aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaExpr.cpp')
-rw-r--r--lib/Sema/SemaExpr.cpp575
1 files changed, 334 insertions, 241 deletions
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp
index 383edeca07a0..a5e508396422 100644
--- a/lib/Sema/SemaExpr.cpp
+++ b/lib/Sema/SemaExpr.cpp
@@ -39,7 +39,7 @@ using namespace clang;
/// referenced), false otherwise.
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
// See if the decl is deprecated.
- if (D->getAttr<DeprecatedAttr>(Context)) {
+ if (D->getAttr<DeprecatedAttr>()) {
// Implementing deprecated stuff requires referencing deprecated
// stuff. Don't warn if we are implementing a deprecated
// construct.
@@ -48,7 +48,7 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
// If this reference happens *in* a deprecated function or method, don't
// warn.
- isSilenced = ND->getAttr<DeprecatedAttr>(Context);
+ isSilenced = ND->getAttr<DeprecatedAttr>();
// If this is an Objective-C method implementation, check to see if the
// method was deprecated on the declaration, not the definition.
@@ -58,10 +58,9 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
if (ObjCImplementationDecl *Impl
= dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
- MD = Impl->getClassInterface()->getMethod(Context,
- MD->getSelector(),
+ MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
MD->isInstanceMethod());
- isSilenced |= MD && MD->getAttr<DeprecatedAttr>(Context);
+ isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
}
}
}
@@ -80,7 +79,7 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
}
// See if the decl is unavailable
- if (D->getAttr<UnavailableAttr>(Context)) {
+ if (D->getAttr<UnavailableAttr>()) {
Diag(Loc, diag::warn_unavailable) << D->getDeclName();
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
}
@@ -95,7 +94,7 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs)
{
- const SentinelAttr *attr = D->getAttr<SentinelAttr>(Context);
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
int sentinelPos = attr->getSentinel();
@@ -673,8 +672,8 @@ static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
// operation rather than a slow walk through DeclContext's vector (which
// itself will be eliminated). DeclGroups might make this even better.
DeclContext *Ctx = Record->getDeclContext();
- for (DeclContext::decl_iterator D = Ctx->decls_begin(Context),
- DEnd = Ctx->decls_end(Context);
+ for (DeclContext::decl_iterator D = Ctx->decls_begin(),
+ DEnd = Ctx->decls_end();
D != DEnd; ++D) {
if (*D == Record) {
// The object for the anonymous struct/union directly
@@ -877,8 +876,7 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
- ClassDeclared)) {
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
@@ -915,8 +913,7 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
// We should warn if a local variable hides an ivar.
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(Context, II,
- ClassDeclared)) {
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
IFace == ClassDeclared)
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
@@ -973,7 +970,64 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
}
}
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ // Warn about constructs like:
+ // if (void *X = foo()) { ... } else { X }.
+ // In the else block, the pointer is always false.
+
+ // FIXME: In a template instantiation, we don't have scope
+ // information to check this property.
+ if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
+ Scope *CheckS = S;
+ while (CheckS) {
+ if (CheckS->isWithinElse() &&
+ CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
+ if (Var->getType()->isBooleanType())
+ ExprError(Diag(Loc, diag::warn_value_always_false)
+ << Var->getDeclName());
+ else
+ ExprError(Diag(Loc, diag::warn_value_always_zero)
+ << Var->getDeclName());
+ break;
+ }
+
+ // Move up one more control parent to check again.
+ CheckS = CheckS->getControlParent();
+ if (CheckS)
+ CheckS = CheckS->getParent();
+ }
+ }
+ } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
+ if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (DiagnoseUseOfDecl(Func, Loc))
+ return ExprError();
+
+ QualType T = Func->getType();
+ QualType NoProtoType = T;
+ if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
+ NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
+ return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
+ }
+ }
+
+ return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
+}
+/// \brief Complete semantic analysis for a reference to the given declaration.
+Sema::OwningExprResult
+Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
+ bool HasTrailingLParen,
+ const CXXScopeSpec *SS,
+ bool isAddressOfOperand) {
+ assert(D && "Cannot refer to a NULL declaration");
+ DeclarationName Name = D->getDeclName();
+
// If this is an expression of the form &Class::member, don't build an
// implicit member ref, because we want a pointer to the member in general,
// not any specific instance's member.
