aboutsummaryrefslogtreecommitdiff
path: root/lib/Lex/LiteralSupport.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Lex/LiteralSupport.cpp')
-rw-r--r--lib/Lex/LiteralSupport.cpp267
1 files changed, 148 insertions, 119 deletions
diff --git a/lib/Lex/LiteralSupport.cpp b/lib/Lex/LiteralSupport.cpp
index 37ea52b46f9d..42dd75e59b94 100644
--- a/lib/Lex/LiteralSupport.cpp
+++ b/lib/Lex/LiteralSupport.cpp
@@ -16,6 +16,7 @@
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
@@ -43,7 +44,7 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
switch (ResultChar) {
// These map to themselves.
case '\\': case '\'': case '"': case '?': break;
-
+
// These have fixed mappings.
case 'a':
// TODO: K&R: the meaning of '\\a' is different in traditional C
@@ -82,7 +83,7 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
HadError = 1;
break;
}
-
+
// Hex escapes are a maximal series of hex digits.
bool Overflow = false;
for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
@@ -95,13 +96,15 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
}
// See if any bits will be truncated when evaluated as a character.
- unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
-
+ unsigned CharWidth = IsWide
+ ? PP.getTargetInfo().getWCharWidth()
+ : PP.getTargetInfo().getCharWidth();
+
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
Overflow = true;
ResultChar &= ~0U >> (32-CharWidth);
}
-
+
// Check for overflow.
if (Overflow) // Too many digits to fit in
PP.Diag(Loc, diag::warn_hex_escape_too_large);
@@ -122,17 +125,19 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
++NumDigits;
} while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
-
+
// Check for overflow. Reject '\777', but not L'\777'.
- unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
-
+ unsigned CharWidth = IsWide
+ ? PP.getTargetInfo().getWCharWidth()
+ : PP.getTargetInfo().getCharWidth();
+
if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
PP.Diag(Loc, diag::warn_octal_escape_too_large);
ResultChar &= ~0U >> (32-CharWidth);
}
break;
}
-
+
// Otherwise, these are not valid escapes.
case '(': case '{': case '[': case '%':
// GCC accepts these as extensions. We warn about them as such though.
@@ -146,7 +151,7 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
PP.Diag(Loc, diag::ext_unknown_escape) << "x"+llvm::utohexstr(ResultChar);
break;
}
-
+
return ResultChar;
}
@@ -154,16 +159,16 @@ static unsigned ProcessCharEscape(const char *&ThisTokBuf,
/// convert the UTF32 to UTF8. This is a subroutine of StringLiteralParser.
/// When we decide to implement UCN's for character constants and identifiers,
/// we will likely rework our support for UCN's.
-static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
- char *&ResultBuf, bool &HadError,
- SourceLocation Loc, bool IsWide, Preprocessor &PP)
+static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
+ char *&ResultBuf, bool &HadError,
+ SourceLocation Loc, bool IsWide, Preprocessor &PP)
{
// FIXME: Add a warning - UCN's are only valid in C++ & C99.
// FIXME: Handle wide strings.
-
+
// Save the beginning of the string (for error diagnostics).
const char *ThisTokBegin = ThisTokBuf;
-
+
// Skip the '\u' char's.
ThisTokBuf += 2;
@@ -173,7 +178,7 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
return;
}
typedef uint32_t UTF32;
-
+
UTF32 UcnVal = 0;
unsigned short UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
for (; ThisTokBuf != ThisTokEnd && UcnLen; ++ThisTokBuf, UcnLen--) {
@@ -189,10 +194,10 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
HadError = 1;
return;
}
- // Check UCN constraints (C99 6.4.3p2).
+ // Check UCN constraints (C99 6.4.3p2).
if ((UcnVal < 0xa0 &&
(UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60 )) // $, @, `
- || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
+ || (UcnVal >= 0xD800 && UcnVal <= 0xDFFF)
|| (UcnVal > 0x10FFFF)) /* the maximum legal UTF32 value */ {
PP.Diag(Loc, diag::err_ucn_escape_invalid);
HadError = 1;
@@ -201,7 +206,7 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
// Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
// The conversion below was inspired by:
// http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
- // First, we determine how many bytes the result will require.
