aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaCodeComplete.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaCodeComplete.cpp')
-rw-r--r--lib/Sema/SemaCodeComplete.cpp1432
1 files changed, 1432 insertions, 0 deletions
diff --git a/lib/Sema/SemaCodeComplete.cpp b/lib/Sema/SemaCodeComplete.cpp
new file mode 100644
index 000000000000..3981b8d22fa3
--- /dev/null
+++ b/lib/Sema/SemaCodeComplete.cpp
@@ -0,0 +1,1432 @@
+//===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the code-completion semantic actions.
+//
+//===----------------------------------------------------------------------===//
+#include "Sema.h"
+#include "clang/Sema/CodeCompleteConsumer.h"
+#include "clang/AST/ExprCXX.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include <list>
+#include <map>
+#include <vector>
+
+using namespace clang;
+
+/// \brief Set the code-completion consumer for semantic analysis.
+void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) {
+ assert(((CodeCompleter != 0) != (CCC != 0)) &&
+ "Already set or cleared a code-completion consumer?");
+ CodeCompleter = CCC;
+}
+
+namespace {
+ /// \brief A container of code-completion results.
+ class ResultBuilder {
+ public:
+ /// \brief The type of a name-lookup filter, which can be provided to the
+ /// name-lookup routines to specify which declarations should be included in
+ /// the result set (when it returns true) and which declarations should be
+ /// filtered out (returns false).
+ typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
+
+ typedef CodeCompleteConsumer::Result Result;
+
+ private:
+ /// \brief The actual results we have found.
+ std::vector<Result> Results;
+
+ /// \brief A record of all of the declarations we have found and placed
+ /// into the result set, used to ensure that no declaration ever gets into
+ /// the result set twice.
+ llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
+
+ /// \brief A mapping from declaration names to the declarations that have
+ /// this name within a particular scope and their index within the list of
+ /// results.
+ typedef std::multimap<DeclarationName,
+ std::pair<NamedDecl *, unsigned> > ShadowMap;
+
+ /// \brief The semantic analysis object for which results are being
+ /// produced.
+ Sema &SemaRef;
+
+ /// \brief If non-NULL, a filter function used to remove any code-completion
+ /// results that are not desirable.
+ LookupFilter Filter;
+
+ /// \brief A list of shadow maps, which is used to model name hiding at
+ /// different levels of, e.g., the inheritance hierarchy.
+ std::list<ShadowMap> ShadowMaps;
+
+ public:
+ explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
+ : SemaRef(SemaRef), Filter(Filter) { }
+
+ /// \brief Set the filter used for code-completion results.
+ void setFilter(LookupFilter Filter) {
+ this->Filter = Filter;
+ }
+
+ typedef std::vector<Result>::iterator iterator;
+ iterator begin() { return Results.begin(); }
+ iterator end() { return Results.end(); }
+
+ Result *data() { return Results.empty()? 0 : &Results.front(); }
+ unsigned size() const { return Results.size(); }
+ bool empty() const { return Results.empty(); }
+
+ /// \brief Add a new result to this result set (if it isn't already in one
+ /// of the shadow maps), or replace an existing result (for, e.g., a
+ /// redeclaration).
+ ///
+ /// \param R the result to add (if it is unique).
+ ///
+ /// \param R the context in which this result will be named.
+ void MaybeAddResult(Result R, DeclContext *CurContext = 0);
+
+ /// \brief Enter into a new scope.
+ void EnterNewScope();
+
+ /// \brief Exit from the current scope.
+ void ExitScope();
+
+ /// \name Name lookup predicates
+ ///
+ /// These predicates can be passed to the name lookup functions to filter the
+ /// results of name lookup. All of the predicates have the same type, so that
+ ///
+ //@{
+ bool IsOrdinaryName(NamedDecl *ND) const;
+ bool IsNestedNameSpecifier(NamedDecl *ND) const;
+ bool IsEnum(NamedDecl *ND) const;
+ bool IsClassOrStruct(NamedDecl *ND) const;
+ bool IsUnion(NamedDecl *ND) const;
+ bool IsNamespace(NamedDecl *ND) const;
+ bool IsNamespaceOrAlias(NamedDecl *ND) const;
+ bool IsType(NamedDecl *ND) const;
+ bool IsMember(NamedDecl *ND) const;
+ //@}
+ };
+}
+
+/// \brief Determines whether the given hidden result could be found with
+/// some extra work, e.g., by qualifying the name.
+///
+/// \param Hidden the declaration that is hidden by the currenly \p Visible
+/// declaration.
+///
+/// \param Visible the declaration with the same name that is already visible.
+///
+/// \returns true if the hidden result can be found by some mechanism,
+/// false otherwise.
+static bool canHiddenResultBeFound(const LangOptions &LangOpts,
+ NamedDecl *Hidden, NamedDecl *Visible) {
+ // In C, there is no way to refer to a hidden name.
+ if (!LangOpts.CPlusPlus)
+ return false;
+
+ DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
+
+ // There is no way to qualify a name declared in a function or method.
+ if (HiddenCtx->isFunctionOrMethod())
+ return false;
+
+ return HiddenCtx != Visible->getDeclContext()->getLookupContext();
+}
+
+/// \brief Compute the qualification required to get from the current context
+/// (\p CurContext) to the target context (\p TargetContext).
+///
+/// \param Context the AST context in which the qualification will be used.
+///
+/// \param CurContext the context where an entity is being named, which is
+/// typically based on the current scope.
+///
+/// \param TargetContext the context in which the named entity actually
+/// resides.
+///
+/// \returns a nested name specifier that refers into the target context, or
+/// NULL if no qualification is needed.