@@ -1097,51 +1151,11 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
+ bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
+ HasTrailingLParen;
if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
return ExprError();
- if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
- // Warn about constructs like:
- // if (void *X = foo()) { ... } else { X }.
- // In the else block, the pointer is always false.
-
- // FIXME: In a template instantiation, we don't have scope
- // information to check this property.
- if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
- Scope *CheckS = S;
- while (CheckS) {
- if (CheckS->isWithinElse() &&
- CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
- if (Var->getType()->isBooleanType())
- ExprError(Diag(Loc, diag::warn_value_always_false)
- << Var->getDeclName());
- else
- ExprError(Diag(Loc, diag::warn_value_always_zero)
- << Var->getDeclName());
- break;
- }
-
- // Move up one more control parent to check again.
- CheckS = CheckS->getControlParent();
- if (CheckS)
- CheckS = CheckS->getParent();
- }
- }
- } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(VD)) {
- if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
- // C99 DR 316 says that, if a function type comes from a
- // function definition (without a prototype), that type is only
- // used for checking compatibility. Therefore, when referencing
- // the function, we pretend that we don't have the full function
- // type.
- QualType T = Func->getType();
- QualType NoProtoType = T;
- if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
- NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
- return BuildDeclRefExpr(VD, NoProtoType, Loc, false, false, SS);
- }
- }
-
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return ExprError();
@@ -1158,7 +1172,7 @@ Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
MarkDeclarationReferenced(Loc, VD);
QualType ExprTy = VD->getType().getNonReferenceType();
// The BlocksAttr indicates the variable is bound by-reference.
- if (VD->getAttr<BlocksAttr>(Context))
+ if (VD->getAttr<BlocksAttr>())
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
// This is to record that a 'const' was actually synthesize and added.
bool constAdded = !ExprTy.isConstQualified();
@@ -1310,8 +1324,8 @@ Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// isExact will be set by GetFloatValue().
bool isExact = false;
- Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
- &isExact, Ty, Tok.getLocation());
+ llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
+ Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
@@ -1989,9 +2003,9 @@ static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
const Selector &Sel,
ASTContext &Context) {
- if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Context, &Member))
+ if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
return PD;
- if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Context, Sel))
+ if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
return OMD;
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
@@ -2011,12 +2025,12 @@ static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
Decl *GDecl = 0;
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
- if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context, &Member)) {
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
GDecl = PD;
break;
}
// Also must look for a getter name which uses property syntax.
- if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Context, Sel)) {
+ if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
GDecl = OMD;
break;
}
@@ -2042,7 +2056,7 @@ ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
ObjCMethodDecl *Method = 0;
if (ObjCImplementationDecl *ImpDecl
= LookupObjCImplementation(IFace->getIdentifier()))
- Method = ImpDecl->getInstanceMethod(Context, Sel);
+ Method = ImpDecl->getInstanceMethod(Sel);
if (!Method && IFace->getSuperClass())
return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
@@ -2201,8 +2215,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
// (*Obj).ivar.
if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(Context,
- &Member,
+ if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member,
ClassDeclared)) {
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
@@ -2262,14 +2275,13 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
ObjCInterfaceDecl *IFace = IFTy->getDecl();
// Search for a declared property first.
- if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Context,
- &Member)) {
+ if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
- ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
+ ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
ResTy = Getter->getResultType();
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
@@ -2279,8 +2291,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
// Check protocols on qualified interfaces.
for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
E = IFTy->qual_end(); I != E; ++I)
- if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Context,
- &Member)) {
+ if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
@@ -2296,7 +2307,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
- ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Context, Sel);
+ ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
@@ -2306,7 +2317,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
if (!Getter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
- Getter = ObjCCategoryImpls[i]->getInstanceMethod(Context, Sel);
+ Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
}
}
if (Getter) {
@@ -2319,7 +2330,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
- ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(Context, SetterSel);
+ ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
@@ -2329,7 +2340,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
if (!Setter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
- Setter = ObjCCategoryImpls[i]->getInstanceMethod(Context, SetterSel);
+ Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
}
}
@@ -2390,7 +2401,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
ObjCInterfaceDecl *IFace = MD->getClassInterface();
ObjCMethodDecl *Getter;
// FIXME: need to also look locally in the implementation.