+ // First, we determine how many bytes the result will require.
typedef uint8_t UTF8;
unsigned short bytesToWrite = 0;
@@ -213,13 +218,13 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
bytesToWrite = 3;
else
bytesToWrite = 4;
-
+
const unsigned byteMask = 0xBF;
const unsigned byteMark = 0x80;
-
+
// Once the bits are split out into bytes of UTF8, this is a mask OR-ed
// into the first byte, depending on how many bytes follow.
- static const UTF8 firstByteMark[5] = {
+ static const UTF8 firstByteMark[5] = {
0x00, 0x00, 0xC0, 0xE0, 0xF0
};
// Finally, we write the bytes into ResultBuf.
@@ -239,13 +244,13 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
/// decimal-constant integer-suffix
/// octal-constant integer-suffix
/// hexadecimal-constant integer-suffix
-/// decimal-constant:
+/// decimal-constant:
/// nonzero-digit
/// decimal-constant digit
-/// octal-constant:
+/// octal-constant:
/// 0
/// octal-constant octal-digit
-/// hexadecimal-constant:
+/// hexadecimal-constant:
/// hexadecimal-prefix hexadecimal-digit
/// hexadecimal-constant hexadecimal-digit
/// hexadecimal-prefix: one of
@@ -267,7 +272,7 @@ static void ProcessUCNEscape(const char *&ThisTokBuf, const char *ThisTokEnd,
/// u U
/// long-suffix: one of
/// l L
-/// long-long-suffix: one of
+/// long-long-suffix: one of
/// ll LL
///
/// floating-constant: [C99 6.4.4.2]
@@ -277,14 +282,14 @@ NumericLiteralParser::
NumericLiteralParser(const char *begin, const char *end,
SourceLocation TokLoc, Preprocessor &pp)
: PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
-
+
// This routine assumes that the range begin/end matches the regex for integer
// and FP constants (specifically, the 'pp-number' regex), and assumes that
// the byte at "*end" is both valid and not part of the regex. Because of
// this, it doesn't have to check for 'overscan' in various places.
assert(!isalnum(*end) && *end != '.' && *end != '_' &&
"Lexer didn't maximally munch?");
-
+
s = DigitsBegin = begin;
saw_exponent = false;
saw_period = false;
@@ -293,8 +298,9 @@ NumericLiteralParser(const char *begin, const char *end,
isLongLong = false;
isFloat = false;
isImaginary = false;
+ isMicrosoftInteger = false;
hadError = false;
-
+
if (*s == '0') { // parse radix
ParseNumberStartingWithZero(TokLoc);
if (hadError)
@@ -313,7 +319,7 @@ NumericLiteralParser(const char *begin, const char *end,
s++;
saw_period = true;
s = SkipDigits(s);
- }
+ }
if ((*s == 'e' || *s == 'E')) { // exponent
const char *Exponent = s;
s++;
@@ -332,11 +338,11 @@ NumericLiteralParser(const char *begin, const char *end,
}
SuffixBegin = s;
-
+
// Parse the suffix. At this point we can classify whether we have an FP or
// integer constant.
bool isFPConstant = isFloatingLiteral();
-
+
// Loop over all of the characters of the suffix. If we see something bad,
// we break out of the loop.
for (; s != ThisTokEnd; ++s) {
@@ -357,7 +363,7 @@ NumericLiteralParser(const char *begin, const char *end,
case 'L':
if (isLong || isLongLong) break; // Cannot be repeated.
if (isFloat) break; // LF invalid.
-
+
// Check for long long. The L's need to be adjacent and the same case.
if (s+1 != ThisTokEnd && s[1] == s[0]) {
if (isFPConstant) break; // long long invalid for floats.
@@ -370,31 +376,50 @@ NumericLiteralParser(const char *begin, const char *end,
case 'i':
if (PP.getLangOptions().Microsoft) {
// Allow i8, i16, i32, i64, and i128.