+static NestedNameSpecifier *
+getRequiredQualification(ASTContext &Context,
+ DeclContext *CurContext,
+ DeclContext *TargetContext) {
+ llvm::SmallVector<DeclContext *, 4> TargetParents;
+
+ for (DeclContext *CommonAncestor = TargetContext;
+ CommonAncestor && !CommonAncestor->Encloses(CurContext);
+ CommonAncestor = CommonAncestor->getLookupParent()) {
+ if (CommonAncestor->isTransparentContext() ||
+ CommonAncestor->isFunctionOrMethod())
+ continue;
+
+ TargetParents.push_back(CommonAncestor);
+ }
+
+ NestedNameSpecifier *Result = 0;
+ while (!TargetParents.empty()) {
+ DeclContext *Parent = TargetParents.back();
+ TargetParents.pop_back();
+
+ if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
+ Result = NestedNameSpecifier::Create(Context, Result, Namespace);
+ else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
+ Result = NestedNameSpecifier::Create(Context, Result,
+ false,
+ Context.getTypeDeclType(TD).getTypePtr());
+ else
+ assert(Parent->isTranslationUnit());
+ }
+
+ return Result;
+}
+
+void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
+ assert(!ShadowMaps.empty() && "Must enter into a results scope");
+
+ if (R.Kind != Result::RK_Declaration) {
+ // For non-declaration results, just add the result.
+ Results.push_back(R);
+ return;
+ }
+
+ // Skip unnamed entities.
+ if (!R.Declaration->getDeclName())
+ return;
+
+ // Look through using declarations.
+ if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
+ MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier),
+ CurContext);
+
+ // Handle each declaration in an overload set separately.
+ if (OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
+ for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
+ FEnd = Ovl->function_end();
+ F != FEnd; ++F)
+ MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext);
+
+ return;
+ }
+
+ Decl *CanonDecl = R.Declaration->getCanonicalDecl();
+ unsigned IDNS = CanonDecl->getIdentifierNamespace();
+
+ // Friend declarations and declarations introduced due to friends are never
+ // added as results.
+ if (isa<FriendDecl>(CanonDecl) ||
+ (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
+ return;
+
+ if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
+ // __va_list_tag is a freak of nature. Find it and skip it.
+ if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
+ return;
+
+ // Filter out names reserved for the implementation (C99 7.1.3,
+ // C++ [lib.global.names]). Users don't need to see those.
+ if (Id->getLength() >= 2) {
+ const char *Name = Id->getName();
+ if (Name[0] == '_' &&
+ (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z')))
+ return;
+ }
+ }
+
+ // C++ constructors are never found by name lookup.
+ if (isa<CXXConstructorDecl>(CanonDecl))
+ return;
+
+ // Filter out any unwanted results.
+ if (Filter && !(this->*Filter)(R.Declaration))
+ return;
+
+ ShadowMap &SMap = ShadowMaps.back();
+ ShadowMap::iterator I, IEnd;
+ for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
+ I != IEnd; ++I) {
+ NamedDecl *ND = I->second.first;
+ unsigned Index = I->second.second;
+ if (ND->getCanonicalDecl() == CanonDecl) {
+ // This is a redeclaration. Always pick the newer declaration.
+ I->second.first = R.Declaration;
+ Results[Index].Declaration = R.Declaration;
+
+ // Pick the best rank of the two.
+ Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
+
+ // We're done.
+ return;
+ }
+ }
+
+ // This is a new declaration in this scope. However, check whether this
+ // declaration name is hidden by a similarly-named declaration in an outer
+ // scope.
+ std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
+ --SMEnd;
+ for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
+ for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
+ I != IEnd; ++I) {
+ // A tag declaration does not hide a non-tag declaration.
+ if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
+ (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
+ Decl::IDNS_ObjCProtocol)))
+ continue;
+
+ // Protocols are in distinct namespaces from everything else.
+ if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
+ || (IDNS & Decl::IDNS_ObjCProtocol)) &&
+ I->second.first->getIdentifierNamespace() != IDNS)
+ continue;
+
+ // The newly-added result is hidden by an entry in the shadow map.
+ if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration,
+ I->second.first)) {
+ // Note that this result was hidden.
+ R.Hidden = true;
+ R.QualifierIsInformative = false;
+
+ if (!R.Qualifier)
+ R.Qualifier = getRequiredQualification(SemaRef.Context,
+ CurContext,
+ R.Declaration->getDeclContext());
+ } else {
+ // This result was hidden and cannot be found; don't bother adding
+ // it.
+ return;
+ }
+
+ break;
+ }
+ }
+
+ // Make sure that any given declaration only shows up in the result set once.
+ if (!AllDeclsFound.insert(CanonDecl))
+ return;
+
+ // If the filter is for nested-name-specifiers, then this result starts a
+ // nested-name-specifier.
+ if ((Filter == &ResultBuilder::IsNestedNameSpecifier) ||
+ (Filter == &ResultBuilder::IsMember &&
+ isa<CXXRecordDecl>(R.Declaration) &&
+ cast<CXXRecordDecl>(R.Declaration)->isInjectedClassName()))
+ R.StartsNestedNameSpecifier = true;
+
+ // If this result is supposed to have an informative qualifier, add one.
+ if (R.QualifierIsInformative && !R.Qualifier &&
+ !R.StartsNestedNameSpecifier) {
+ DeclContext *Ctx = R.Declaration->getDeclContext();
+ if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, Namespace);
+ else if (TagDecl *Tag = dyn_cast<TagDecl>(Ctx))
+ R.Qualifier = NestedNameSpecifier::Create(SemaRef.Context, 0, false,
+ SemaRef.Context.getTypeDeclType(Tag).getTypePtr());
+ else
+ R.QualifierIsInformative = false;
+ }
+
+ // Insert this result into the set of results and into the current shadow
+ // map.