- if ((Getter = IFace->lookupClassMethod(Context, Sel))) {
+ if ((Getter = IFace->lookupClassMethod(Sel))) {
// Check the use of this method.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
@@ -2400,7 +2411,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
- ObjCMethodDecl *Setter = IFace->lookupClassMethod(Context, SetterSel);
+ ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
@@ -2410,7 +2421,7 @@ Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
if (!Setter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
- Setter = ObjCCategoryImpls[i]->getClassMethod(Context, SetterSel);
+ Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel);
}
}
@@ -2624,9 +2635,13 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
}
// If we're directly calling a function, get the appropriate declaration.
- DeclRefExpr *DRExpr = NULL;
+ // Also, in C++, keep track of whether we should perform argument-dependent
+ // lookup and whether there were any explicitly-specified template arguments.
Expr *FnExpr = Fn;
bool ADL = true;
+ bool HasExplicitTemplateArgs = 0;
+ const TemplateArgument *ExplicitTemplateArgs = 0;
+ unsigned NumExplicitTemplateArgs = 0;
while (true) {
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
FnExpr = IcExpr->getSubExpr();
@@ -2639,14 +2654,41 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
cast<UnaryOperator>(FnExpr)->getOpcode()
== UnaryOperator::AddrOf) {
FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
- } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
+ } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
// Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
+ NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
break;
} else if (UnresolvedFunctionNameExpr *DepName
= dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
UnqualifiedName = DepName->getName();
break;
+ } else if (TemplateIdRefExpr *TemplateIdRef
+ = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
+ NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
+ HasExplicitTemplateArgs = true;
+ ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
+ NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
+
+ // C++ [temp.arg.explicit]p6:
+ // [Note: For simple function names, argument dependent lookup (3.4.2)
+ // applies even when the function name is not visible within the
+ // scope of the call. This is because the call still has the syntactic
+ // form of a function call (3.4.1). But when a function template with
+ // explicit template arguments is used, the call does not have the
+ // correct syntactic form unless there is a function template with
+ // that name visible at the point of the call. If no such name is
+ // visible, the call is not syntactically well-formed and
+ // argument-dependent lookup does not apply. If some such name is
+ // visible, argument dependent lookup applies and additional function
+ // templates may be found in other namespaces.
+ //
+ // The summary of this paragraph is that, if we get to this point and the
+ // template-id was not a qualified name, then argument-dependent lookup
+ // is still possible.
+ if (TemplateIdRef->getQualifier())
+ ADL = false;
+ break;
} else {
// Any kind of name that does not refer to a declaration (or
// set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
@@ -2657,14 +2699,13 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
OverloadedFunctionDecl *Ovl = 0;
FunctionTemplateDecl *FunctionTemplate = 0;
- if (DRExpr) {
- FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
- if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DRExpr->getDecl())))
+ if (NDecl) {
+ FDecl = dyn_cast<FunctionDecl>(NDecl);
+ if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
FDecl = FunctionTemplate->getTemplatedDecl();
else
- FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
- Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
- NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
+ FDecl = dyn_cast<FunctionDecl>(NDecl);
+ Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
}
if (Ovl || FunctionTemplate ||
@@ -2678,16 +2719,19 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
ADL = false;
if (Ovl || FunctionTemplate || ADL) {
- FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
- UnqualifiedName, LParenLoc, Args,
- NumArgs, CommaLocs, RParenLoc, ADL);
+ FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
+ HasExplicitTemplateArgs,
+ ExplicitTemplateArgs,
+ NumExplicitTemplateArgs,
+ LParenLoc, Args, NumArgs, CommaLocs,
+ RParenLoc, ADL);
if (!FDecl)
return ExprError();
// Update Fn to refer to the actual function selected.
Expr *NewFn = 0;
if (QualifiedDeclRefExpr *QDRExpr
- = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
+ = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
QDRExpr->getLocation(),
false, false,
@@ -2750,7 +2794,7 @@ Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
// Check if we have too few/too many template arguments, based
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
- if (FDecl->getBody(Context, Def) && NumArgs != Def->param_size()) {
+ if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
const FunctionProtoType *Proto =
Def->getType()->getAsFunctionProtoType();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
@@ -2860,7 +2904,7 @@ bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
// GCC cast to union extension
RecordDecl *RD = castType->getAsRecordType()->getDecl();
RecordDecl::field_iterator Field, FieldEnd;
- for (Field = RD->field_begin(Context), FieldEnd = RD->field_end(Context);
+ for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
@@ -2931,19 +2975,8 @@ bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
- // If SrcTy is also an ExtVectorType, the types must be identical unless
- // lax vector conversions is enabled.