- if (++s == ThisTokEnd) break;
- switch (*s) {
- case '8':
- s++; // i8 suffix
- break;
- case '1':
- if (++s == ThisTokEnd) break;
- if (*s == '6') s++; // i16 suffix
- else if (*s == '2') {
- if (++s == ThisTokEnd) break;
- if (*s == '8') s++; // i128 suffix
- }
- break;
- case '3':
- if (++s == ThisTokEnd) break;
- if (*s == '2') s++; // i32 suffix
- break;
- case '6':
- if (++s == ThisTokEnd) break;
- if (*s == '4') s++; // i64 suffix
- break;
- default:
- break;
+ if (s + 1 != ThisTokEnd) {
+ switch (s[1]) {
+ case '8':
+ s += 2; // i8 suffix
+ isMicrosoftInteger = true;
+ continue;
+ case '1':
+ s += 2;
+ if (s == ThisTokEnd) break;
+ if (*s == '6') s++; // i16 suffix
+ else if (*s == '2') {
+ if (++s == ThisTokEnd) break;
+ if (*s == '8') s++; // i128 suffix
+ }
+ isMicrosoftInteger = true;
+ continue;
+ case '3':
+ s += 2;
+ if (s == ThisTokEnd) break;
+ if (*s == '2') s++; // i32 suffix
+ isMicrosoftInteger = true;
+ continue;
+ case '6':
+ s += 2;
+ if (s == ThisTokEnd) break;
+ if (*s == '4') s++; // i64 suffix
+ isMicrosoftInteger = true;
+ continue;
+ case 'f': // FP Suffix for "float"
+ case 'F':
+ if (!isFPConstant) break; // Error for integer constant.
+ if (isFloat || isLong) break; // FF, LF invalid.
+ isFloat = true;
+ if (isImaginary) break; // Cannot be repeated.
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
+ diag::ext_imaginary_constant);
+ isImaginary = true;
+ s++;
+ continue; // Success.
+ default:
+ break;
+ }
+ break;
}
- break;
}
// fall through.
case 'I':
@@ -409,7 +434,7 @@ NumericLiteralParser(const char *begin, const char *end,
// If we reached here, there was an error.
break;
}
-
+
// Report an error if there are any.
if (s != ThisTokEnd) {
PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
@@ -424,12 +449,12 @@ NumericLiteralParser(const char *begin, const char *end,
/// ParseNumberStartingWithZero - This method is called when the first character
/// of the number is found to be a zero. This means it is either an octal
/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
-/// a floating point number (01239.123e4). Eat the prefix, determining the
+/// a floating point number (01239.123e4). Eat the prefix, determining the
/// radix etc.
void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
assert(s[0] == '0' && "Invalid method call");
s++;
-
+
// Handle a hex number like 0x1234.
if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
s++;
@@ -444,7 +469,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
s = SkipHexDigits(s);
}
// A binary exponent can appear with or with a '.'. If dotted, the
- // binary exponent is required.
+ // binary exponent is required.
if (*s == 'p' || *s == 'P') {
const char *Exponent = s;
s++;
@@ -458,7 +483,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
return;
}
s = first_non_digit;
-
+
if (!PP.getLangOptions().HexFloats)
PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
} else if (saw_period) {
@@ -468,7 +493,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
}
return;
}
-
+
// Handle simple binary numbers 0b01010
if (*s == 'b' || *s == 'B') {
// 0b101010 is a GCC extension.
@@ -487,16 +512,16 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
// Other suffixes will be diagnosed by the caller.
return;
}
-
+
// For now, the radix is set to 8. If we discover that we have a
// floating point constant, the radix will change to 10. Octal floating
- // point constants are not permitted (only decimal and hexadecimal).
+ // point constants are not permitted (only decimal and hexadecimal).
radix = 8;
DigitsBegin = s;
s = SkipOctalDigits(s);
if (s == ThisTokEnd)
return; // Done, simple octal number like 01234
-
+
// If we have some other non-octal digit that *is* a decimal digit, see if
// this is part of a floating point number like 094.123 or 09e1.
if (isdigit(*s)) {
@@ -506,7 +531,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
radix = 10;
}
}
-
+
// If we have a hex digit other than 'e' (which denotes a FP exponent) then
// the code is using an incorrect base.
if (isxdigit(*s) && *s != 'e' && *s != 'E') {
@@ -515,7 +540,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
hadError = true;
return;
}
-
+
if (*s == '.') {
s++;
radix = 10;
@@ -532,7 +557,7 @@ void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
if (first_non_digit != s) {
s = first_non_digit;
} else {
- PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
diag::err_exponent_has_no_digits);
hadError = true;
return;
@@ -552,7 +577,7 @@ bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
// handles the common cases that matter (small decimal integers and
// hex/octal values which don't overflow).