+ SMap.insert(std::make_pair(R.Declaration->getDeclName(),
+ std::make_pair(R.Declaration, Results.size())));
+ Results.push_back(R);
+}
+
+/// \brief Enter into a new scope.
+void ResultBuilder::EnterNewScope() {
+ ShadowMaps.push_back(ShadowMap());
+}
+
+/// \brief Exit from the current scope.
+void ResultBuilder::ExitScope() {
+ ShadowMaps.pop_back();
+}
+
+/// \brief Determines whether this given declaration will be found by
+/// ordinary name lookup.
+bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
+ unsigned IDNS = Decl::IDNS_Ordinary;
+ if (SemaRef.getLangOptions().CPlusPlus)
+ IDNS |= Decl::IDNS_Tag;
+
+ return ND->getIdentifierNamespace() & IDNS;
+}
+
+/// \brief Determines whether the given declaration is suitable as the
+/// start of a C++ nested-name-specifier, e.g., a class or namespace.
+bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ return SemaRef.isAcceptableNestedNameSpecifier(ND);
+}
+
+/// \brief Determines whether the given declaration is an enumeration.
+bool ResultBuilder::IsEnum(NamedDecl *ND) const {
+ return isa<EnumDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is a class or struct.
+bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
+ return RD->getTagKind() == TagDecl::TK_class ||
+ RD->getTagKind() == TagDecl::TK_struct;
+
+ return false;
+}
+
+/// \brief Determines whether the given declaration is a union.
+bool ResultBuilder::IsUnion(NamedDecl *ND) const {
+ // Allow us to find class templates, too.
+ if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
+ ND = ClassTemplate->getTemplatedDecl();
+
+ if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
+ return RD->getTagKind() == TagDecl::TK_union;
+
+ return false;
+}
+
+/// \brief Determines whether the given declaration is a namespace.
+bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
+ return isa<NamespaceDecl>(ND);
+}
+
+/// \brief Determines whether the given declaration is a namespace or
+/// namespace alias.
+bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
+ return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
+}
+
+/// \brief Brief determines whether the given declaration is a namespace or
+/// namespace alias.
+bool ResultBuilder::IsType(NamedDecl *ND) const {
+ return isa<TypeDecl>(ND);
+}
+
+/// \brief Since every declaration found within a class is a member that we
+/// care about, always returns true. This predicate exists mostly to
+/// communicate to the result builder that we are performing a lookup for
+/// member access.
+bool ResultBuilder::IsMember(NamedDecl *ND) const {
+ return true;
+}
+
+// Find the next outer declaration context corresponding to this scope.
+static DeclContext *findOuterContext(Scope *S) {
+ for (S = S->getParent(); S; S = S->getParent())
+ if (S->getEntity())
+ return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
+
+ return 0;
+}
+
+/// \brief Collect the results of searching for members within the given
+/// declaration context.
+///
+/// \param Ctx the declaration context from which we will gather results.
+///
+/// \param Rank the rank given to results in this declaration context.
+///
+/// \param Visited the set of declaration contexts that have already been
+/// visited. Declaration contexts will only be visited once.
+///
+/// \param Results the result set that will be extended with any results
+/// found within this declaration context (and, for a C++ class, its bases).
+///
+/// \param InBaseClass whether we are in a base class.
+///
+/// \returns the next higher rank value, after considering all of the
+/// names within this declaration context.
+static unsigned CollectMemberLookupResults(DeclContext *Ctx,
+ unsigned Rank,
+ DeclContext *CurContext,
+ llvm::SmallPtrSet<DeclContext *, 16> &Visited,
+ ResultBuilder &Results,
+ bool InBaseClass = false) {
+ // Make sure we don't visit the same context twice.
+ if (!Visited.insert(Ctx->getPrimaryContext()))
+ return Rank;
+
+ // Enumerate all of the results in this context.
+ typedef CodeCompleteConsumer::Result Result;
+ Results.EnterNewScope();
+ for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
+ CurCtx = CurCtx->getNextContext()) {
+ for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
+ DEnd = CurCtx->decls_end();
+ D != DEnd; ++D) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
+ Results.MaybeAddResult(Result(ND, Rank, 0, InBaseClass), CurContext);
+ }
+ }
+
+ // Traverse the contexts of inherited classes.
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
+ for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
+ BEnd = Record->bases_end();
+ B != BEnd; ++B) {
+ QualType BaseType = B->getType();
+
+ // Don't look into dependent bases, because name lookup can't look
+ // there anyway.
+ if (BaseType->isDependentType())
+ continue;
+
+ const RecordType *Record = BaseType->getAs<RecordType>();
+ if (!Record)
+ continue;
+
+ // FIXME: It would be nice to be able to determine whether referencing
+ // a particular member would be ambiguous. For example, given
+ //
+ // struct A { int member; };
+ // struct B { int member; };
+ // struct C : A, B { };
+ //
+ // void f(C *c) { c->### }
+ // accessing 'member' would result in an ambiguity. However, code
+ // completion could be smart enough to qualify the member with the
+ // base class, e.g.,
+ //
+ // c->B::member
+ //
+ // or
+ //
+ // c->A::member
+
+ // Collect results from this base class (and its bases).
+ CollectMemberLookupResults(Record->getDecl(), Rank, CurContext, Visited,
+ Results, /*InBaseClass=*/true);
+ }
+ }
+
+ // FIXME: Look into base classes in Objective-C!
+
+ Results.ExitScope();
+ return Rank + 1;
+}
+
+/// \brief Collect the results of searching for members within the given
+/// declaration context.