- if (SrcTy->isExtVectorType()) {
- if (getLangOptions().LaxVectorConversions &&
- Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy))
- return false;
- if (DestTy != SrcTy)
- return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
- << DestTy << SrcTy << R;
- return false;
- }
-
- // If SrcTy is a VectorType, then only the total size must match.
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
if (SrcTy->isVectorType()) {
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
@@ -2951,9 +2984,13 @@ bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
return false;
}
- // All scalar -> ext vector "c-style" casts are legal; the appropriate
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
// conversion will take place first from scalar to elt type, and then
// splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
return false;
}
@@ -3042,24 +3079,133 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
return RHSTy;
}
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, destType);
+ ImpCastExprToType(RHS, destType);
+ return destType;
+ }
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+ // We have 2 block pointer types.
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical block pointer types are always compatible.
+ return LHSTy;
+ }
+ // The block pointer types aren't identical, continue checking.
+ QualType lhptee = LHSTy->getAsBlockPointerType()->getPointeeType();
+ QualType rhptee = RHSTy->getAsBlockPointerType()->getPointeeType();
- const PointerType *LHSPT = LHSTy->getAsPointerType();
- const PointerType *RHSPT = RHSTy->getAsPointerType();
- const BlockPointerType *LHSBPT = LHSTy->getAsBlockPointerType();
- const BlockPointerType *RHSBPT = RHSTy->getAsBlockPointerType();
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = Context.getPointerType(Context.VoidTy);
+ ImpCastExprToType(LHS, incompatTy);
+ ImpCastExprToType(RHS, incompatTy);
+ return incompatTy;
+ }
+ // The block pointer types are compatible.
+ ImpCastExprToType(LHS, LHSTy);
+ ImpCastExprToType(RHS, LHSTy);
+ return LHSTy;
+ }
+ // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
+ // evaluates to "struct objc_object *" (and is handled above when comparing
+ // id with statically typed objects).
+ if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
+ (LHSTy->isObjCQualifiedIdType() &&
+ Context.isObjCObjectPointerType(RHSTy)) ||
+ (RHSTy->isObjCQualifiedIdType() &&
+ Context.isObjCObjectPointerType(LHSTy))) {
+ // FIXME: This is not the correct composite type. This only happens to
+ // work because id can more or less be used anywhere, however this may
+ // change the type of method sends.
- // Handle the case where both operands are pointers before we handle null
- // pointer constants in case both operands are null pointer constants.
- if ((LHSPT || LHSBPT) && (RHSPT || RHSBPT)) { // C99 6.5.15p3,6
+ // FIXME: gcc adds some type-checking of the arguments and emits
+ // (confusing) incompatible comparison warnings in some
+ // cases. Investigate.
+ QualType compositeType = Context.getObjCIdType();
+ ImpCastExprToType(LHS, compositeType);
+ ImpCastExprToType(RHS, compositeType);
+ return compositeType;
+ }
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (Context.isObjCObjectPointerType(LHSTy) &&
+ Context.isObjCObjectPointerType(RHSTy)) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ // No need to check for block pointer types or qualified id types (they
+ // were handled above).
+ assert((LHSTy->isPointerType() && RHSTy->isPointerType()) &&
+ "Sema::CheckConditionalOperands(): Unexpected type");
+ QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
+ QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
+
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
+ const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
+ if (LHSIface && RHSIface &&
+ Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
+ compositeType = LHSTy;
+ } else if (LHSIface && RHSIface &&
+ Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
+ compositeType = RHSTy;
+ } else if (Context.isObjCIdStructType(lhptee) ||
+ Context.isObjCIdStructType(rhptee)) {
+ compositeType = Context.getObjCIdType();
+ } else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ ImpCastExprToType(LHS, incompatTy);
+ ImpCastExprToType(RHS, incompatTy);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ ImpCastExprToType(LHS, compositeType);
+ ImpCastExprToType(RHS, compositeType);
+ return compositeType;
+ }
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
// get the "pointed to" types
- QualType lhptee = (LHSPT ? LHSPT->getPointeeType()
- : LHSBPT->getPointeeType());
- QualType rhptee = (RHSPT ? RHSPT->getPointeeType()
- : RHSBPT->getPointeeType());
+ QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
+ QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
- if (lhptee->isVoidType()
- && (RHSBPT || rhptee->isIncompleteOrObjectType())) {
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
@@ -3067,8 +3213,7 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
ImpCastExprToType(RHS, destType); // promote to void*
return destType;
}
- if (rhptee->isVoidType()
- && (LHSBPT || lhptee->isIncompleteOrObjectType())) {
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
@@ -3076,62 +3221,12 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
return destType;
}
- bool sameKind = (LHSPT && RHSPT) || (LHSBPT && RHSBPT);
- if (sameKind
- && Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical pointer types are always compatible.
