diff options
Diffstat (limited to 'lib/ExecutionEngine/RuntimeDyld')
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt | 6 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/LLVMBuild.txt | 22 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp | 446 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp | 262 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h | 62 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h | 236 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp | 577 | ||||
-rw-r--r-- | lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h | 70 |
8 files changed, 1169 insertions, 512 deletions
diff --git a/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt b/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt index c236d1d9d115..002e63cd3b6b 100644 --- a/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt +++ b/lib/ExecutionEngine/RuntimeDyld/CMakeLists.txt @@ -1,9 +1,5 @@ add_llvm_library(LLVMRuntimeDyld RuntimeDyld.cpp RuntimeDyldMachO.cpp - ) - -add_llvm_library_dependencies(LLVMRuntimeDyld - LLVMObject - LLVMSupport + RuntimeDyldELF.cpp ) diff --git a/lib/ExecutionEngine/RuntimeDyld/LLVMBuild.txt b/lib/ExecutionEngine/RuntimeDyld/LLVMBuild.txt new file mode 100644 index 000000000000..97dc86129a33 --- /dev/null +++ b/lib/ExecutionEngine/RuntimeDyld/LLVMBuild.txt @@ -0,0 +1,22 @@ +;===- ./lib/ExecutionEngine/RuntimeDyld/LLVMBuild.txt ----------*- Conf -*--===; +; +; The LLVM Compiler Infrastructure +; +; This file is distributed under the University of Illinois Open Source +; License. See LICENSE.TXT for details. +; +;===------------------------------------------------------------------------===; +; +; This is an LLVMBuild description file for the components in this subdirectory. +; +; For more information on the LLVMBuild system, please see: +; +; http://llvm.org/docs/LLVMBuild.html +; +;===------------------------------------------------------------------------===; + +[component_0] +type = Library +name = RuntimeDyld +parent = ExecutionEngine +required_libraries = Object Support diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp index 33dd70502798..63cec1aca3b1 100644 --- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp @@ -1,4 +1,4 @@ -//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// +//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // @@ -13,6 +13,10 @@ #define DEBUG_TYPE "dyld" #include "RuntimeDyldImpl.h" +#include "RuntimeDyldELF.h" +#include "RuntimeDyldMachO.h" +#include "llvm/Support/Path.h" + using namespace llvm; using namespace llvm::object; @@ -22,35 +26,383 @@ RuntimeDyldImpl::~RuntimeDyldImpl() {} namespace llvm { -void RuntimeDyldImpl::extractFunction(StringRef Name, uint8_t *StartAddress, - uint8_t *EndAddress) { - // Allocate memory for the function via the memory manager. - uintptr_t Size = EndAddress - StartAddress + 1; - uintptr_t AllocSize = Size; - uint8_t *Mem = MemMgr->startFunctionBody(Name.data(), AllocSize); - assert(Size >= (uint64_t)(EndAddress - StartAddress + 1) && - "Memory manager failed to allocate enough memory!"); - // Copy the function payload into the memory block. - memcpy(Mem, StartAddress, Size); - MemMgr->endFunctionBody(Name.data(), Mem, Mem + Size); - // Remember where we put it. - Functions[Name] = sys::MemoryBlock(Mem, Size); - // Default the assigned address for this symbol to wherever this - // allocated it. - SymbolTable[Name] = Mem; - DEBUG(dbgs() << " allocated to [" << Mem << ", " << Mem + Size << "]\n"); -} +namespace { + // Helper for extensive error checking in debug builds. + error_code Check(error_code Err) { + if (Err) { + report_fatal_error(Err.message()); + } + return Err; + } +} // end anonymous namespace // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { - // Just iterate over the symbols in our symbol table and assign their - // addresses. - StringMap<uint8_t*>::iterator i = SymbolTable.begin(); - StringMap<uint8_t*>::iterator e = SymbolTable.end(); - for (;i != e; ++i) - reassignSymbolAddress(i->getKey(), i->getValue()); + // First, resolve relocations associated with external symbols. + resolveSymbols(); + + // Just iterate over the sections we have and resolve all the relocations + // in them. Gross overkill, but it gets the job done. + for (int i = 0, e = Sections.size(); i != e; ++i) { + reassignSectionAddress(i, Sections[i].LoadAddress); + } } +void RuntimeDyldImpl::mapSectionAddress(void *LocalAddress, + uint64_t TargetAddress) { + for (unsigned i = 0, e = Sections.size(); i != e; ++i) { + if (Sections[i].Address == LocalAddress) { + reassignSectionAddress(i, TargetAddress); + return; + } + } + llvm_unreachable("Attempting to remap address of unknown section!"); +} + +bool RuntimeDyldImpl::loadObject(const MemoryBuffer *InputBuffer) { + // FIXME: ObjectFile don't modify MemoryBuffer. + // It should use const MemoryBuffer as parameter. + OwningPtr<ObjectFile> obj(ObjectFile::createObjectFile( + const_cast<MemoryBuffer*>(InputBuffer))); + if (!obj) + report_fatal_error("Unable to create object image from memory buffer!"); + + Arch = (Triple::ArchType)obj->getArch(); + + LocalSymbolMap LocalSymbols; // Functions and data symbols from the + // object file. + ObjSectionToIDMap LocalSections; // Used sections from the object file + CommonSymbolMap CommonSymbols; // Common symbols requiring allocation + uint64_t CommonSize = 0; + + error_code err; + // Parse symbols + DEBUG(dbgs() << "Parse symbols:\n"); + for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols(); + i != e; i.increment(err)) { + Check(err); + object::SymbolRef::Type SymType; + StringRef Name; + Check(i->getType(SymType)); + Check(i->getName(Name)); + + uint32_t flags; + Check(i->getFlags(flags)); + + bool isCommon = flags & SymbolRef::SF_Common; + if (isCommon) { + // Add the common symbols to a list. We'll allocate them all below. + uint64_t Size = 0; + Check(i->getSize(Size)); + CommonSize += Size; + CommonSymbols[*i] = Size; + } else { + if (SymType == object::SymbolRef::ST_Function || + SymType == object::SymbolRef::ST_Data) { + uint64_t FileOffset; + StringRef sData; + section_iterator si = obj->end_sections(); + Check(i->getFileOffset(FileOffset)); + Check(i->getSection(si)); + if (si == obj->end_sections()) continue; + Check(si->getContents(sData)); + const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() + + (uintptr_t)FileOffset; + uintptr_t SectOffset = (uintptr_t)(SymPtr - (const uint8_t*)sData.begin()); + unsigned SectionID = + findOrEmitSection(*si, + SymType == object::SymbolRef::ST_Function, + LocalSections); + bool isGlobal = flags & SymbolRef::SF_Global; + LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); + DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset) + << " flags: " << flags + << " SID: " << SectionID + << " Offset: " << format("%p", SectOffset)); + if (isGlobal) + SymbolTable[Name] = SymbolLoc(SectionID, SectOffset); + } + } + DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); + } + + // Allocate common symbols + if (CommonSize != 0) + emitCommonSymbols(CommonSymbols, CommonSize, LocalSymbols); + + // Parse and proccess relocations + DEBUG(dbgs() << "Parse relocations:\n"); + for (section_iterator si = obj->begin_sections(), + se = obj->end_sections(); si != se; si.increment(err)) { + Check(err); + bool isFirstRelocation = true; + unsigned SectionID = 0; + StubMap Stubs; + + for (relocation_iterator i = si->begin_relocations(), + e = si->end_relocations(); i != e; i.increment(err)) { + Check(err); + + // If it's first relocation in this section, find its SectionID + if (isFirstRelocation) { + SectionID = findOrEmitSection(*si, true, LocalSections); + DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); + isFirstRelocation = false; + } + + ObjRelocationInfo RI; + RI.SectionID = SectionID; + Check(i->getAdditionalInfo(RI.AdditionalInfo)); + Check(i->getOffset(RI.Offset)); + Check(i->getSymbol(RI.Symbol)); + Check(i->getType(RI.Type)); + + DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo + << " Offset: " << format("%p", (uintptr_t)RI.Offset) + << " Type: " << (uint32_t)(RI.Type & 0xffffffffL) + << "\n"); + processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs); + } + } + return false; +} + +unsigned RuntimeDyldImpl::emitCommonSymbols(const CommonSymbolMap &Map, + uint64_t TotalSize, + LocalSymbolMap &LocalSymbols) { + // Allocate memory for the section + unsigned SectionID = Sections.size(); + uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*), + SectionID); + if (!Addr) + report_fatal_error("Unable to allocate memory for common symbols!"); + uint64_t Offset = 0; + Sections.push_back(SectionEntry(Addr, TotalSize, TotalSize, 0)); + memset(Addr, 0, TotalSize); + + DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID + << " new addr: " << format("%p", Addr) + << " DataSize: " << TotalSize + << "\n"); + + // Assign the address of each symbol + for (CommonSymbolMap::const_iterator it = Map.begin(), itEnd = Map.end(); + it != itEnd; it++) { + uint64_t Size = it->second; + StringRef Name; + it->first.getName(Name); + LocalSymbols[Name.data()] = SymbolLoc(SectionID, Offset); + Offset += Size; + Addr += Size; + } + + return SectionID; +} + +unsigned RuntimeDyldImpl::emitSection(const SectionRef &Section, + bool IsCode) { + + unsigned StubBufSize = 0, + StubSize = getMaxStubSize(); + error_code err; + if (StubSize > 0) { + for (relocation_iterator i = Section.begin_relocations(), + e = Section.end_relocations(); i != e; i.increment(err), Check(err)) + StubBufSize += StubSize; + } + StringRef data; + uint64_t Alignment64; + Check(Section.getContents(data)); + Check(Section.getAlignment(Alignment64)); + + unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; + bool IsRequired; + bool IsVirtual; + bool IsZeroInit; + uint64_t DataSize; + Check(Section.isRequiredForExecution(IsRequired)); + Check(Section.isVirtual(IsVirtual)); + Check(Section.isZeroInit(IsZeroInit)); + Check(Section.getSize(DataSize)); + + unsigned Allocate; + unsigned SectionID = Sections.size(); + uint8_t *Addr; + const char *pData = 0; + + // Some sections, such as debug info, don't need to be loaded for execution. + // Leave those where they are. + if (IsRequired) { + Allocate = DataSize + StubBufSize; + Addr = IsCode + ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID) + : MemMgr->allocateDataSection(Allocate, Alignment, SectionID); + if (!Addr) + report_fatal_error("Unable to allocate section memory!"); + + // Virtual sections have no data in the object image, so leave pData = 0 + if (!IsVirtual) + pData = data.data(); + + // Zero-initialize or copy the data from the image + if (IsZeroInit || IsVirtual) + memset(Addr, 0, DataSize); + else + memcpy(Addr, pData, DataSize); + + DEBUG(dbgs() << "emitSection SectionID: " << SectionID + << " obj addr: " << format("%p", pData) + << " new addr: " << format("%p", Addr) + << " DataSize: " << DataSize + << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate + << "\n"); + } + else { + // Even if we didn't load the section, we need to record an entry for it + // to handle later processing (and by 'handle' I mean don't do anything + // with these sections). + Allocate = 0; + Addr = 0; + DEBUG(dbgs() << "emitSection SectionID: " << SectionID + << " obj addr: " << format("%p", data.data()) + << " new addr: 0" + << " DataSize: " << DataSize + << " StubBufSize: " << StubBufSize + << " Allocate: " << Allocate + << "\n"); + } + + Sections.push_back(SectionEntry(Addr, Allocate, DataSize,(uintptr_t)pData)); + return SectionID; +} + +unsigned RuntimeDyldImpl::findOrEmitSection(const SectionRef &Section, + bool IsCode, + ObjSectionToIDMap &LocalSections) { + + unsigned SectionID = 0; + ObjSectionToIDMap::iterator i = LocalSections.find(Section); + if (i != LocalSections.end()) + SectionID = i->second; + else { + SectionID = emitSection(Section, IsCode); + LocalSections[Section] = SectionID; + } + return SectionID; +} + +void RuntimeDyldImpl::AddRelocation(const RelocationValueRef &Value, + unsigned SectionID, uintptr_t Offset, + uint32_t RelType) { + DEBUG(dbgs() << "AddRelocation SymNamePtr: " << format("%p", Value.SymbolName) + << " SID: " << Value.SectionID + << " Addend: " << format("%p", Value.Addend) + << " Offset: " << format("%p", Offset) + << " RelType: " << format("%x", RelType) + << "\n"); + + if (Value.SymbolName == 0) { + Relocations[Value.SectionID].push_back(RelocationEntry( + SectionID, + Offset, + RelType, + Value.Addend)); + } else + SymbolRelocations[Value.SymbolName].push_back(RelocationEntry( + SectionID, + Offset, + RelType, + Value.Addend)); +} + +uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { + // TODO: There is only ARM far stub now. We should add the Thumb stub, + // and stubs for branches Thumb - ARM and ARM - Thumb. + if (Arch == Triple::arm) { + uint32_t *StubAddr = (uint32_t*)Addr; + *StubAddr = 0xe51ff004; // ldr pc,<label> + return (uint8_t*)++StubAddr; + } + else + return Addr; +} + +// Assign an address to a symbol name and resolve all the relocations +// associated with it. +void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, + uint64_t Addr) { + // The address to use for relocation resolution is not + // the address of the local section buffer. We must be doing + // a remote execution environment of some sort. Re-apply any + // relocations referencing this section with the given address. + // + // Addr is a uint64_t because we can't assume the pointer width + // of the target is the same as that of the host. Just use a generic + // "big enough" type. + Sections[SectionID].LoadAddress = Addr; + DEBUG(dbgs() << "Resolving relocations Section #" << SectionID + << "\t" << format("%p", (uint8_t *)Addr) + << "\n"); + resolveRelocationList(Relocations[SectionID], Addr); +} + +void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE, + uint64_t Value) { + // Ignore relocations for sections that were not loaded + if (Sections[RE.SectionID].Address != 0) { + uint8_t *Target = Sections[RE.SectionID].Address + RE.Offset; + DEBUG(dbgs() << "\tSectionID: " << RE.SectionID + << " + " << RE.Offset << " (" << format("%p", Target) << ")" + << " Data: " << RE.Data + << " Addend: " << RE.Addend + << "\n"); + + resolveRelocation(Target, Sections[RE.SectionID].LoadAddress + RE.Offset, + Value, RE.Data, RE.Addend); + } +} + +void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, + uint64_t Value) { + for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { + resolveRelocationEntry(Relocs[i], Value); + } +} + +// resolveSymbols - Resolve any relocations to the specified symbols if +// we know where it lives. +void RuntimeDyldImpl::resolveSymbols() { + StringMap<RelocationList>::iterator i = SymbolRelocations.begin(), + e = SymbolRelocations.end(); + for (; i != e; i++) { + StringRef Name = i->first(); + RelocationList &Relocs = i->second; + StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name); + if (Loc == SymbolTable.end()) { + // This is an external symbol, try to get it address from + // MemoryManager. + uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(), + true); + DEBUG(dbgs() << "Resolving relocations Name: " << Name + << "\t" << format("%p", Addr) + << "\n"); + resolveRelocationList(Relocs, (uintptr_t)Addr); + } else { + // Change the relocation to be section relative rather than symbol + // relative and move it to the resolved relocation list. + DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n"); + for (int i = 0, e = Relocs.size(); i != e; ++i) { + RelocationEntry Entry = Relocs[i]; + Entry.Addend += Loc->second.second; + Relocations[Loc->second.first].push_back(Entry); + } + Relocs.clear(); + } + } +} + + //===----------------------------------------------------------------------===// // RuntimeDyld class implementation RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) { @@ -64,12 +416,36 @@ RuntimeDyld::~RuntimeDyld() { bool RuntimeDyld::loadObject(MemoryBuffer *InputBuffer) { if (!Dyld) { - if (RuntimeDyldMachO::isKnownFormat(InputBuffer)) - Dyld = new RuntimeDyldMachO(MM); - else - report_fatal_error("Unknown object format!"); + sys::LLVMFileType type = sys::IdentifyFileType( + InputBuffer->getBufferStart(), + static_cast<unsigned>(InputBuffer->getBufferSize())); + switch (type) { + case sys::ELF_Relocatable_FileType: + case sys::ELF_Executable_FileType: + case sys::ELF_SharedObject_FileType: + case sys::ELF_Core_FileType: + Dyld = new RuntimeDyldELF(MM); + break; + case sys::Mach_O_Object_FileType: + case sys::Mach_O_Executable_FileType: + case sys::Mach_O_FixedVirtualMemorySharedLib_FileType: + case sys::Mach_O_Core_FileType: + case sys::Mach_O_PreloadExecutable_FileType: + case sys::Mach_O_DynamicallyLinkedSharedLib_FileType: + case sys::Mach_O_DynamicLinker_FileType: + case sys::Mach_O_Bundle_FileType: + case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType: + case sys::Mach_O_DSYMCompanion_FileType: + Dyld = new RuntimeDyldMachO(MM); + break; + case sys::Unknown_FileType: + case sys::Bitcode_FileType: + case sys::Archive_FileType: + case sys::COFF_FileType: + report_fatal_error("Incompatible object format!"); + } } else { - if(!Dyld->isCompatibleFormat(InputBuffer)) + if (!Dyld->isCompatibleFormat(InputBuffer)) report_fatal_error("Incompatible object format!"); } @@ -84,8 +460,14 @@ void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } -void RuntimeDyld::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { - Dyld->reassignSymbolAddress(Name, Addr); +void RuntimeDyld::reassignSectionAddress(unsigned SectionID, + uint64_t Addr) { + Dyld->reassignSectionAddress(SectionID, Addr); +} + +void RuntimeDyld::mapSectionAddress(void *LocalAddress, + uint64_t TargetAddress) { + Dyld->mapSectionAddress(LocalAddress, TargetAddress); } StringRef RuntimeDyld::getErrorString() { diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp new file mode 100644 index 000000000000..57fefee5dedc --- /dev/null +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp @@ -0,0 +1,262 @@ +//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implementation of ELF support for the MC-JIT runtime dynamic linker. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "dyld" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/IntervalMap.h" +#include "RuntimeDyldELF.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/ELF.h" +#include "llvm/ADT/Triple.h" +using namespace llvm; +using namespace llvm::object; + +namespace llvm { + + +void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend) { + switch (Type) { + default: + llvm_unreachable("Relocation type not implemented yet!"); + break; + case ELF::R_X86_64_64: { + uint64_t *Target = (uint64_t*)(LocalAddress); + *Target = Value + Addend; + break; + } + case ELF::R_X86_64_32: + case ELF::R_X86_64_32S: { + Value += Addend; + // FIXME: Handle the possibility of this assertion failing + assert((Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) || + (Type == ELF::R_X86_64_32S && + (Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL)); + uint32_t TruncatedAddr = (Value & 0xFFFFFFFF); + uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress); + *Target = TruncatedAddr; + break; + } + case ELF::R_X86_64_PC32: { + uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress); + int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress; + assert(RealOffset <= 214783647 && RealOffset >= -214783648); + int32_t TruncOffset = (RealOffset & 0xFFFFFFFF); + *Placeholder = TruncOffset; + break; + } + } +} + +void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress, + uint32_t FinalAddress, + uint32_t Value, + uint32_t Type, + int32_t Addend) { + switch (Type) { + case ELF::R_386_32: { + uint32_t *Target = (uint32_t*)(LocalAddress); + uint32_t Placeholder = *Target; + *Target = Placeholder + Value + Addend; + break; + } + case ELF::R_386_PC32: { + uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress); + uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress; + *Placeholder = RealOffset; + break; + } + default: + // There are other relocation types, but it appears these are the + // only ones currently used by the LLVM ELF object writer + llvm_unreachable("Relocation type not implemented yet!"); + break; + } +} + +void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress, + uint32_t FinalAddress, + uint32_t Value, + uint32_t Type, + int32_t Addend) { + // TODO: Add Thumb relocations. + uint32_t* TargetPtr = (uint32_t*)LocalAddress; + Value += Addend; + + DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress + << " FinalAddress: " << format("%p",FinalAddress) + << " Value: " << format("%x",Value) + << " Type: " << format("%x",Type) + << " Addend: " << format("%x",Addend) + << "\n"); + + switch(Type) { + default: + llvm_unreachable("Not implemented relocation type!"); + + // Just write 32bit value to relocation address + case ELF::R_ARM_ABS32 : + *TargetPtr = Value; + break; + + // Write first 16 bit of 32 bit value to the mov instruction. + // Last 4 bit should be shifted. + case ELF::R_ARM_MOVW_ABS_NC : + Value = Value & 0xFFFF; + *TargetPtr |= Value & 0xFFF; + *TargetPtr |= ((Value >> 12) & 0xF) << 16; + break; + + // Write last 16 bit of 32 bit value to the mov instruction. + // Last 4 bit should be shifted. + case ELF::R_ARM_MOVT_ABS : + Value = (Value >> 16) & 0xFFFF; + *TargetPtr |= Value & 0xFFF; + *TargetPtr |= ((Value >> 12) & 0xF) << 16; + break; + + // Write 24 bit relative value to the branch instruction. + case ELF::R_ARM_PC24 : // Fall through. + case ELF::R_ARM_CALL : // Fall through. + case ELF::R_ARM_JUMP24 : + int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8); + RelValue = (RelValue & 0x03FFFFFC) >> 2; + *TargetPtr &= 0xFF000000; + *TargetPtr |= RelValue; + break; + } +} + +void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend) { + switch (Arch) { + case Triple::x86_64: + resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend); + break; + case Triple::x86: + resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL), + (uint32_t)(Value & 0xffffffffL), Type, + (uint32_t)(Addend & 0xffffffffL)); + break; + case Triple::arm: // Fall through. + case Triple::thumb: + resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL), + (uint32_t)(Value & 0xffffffffL), Type, + (uint32_t)(Addend & 0xffffffffL)); + break; + default: llvm_unreachable("Unsupported CPU type!"); + } +} + +void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, + StubMap &Stubs) { + + uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL); + intptr_t Addend = (intptr_t)Rel.AdditionalInfo; + RelocationValueRef Value; + StringRef TargetName; + const SymbolRef &Symbol = Rel.Symbol; + Symbol.getName(TargetName); + DEBUG(dbgs() << "\t\tRelType: " << RelType + << " Addend: " << Addend + << " TargetName: " << TargetName + << "\n"); + // First look the symbol in object file symbols. + LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data()); + if (lsi != Symbols.end()) { + Value.SectionID = lsi->second.first; + Value.Addend = lsi->second.second; + } else { + // Second look the symbol in global symbol table. + StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data()); + if (gsi != SymbolTable.end()) { + Value.SectionID = gsi->second.first; + Value.Addend = gsi->second.second; + } else { + SymbolRef::Type SymType; + Symbol.getType(SymType); + switch (SymType) { + case SymbolRef::ST_Debug: { + // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously + // and can be changed by another developers. Maybe best way is add + // a new symbol type ST_Section to SymbolRef and use it. + section_iterator si = Obj.end_sections(); + Symbol.getSection(si); + if (si == Obj.end_sections()) + llvm_unreachable("Symbol section not found, bad object file format!"); + DEBUG(dbgs() << "\t\tThis is section symbol\n"); + Value.SectionID = findOrEmitSection((*si), true, ObjSectionToID); + Value.Addend = Addend; + break; + } + case SymbolRef::ST_Unknown: { + Value.SymbolName = TargetName.data(); + Value.Addend = Addend; + break; + } + default: + llvm_unreachable("Unresolved symbol type!"); + break; + } + } + } + DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID + << " Rel.Offset: " << Rel.Offset + << "\n"); + if (Arch == Triple::arm && + (RelType == ELF::R_ARM_PC24 || + RelType == ELF::R_ARM_CALL || + RelType == ELF::R_ARM_JUMP24)) { + // This is an ARM branch relocation, need to use a stub function. + DEBUG(dbgs() << "\t\tThis is an ARM branch relocation."); + SectionEntry &Section = Sections[Rel.SectionID]; + uint8_t *Target = Section.Address + Rel.Offset; + + // Look up for existing stub. + StubMap::const_iterator i = Stubs.find(Value); + if (i != Stubs.end()) { + resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address + + i->second, RelType, 0); + DEBUG(dbgs() << " Stub function found\n"); + } else { + // Create a new stub function. + DEBUG(dbgs() << " Create a new stub function\n"); + Stubs[Value] = Section.StubOffset; + uint8_t *StubTargetAddr = createStubFunction(Section.Address + + Section.StubOffset); + AddRelocation(Value, Rel.SectionID, + StubTargetAddr - Section.Address, ELF::R_ARM_ABS32); + resolveRelocation(Target, Section.LoadAddress, (uint64_t)Section.Address + + Section.StubOffset, RelType, 0); + Section.StubOffset += getMaxStubSize(); + } + } else + AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType); +} + +bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const { + StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT); + return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; +} +} // namespace llvm diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h new file mode 100644 index 000000000000..36566da57a58 --- /dev/null +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.h @@ -0,0 +1,62 @@ +//===-- RuntimeDyldELF.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// ELF support for MC-JIT runtime dynamic linker. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIME_DYLD_ELF_H +#define LLVM_RUNTIME_DYLD_ELF_H + +#include "RuntimeDyldImpl.h" + +using namespace llvm; + + +namespace llvm { +class RuntimeDyldELF : public RuntimeDyldImpl { +protected: + void resolveX86_64Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend); + + void resolveX86Relocation(uint8_t *LocalAddress, + uint32_t FinalAddress, + uint32_t Value, + uint32_t Type, + int32_t Addend); + + void resolveARMRelocation(uint8_t *LocalAddress, + uint32_t FinalAddress, + uint32_t Value, + uint32_t Type, + int32_t Addend); + + virtual void resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend); + + virtual void processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, StubMap &Stubs); + +public: + RuntimeDyldELF(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} + + bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const; +}; + +} // end namespace llvm + +#endif diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h index 7190a3c36fe9..bf678af6ece7 100644 --- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h @@ -1,4 +1,4 @@ -//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// +//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===// // // The LLVM Compiler Infrastructure // @@ -15,42 +15,128 @@ #define LLVM_RUNTIME_DYLD_IMPL_H #include "llvm/ExecutionEngine/RuntimeDyld.h" -#include "llvm/Object/MachOObject.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/SmallVector.h" -#include "llvm/ExecutionEngine/ExecutionEngine.h" -#include "llvm/Support/Format.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/system_error.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" +#include "llvm/ADT/Triple.h" +#include <map> +#include "llvm/Support/Format.h" using namespace llvm; using namespace llvm::object; namespace llvm { + +class SectionEntry { +public: + uint8_t* Address; + size_t Size; + uint64_t LoadAddress; // For each section, the address it will be + // considered to live at for relocations. The same + // as the pointer to the above memory block for + // hosted JITs. + uintptr_t StubOffset; // It's used for architecturies with stub + // functions for far relocations like ARM. + uintptr_t ObjAddress; // Section address in object file. It's use for + // calculate MachO relocation addend + SectionEntry(uint8_t* address, size_t size, uintptr_t stubOffset, + uintptr_t objAddress) + : Address(address), Size(size), LoadAddress((uintptr_t)address), + StubOffset(stubOffset), ObjAddress(objAddress) {} +}; + +class RelocationEntry { +public: + unsigned SectionID; // Section the relocation is contained in. + uintptr_t Offset; // Offset into the section for the relocation. + uint32_t Data; // Relocatino data. Including type of relocation + // and another flags and parameners from + intptr_t Addend; // Addend encoded in the instruction itself, if any, + // plus the offset into the source section for + // the symbol once the relocation is resolvable. + RelocationEntry(unsigned id, uint64_t offset, uint32_t data, int64_t