NULL, no flag is used. +void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, + SDValue &Chain, SDValue *Flag) const { + // Get the list of the values's legal parts. + unsigned NumRegs = Regs.size(); + SmallVector<SDValue, 8> Parts(NumRegs); + for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { + EVT ValueVT = ValueVTs[Value]; + unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); + EVT RegisterVT = RegVTs[Value]; + + getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), + &Parts[Part], NumParts, RegisterVT); + Part += NumParts; + } + + // Copy the parts into the registers. + SmallVector<SDValue, 8> Chains(NumRegs); + for (unsigned i = 0; i != NumRegs; ++i) { + SDValue Part; + if (Flag == 0) + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); + else { + Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); + *Flag = Part.getValue(1); + } + Chains[i] = Part.getValue(0); + } + + if (NumRegs == 1 || Flag) + // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is + // flagged to it. That is the CopyToReg nodes and the user are considered + // a single scheduling unit. If we create a TokenFactor and return it as + // chain, then the TokenFactor is both a predecessor (operand) of the + // user as well as a successor (the TF operands are flagged to the user). + // c1, f1 = CopyToReg + // c2, f2 = CopyToReg + // c3 = TokenFactor c1, c2 + // ... + // = op c3, ..., f2 + Chain = Chains[NumRegs-1]; + else + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); +} + +/// AddInlineAsmOperands - Add this value to the specified inlineasm node +/// operand list. This adds the code marker and includes the number of +/// values added into it. +void RegsForValue::AddInlineAsmOperands(unsigned Code, + bool HasMatching,unsigned MatchingIdx, + SelectionDAG &DAG, + std::vector<SDValue> &Ops) const { + EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); + assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); + unsigned Flag = Code | (Regs.size() << 3); + if (HasMatching) + Flag |= 0x80000000 | (MatchingIdx << 16); + Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); + for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { + unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); + EVT RegisterVT = RegVTs[Value]; + for (unsigned i = 0; i != NumRegs; ++i) { + assert(Reg < Regs.size() && "Mismatch in # registers expected"); + Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); + } + } +} + +/// isAllocatableRegister - If the specified register is safe to allocate, +/// i.e. it isn't a stack pointer or some other special register, return the +/// register class for the register. Otherwise, return null. +static const TargetRegisterClass * +isAllocatableRegister(unsigned Reg, MachineFunction &MF, + const TargetLowering &TLI, + const TargetRegisterInfo *TRI) { + EVT FoundVT = MVT::Other; + const TargetRegisterClass *FoundRC = 0; + for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), + E = TRI->regclass_end(); RCI != E; ++RCI) { + EVT ThisVT = MVT::Other; + + const TargetRegisterClass *RC = *RCI; + // If none of the the value types for this register class are valid, we + // can't use it. For example, 64-bit reg classes on 32-bit targets. + for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); + I != E; ++I) { + if (TLI.isTypeLegal(*I)) { + // If we have already found this register in a different register class, + // choose the one with the largest VT specified. For example, on + // PowerPC, we favor f64 register classes over f32. + if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { + ThisVT = *I; + break; + } + } + } + + if (ThisVT == MVT::Other) continue; + + // NOTE: This isn't ideal. In particular, this might allocate the + // frame pointer in functions that need it (due to them not being taken + // out of allocation, because a variable sized allocation hasn't been seen + // yet). This is a slight code pessimization, but should still work. + for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), + E = RC->allocation_order_end(MF); I != E; ++I) + if (*I == Reg) { + // We found a matching register class. Keep looking at others in case + // we find one with larger registers that this physreg is also in. + FoundRC = RC; + FoundVT = ThisVT; + break; + } + } + return FoundRC; +} + + +namespace llvm { +/// AsmOperandInfo - This contains information for each constraint that we are +/// lowering. +class VISIBILITY_HIDDEN SDISelAsmOperandInfo : + public TargetLowering::AsmOperandInfo { +public: + /// CallOperand - If this is the result output operand or a clobber + /// this is null, otherwise it is the incoming operand to the CallInst. + /// This gets modified as the asm is processed. + SDValue CallOperand; + + /// AssignedRegs - If this is a register or register class operand, this + /// contains the set of register corresponding to the operand. + RegsForValue AssignedRegs; + + explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) + : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { + } + + /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers + /// busy in OutputRegs/InputRegs. + void MarkAllocatedRegs(bool isOutReg, bool isInReg, + std::set<unsigned> &OutputRegs, + std::set<unsigned> &InputRegs, + const TargetRegisterInfo &TRI) const { + if (isOutReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); + } + if (isInReg) { + for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) + MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); + } + } + + /// getCallOperandValEVT - Return the EVT of the Value* that this operand + /// corresponds to. If there is no Value* for this operand, it returns + /// MVT::Other. + EVT getCallOperandValEVT(LLVMContext &Context, + const TargetLowering &TLI, + const TargetData *TD) const { + if (CallOperandVal == 0) return MVT::Other; + + if (isa<BasicBlock>(CallOperandVal)) + return TLI.getPointerTy(); + + const llvm::Type *OpTy = CallOperandVal->getType(); + + // If this is an indirect operand, the operand is a pointer to the + // accessed type. + if (isIndirect) + OpTy = cast<PointerType>(OpTy)->getElementType(); + + // If OpTy is not a single value, it may be a struct/union that we + // can tile with integers. + if (!OpTy->isSingleValueType() && OpTy->isSized()) { + unsigned BitSize = TD->getTypeSizeInBits(OpTy); + switch (BitSize) { + default: break; + case 1: + case 8: + case 16: + case 32: + case 64: + case 128: + OpTy = IntegerType::get(Context, BitSize); + break; + } + } + + return TLI.getValueType(OpTy, true); + } + +private: + /// MarkRegAndAliases - Mark the specified register and all aliases in the + /// specified set. + static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, + const TargetRegisterInfo &TRI) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); + Regs.insert(Reg); + if (const unsigned *Aliases = TRI.getAliasSet(Reg)) + for (; *Aliases; ++Aliases) + Regs.insert(*Aliases); + } +}; +} // end llvm namespace. + + +/// GetRegistersForValue - Assign registers (virtual or physical) for the +/// specified operand. We prefer to assign virtual registers, to allow the +/// register allocator handle the assignment process. However, if the asm uses +/// features that we can't model on machineinstrs, we have SDISel do the +/// allocation. This produces generally horrible, but correct, code. +/// +/// OpInfo describes the operand. +/// Input and OutputRegs are the set of already allocated physical registers. +/// +void SelectionDAGBuilder:: +GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, + std::set<unsigned> &OutputRegs, + std::set<unsigned> &InputRegs) { + LLVMContext &Context = FuncInfo.Fn->getContext(); + + // Compute whether this value requires an input register, an output register, + // or both. + bool isOutReg = false; + bool isInReg = false; + switch (OpInfo.Type) { + case InlineAsm::isOutput: + isOutReg = true; + + // If there is an input constraint that matches this, we need to reserve + // the input register so no other inputs allocate to it. + isInReg = OpInfo.hasMatchingInput(); + break; + case InlineAsm::isInput: + isInReg = true; + isOutReg = false; + break; + case InlineAsm::isClobber: + isOutReg = true; + isInReg = true; + break; + } + + + MachineFunction &MF = DAG.getMachineFunction(); + SmallVector<unsigned, 4> Regs; + + // If this is a constraint for a single physreg, or a constraint for a + // register class, find it. + std::pair<unsigned, const TargetRegisterClass*> PhysReg = + TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + unsigned NumRegs = 1; + if (OpInfo.ConstraintVT != MVT::Other) { + // If this is a FP input in an integer register (or visa versa) insert a bit + // cast of the input value. More generally, handle any case where the input + // value disagrees with the register class we plan to stick this in. + if (OpInfo.Type == InlineAsm::isInput && + PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { + // Try to convert to the first EVT that the reg class contains. If the + // types are identical size, use a bitcast to convert (e.g. two differing + // vector types). + EVT RegVT = *PhysReg.second->vt_begin(); + if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { + OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { + // If the input is a FP value and we want it in FP registers, do a + // bitcast to the corresponding integer type. This turns an f64 value + // into i64, which can be passed with two i32 values on a 32-bit + // machine. + RegVT = EVT::getIntegerVT(Context, + OpInfo.ConstraintVT.getSizeInBits()); + OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + RegVT, OpInfo.CallOperand); + OpInfo.ConstraintVT = RegVT; + } + } + + NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); + } + + EVT RegVT; + EVT ValueVT = OpInfo.ConstraintVT; + + // If this is a constraint for a specific physical register, like {r17}, + // assign it now. + if (unsigned AssignedReg = PhysReg.first) { + const TargetRegisterClass *RC = PhysReg.second; + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = *RC->vt_begin(); + + // Get the actual register value type. This is important, because the user + // may have asked for (e.g.) the AX register in i32 type. We need to + // remember that AX is actually i16 to get the right extension. + RegVT = *RC->vt_begin(); + + // This is a explicit reference to a physical register. + Regs.push_back(AssignedReg); + + // If this is an expanded reference, add the rest of the regs to Regs. + if (NumRegs != 1) { + TargetRegisterClass::iterator I = RC->begin(); + for (; *I != AssignedReg; ++I) + assert(I != RC->end() && "Didn't find reg!"); + + // Already added the first reg. + --NumRegs; ++I; + for (; NumRegs; --NumRegs, ++I) { + assert(I != RC->end() && "Ran out of registers to allocate!"); + Regs.push_back(*I); + } + } + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + + // Otherwise, if this was a reference to an LLVM register class, create vregs + // for this reference. + if (const TargetRegisterClass *RC = PhysReg.second) { + RegVT = *RC->vt_begin(); + if (OpInfo.ConstraintVT == MVT::Other) + ValueVT = RegVT; + + // Create the appropriate number of virtual registers. + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + for (; NumRegs; --NumRegs) + Regs.push_back(RegInfo.createVirtualRegister(RC)); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); + return; + } + + // This is a reference to a register class that doesn't directly correspond + // to an LLVM register class. Allocate NumRegs consecutive, available, + // registers from the class. + std::vector<unsigned> RegClassRegs + = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, + OpInfo.ConstraintVT); + + const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); + unsigned NumAllocated = 0; + for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { + unsigned Reg = RegClassRegs[i]; + // See if this register is available. + if ((isOutReg && OutputRegs.count(Reg)) || // Already used. + (isInReg && InputRegs.count(Reg))) { // Already used. + // Make sure we find consecutive registers. + NumAllocated = 0; + continue; + } + + // Check to see if this register is allocatable (i.e. don't give out the + // stack pointer). + const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); + if (!RC) { // Couldn't allocate this register. + // Reset NumAllocated to make sure we return consecutive registers. + NumAllocated = 0; + continue; + } + + // Okay, this register is good, we can use it. + ++NumAllocated; + + // If we allocated enough consecutive registers, succeed. + if (NumAllocated == NumRegs) { + unsigned RegStart = (i-NumAllocated)+1; + unsigned RegEnd = i+1; + // Mark all of the allocated registers used. + for (unsigned i = RegStart; i != RegEnd; ++i) + Regs.push_back(RegClassRegs[i]); + + OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), + OpInfo.ConstraintVT); + OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); + return; + } + } + + // Otherwise, we couldn't allocate enough registers for this. +} + +/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being +/// processed uses a memory 'm' constraint. +static bool +hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, + const TargetLowering &TLI) { + for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { + InlineAsm::ConstraintInfo &CI = CInfos[i]; + for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { + TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); + if (CType == TargetLowering::C_Memory) + return true; + } + + // Indirect operand accesses access memory. + if (CI.isIndirect) + return true; + } + + return false; +} + +/// visitInlineAsm - Handle a call to an InlineAsm object. +/// +void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { + InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); + + /// ConstraintOperands - Information about all of the constraints. + std::vector<SDISelAsmOperandInfo> ConstraintOperands; + + std::set<unsigned> OutputRegs, InputRegs; + + // Do a prepass over the constraints, canonicalizing them, and building up the + // ConstraintOperands list. + std::vector<InlineAsm::ConstraintInfo> + ConstraintInfos = IA->ParseConstraints(); + + bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); + + SDValue Chain, Flag; + + // We won't need to flush pending loads if this asm doesn't touch + // memory and is nonvolatile. + if (hasMemory || IA->hasSideEffects()) + Chain = getRoot(); + else + Chain = DAG.getRoot(); + + unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. + unsigned ResNo = 0; // ResNo - The result number of the next output. + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); + SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); + + EVT OpVT = MVT::Other; + + // Compute the value type for each operand. + switch (OpInfo.Type) { + case InlineAsm::isOutput: + // Indirect outputs just consume an argument. + if (OpInfo.isIndirect) { + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + } + + // The return value of the call is this value. As such, there is no + // corresponding argument. + assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && + "Bad inline asm!"); + if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { + OpVT = TLI.getValueType(STy->getElementType(ResNo)); + } else { + assert(ResNo == 0 && "Asm only has one result!"); + OpVT = TLI.getValueType(CS.getType()); + } + ++ResNo; + break; + case InlineAsm::isInput: + OpInfo.CallOperandVal = CS.getArgument(ArgNo++); + break; + case InlineAsm::isClobber: + // Nothing to do. + break; + } + + // If this is an input or an indirect output, process the call argument. + // BasicBlocks are labels, currently appearing only in asm's. + if (OpInfo.CallOperandVal) { + // Strip bitcasts, if any. This mostly comes up for functions. + OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); + + if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { + OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); + } else { + OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); + } + + OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); + } + + OpInfo.ConstraintVT = OpVT; + } + + // Second pass over the constraints: compute which constraint option to use + // and assign registers to constraints that want a specific physreg. + for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // If this is an output operand with a matching input operand, look up the + // matching input. If their types mismatch, e.g. one is an integer, the + // other is floating point, or their sizes are different, flag it as an + // error. + if (OpInfo.hasMatchingInput()) { + SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; + if (OpInfo.ConstraintVT != Input.ConstraintVT) { + if ((OpInfo.ConstraintVT.isInteger() != + Input.ConstraintVT.isInteger()) || + (OpInfo.ConstraintVT.getSizeInBits() != + Input.ConstraintVT.getSizeInBits())) { + llvm_report_error("Unsupported asm: input constraint" + " with a matching output constraint of incompatible" + " type!"); + } + Input.ConstraintVT = OpInfo.ConstraintVT; + } + } + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); + + // If this is a memory input, and if the operand is not indirect, do what we + // need to to provide an address for the memory input. + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + !OpInfo.isIndirect) { + assert(OpInfo.Type == InlineAsm::isInput && + "Can only indirectify direct input operands!"); + + // Memory operands really want the address of the value. If we don't have + // an indirect input, put it in the constpool if we can, otherwise spill + // it to a stack slot. + + // If the operand is a float, integer, or vector constant, spill to a + // constant pool entry to get its address. + Value *OpVal = OpInfo.CallOperandVal; + if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || + isa<ConstantVector>(OpVal)) { + OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), + TLI.getPointerTy()); + } else { + // Otherwise, create a stack slot and emit a store to it before the + // asm. + const Type *Ty = OpVal->getType(); + uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); + unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); + Chain = DAG.getStore(Chain, getCurDebugLoc(), + OpInfo.CallOperand, StackSlot, NULL, 0); + OpInfo.CallOperand = StackSlot; + } + + // There is no longer a Value* corresponding to this operand. + OpInfo.CallOperandVal = 0; + // It is now an indirect operand. + OpInfo.isIndirect = true; + } + + // If this constraint is for a specific register, allocate it before + // anything else. + if (OpInfo.ConstraintType == TargetLowering::C_Register) + GetRegistersForValue(OpInfo, OutputRegs, InputRegs); + } + ConstraintInfos.clear(); + + + // Second pass - Loop over all of the operands, assigning virtual or physregs + // to register class operands. + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + // C_Register operands have already been allocated, Other/Memory don't need + // to be. + if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) + GetRegistersForValue(OpInfo, OutputRegs, InputRegs); + } + + // AsmNodeOperands - The operands for the ISD::INLINEASM node. + std::vector<SDValue> AsmNodeOperands; + AsmNodeOperands.push_back(SDValue()); // reserve space for input chain + AsmNodeOperands.push_back( + DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); + + + // Loop over all of the inputs, copying the operand values into the + // appropriate registers and processing the output regs. + RegsForValue RetValRegs; + + // IndirectStoresToEmit - The set of stores to emit after the inline asm node. + std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; + + for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { + SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; + + switch (OpInfo.Type) { + case InlineAsm::isOutput: { + if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && + OpInfo.ConstraintType != TargetLowering::C_Register) { + // Memory output, or 'other' output (e.g. 'X' constraint). + assert(OpInfo.isIndirect && "Memory output must be indirect operand"); + + // Add information to the INLINEASM node to know about this output. + unsigned ResOpType = 4/*MEM*/ | (1<<3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(OpInfo.CallOperand); + break; + } + + // Otherwise, this is a register or register class output. + + // Copy the output from the appropriate register. Find a register that + // we can use. + if (OpInfo.AssignedRegs.Regs.empty()) { + llvm_report_error("Couldn't allocate output reg for" + " constraint '" + OpInfo.ConstraintCode + "'!"); + } + + // If this is an indirect operand, store through the pointer after the + // asm. + if (OpInfo.isIndirect) { + IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, + OpInfo.CallOperandVal)); + } else { + // This is the result value of the call. + assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && + "Bad inline asm!"); + // Concatenate this output onto the outputs list. + RetValRegs.append(OpInfo.AssignedRegs); + } + + // Add information to the INLINEASM node to know that this register is + // set. + OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? + 6 /* EARLYCLOBBER REGDEF */ : + 2 /* REGDEF */ , + false, + 0, + DAG, AsmNodeOperands); + break; + } + case InlineAsm::isInput: { + SDValue InOperandVal = OpInfo.CallOperand; + + if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? + // If this is required to match an output register we have already set, + // just use its register. + unsigned OperandNo = OpInfo.getMatchedOperand(); + + // Scan until we find the definition we already emitted of this operand. + // When we find it, create a RegsForValue operand. + unsigned CurOp = 2; // The first operand. + for (; OperandNo; --OperandNo) { + // Advance to the next operand. + unsigned OpFlag = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); + assert(((OpFlag & 7) == 2 /*REGDEF*/ || + (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || + (OpFlag & 7) == 4 /*MEM*/) && + "Skipped past definitions?"); + CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; + } + + unsigned