+///
+/// \param Ctx the declaration context from which we will gather results.
+///
+/// \param InitialRank the initial rank given to results in this declaration
+/// context. Larger rank values will be used for, e.g., members found in
+/// base classes.
+///
+/// \param Results the result set that will be extended with any results
+/// found within this declaration context (and, for a C++ class, its bases).
+///
+/// \returns the next higher rank value, after considering all of the
+/// names within this declaration context.
+static unsigned CollectMemberLookupResults(DeclContext *Ctx,
+ unsigned InitialRank,
+ DeclContext *CurContext,
+ ResultBuilder &Results) {
+ llvm::SmallPtrSet<DeclContext *, 16> Visited;
+ return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited,
+ Results);
+}
+
+/// \brief Collect the results of searching for declarations within the given
+/// scope and its parent scopes.
+///
+/// \param S the scope in which we will start looking for declarations.
+///
+/// \param InitialRank the initial rank given to results in this scope.
+/// Larger rank values will be used for results found in parent scopes.
+///
+/// \param CurContext the context from which lookup results will be found.
+///
+/// \param Results the builder object that will receive each result.
+static unsigned CollectLookupResults(Scope *S,
+ TranslationUnitDecl *TranslationUnit,
+ unsigned InitialRank,
+ DeclContext *CurContext,
+ ResultBuilder &Results) {
+ if (!S)
+ return InitialRank;
+
+ // FIXME: Using directives!
+
+ unsigned NextRank = InitialRank;
+ Results.EnterNewScope();
+ if (S->getEntity() &&
+ !((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
+ // Look into this scope's declaration context, along with any of its
+ // parent lookup contexts (e.g., enclosing classes), up to the point
+ // where we hit the context stored in the next outer scope.
+ DeclContext *Ctx = (DeclContext *)S->getEntity();
+ DeclContext *OuterCtx = findOuterContext(S);
+
+ for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
+ Ctx = Ctx->getLookupParent()) {
+ if (Ctx->isFunctionOrMethod())
+ continue;
+
+ NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext,
+ Results);
+ }
+ } else if (!S->getParent()) {
+ // Look into the translation unit scope. We walk through the translation
+ // unit's declaration context, because the Scope itself won't have all of
+ // the declarations if we loaded a precompiled header.
+ // FIXME: We would like the translation unit's Scope object to point to the
+ // translation unit, so we don't need this special "if" branch. However,
+ // doing so would force the normal C++ name-lookup code to look into the
+ // translation unit decl when the IdentifierInfo chains would suffice.
+ // Once we fix that problem (which is part of a more general "don't look
+ // in DeclContexts unless we have to" optimization), we can eliminate the
+ // TranslationUnit parameter entirely.
+ NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1,
+ CurContext, Results);
+ } else {
+ // Walk through the declarations in this Scope.
+ for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
+ D != DEnd; ++D) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank),
+ CurContext);
+ }
+
+ NextRank = NextRank + 1;
+ }
+
+ // Lookup names in the parent scope.
+ NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank,
+ CurContext, Results);
+ Results.ExitScope();
+
+ return NextRank;
+}
+
+/// \brief Add type specifiers for the current language as keyword results.
+static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank,
+ ResultBuilder &Results) {
+ typedef CodeCompleteConsumer::Result Result;
+ Results.MaybeAddResult(Result("short", Rank));
+ Results.MaybeAddResult(Result("long", Rank));
+ Results.MaybeAddResult(Result("signed", Rank));
+ Results.MaybeAddResult(Result("unsigned", Rank));
+ Results.MaybeAddResult(Result("void", Rank));
+ Results.MaybeAddResult(Result("char", Rank));
+ Results.MaybeAddResult(Result("int", Rank));
+ Results.MaybeAddResult(Result("float", Rank));
+ Results.MaybeAddResult(Result("double", Rank));
+ Results.MaybeAddResult(Result("enum", Rank));
+ Results.MaybeAddResult(Result("struct", Rank));
+ Results.MaybeAddResult(Result("union", Rank));
+
+ if (LangOpts.C99) {
+ // C99-specific
+ Results.MaybeAddResult(Result("_Complex", Rank));
+ Results.MaybeAddResult(Result("_Imaginary", Rank));
+ Results.MaybeAddResult(Result("_Bool", Rank));
+ }
+
+ if (LangOpts.CPlusPlus) {
+ // C++-specific
+ Results.MaybeAddResult(Result("bool", Rank));
+ Results.MaybeAddResult(Result("class", Rank));
+ Results.MaybeAddResult(Result("typename", Rank));
+ Results.MaybeAddResult(Result("wchar_t", Rank));
+
+ if (LangOpts.CPlusPlus0x) {
+ Results.MaybeAddResult(Result("char16_t", Rank));
+ Results.MaybeAddResult(Result("char32_t", Rank));
+ Results.MaybeAddResult(Result("decltype", Rank));
+ }
+ }
+
+ // GNU extensions
+ if (LangOpts.GNUMode) {
+ // FIXME: Enable when we actually support decimal floating point.
+ // Results.MaybeAddResult(Result("_Decimal32", Rank));
+ // Results.MaybeAddResult(Result("_Decimal64", Rank));
+ // Results.MaybeAddResult(Result("_Decimal128", Rank));
+ Results.MaybeAddResult(Result("typeof", Rank));
+ }
+}
+
+/// \brief Add function parameter chunks to the given code completion string.
+static void AddFunctionParameterChunks(ASTContext &Context,
+ FunctionDecl *Function,
+ CodeCompletionString *Result) {
+ CodeCompletionString *CCStr = Result;
+
+ for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
+ ParmVarDecl *Param = Function->getParamDecl(P);
+
+ if (Param->hasDefaultArg()) {
+ // When we see an optional default argument, put that argument and
+ // the remaining default arguments into a new, optional string.