addend) + : SectionID(id), Offset(offset), Data(data), Addend(addend) {} +}; + +// Raw relocation data from object file +class ObjRelocationInfo { +public: + unsigned SectionID; + uint64_t Offset; + SymbolRef Symbol; + uint64_t Type; + int64_t AdditionalInfo; +}; + +class RelocationValueRef { +public: + unsigned SectionID; + intptr_t Addend; + const char *SymbolName; + RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {} + + inline bool operator==(const RelocationValueRef &Other) const { + return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0; + } + inline bool operator <(const RelocationValueRef &Other) const { + return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0; + } +}; + class RuntimeDyldImpl { protected: - unsigned CPUType; - unsigned CPUSubtype; - // The MemoryManager to load objects into. RTDyldMemoryManager *MemMgr; - // FIXME: This all assumes we're dealing with external symbols for anything - // explicitly referenced. I.e., we can index by name and things - // will work out. In practice, this may not be the case, so we - // should find a way to effectively generalize. + // A list of emmitted sections. + typedef SmallVector<SectionEntry, 64> SectionList; + SectionList Sections; - // For each function, we have a MemoryBlock of it's instruction data. - StringMap<sys::MemoryBlock> Functions; + // Keep a map of sections from object file to the SectionID which + // references it. + typedef std::map<SectionRef, unsigned> ObjSectionToIDMap; // Master symbol table. As modules are loaded and external symbols are - // resolved, their addresses are stored here. - StringMap<uint8_t*> SymbolTable; + // resolved, their addresses are stored here as a SectionID/Offset pair. + typedef std::pair<unsigned, uintptr_t> SymbolLoc; + StringMap<SymbolLoc> SymbolTable; + typedef DenseMap<const char*, SymbolLoc> LocalSymbolMap; + + // Keep a map of common symbols to their sizes + typedef std::map<SymbolRef, unsigned> CommonSymbolMap; + + // For each symbol, keep a list of relocations based on it. Anytime + // its address is reassigned (the JIT re-compiled the function, e.g.), + // the relocations get re-resolved. + // The symbol (or section) the relocation is sourced from is the Key + // in the relocation list where it's stored. + typedef SmallVector<RelocationEntry, 64> RelocationList; + // Relocations to sections already loaded. Indexed by SectionID which is the + // source of the address. The target where the address will be writen is + // SectionID/Offset in the relocation itself. + DenseMap<unsigned, RelocationList> Relocations; + // Relocations to external symbols that are not yet resolved. + // Indexed by symbol name. + StringMap<RelocationList> SymbolRelocations; + + typedef std::map<RelocationValueRef, uintptr_t> StubMap; + + Triple::ArchType Arch; + + inline unsigned getMaxStubSize() { + if (Arch == Triple::arm || Arch == Triple::thumb) + return 8; // 32-bit instruction and 32-bit address + else + return 0; + } bool HasError; std::string ErrorStr; @@ -62,25 +148,84 @@ protected: return true; } - void extractFunction(StringRef Name, uint8_t *StartAddress, - uint8_t *EndAddress); + uint8_t *getSectionAddress(unsigned SectionID) { + return (uint8_t*)Sections[SectionID].Address; + } + /// \brief Emits a section containing common symbols. + /// \return SectionID. + unsigned emitCommonSymbols(const CommonSymbolMap &Map, + uint64_t TotalSize, + LocalSymbolMap &Symbols); + + /// \brief Emits section data from the object file to the MemoryManager. + /// \param IsCode if it's true then allocateCodeSection() will be + /// used for emmits, else allocateDataSection() will be used. + /// \return SectionID. + unsigned emitSection(const SectionRef &Section, bool IsCode); + + /// \brief Find Section in LocalSections. If the secton is not found - emit + /// it and store in LocalSections. + /// \param IsCode if it's true then allocateCodeSection() will be + /// used for emmits, else allocateDataSection() will be used. + /// \return SectionID. + unsigned findOrEmitSection(const SectionRef &Section, bool IsCode, + ObjSectionToIDMap &LocalSections); + + /// \brief If Value.SymbolName is NULL then store relocation to the + /// Relocations, else store it in the SymbolRelocations. + void AddRelocation(const RelocationValueRef &Value, unsigned SectionID, + uintptr_t Offset, uint32_t RelType); + + /// \brief Emits long jump instruction to Addr. + /// \return Pointer to the memory area for emitting target address. + uint8_t* createStubFunction(uint8_t *Addr); + + /// \brief Resolves relocations from Relocs list with address from Value. + void resolveRelocationList(const RelocationList &Relocs, uint64_t Value); + void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value); + + /// \brief A object file specific relocation resolver + /// \param Address Address to apply the relocation action + /// \param Value Target symbol address to apply the relocation action + /// \param Type object file specific relocation type + /// \param Addend A constant addend used to compute the value to be stored + /// into the relocatable field + virtual void resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend) = 0; + + /// \brief Parses the object file relocation and store it to Relocations + /// or SymbolRelocations. Its depend from object file type. + virtual void processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, StubMap &Stubs) = 0; + + void resolveSymbols(); public: RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {} virtual ~RuntimeDyldImpl(); - virtual bool loadObject(MemoryBuffer *InputBuffer) = 0; + bool loadObject(const MemoryBuffer *InputBuffer); void *getSymbolAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. - return SymbolTable.lookup(Name); + if (SymbolTable.find(Name) == SymbolTable.end()) + return 0; + SymbolLoc Loc = SymbolTable.lookup(Name); + return getSectionAddress(Loc.first) + Loc.second; } void resolveRelocations(); - virtual void reassignSymbolAddress(StringRef Name, uint8_t *Addr) = 0; + void reassignSectionAddress(unsigned SectionID, uint64_t Addr); + + void mapSectionAddress(void *LocalAddress, uint64_t TargetAddress); // Is the linker in an error state? bool hasError() { return HasError; } @@ -92,58 +237,7 @@ public: StringRef getErrorString() { return ErrorStr; } virtual bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const = 0; -}; - - -class RuntimeDyldMachO : public RuntimeDyldImpl { - // For each symbol, keep a list of relocations based on it. Anytime - // its address is reassigned (the JIT re-compiled the function, e.g.), - // the relocations get re-resolved. - struct RelocationEntry { - std::string Target; // Object this relocation is contained in. - uint64_t Offset; // Offset into the object for the relocation. - uint32_t Data; // Second word of the raw macho relocation entry. - int64_t Addend; // Addend encoded in the instruction itself, if any. - bool isResolved; // Has this relocation been resolved previously? - - RelocationEntry(StringRef t, uint64_t offset, uint32_t data, int64_t addend) - : Target(t), Offset(offset), Data(data), Addend(addend), - isResolved(false) {} - }; - typedef SmallVector<RelocationEntry, 4> RelocationList; - StringMap<RelocationList> Relocations; - - // FIXME: Also keep a