unsigned MaxBitsPerDigit = 1;
- while ((1U << MaxBitsPerDigit) < radix)
+ while ((1U << MaxBitsPerDigit) < radix)
MaxBitsPerDigit += 1;
if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
uint64_t N = 0;
@@ -571,16 +596,16 @@ bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
llvm::APInt RadixVal(Val.getBitWidth(), radix);
llvm::APInt CharVal(Val.getBitWidth(), 0);
llvm::APInt OldVal = Val;
-
+
bool OverflowOccurred = false;
while (s < SuffixBegin) {
unsigned C = HexDigitValue(*s++);
-
+
// If this letter is out of bound for this radix, reject it.
assert(C < radix && "NumericLiteralParser ctor should have rejected this");
-
+
CharVal = C;
-
+
// Add the digit to the value in the appropriate radix. If adding in digits
// made the value smaller, then this overflowed.
OldVal = Val;
@@ -600,21 +625,24 @@ bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
llvm::APFloat NumericLiteralParser::
GetFloatValue(const llvm::fltSemantics &Format, bool* isExact) {
using llvm::APFloat;
-
+ using llvm::StringRef;
+
llvm::SmallVector<char,256> floatChars;
- for (unsigned i = 0, n = ThisTokEnd-ThisTokBegin; i != n; ++i)
+ unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
+ for (unsigned i = 0; i != n; ++i)
floatChars.push_back(ThisTokBegin[i]);
-
+
floatChars.push_back('\0');
-
+
APFloat V (Format, APFloat::fcZero, false);
APFloat::opStatus status;
-
- status = V.convertFromString(&floatChars[0],APFloat::rmNearestTiesToEven);
-
+
+ status = V.convertFromString(StringRef(&floatChars[0], n),
+ APFloat::rmNearestTiesToEven);
+
if (isExact)
*isExact = status == APFloat::opOK;
-
+
return V;
}
@@ -623,16 +651,16 @@ CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
SourceLocation Loc, Preprocessor &PP) {
// At this point we know that the character matches the regex "L?'.*'".
HadError = false;
-
+
// Determine if this is a wide character.
IsWide = begin[0] == 'L';
if (IsWide) ++begin;
-
+
// Skip over the entry quote.
assert(begin[0] == '\'' && "Invalid token lexed");
++begin;
- // FIXME: The "Value" is an uint64_t so we can handle char literals of
+ // FIXME: The "Value" is an uint64_t so we can handle char literals of
// upto 64-bits.
// FIXME: This extensively assumes that 'char' is 8-bits.
assert(PP.getTargetInfo().getCharWidth() == 8 &&
@@ -643,9 +671,9 @@ CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
"Assumes sizeof(wchar) on target is <= 64");
- // This is what we will use for overflow detection
+ // This is what we will use for overflow detection
llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
-
+
unsigned NumCharsSoFar = 0;
while (begin[0] != '\'') {
uint64_t ResultChar;
@@ -668,7 +696,7 @@ CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
LitVal <<= 8;
}
}
-
+
LitVal = LitVal + ResultChar;
++NumCharsSoFar;
}
@@ -684,11 +712,12 @@ CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
else
PP.Diag(Loc, diag::ext_four_char_character_literal);
IsMultiChar = true;
- }
+ } else
+ IsMultiChar = false;
// Transfer the value from APInt to uint64_t
Value = LitVal.getZExtValue();
-
+
// If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
// if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
// character constants are not sign extended in the this implementation:
@@ -743,7 +772,7 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
MaxTokenLength = StringToks[0].getLength();
SizeBound = StringToks[0].getLength()-2; // -2 for "".
AnyWide = StringToks[0].is(tok::wide_string_literal);
-
+
hadError = false;
// Implement Translation Phase #6: concatenation of string literals
@@ -752,20 +781,20 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
// The string could be shorter than this if it needs cleaning, but this is a
// reasonable bound, which is all we need.
SizeBound += StringToks[i].getLength()-2; // -2 for "".
-
+
// Remember maximum string piece length.
- if (StringToks[i].getLength() > MaxTokenLength)
+ if (StringToks[i].getLength() > MaxTokenLength)
MaxTokenLength = StringToks[i].getLength();
-
+
// Remember if we see any wide strings.