+ CodeCompletionString *Opt = new CodeCompletionString;
+ CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
+ CCStr = Opt;
+ }
+
+ if (P != 0)
+ CCStr->AddTextChunk(", ");
+
+ // Format the placeholder string.
+ std::string PlaceholderStr;
+ if (Param->getIdentifier())
+ PlaceholderStr = Param->getIdentifier()->getName();
+
+ Param->getType().getAsStringInternal(PlaceholderStr,
+ Context.PrintingPolicy);
+
+ // Add the placeholder string.
+ CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
+ }
+
+ if (const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>())
+ if (Proto->isVariadic())
+ CCStr->AddPlaceholderChunk(", ...");
+}
+
+/// \brief Add template parameter chunks to the given code completion string.
+static void AddTemplateParameterChunks(ASTContext &Context,
+ TemplateDecl *Template,
+ CodeCompletionString *Result,
+ unsigned MaxParameters = 0) {
+ CodeCompletionString *CCStr = Result;
+ bool FirstParameter = true;
+
+ TemplateParameterList *Params = Template->getTemplateParameters();
+ TemplateParameterList::iterator PEnd = Params->end();
+ if (MaxParameters)
+ PEnd = Params->begin() + MaxParameters;
+ for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
+ bool HasDefaultArg = false;
+ std::string PlaceholderStr;
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
+ if (TTP->wasDeclaredWithTypename())
+ PlaceholderStr = "typename";
+ else
+ PlaceholderStr = "class";
+
+ if (TTP->getIdentifier()) {
+ PlaceholderStr += ' ';
+ PlaceholderStr += TTP->getIdentifier()->getName();
+ }
+
+ HasDefaultArg = TTP->hasDefaultArgument();
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
+ if (NTTP->getIdentifier())
+ PlaceholderStr = NTTP->getIdentifier()->getName();
+ NTTP->getType().getAsStringInternal(PlaceholderStr,
+ Context.PrintingPolicy);
+ HasDefaultArg = NTTP->hasDefaultArgument();
+ } else {
+ assert(isa<TemplateTemplateParmDecl>(*P));
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
+
+ // Since putting the template argument list into the placeholder would
+ // be very, very long, we just use an abbreviation.
+ PlaceholderStr = "template<...> class";
+ if (TTP->getIdentifier()) {
+ PlaceholderStr += ' ';
+ PlaceholderStr += TTP->getIdentifier()->getName();
+ }
+
+ HasDefaultArg = TTP->hasDefaultArgument();
+ }
+
+ if (HasDefaultArg) {
+ // When we see an optional default argument, put that argument and
+ // the remaining default arguments into a new, optional string.
+ CodeCompletionString *Opt = new CodeCompletionString;
+ CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
+ CCStr = Opt;
+ }
+
+ if (FirstParameter)
+ FirstParameter = false;
+ else
+ CCStr->AddTextChunk(", ");
+
+ // Add the placeholder string.
+ CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
+ }
+}
+
+/// \brief Add a qualifier to the given code-completion string, if the
+/// provided nested-name-specifier is non-NULL.
+void AddQualifierToCompletionString(CodeCompletionString *Result,
+ NestedNameSpecifier *Qualifier,
+ bool QualifierIsInformative,
+ ASTContext &Context) {
+ if (!Qualifier)
+ return;
+
+ std::string PrintedNNS;
+ {
+ llvm::raw_string_ostream OS(PrintedNNS);
+ Qualifier->print(OS, Context.PrintingPolicy);
+ }
+ if (QualifierIsInformative)
+ Result->AddInformativeChunk(PrintedNNS.c_str());
+ else
+ Result->AddTextChunk(PrintedNNS.c_str());
+}
+
+/// \brief If possible, create a new code completion string for the given
+/// result.
+///
+/// \returns Either a new, heap-allocated code completion string describing
+/// how to use this result, or NULL to indicate that the string or name of the
+/// result is all that is needed.
+CodeCompletionString *
+CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
+ if (Kind != RK_Declaration)
+ return 0;
+
+ NamedDecl *ND = Declaration;
+
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
+ CodeCompletionString *Result = new CodeCompletionString;
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ S.Context);
+ Result->AddTextChunk(Function->getNameAsString().c_str());
+ Result->AddTextChunk("(");
+ AddFunctionParameterChunks(S.Context, Function, Result);
+ Result->AddTextChunk(")");
+ return Result;
+ }
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
+ CodeCompletionString *Result = new CodeCompletionString;
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ S.Context);
+ FunctionDecl *Function = FunTmpl->getTemplatedDecl();
+ Result->AddTextChunk(Function->getNameAsString().c_str());
+
+ // Figure out which template parameters are deduced (or have default
+ // arguments).
+ llvm::SmallVector<bool, 16> Deduced;
+ S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
+ unsigned LastDeducibleArgument;
+ for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
+ --LastDeducibleArgument) {
+ if (!Deduced[LastDeducibleArgument - 1]) {
+ // C++0x: Figure out if the template argument has a default. If so,
+ // the user doesn't need to type this argument.
+ // FIXME: We need to abstract template parameters better!
+ bool HasDefaultArg = false;
+ NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
+ LastDeducibleArgument - 1);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+ HasDefaultArg = TTP->hasDefaultArgument();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param))
+ HasDefaultArg = NTTP->hasDefaultArgument();
+ else {
+ assert(isa<TemplateTemplateParmDecl>(Param));
+ HasDefaultArg
+ = cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
+ }
+
+ if (!HasDefaultArg)
+ break;
+ }
+ }
+
+ if (LastDeducibleArgument) {
+ // Some of the function template arguments cannot be deduced from a
+ // function call, so we introduce an explicit template argument list
+ // containing all of the arguments up to the first deducible argument.