map of all the relocations contained in an object. Use - // this to dynamically answer whether all of the relocations in it have - // been resolved or not. - - bool resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, - unsigned Type, unsigned Size); - bool resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, bool isPCRel, - unsigned Type, unsigned Size); - bool resolveARMRelocation(uintptr_t Address, uintptr_t Value, bool isPCRel, - unsigned Type, unsigned Size); - - bool loadSegment32(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC); - bool loadSegment64(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC); - -public: - RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} - - bool loadObject(MemoryBuffer *InputBuffer); - - void reassignSymbolAddress(StringRef Name, uint8_t *Addr); - - static bool isKnownFormat(const MemoryBuffer *InputBuffer); - - bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const { - return isKnownFormat(InputBuffer); - } }; } // end namespace llvm diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp index 623e9b2acca3..1318b4454255 100644 --- a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.cpp @@ -1,4 +1,4 @@ -//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// +//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=// // // The LLVM Compiler Infrastructure // @@ -15,73 +15,147 @@ #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/STLExtras.h" -#include "RuntimeDyldImpl.h" +#include "RuntimeDyldMachO.h" using namespace llvm; using namespace llvm::object; namespace llvm { -bool RuntimeDyldMachO:: -resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, - unsigned Type, unsigned Size) { +void RuntimeDyldMachO::resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend) { + bool isPCRel = (Type >> 24) & 1; + unsigned MachoType = (Type >> 28) & 0xf; + unsigned Size = 1 << ((Type >> 25) & 3); + + DEBUG(dbgs() << "resolveRelocation LocalAddress: " << format("%p", LocalAddress) + << " FinalAddress: " << format("%p", FinalAddress) + << " Value: " << format("%p", Value) + << " Addend: " << Addend + << " isPCRel: " << isPCRel + << " MachoType: " << MachoType + << " Size: " << Size + << "\n"); + // This just dispatches to the proper target specific routine. - switch (CPUType) { - default: assert(0 && "Unsupported CPU type!"); - case mach::CTM_x86_64: - return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); - case mach::CTM_ARM: - return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, - isPCRel, Type, Size); + switch (Arch) { + default: llvm_unreachable("Unsupported CPU type!"); + case Triple::x86_64: + resolveX86_64Relocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + MachoType, + Size, + Addend); + break; + case Triple::x86: + resolveI386Relocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + Type, + Size, + Addend); + break; + case Triple::arm: // Fall through. + case Triple::thumb: + resolveARMRelocation(LocalAddress, + FinalAddress, + (uintptr_t)Value, + isPCRel, + MachoType, + Size, + Addend); + break; + } +} + +bool RuntimeDyldMachO:: +resolveI386Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { + if (isPCRel) + Value -= FinalAddress + 4; // see resolveX86_64Relocation + + switch (Type) { + default: + llvm_unreachable("Invalid relocation type!"); + case macho::RIT_Vanilla: { + uint8_t *p = LocalAddress; + uint64_t ValueToWrite = Value + Addend; + for (unsigned i = 0; i < Size; ++i) { + *p++ = (uint8_t)(ValueToWrite & 0xff); + ValueToWrite >>= 8; + } + } + case macho::RIT_Difference: + case macho::RIT_Generic_LocalDifference: + case macho::RIT_Generic_PreboundLazyPointer: + return Error("Relocation type not implemented yet!"); } - llvm_unreachable(""); } bool RuntimeDyldMachO:: -resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { +resolveX86_64Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) // FIXME: It seems this value needs to be adjusted by 4 for an effective PC // address. Is that expected? Only for branches, perhaps? - Value -= Address + 4; + Value -= FinalAddress + 4; switch(Type) { default: llvm_unreachable("Invalid relocation type!"); + case macho::RIT_X86_64_Signed1: + case macho::RIT_X86_64_Signed2: + case macho::RIT_X86_64_Signed4: + case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_Unsigned: case macho::RIT_X86_64_Branch: { + Value += Addend; // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; + uint8_t *p = (uint8_t*)LocalAddress; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; } return false; } - case macho::RIT_X86_64_Signed: case macho::RIT_X86_64_GOTLoad: case macho::RIT_X86_64_GOT: case macho::RIT_X86_64_Subtractor: - case macho::RIT_X86_64_Signed1: - case macho::RIT_X86_64_Signed2: - case macho::RIT_X86_64_Signed4: case macho::RIT_X86_64_TLV: return Error("Relocation type not implemented yet!"); } - return false; } -bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, - bool isPCRel, unsigned Type, - unsigned Size) { +bool RuntimeDyldMachO:: +resolveARMRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend) { // If the relocation is PC-relative, the value to be encoded is the // pointer difference. if (isPCRel) { - Value -= Address; + Value -= FinalAddress; // ARM PCRel relocations have an effective-PC offset of two instructions // (four bytes in Thumb mode, 8 bytes in ARM mode). // FIXME: For now, assume ARM mode. @@ -92,10 +166,9 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, default: llvm_unreachable("Invalid relocation type!"); case macho::RIT_Vanilla: { - llvm_unreachable("Invalid relocation type!"); // Mask in the target value a byte at a time (we don't have an alignment // guarantee for the target address, so this is safest). - uint8_t *p = (uint8_t*)Address; + uint8_t *p = (uint8_t*)LocalAddress; for (unsigned i = 0; i < Size; ++i) { *p++ = (uint8_t)Value; Value >>= 8; @@ -105,7 +178,7 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, case macho::RIT_ARM_Branch24Bit: { // Mask the value into the target address. We know instructions are // 32-bit aligned, so we can do it all at once. - uint32_t *p = (uint32_t*)Address; + uint32_t *p = (uint32_t*)LocalAddress; // The low two bits of the value are not encoded. Value >>= 2; // Mask the value to 24 bits. @@ -131,388 +204,84 @@ bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, return false; } -bool RuntimeDyldMachO:: -loadSegment32(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { - InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; - Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); - if (!SegmentLC) - return Error("unable to load segment load command"); - - for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { - InMemoryStruct<macho::Section> Sect; - Obj->ReadSection(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); - - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; - - // Address and names of symbols in the section. - typedef std::pair<uint64_t, StringRef> SymbolEntry; - SmallVector<SymbolEntry, 64> Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector<StringRef, 64> SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct<macho::SymbolTableEntry> STE; - Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > SegmentLC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - // Flags == 0x8 marks a thumb function for ARM, which is fine as it - // doesn't require any special handling here. - if (STE->Flags != 0x0 && STE->Flags != 0x8) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); - } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); - - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; - - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, - SegmentLC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); - } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct<macho::RelocationEntry> RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - // FIXME: Some targets (ARM) use internal relocations even for - // externally visible symbols, if the definition is in the same - // file as the reference. We need to convert those back to by-name - // references. We can resolve the address based on the section - // offset and see if we have a symbol at that address. If we do, - // use that; otherwise, puke. - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); - } - } - return false; -} - - -bool RuntimeDyldMachO:: -loadSegment64(const MachOObject *Obj, - const MachOObject::LoadCommandInfo *SegmentLCI, - const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { - InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; - Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); - if (!Segment64LC) - return Error("unable to load segment load command"); - - for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { - InMemoryStruct<macho::Section64> Sect; - Obj->ReadSection64(*SegmentLCI, SectNum, Sect); - if (!Sect) - return Error("unable to load section: '" + Twine(SectNum) + "'"); - - // FIXME: For the time being, we're only loading text segments. - if (Sect->Flags != 0x80000400) - continue; - - // Address and names of symbols in the section. - typedef std::pair<uint64_t, StringRef> SymbolEntry; - SmallVector<SymbolEntry, 64> Symbols; - // Index of all the names, in this section or not. Used when we're - // dealing with relocation entries. - SmallVector<StringRef, 64> SymbolNames; - for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { - InMemoryStruct<macho::Symbol64TableEntry> STE; - Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); - if (!STE) - return Error("unable to read symbol: '" + Twine(i) + "'"); - if (STE->SectionIndex > Segment64LC->NumSections) - return Error("invalid section index for symbol: '" + Twine(i) + "'"); - // Get the symbol name. - StringRef Name = Obj->getStringAtIndex(STE->StringIndex); - SymbolNames.push_back(Name); - - // Just skip symbols not defined in this section. - if ((unsigned)STE->SectionIndex - 1 != SectNum) - continue; - - // FIXME: Check the symbol type and flags. - if (STE->Type != 0xF) // external, defined in this section. - continue; - if (STE->Flags != 0x0) - continue; - - // Remember the symbol. - Symbols.push_back(SymbolEntry(STE->Value, Name)); - - DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << - (Sect->Address + STE->Value) << "\n"); +void RuntimeDyldMachO::processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, + StubMap &Stubs) { + + uint32_t RelType = (uint32_t) (Rel.Type & 0xffffffffL); + RelocationValueRef Value; + SectionEntry &Section = Sections[Rel.SectionID]; + uint8_t *Target = Section.Address + Rel.Offset; + + bool isExtern = (RelType >> 27) & 1; + if (isExtern) { + StringRef TargetName; + const SymbolRef &Symbol = Rel.Symbol; + Symbol.getName(TargetName); + // First look the symbol in object file symbols. + LocalSymbolMap::iterator lsi = Symbols.find(TargetName.data()); + if (lsi != Symbols.end()) { + Value.SectionID = lsi->second.first; + Value.Addend = lsi->second.second; + } else { + // Second look the symbol in global symbol table. + StringMap<SymbolLoc>::iterator gsi = SymbolTable.find(TargetName.data()); + if (gsi != SymbolTable.end()) { + Value.SectionID = gsi->second.first; + Value.Addend = gsi->second.second; + } else + Value.SymbolName = TargetName.data(); } - // Sort the symbols by address, just in case they didn't come in that way. - array_pod_sort(Symbols.begin(), Symbols.end()); - - // If there weren't any functions (odd, but just in case...) - if (!Symbols.size()) - continue; - - // Extract the function data. - uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, - Segment64LC->FileSize).data(); - for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { - uint64_t StartOffset = Sect->Address + Symbols[i].first; - uint64_t EndOffset = Symbols[i + 1].first - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[i].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); + } else { + error_code err; + uint8_t sectionIndex = static_cast<uint8_t>(RelType & 0xFF); + section_iterator si = Obj.begin_sections(), + se = Obj.end_sections(); + for (uint8_t i = 1; i < sectionIndex; i++) { + error_code err; + si.increment(err); + if (si == se) + break; } - // The last symbol we do after since the end address is calculated - // differently because there is no next symbol to reference. - uint64_t StartOffset = Symbols[Symbols.size() - 1].first; - uint64_t EndOffset = Sect->Size - 1; - DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second - << " from [" << StartOffset << ", " << EndOffset << "]\n"); - extractFunction(Symbols[Symbols.size()-1].second, - Base + StartOffset, Base + EndOffset); - - // Now extract the relocation information for each function and process it. - for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { - InMemoryStruct<macho::RelocationEntry> RE; - Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); - if (RE->Word0 & macho::RF_Scattered) - return Error("NOT YET IMPLEMENTED: scattered relocations."); - // Word0 of the relocation is the offset into the section where the - // relocation should be applied. We need to translate that into an - // offset into a function since that's our atom. - uint32_t Offset = RE->Word0; - // Look for the function containing the address. This is used for JIT - // code, so the number of functions in section is almost always going - // to be very small (usually just one), so until we have use cases - // where that's not true, just use a trivial linear search. - unsigned SymbolNum; - unsigned NumSymbols = Symbols.size(); - assert(NumSymbols > 0 && Symbols[0].first <= Offset && - "No symbol containing relocation!"); - for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) - if (Symbols[SymbolNum + 1].first > Offset) - break; - // Adjust the offset to be relative to the symbol. - Offset -= Symbols[SymbolNum].first; - // Get the name of the symbol containing the relocation. - StringRef TargetName = SymbolNames[SymbolNum]; - - bool isExtern = (RE->Word1 >> 27) & 1; - // Figure out the source symbol of the relocation. If isExtern is true, - // this relocation references the symbol table, otherwise it references - // a section in the same object, numbered from 1 through NumSections - // (SectionBases is [0, NumSections-1]). - if (!isExtern) - return Error("Internal relocations not supported."); - uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value - StringRef SourceName = SymbolNames[SourceNum]; - - // FIXME: Get the relocation addend from the target address. - - // Now store the