OpFlag = + cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); + if ((OpFlag & 7) == 2 /*REGDEF*/ + || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { + // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. + if (OpInfo.isIndirect) { + llvm_report_error("Don't know how to handle tied indirect " + "register inputs yet!"); + } + RegsForValue MatchedRegs; + MatchedRegs.TLI = &TLI; + MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); + EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); + MatchedRegs.RegVTs.push_back(RegVT); + MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); + for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); + i != e; ++i) + MatchedRegs.Regs. + push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); + + // Use the produced MatchedRegs object to + MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), + Chain, &Flag); + MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, + true, OpInfo.getMatchedOperand(), + DAG, AsmNodeOperands); + break; + } else { + assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); + assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && + "Unexpected number of operands"); + // Add information to the INLINEASM node to know about this input. + // See InlineAsm.h isUseOperandTiedToDef. + OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); + AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, + TLI.getPointerTy())); + AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); + break; + } + } + + if (OpInfo.ConstraintType == TargetLowering::C_Other) { + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect other inputs yet!"); + + std::vector<SDValue> Ops; + TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], + hasMemory, Ops, DAG); + if (Ops.empty()) { + llvm_report_error("Invalid operand for inline asm" + " constraint '" + OpInfo.ConstraintCode + "'!"); + } + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); + break; + } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { + assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); + assert(InOperandVal.getValueType() == TLI.getPointerTy() && + "Memory operands expect pointer values"); + + // Add information to the INLINEASM node to know about this input. + unsigned ResOpType = 4/*MEM*/ | (1<<3); + AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, + TLI.getPointerTy())); + AsmNodeOperands.push_back(InOperandVal); + break; + } + + assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || + OpInfo.ConstraintType == TargetLowering::C_Register) && + "Unknown constraint type!"); + assert(!OpInfo.isIndirect && + "Don't know how to handle indirect register inputs yet!"); + + // Copy the input into the appropriate registers. + if (OpInfo.AssignedRegs.Regs.empty()) { + llvm_report_error("Couldn't allocate input reg for" + " constraint '"+ OpInfo.ConstraintCode +"'!"); + } + + OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), + Chain, &Flag); + + OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, + DAG, AsmNodeOperands); + break; + } + case InlineAsm::isClobber: { + // Add the clobbered value to the operand list, so that the register + // allocator is aware that the physreg got clobbered. + if (!OpInfo.AssignedRegs.Regs.empty()) + OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, + false, 0, DAG,AsmNodeOperands); + break; + } + } + } + + // Finish up input operands. + AsmNodeOperands[0] = Chain; + if (Flag.getNode()) AsmNodeOperands.push_back(Flag); + + Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), + DAG.getVTList(MVT::Other, MVT::Flag), + &AsmNodeOperands[0], AsmNodeOperands.size()); + Flag = Chain.getValue(1); + + // If this asm returns a register value, copy the result from that register + // and set it as the value of the call. + if (!RetValRegs.Regs.empty()) { + SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), + Chain, &Flag); + + // FIXME: Why don't we do this for inline asms with MRVs? + if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { + EVT ResultType = TLI.getValueType(CS.getType()); + + // If any of the results of the inline asm is a vector, it may have the + // wrong width/num elts. This can happen for register classes that can + // contain multiple different value types. The preg or vreg allocated may + // not have the same VT as was expected. Convert it to the right type + // with bit_convert. + if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { + Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), + ResultType, Val); + + } else if (ResultType != Val.getValueType() && + ResultType.isInteger() && Val.getValueType().isInteger()) { + // If a result value was tied to an input value, the computed result may + // have a wider width than the expected result. Extract the relevant + // portion. + Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); + } + + assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); + } + + setValue(CS.getInstruction(), Val); + // Don't need to use this as a chain in this case. + if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) + return; + } + + std::vector<std::pair<SDValue, Value*> > StoresToEmit; + + // Process indirect outputs, first output all of the flagged copies out of + // physregs. + for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { + RegsForValue &OutRegs = IndirectStoresToEmit[i].first; + Value *Ptr = IndirectStoresToEmit[i].second; + SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), + Chain, &Flag); + StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); + + } + + // Emit