+ Result->AddTextChunk("<");
+ AddTemplateParameterChunks(S.Context, FunTmpl, Result,
+ LastDeducibleArgument);
+ Result->AddTextChunk(">");
+ }
+
+ // Add the function parameters
+ Result->AddTextChunk("(");
+ AddFunctionParameterChunks(S.Context, Function, Result);
+ Result->AddTextChunk(")");
+ return Result;
+ }
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
+ CodeCompletionString *Result = new CodeCompletionString;
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ S.Context);
+ Result->AddTextChunk(Template->getNameAsString().c_str());
+ Result->AddTextChunk("<");
+ AddTemplateParameterChunks(S.Context, Template, Result);
+ Result->AddTextChunk(">");
+ return Result;
+ }
+
+ if (Qualifier || StartsNestedNameSpecifier) {
+ CodeCompletionString *Result = new CodeCompletionString;
+ AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative,
+ S.Context);
+ Result->AddTextChunk(ND->getNameAsString().c_str());
+ if (StartsNestedNameSpecifier)
+ Result->AddTextChunk("::");
+ return Result;
+ }
+
+ return 0;
+}
+
+CodeCompletionString *
+CodeCompleteConsumer::OverloadCandidate::CreateSignatureString(
+ unsigned CurrentArg,
+ Sema &S) const {
+ CodeCompletionString *Result = new CodeCompletionString;
+ FunctionDecl *FDecl = getFunction();
+ const FunctionProtoType *Proto
+ = dyn_cast<FunctionProtoType>(getFunctionType());
+ if (!FDecl && !Proto) {
+ // Function without a prototype. Just give the return type and a
+ // highlighted ellipsis.
+ const FunctionType *FT = getFunctionType();
+ Result->AddTextChunk(
+ FT->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
+ Result->AddTextChunk("(");
+ Result->AddPlaceholderChunk("...");
+ Result->AddTextChunk("(");
+ return Result;
+ }
+
+ if (FDecl)
+ Result->AddTextChunk(FDecl->getNameAsString().c_str());
+ else
+ Result->AddTextChunk(
+ Proto->getResultType().getAsString(S.Context.PrintingPolicy).c_str());
+
+ Result->AddTextChunk("(");
+ unsigned NumParams = FDecl? FDecl->getNumParams() : Proto->getNumArgs();
+ for (unsigned I = 0; I != NumParams; ++I) {
+ if (I)
+ Result->AddTextChunk(", ");
+
+ std::string ArgString;
+ QualType ArgType;
+
+ if (FDecl) {
+ ArgString = FDecl->getParamDecl(I)->getNameAsString();
+ ArgType = FDecl->getParamDecl(I)->getOriginalType();
+ } else {
+ ArgType = Proto->getArgType(I);
+ }
+
+ ArgType.getAsStringInternal(ArgString, S.Context.PrintingPolicy);
+
+ if (I == CurrentArg)
+ Result->AddPlaceholderChunk(ArgString.c_str());
+ else
+ Result->AddTextChunk(ArgString.c_str());
+ }
+
+ if (Proto && Proto->isVariadic()) {
+ Result->AddTextChunk(", ");
+ if (CurrentArg < NumParams)
+ Result->AddTextChunk("...");
+ else
+ Result->AddPlaceholderChunk("...");
+ }
+ Result->AddTextChunk(")");
+
+ return Result;
+}
+
+namespace {
+ struct SortCodeCompleteResult {
+ typedef CodeCompleteConsumer::Result Result;
+
+ bool isEarlierDeclarationName(DeclarationName X, DeclarationName Y) const {
+ if (X.getNameKind() != Y.getNameKind())
+ return X.getNameKind() < Y.getNameKind();
+
+ return llvm::LowercaseString(X.getAsString())
+ < llvm::LowercaseString(Y.getAsString());
+ }
+
+ bool operator()(const Result &X, const Result &Y) const {
+ // Sort first by rank.
+ if (X.Rank < Y.Rank)
+ return true;
+ else if (X.Rank > Y.Rank)
+ return false;
+
+ // Result kinds are ordered by decreasing importance.
+ if (X.Kind < Y.Kind)
+ return true;
+ else if (X.Kind > Y.Kind)
+ return false;
+
+ // Non-hidden names precede hidden names.
+ if (X.Hidden != Y.Hidden)
+ return !X.Hidden;
+
+ // Non-nested-name-specifiers precede nested-name-specifiers.
+ if (X.StartsNestedNameSpecifier != Y.StartsNestedNameSpecifier)
+ return !X.StartsNestedNameSpecifier;
+
+ // Ordering depends on the kind of result.
+ switch (X.Kind) {
+ case Result::RK_Declaration:
+ // Order based on the declaration names.
+ return isEarlierDeclarationName(X.Declaration->getDeclName(),
+ Y.Declaration->getDeclName());
+
+ case Result::RK_Keyword:
+ return strcmp(X.Keyword, Y.Keyword) < 0;
+ }
+
+ // Silence GCC warning.
+ return false;
+ }
+ };
+}
+
+static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter,
+ CodeCompleteConsumer::Result *Results,
+ unsigned NumResults) {
+ // Sort the results by rank/kind/etc.