AnyWide |= StringToks[i].is(tok::wide_string_literal);
}
// Include space for the null terminator.
++SizeBound;
-
+
// TODO: K&R warning: "traditional C rejects string constant concatenation"
-
+
// Get the width in bytes of wchar_t. If no wchar_t strings are used, do not
// query the target. As such, wchar_tByteWidth is only valid if AnyWide=true.
wchar_tByteWidth = ~0U;
@@ -774,25 +803,25 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
wchar_tByteWidth /= 8;
}
-
+
// The output buffer size needs to be large enough to hold wide characters.
// This is a worst-case assumption which basically corresponds to L"" "long".
if (AnyWide)
SizeBound *= wchar_tByteWidth;
-
+
// Size the temporary buffer to hold the result string data.
ResultBuf.resize(SizeBound);
-
+
// Likewise, but for each string piece.
llvm::SmallString<512> TokenBuf;
TokenBuf.resize(MaxTokenLength);
-
+
// Loop over all the strings, getting their spelling, and expanding them to
// wide strings as appropriate.
ResultPtr = &ResultBuf[0]; // Next byte to fill in.
-
+
Pascal = false;
-
+
for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
const char *ThisTokBuf = &TokenBuf[0];
// Get the spelling of the token, which eliminates trigraphs, etc. We know
@@ -800,23 +829,23 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
// and 'spelled' tokens can only shrink.
unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1; // Skip end quote.
-
+
// TODO: Input character set mapping support.
-
+
// Skip L marker for wide strings.
bool ThisIsWide = false;
if (ThisTokBuf[0] == 'L') {
++ThisTokBuf;
ThisIsWide = true;
}
-
+
assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
++ThisTokBuf;
-
+
// Check if this is a pascal string
if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
-
+
// If the \p sequence is found in the first token, we have a pascal string
// Otherwise, if we already have a pascal string, ignore the first \p
if (i == 0) {
@@ -825,7 +854,7 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
} else if (Pascal)
ThisTokBuf += 2;
}
-
+
while (ThisTokBuf != ThisTokEnd) {
// Is this a span of non-escape characters?
if (ThisTokBuf[0] != '\\') {
@@ -833,7 +862,7 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
do {
++ThisTokBuf;
} while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
-
+
// Copy the character span over.
unsigned Len = ThisTokBuf-InStart;
if (!AnyWide) {
@@ -852,7 +881,7 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
}
// Is this a Universal Character Name escape?
if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
- ProcessUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
+ ProcessUCNEscape(ThisTokBuf, ThisTokEnd, ResultPtr,
hadError, StringToks[i].getLocation(), ThisIsWide, PP);
continue;
}
@@ -860,17 +889,17 @@ StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
StringToks[i].getLocation(),
ThisIsWide, PP);
-
+
// Note: our internal rep of wide char tokens is always little-endian.
*ResultPtr++ = ResultChar & 0xFF;
-
+
if (AnyWide) {
for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
*ResultPtr++ = ResultChar >> i*8;
}
}
}
-
+
if (Pascal) {
ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
@@ -895,31 +924,31 @@ unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
// Get the spelling of the token.
llvm::SmallString<16> SpellingBuffer;
SpellingBuffer.resize(Tok.getLength());
-
+
const char *SpellingPtr = &SpellingBuffer[0];
unsigned TokLen = PP.getSpelling(Tok, SpellingPtr);
assert(SpellingPtr[0] != 'L' && "Doesn't handle wide strings yet");
-
+
const char *SpellingStart = SpellingPtr;
const char *SpellingEnd = SpellingPtr+TokLen;
// Skip over the leading quote.
assert(SpellingPtr[0] == '"' && "Should be a string literal!");
++SpellingPtr;
-
+
// Skip over bytes until we find the offset we're looking for.
while (ByteNo) {
assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
-
+
// Step over non-escapes simply.
if (*SpellingPtr != '\\') {
++SpellingPtr;
--ByteNo;
continue;
}
-
+
// Otherwise, this is an escape character. Advance over it.
bool HadError = false;
ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
@@ -927,6 +956,6 @@ unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
assert(!HadError && "This method isn't valid on erroneous strings");
--ByteNo;
}
-
+
return SpellingPtr-SpellingStart;
}