return LHSTy;
}
-
- QualType compositeType = LHSTy;
-
- // If either type is an Objective-C object type then check
- // compatibility according to Objective-C.
- if (Context.isObjCObjectPointerType(LHSTy) ||
- Context.isObjCObjectPointerType(RHSTy)) {
- // If both operands are interfaces and either operand can be
- // assigned to the other, use that type as the composite
- // type. This allows
- // xxx ? (A*) a : (B*) b
- // where B is a subclass of A.
- //
- // Additionally, as for assignment, if either type is 'id'
- // allow silent coercion. Finally, if the types are
- // incompatible then make sure to use 'id' as the composite
- // type so the result is acceptable for sending messages to.
-
- // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
- // It could return the composite type.
- const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
- const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
- if (LHSIface && RHSIface &&
- Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
- compositeType = LHSTy;
- } else if (LHSIface && RHSIface &&
- Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
- compositeType = RHSTy;
- } else if (Context.isObjCIdStructType(lhptee) ||
- Context.isObjCIdStructType(rhptee)) {
- compositeType = Context.getObjCIdType();
- } else if (LHSBPT || RHSBPT) {
- if (!sameKind
- || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType()))
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
- return QualType();
- } else {
- Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy
- << LHS->getSourceRange() << RHS->getSourceRange();
- QualType incompatTy = Context.getObjCIdType();
- ImpCastExprToType(LHS, incompatTy);
- ImpCastExprToType(RHS, incompatTy);
- return incompatTy;
- }
- } else if (!sameKind
- || !Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType())) {
+ if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
// In this situation, we assume void* type. No especially good
@@ -3149,11 +3244,11 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
// type.
// FIXME: Need to calculate the composite type.
// FIXME: Need to add qualifiers
- ImpCastExprToType(LHS, compositeType);
- ImpCastExprToType(RHS, compositeType);
- return compositeType;
+ ImpCastExprToType(LHS, LHSTy);
+ ImpCastExprToType(RHS, LHSTy);
+ return LHSTy;
}
-
+
// GCC compatibility: soften pointer/integer mismatch.
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
@@ -3168,32 +3263,6 @@ QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
return LHSTy;
}
- // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
- // evaluates to "struct objc_object *" (and is handled above when comparing
- // id with statically typed objects).
- if (LHSTy->isObjCQualifiedIdType() || RHSTy->isObjCQualifiedIdType()) {
- // GCC allows qualified id and any Objective-C type to devolve to
- // id. Currently localizing to here until clear this should be
- // part of ObjCQualifiedIdTypesAreCompatible.
- if (ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true) ||
- (LHSTy->isObjCQualifiedIdType() &&
- Context.isObjCObjectPointerType(RHSTy)) ||
- (RHSTy->isObjCQualifiedIdType() &&
- Context.isObjCObjectPointerType(LHSTy))) {
- // FIXME: This is not the correct composite type. This only happens to
- // work because id can more or less be used anywhere, however this may
- // change the type of method sends.
-
- // FIXME: gcc adds some type-checking of the arguments and emits
- // (confusing) incompatible comparison warnings in some
- // cases. Investigate.
- QualType compositeType = Context.getObjCIdType();
- ImpCastExprToType(LHS, compositeType);
- ImpCastExprToType(RHS, compositeType);
- return compositeType;
- }
- }
-
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
@@ -3385,12 +3454,16 @@ Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
return IncompatibleObjCQualifiedId;
}
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (lhsType->isExtVectorType()) {
+ if (rhsType->isExtVectorType())
+ return lhsType == rhsType ? Compatible : Incompatible;
+ if (!rhsType->isVectorType() && rhsType->isArithmeticType())
+ return Compatible;
+ }
+
if (lhsType->isVectorType() || rhsType->isVectorType()) {
- // For ExtVector, allow vector splats; float -> <n x float>
- if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
- if (LV->getElementType() == rhsType)
- return Compatible;
-
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
@@ -3492,15 +3565,15 @@ Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
const RecordType *UT = ArgType->getAsUnionType();
- if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>(Context))
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
return Incompatible;
// The field to initialize within the transparent union.