+ std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
+
+ if (CodeCompleter)
+ CodeCompleter->ProcessCodeCompleteResults(Results, NumResults);
+}
+
+void Sema::CodeCompleteOrdinaryName(Scope *S) {
+ ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName);
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
+ Results);
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
+ SourceLocation OpLoc,
+ bool IsArrow) {
+ if (!BaseE || !CodeCompleter)
+ return;
+
+ typedef CodeCompleteConsumer::Result Result;
+
+ Expr *Base = static_cast<Expr *>(BaseE);
+ QualType BaseType = Base->getType();
+
+ if (IsArrow) {
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+ else if (BaseType->isObjCObjectPointerType())
+ /*Do nothing*/ ;
+ else
+ return;
+ }
+
+ ResultBuilder Results(*this, &ResultBuilder::IsMember);
+ unsigned NextRank = 0;
+
+ if (const RecordType *Record = BaseType->getAs<RecordType>()) {
+ NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank,
+ Record->getDecl(), Results);
+
+ if (getLangOptions().CPlusPlus) {
+ if (!Results.empty()) {
+ // The "template" keyword can follow "->" or "." in the grammar.
+ // However, we only want to suggest the template keyword if something
+ // is dependent.
+ bool IsDependent = BaseType->isDependentType();
+ if (!IsDependent) {
+ for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
+ if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
+ IsDependent = Ctx->isDependentContext();
+ break;
+ }
+ }
+
+ if (IsDependent)
+ Results.MaybeAddResult(Result("template", NextRank++));
+ }
+
+ // We could have the start of a nested-name-specifier. Add those
+ // results as well.
+ Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
+ CurContext, Results);
+ }
+
+ // Hand off the results found for code completion.
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+
+ // We're done!
+ return;
+ }
+}
+
+void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
+ if (!CodeCompleter)
+ return;
+
+ typedef CodeCompleteConsumer::Result Result;
+ ResultBuilder::LookupFilter Filter = 0;
+ switch ((DeclSpec::TST)TagSpec) {
+ case DeclSpec::TST_enum:
+ Filter = &ResultBuilder::IsEnum;
+ break;
+
+ case DeclSpec::TST_union:
+ Filter = &ResultBuilder::IsUnion;
+ break;
+
+ case DeclSpec::TST_struct:
+ case DeclSpec::TST_class:
+ Filter = &ResultBuilder::IsClassOrStruct;
+ break;
+
+ default:
+ assert(false && "Unknown type specifier kind in CodeCompleteTag");
+ return;
+ }
+
+ ResultBuilder Results(*this, Filter);
+ unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
+ 0, CurContext, Results);
+
+ if (getLangOptions().CPlusPlus) {
+ // We could have the start of a nested-name-specifier. Add those
+ // results as well.
+ Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
+ CurContext, Results);
+ }
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteCase(Scope *S) {
+ if (getSwitchStack().empty() || !CodeCompleter)
+ return;
+
+ SwitchStmt *Switch = getSwitchStack().back();
+ if (!Switch->getCond()->getType()->isEnumeralType())
+ return;
+
+ // Code-complete the cases of a switch statement over an enumeration type
+ // by providing the list of
+ EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
+
+ // Determine which enumerators we have already seen in the switch statement.
+ // FIXME: Ideally, we would also be able to look *past* the code-completion
+ // token, in case we are code-completing in the middle of the switch and not
+ // at the end. However, we aren't able to do so at the moment.
+ llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
+ NestedNameSpecifier *Qualifier = 0;
+ for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
+ SC = SC->getNextSwitchCase()) {
+ CaseStmt *Case = dyn_cast<CaseStmt>(SC);
+ if (!Case)
+ continue;
+
+ Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
+ if (EnumConstantDecl *Enumerator
+ = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
+ // We look into the AST of the case statement to determine which
+ // enumerator was named. Alternatively, we could compute the value of
+ // the integral constant expression, then compare it against the
+ // values of each enumerator. However, value-based approach would not
+ // work as well with C++ templates where enumerators declared within a
+ // template are type- and value-dependent.
+ EnumeratorsSeen.insert(Enumerator);
+
+ // If this is a qualified-id, keep track of the nested-name-specifier
+ // so that we can reproduce it as part of code completion, e.g.,
+ //
+ // switch (TagD.getKind()) {
+ // case TagDecl::TK_enum:
+ // break;
+ // case XXX
+ //
+ // At the XXX, our completions are TagDecl::TK_union,
+ // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
+ // TK_struct, and TK_class.
+ if (QualifiedDeclRefExpr *QDRE = dyn_cast<QualifiedDeclRefExpr>(DRE))
+ Qualifier = QDRE->getQualifier();
+ }
+ }
+
+ if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
+ // If there are no prior enumerators in C++, check whether we have to
+ // qualify the names of the enumerators that we suggest, because they
+ // may not be visible in this scope.
+ Qualifier = getRequiredQualification(Context, CurContext,
+ Enum->getDeclContext());
+
+ // FIXME: Scoped enums need to start with "EnumDecl" as the context!
+ }
+
+ // Add any enumerators that have not yet been mentioned.
+ ResultBuilder Results(*this);
+ Results.EnterNewScope();
+ for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
+ EEnd = Enum->enumerator_end();
+ E != EEnd; ++E) {
+ if (EnumeratorsSeen.count(*E))
+ continue;
+
+ Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier));
+ }
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+namespace {
+ struct IsBetterOverloadCandidate {
+ Sema &S;
+
+ public:
+ explicit IsBetterOverloadCandidate(Sema &S) : S(S) { }
+
+ bool
+ operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
+ return S.isBetterOverloadCandidate(X, Y);
+ }
+ };
+}
+
+void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
+ ExprTy **ArgsIn, unsigned NumArgs) {
+ if (!CodeCompleter)
+ return;
+
+ Expr *Fn = (Expr *)FnIn;
+ Expr **Args = (Expr **)ArgsIn;
+
+ // Ignore type-dependent call expressions entirely.