the non-flagged stores from the physregs. + SmallVector<SDValue, 8> OutChains; + for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) + OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), + StoresToEmit[i].first, + getValue(StoresToEmit[i].second), + StoresToEmit[i].second, 0)); + if (!OutChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, + &OutChains[0], OutChains.size()); + DAG.setRoot(Chain); +} + +void SelectionDAGBuilder::visitVAStart(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { + SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), + getRoot(), getValue(I.getOperand(0)), + DAG.getSrcValue(I.getOperand(0))); + setValue(&I, V); + DAG.setRoot(V.getValue(1)); +} + +void SelectionDAGBuilder::visitVAEnd(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(1)))); +} + +void SelectionDAGBuilder::visitVACopy(CallInst &I) { + DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), + MVT::Other, getRoot(), + getValue(I.getOperand(1)), + getValue(I.getOperand(2)), + DAG.getSrcValue(I.getOperand(1)), + DAG.getSrcValue(I.getOperand(2)))); +} + +/// TargetLowering::LowerCallTo - This is the default LowerCallTo +/// implementation, which just calls LowerCall. +/// FIXME: When all targets are +/// migrated to using LowerCall, this hook should be integrated into SDISel. +std::pair<SDValue, SDValue> +TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, + bool RetSExt, bool RetZExt, bool isVarArg, + bool isInreg, unsigned NumFixedArgs, + CallingConv::ID CallConv, bool isTailCall, + bool isReturnValueUsed, + SDValue Callee, + ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { + + assert((!isTailCall || PerformTailCallOpt) && + "isTailCall set when tail-call optimizations are disabled!"); + + // Handle all of the outgoing arguments. + SmallVector<ISD::OutputArg, 32> Outs; + for (unsigned i = 0, e = Args.size(); i != e; ++i) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(*this, Args[i].Ty, ValueVTs); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); + SDValue Op = SDValue(Args[i].Node.getNode(), + Args[i].Node.getResNo() + Value); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + getTargetData()->getABITypeAlignment(ArgTy); + + if (Args[i].isZExt) + Flags.setZExt(); + if (Args[i].isSExt) + Flags.setSExt(); + if (Args[i].isInReg) + Flags.setInReg(); + if (Args[i].isSRet) + Flags.setSRet(); + if (Args[i].isByVal) { + Flags.setByVal(); + const PointerType *Ty = cast<PointerType>(Args[i].Ty); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = getByValTypeAlignment(ElementTy); + unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); + // For ByVal, alignment should come from FE. BE will guess if this + // info is not there but there are cases it cannot get right. + if (Args[i].Alignment) + FrameAlign = Args[i].Alignment; + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (Args[i].isNest) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + EVT PartVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); + SmallVector<SDValue, 4> Parts(NumParts); + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (Args[i].isSExt) + ExtendKind = ISD::SIGN_EXTEND; + else if (Args[i].isZExt) + ExtendKind = ISD::ZERO_EXTEND; + + getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); + + for (unsigned j = 0; j != NumParts; ++j) { + // if it isn't first piece, alignment must be 1 + ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); + if (NumParts > 1 && j == 0) + MyFlags.Flags.setSplit(); + else if (j != 0) + MyFlags.Flags.setOrigAlign(1); + + Outs.push_back(MyFlags); + } + } + } + + // Handle the incoming return values from the call. + SmallVector<ISD::InputArg, 32> Ins; + SmallVector<EVT, 4> RetTys; + ComputeValueVTs(*this, RetTy, RetTys); + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags; + MyFlags.VT = RegisterVT; + MyFlags.Used = isReturnValueUsed; + if (RetSExt) + MyFlags.Flags.setSExt(); + if (RetZExt) + MyFlags.Flags.setZExt(); + if (isInreg) + MyFlags.Flags.setInReg(); + Ins.push_back(MyFlags); + } + } + + // Check if target-dependent constraints permit a tail call here. + // Target-independent constraints should be checked by the caller. + if (isTailCall && + !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) + isTailCall = false; + + SmallVector<SDValue, 4> InVals; + Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, + Outs, Ins, dl, DAG, InVals); + + // Verify that the target's LowerCall behaved as expected. + assert(Chain.getNode() && Chain.getValueType() == MVT::Other && + "LowerCall didn't return a valid chain!"); + assert((!isTailCall || InVals.empty()) && + "LowerCall emitted a return value for a tail call!"); + assert((isTailCall || InVals.size() == Ins.size()) && + "LowerCall didn't emit the correct number of values!"); + DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerCall emitted a null value!"); + assert(Ins[i].VT == InVals[i].getValueType() && + "LowerCall emitted a value with the wrong type!"); + }); + + // For a tail call, the return value is merely live-out and there aren't + // any nodes in the DAG representing it. Return a special value to + // indicate that a tail call has been emitted and no more Instructions + // should be processed in the current block. + if (isTailCall) { + DAG.setRoot(Chain); + return std::make_pair(SDValue(), SDValue()); + } + + // Collect the legal value parts into potentially illegal values + // that correspond to the original function's