relocation information. Associate it with the source - // symbol. - Relocations[SourceName].push_back(RelocationEntry(TargetName, - Offset, - RE->Word1, - 0 /*Addend*/)); - DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset - << " from '" << SourceName << "(Word1: " - << format("0x%x", RE->Word1) << ")\n"); + assert(si != se && "No section containing relocation!"); + Value.SectionID = findOrEmitSection(*si, true, ObjSectionToID); + Value.Addend = *(const intptr_t *)Target; + if (Value.Addend) { + // The MachO addend is offset from the current section, we need set it + // as offset from destination section + Value.Addend += Section.ObjAddress - Sections[Value.SectionID].ObjAddress; } } - return false; -} - -bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { - // If the linker is in an error state, don't do anything. - if (hasError()) - return true; - // Load the Mach-O wrapper object. - std::string ErrorStr; - OwningPtr<MachOObject> Obj( - MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); - if (!Obj) - return Error("unable to load object: '" + ErrorStr + "'"); - - // Get the CPU type information from the header. - const macho::Header &Header = Obj->getHeader(); - - // FIXME: Error checking that the loaded object is compatible with - // the system we're running on. - CPUType = Header.CPUType; - CPUSubtype = Header.CPUSubtype; - // Validate that the load commands match what we expect. - const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, - *DysymtabLCI = 0; - for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { - const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); - switch (LCI.Command.Type) { - case macho::LCT_Segment: - case macho::LCT_Segment64: - if (SegmentLCI) - return Error("unexpected input object (multiple segments)"); - SegmentLCI = &LCI; - break; - case macho::LCT_Symtab: - if (SymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - SymtabLCI = &LCI; - break; - case macho::LCT_Dysymtab: - if (DysymtabLCI) - return Error("unexpected input object (multiple symbol tables)"); - DysymtabLCI = &LCI; - break; - default: - return Error("unexpected input object (unexpected load command"); + if (Arch == Triple::arm && RelType == macho::RIT_ARM_Branch24Bit) { + // This is an ARM branch relocation, need to use a stub function. + + // Look up for existing stub. + StubMap::const_iterator i = Stubs.find(Value); + if (i != Stubs.end()) + resolveRelocation(Target, (uint64_t)Target, + (uint64_t)Section.Address + i->second, + RelType, 0); + else { + // Create a new stub function. + Stubs[Value] = Section.StubOffset; + uint8_t *StubTargetAddr = createStubFunction(Section.Address + + Section.StubOffset); + AddRelocation(Value, Rel.SectionID, StubTargetAddr - Section.Address, + macho::RIT_Vanilla); + resolveRelocation(Target, (uint64_t)Target, + (uint64_t)Section.Address + Section.StubOffset, + RelType, 0); + Section.StubOffset += getMaxStubSize(); } - } - - if (!SymtabLCI) - return Error("no symbol table found in object"); - if (!SegmentLCI) - return Error("no symbol table found in object"); - - // Read and register the symbol table data. - InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; - Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); - if (!SymtabLC) - return Error("unable to load symbol table load command"); - Obj->RegisterStringTable(*SymtabLC); - - // Read the dynamic link-edit information, if present (not present in static - // objects). - if (DysymtabLCI) { - InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; - Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); - if (!DysymtabLC) - return Error("unable to load dynamic link-exit load command"); - - // FIXME: We don't support anything interesting yet. -// if (DysymtabLC->LocalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: local symbol entries"); -// if (DysymtabLC->ExternalSymbolsIndex != 0) -// return Error("NOT YET IMPLEMENTED: non-external symbol entries"); -// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) -// return Error("NOT YET IMPLEMENTED: undefined symbol entries"); - } - - // Load the segment load command. - if (SegmentLCI->Command.Type == macho::LCT_Segment) { - if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) - return true; - } else { - if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) - return true; - } - - return false; + } else + AddRelocation(Value, Rel.SectionID, Rel.Offset, RelType); } -// Assign an address to a symbol name and resolve all the relocations -// associated with it. -void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { - // Assign the address in our symbol table. - SymbolTable[Name] = Addr; - - RelocationList &Relocs = Relocations[Name]; - for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { - RelocationEntry &RE = Relocs[i]; - uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; - bool isPCRel = (RE.Data >> 24) & 1; - unsigned Type = (RE.Data >> 28) & 0xf; - unsigned Size = 1 << ((RE.Data >> 25) & 3); - - DEBUG(dbgs() << "Resolving relocation at '" << RE.Target - << "' + " << RE.Offset << " (" << format("%p", Target) << ")" - << " from '" << Name << " (" << format("%p", Addr) << ")" - << "(" << (isPCRel ? "pcrel" : "absolute") - << ", type: " << Type << ", Size: " << Size << ").\n"); - - resolveRelocation(Target, Addr, isPCRel, Type, Size); - RE.isResolved = true; - } -} -bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { +bool RuntimeDyldMachO::isCompatibleFormat(const MemoryBuffer *InputBuffer) const { StringRef Magic = InputBuffer->getBuffer().slice(0, 4); if (Magic == "\xFE\xED\xFA\xCE") return true; if (Magic == "\xCE\xFA\xED\xFE") return true; diff --git a/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h new file mode 100644 index 000000000000..898b85190e71 --- /dev/null +++ b/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldMachO.h @@ -0,0 +1,70 @@ +//===-- RuntimeDyldMachO.h - Run-time dynamic linker for MC-JIT ---*- C++ -*-=// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// MachO support for MC-JIT runtime dynamic linker. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_RUNTIME_DYLD_MACHO_H +#define LLVM_RUNTIME_DYLD_MACHO_H + +#include "llvm/ADT/IndexedMap.h" +#include "llvm/Object/MachOObject.h" +#include "llvm/Support/Format.h" +#include "RuntimeDyldImpl.h" + +using namespace llvm; +using namespace llvm::object; + + +namespace llvm { +class RuntimeDyldMachO : public RuntimeDyldImpl { +protected: + bool resolveI386Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend); + bool resolveX86_64Relocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend); + bool resolveARMRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + bool isPCRel, + unsigned Type, + unsigned Size, + int64_t Addend); + + virtual void processRelocationRef(const ObjRelocationInfo &Rel, + const ObjectFile &Obj, + ObjSectionToIDMap &ObjSectionToID, + LocalSymbolMap &Symbols, StubMap &Stubs); + +public: + virtual void resolveRelocation(uint8_t *LocalAddress, + uint64_t FinalAddress, + uint64_t Value, + uint32_t Type, + int64_t Addend); + + RuntimeDyldMachO(RTDyldMemoryManager *mm) : RuntimeDyldImpl(mm) {} + + bool isCompatibleFormat(const MemoryBuffer *InputBuffer) const; +}; + +} // end namespace llvm + +#endif |