RecordDecl *UD = UT->getDecl();
FieldDecl *InitField = 0;
// It's compatible if the expression matches any of the fields.
- for (RecordDecl::field_iterator it = UD->field_begin(Context),
- itend = UD->field_end(Context);
+ for (RecordDecl::field_iterator it = UD->field_begin(),
+ itend = UD->field_end();
it != itend; ++it) {
if (it->getType()->isPointerType()) {
// If the transparent union contains a pointer type, we allow:
@@ -3617,33 +3690,36 @@ inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
}
}
- // If the lhs is an extended vector and the rhs is a scalar of the same type
- // or a literal, promote the rhs to the vector type.
- if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
- QualType eltType = V->getElementType();
-
- if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
- (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
- (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
- ImpCastExprToType(rex, lhsType);
- return lhsType;
- }
+ // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
+ // swap back (so that we don't reverse the inputs to a subtract, for instance.
+ bool swapped = false;
+ if (rhsType->isExtVectorType()) {
+ swapped = true;
+ std::swap(rex, lex);
+ std::swap(rhsType, lhsType);
}
-
- // If the rhs is an extended vector and the lhs is a scalar of the same type,
- // promote the lhs to the vector type.
- if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
- QualType eltType = V->getElementType();
-
- if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
- (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
- (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
- ImpCastExprToType(lex, rhsType);
- return rhsType;
+
+ // Handle the case of an ext vector and scalar.
+ if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
+ QualType EltTy = LV->getElementType();
+ if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
+ if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
+ ImpCastExprToType(rex, lhsType);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
+ }
+ if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
+ rhsType->isRealFloatingType()) {
+ if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
+ ImpCastExprToType(rex, lhsType);
+ if (swapped) std::swap(rex, lex);
+ return lhsType;
+ }
}
}
-
- // You cannot convert between vector values of different size.
+
+ // Vectors of different size or scalar and non-ext-vector are errors.
Diag(Loc, diag::err_typecheck_vector_not_convertable)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
@@ -4034,6 +4110,17 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
+ if (rType->isFunctionPointerType() || lType->isFunctionPointerType()) {
+ if (isRelational) {
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
+ }
+ if (((!LHSIsNull || isRelational) && LCanPointeeTy->isVoidType()) !=
+ ((!RHSIsNull || isRelational) && RCanPointeeTy->isVoidType())) {
+ Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ }
// Simple check: if the pointee types are identical, we're done.
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
@@ -4146,7 +4233,10 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
}
if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
rType->isIntegerType()) {
- if (!RHSIsNull)
+ if (isRelational)
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ else if (!RHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType); // promote the integer to pointer
@@ -4154,7 +4244,10 @@ QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
}
if (lType->isIntegerType() &&
(rType->isPointerType() || rType->isObjCQualifiedIdType())) {
- if (!LHSIsNull)
+ if (isRelational)
+ Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
+ << lType << rType << lex->getSourceRange() << rex->getSourceRange();
+ else if (!LHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(lex, rType); // promote the integer to pointer
@@ -5226,7 +5319,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
CurBlock->hasPrototype = true;
CurBlock->isVariadic = false;
// Check for a valid sentinel attribute on this block.
- if (CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
+ if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
@@ -5275,7 +5368,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
// Check for a valid sentinel attribute on this block.
if (!CurBlock->isVariadic &&
- CurBlock->TheDecl->getAttr<SentinelAttr>(Context)) {
+ CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
@@ -5607,13 +5700,13 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// Implicit instantiation of function templates and member functions of
// class templates.
- if (!Function->getBody(Context)) {
+ if (!Function->getBody()) {
// FIXME: distinguish between implicit instantiations of function
// templates and explicit specializations (the latter don't get
// instantiated, naturally).
if (Function->getInstantiatedFromMemberFunction() ||
Function->getPrimaryTemplate())
- PendingImplicitInstantiations.push(std::make_pair(Function, Loc));
+ PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
}