return values. + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (RetSExt) + AssertOp = ISD::AssertSext; + else if (RetZExt) + AssertOp = ISD::AssertZext; + SmallVector<SDValue, 4> ReturnValues; + unsigned CurReg = 0; + for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { + EVT VT = RetTys[I]; + EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); + unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); + + SDValue ReturnValue = + getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, + AssertOp); + ReturnValues.push_back(ReturnValue); + CurReg += NumRegs; + } + + // For a function returning void, there is no return value. We can't create + // such a node, so we just return a null return value in that case. In + // that case, nothing will actualy look at the value. + if (ReturnValues.empty()) + return std::make_pair(SDValue(), Chain); + + SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, + DAG.getVTList(&RetTys[0], RetTys.size()), + &ReturnValues[0], ReturnValues.size()); + + return std::make_pair(Res, Chain); +} + +void TargetLowering::LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) { + SDValue Res = LowerOperation(SDValue(N, 0), DAG); + if (Res.getNode()) + Results.push_back(Res); +} + +SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { + llvm_unreachable("LowerOperation not implemented for this target!"); + return SDValue(); +} + + +void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { + SDValue Op = getValue(V); + assert((Op.getOpcode() != ISD::CopyFromReg || + cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && + "Copy from a reg to the same reg!"); + assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); + + RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); + SDValue Chain = DAG.getEntryNode(); + RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); + PendingExports.push_back(Chain); +} + +#include "llvm/CodeGen/SelectionDAGISel.h" + +void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { + // If this is the entry block, emit arguments. + Function &F = *LLVMBB->getParent(); + SelectionDAG &DAG = SDB->DAG; + SDValue OldRoot = DAG.getRoot(); + DebugLoc dl = SDB->getCurDebugLoc(); + const TargetData *TD = TLI.getTargetData(); + SmallVector<ISD::InputArg, 16> Ins; + + // Check whether the function can return without sret-demotion. + SmallVector<EVT, 4> OutVTs; + SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; + getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), + OutVTs, OutsFlags, TLI); + FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); + + FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), + OutVTs, OutsFlags, DAG); + if (!FLI.CanLowerReturn) { + // Put in an sret pointer parameter before all the other parameters. + SmallVector<EVT, 1> ValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); + + // NOTE: Assuming that a pointer will never break down to more than one VT + // or one register. + ISD::ArgFlagsTy Flags; + Flags.setSRet(); + EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); + ISD::InputArg RetArg(Flags, RegisterVT, true); + Ins.push_back(RetArg); + } + + // Set up the incoming argument description vector. + unsigned Idx = 1; + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); + I != E; ++I, ++Idx) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, I->getType(), ValueVTs); + bool isArgValueUsed = !I->use_empty(); + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); + ISD::ArgFlagsTy Flags; + unsigned OriginalAlignment = + TD->getABITypeAlignment(ArgTy); + + if (F.paramHasAttr(Idx, Attribute::ZExt)) + Flags.setZExt(); + if (F.paramHasAttr(Idx, Attribute::SExt)) + Flags.setSExt(); + if (F.paramHasAttr(Idx, Attribute::InReg)) + Flags.setInReg(); + if (F.paramHasAttr(Idx, Attribute::StructRet)) + Flags.setSRet(); + if (F.paramHasAttr(Idx, Attribute::ByVal)) { + Flags.setByVal(); + const PointerType *Ty = cast<PointerType>(I->getType()); + const Type *ElementTy = Ty->getElementType(); + unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); + unsigned FrameSize = TD->getTypeAllocSize(ElementTy); + // For ByVal, alignment should be passed from FE. BE will guess if + // this info is not there but there are cases it cannot get right. + if (F.getParamAlignment(Idx)) + FrameAlign = F.getParamAlignment(Idx); + Flags.setByValAlign(FrameAlign); + Flags.setByValSize(FrameSize); + } + if (F.paramHasAttr(Idx, Attribute::Nest)) + Flags.setNest(); + Flags.setOrigAlign(OriginalAlignment); + + EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); + for (unsigned i = 0; i != NumRegs; ++i) { + ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); + if (NumRegs > 1 && i == 0) + MyFlags.Flags.setSplit(); + // if it isn't first piece, alignment must be 1 + else if (i > 0) + MyFlags.Flags.setOrigAlign(1); + Ins.push_back(MyFlags); + } + } + } + + // Call the target to set up the argument values. + SmallVector<SDValue, 8> InVals; + SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), + F.isVarArg(), Ins, + dl, DAG, InVals); + + // Verify that the target's LowerFormalArguments behaved as expected. + assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && + "LowerFormalArguments didn't return a valid chain!"); + assert(InVals.size() == Ins.size() && + "LowerFormalArguments didn't emit the correct number of values!"); + DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + assert(InVals[i].getNode() && + "LowerFormalArguments emitted a null value!"); + assert(Ins[i].VT == InVals[i].getValueType() && + "LowerFormalArguments