+ if (Fn->isTypeDependent() ||
+ Expr::hasAnyTypeDependentArguments(Args, NumArgs))
+ return;
+
+ NamedDecl *Function;
+ DeclarationName UnqualifiedName;
+ NestedNameSpecifier *Qualifier;
+ SourceRange QualifierRange;
+ bool ArgumentDependentLookup;
+ bool HasExplicitTemplateArgs;
+ const TemplateArgument *ExplicitTemplateArgs;
+ unsigned NumExplicitTemplateArgs;
+
+ DeconstructCallFunction(Fn,
+ Function, UnqualifiedName, Qualifier, QualifierRange,
+ ArgumentDependentLookup, HasExplicitTemplateArgs,
+ ExplicitTemplateArgs, NumExplicitTemplateArgs);
+
+
+ // FIXME: What if we're calling something that isn't a function declaration?
+ // FIXME: What if we're calling a pseudo-destructor?
+ // FIXME: What if we're calling a member function?
+
+ // Build an overload candidate set based on the functions we find.
+ OverloadCandidateSet CandidateSet;
+ AddOverloadedCallCandidates(Function, UnqualifiedName,
+ ArgumentDependentLookup, HasExplicitTemplateArgs,
+ ExplicitTemplateArgs, NumExplicitTemplateArgs,
+ Args, NumArgs,
+ CandidateSet,
+ /*PartialOverloading=*/true);
+
+ // Sort the overload candidate set by placing the best overloads first.
+ std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
+ IsBetterOverloadCandidate(*this));
+
+ // Add the remaining viable overload candidates as code-completion reslults.
+ typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate;
+ llvm::SmallVector<ResultCandidate, 8> Results;
+
+ for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
+ CandEnd = CandidateSet.end();
+ Cand != CandEnd; ++Cand) {
+ if (Cand->Viable)
+ Results.push_back(ResultCandidate(Cand->Function));
+ }
+ CodeCompleter->ProcessOverloadCandidates(NumArgs, Results.data(),
+ Results.size());
+}
+
+void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS,
+ bool EnteringContext) {
+ if (!SS.getScopeRep() || !CodeCompleter)
+ return;
+
+ DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
+ if (!Ctx)
+ return;
+
+ ResultBuilder Results(*this);
+ unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results);
+
+ // The "template" keyword can follow "::" in the grammar, but only
+ // put it into the grammar if the nested-name-specifier is dependent.
+ NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
+ if (!Results.empty() && NNS->isDependent())
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank));
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteUsing(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
+ Results.EnterNewScope();
+
+ // If we aren't in class scope, we could see the "namespace" keyword.
+ if (!S->isClassScope())
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0));
+
+ // After "using", we can see anything that would start a
+ // nested-name-specifier.
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), 0,
+ CurContext, Results);
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteUsingDirective(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ // After "using namespace", we expect to see a namespace name or namespace
+ // alias.
+ ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
+ Results.EnterNewScope();
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
+ Results);
+ Results.ExitScope();
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteNamespaceDecl(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
+ DeclContext *Ctx = (DeclContext *)S->getEntity();
+ if (!S->getParent())
+ Ctx = Context.getTranslationUnitDecl();
+
+ if (Ctx && Ctx->isFileContext()) {
+ // We only want to see those namespaces that have already been defined
+ // within this scope, because its likely that the user is creating an
+ // extended namespace declaration. Keep track of the most recent
+ // definition of each namespace.
+ std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
+ for (DeclContext::specific_decl_iterator<NamespaceDecl>
+ NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
+ NS != NSEnd; ++NS)
+ OrigToLatest[NS->getOriginalNamespace()] = *NS;
+
+ // Add the most recent definition (or extended definition) of each
+ // namespace to the list of results.
+ Results.EnterNewScope();
+ for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
+ NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
+ NS != NSEnd; ++NS)
+ Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0),
+ CurContext);
+ Results.ExitScope();
+ }
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ // After "namespace", we expect to see a namespace or alias.
+ ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
+ Results);
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteOperatorName(Scope *S) {
+ if (!CodeCompleter)
+ return;
+
+ typedef CodeCompleteConsumer::Result Result;
+ ResultBuilder Results(*this, &ResultBuilder::IsType);
+ Results.EnterNewScope();
+
+ // Add the names of overloadable operators.
+#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
+ if (std::strcmp(Spelling, "?")) \
+ Results.MaybeAddResult(Result(Spelling, 0));
+#include "clang/Basic/OperatorKinds.def"
+
+ // Add any type names visible from the current scope
+ unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
+ 0, CurContext, Results);
+
+ // Add any type specifiers
+ AddTypeSpecifierResults(getLangOptions(), 0, Results);
+
+ // Add any nested-name-specifiers
+ Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
+ CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1,
+ CurContext, Results);
+ Results.ExitScope();
+
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}
+
+void Sema::CodeCompleteObjCProperty(Scope *S, ObjCDeclSpec &ODS) {
+ if (!CodeCompleter)
+ return;
+ unsigned Attributes = ODS.getPropertyAttributes();
+
+ typedef CodeCompleteConsumer::Result Result;
+ ResultBuilder Results(*this);
+ Results.EnterNewScope();
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_readonly))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("readonly", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_assign))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("assign", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_readwrite))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("readwrite", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_retain))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("retain", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_copy))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("copy", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_nonatomic))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("nonatomic", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_setter))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("setter", 0));
+ if (!(Attributes & ObjCDeclSpec::DQ_PR_getter))
+ Results.MaybeAddResult(CodeCompleteConsumer::Result("getter", 0));
+ Results.ExitScope();
+ HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
+}