emitted a value with the wrong type!"); + }); + + // Update the DAG with the new chain value resulting from argument lowering. + DAG.setRoot(NewRoot); + + // Set up the argument values. + unsigned i = 0; + Idx = 1; + if (!FLI.CanLowerReturn) { + // Create a virtual register for the sret pointer, and put in a copy + // from the sret argument into it. + SmallVector<EVT, 1> ValueVTs; + ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); + EVT VT = ValueVTs[0]; + EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + ISD::NodeType AssertOp = ISD::DELETED_NODE; + SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, + VT, AssertOp); + + MachineFunction& MF = SDB->DAG.getMachineFunction(); + MachineRegisterInfo& RegInfo = MF.getRegInfo(); + unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); + FLI.DemoteRegister = SRetReg; + NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); + DAG.setRoot(NewRoot); + + // i indexes lowered arguments. Bump it past the hidden sret argument. + // Idx indexes LLVM arguments. Don't touch it. + ++i; + } + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; + ++I, ++Idx) { + SmallVector<SDValue, 4> ArgValues; + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, I->getType(), ValueVTs); + unsigned NumValues = ValueVTs.size(); + for (unsigned Value = 0; Value != NumValues; ++Value) { + EVT VT = ValueVTs[Value]; + EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); + unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); + + if (!I->use_empty()) { + ISD::NodeType AssertOp = ISD::DELETED_NODE; + if (F.paramHasAttr(Idx, Attribute::SExt)) + AssertOp = ISD::AssertSext; + else if (F.paramHasAttr(Idx, Attribute::ZExt)) + AssertOp = ISD::AssertZext; + + ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, + PartVT, VT, AssertOp)); + } + i += NumParts; + } + if (!I->use_empty()) { + SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, + SDB->getCurDebugLoc())); + // If this argument is live outside of the entry block, insert a copy from + // whereever we got it to the vreg that other BB's will reference it as. + SDB->CopyToExportRegsIfNeeded(I); + } + } + assert(i == InVals.size() && "Argument register count mismatch!"); + + // Finally, if the target has anything special to do, allow it to do so. + // FIXME: this should insert code into the DAG! + EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); +} + +/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to +/// ensure constants are generated when needed. Remember the virtual registers +/// that need to be added to the Machine PHI nodes as input. We cannot just +/// directly add them, because expansion might result in multiple MBB's for one +/// BB. As such, the start of the BB might correspond to a different MBB than +/// the end. +/// +void +SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { + TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast<PHINode>(I)); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + unsigned Reg; + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + if (Constant *C = dyn_cast<Constant>(PHIOp)) { + unsigned &RegOut = SDB->ConstantsOut[C]; + if (RegOut == 0) { + RegOut = FuncInfo->CreateRegForValue(C); + SDB->CopyValueToVirtualRegister(C, RegOut); + } + Reg = RegOut; + } else { + Reg = FuncInfo->ValueMap[PHIOp]; + if (Reg == 0) { + assert(isa<AllocaInst>(PHIOp) && + FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && + "Didn't codegen value into a register!??"); + Reg = FuncInfo->CreateRegForValue(PHIOp); + SDB->CopyValueToVirtualRegister(PHIOp, Reg); + } + } + + // Remember that this register needs to added to the machine PHI node as + // the input for this MBB. + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, PN->getType(), ValueVTs); + for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { + EVT VT = ValueVTs[vti]; + unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); + for (unsigned i = 0, e = NumRegisters; i != e; ++i) + SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); + Reg += NumRegisters; + } + } + } + SDB->ConstantsOut.clear(); +} + +/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only +/// supports legal types, and it emits MachineInstrs directly instead of +/// creating SelectionDAG nodes. +/// +bool +SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, + FastISel *F) { + TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + PHINode *PN; + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::iterator I = SuccBB->begin(); + (PN = dyn_cast<PHINode>(I)); ++I) { + // Ignore dead phi's. + if (PN->use_empty()) continue; + + // Only handle legal types. Two interesting things to note here. First, + // by bailing out early, we may leave behind some dead instructions, + // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its + // own moves. Second, this check is necessary becuase FastISel doesn't + // use CreateRegForValue to create registers, so it always creates + // exactly one register for each non-void instruction. + EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); + if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { + // Promote MVT::i1. + if (VT == MVT::i1) + VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); + else { + SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + } + + Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + unsigned Reg = F->getRegForValue(PHIOp); + if (Reg == 0) { + SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); + } + } + + return true; +} |