aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaExpr.cpp')
-rw-r--r--lib/Sema/SemaExpr.cpp4508
1 files changed, 2408 insertions, 2100 deletions
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp
index 5efc36559d97..170097cc59a9 100644
--- a/lib/Sema/SemaExpr.cpp
+++ b/lib/Sema/SemaExpr.cpp
@@ -36,10 +36,60 @@
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/SemaFixItUtils.h"
#include "clang/Sema/Template.h"
using namespace clang;
using namespace sema;
+/// \brief Determine whether the use of this declaration is valid, without
+/// emitting diagnostics.
+bool Sema::CanUseDecl(NamedDecl *D) {
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D))
+ return false;
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted())
+ return false;
+ }
+ return true;
+}
+
+static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
+ NamedDecl *D, SourceLocation Loc,
+ const ObjCInterfaceDecl *UnknownObjCClass) {
+ // See if this declaration is unavailable or deprecated.
+ std::string Message;
+ AvailabilityResult Result = D->getAvailability(&Message);
+ switch (Result) {
+ case AR_Available:
+ case AR_NotYetIntroduced:
+ break;
+
+ case AR_Deprecated:
+ S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
+ break;
+
+ case AR_Unavailable:
+ if (S.getCurContextAvailability() != AR_Unavailable) {
+ if (Message.empty()) {
+ if (!UnknownObjCClass)
+ S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
+ else
+ S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
+ << D->getDeclName();
+ }
+ else
+ S.Diag(Loc, diag::err_unavailable_message)
+ << D->getDeclName() << Message;
+ S.Diag(D->getLocation(), diag::note_unavailable_here)
+ << isa<FunctionDecl>(D) << false;
+ }
+ break;
+ }
+ return Result;
+}
/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
@@ -50,9 +100,6 @@ using namespace sema;
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
-/// If IgnoreDeprecated is set to true, this should not warn about deprecated
-/// decls.
-///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
@@ -61,10 +108,10 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
// If there were any diagnostics suppressed by template argument deduction,
// emit them now.
- llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
+ llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
if (Pos != SuppressedDiagnostics.end()) {
- llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
+ SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
Diag(Suppressed[I].first, Suppressed[I].second);
@@ -91,40 +138,22 @@ bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
return true;
}
}
-
- // See if this declaration is unavailable or deprecated.
- std::string Message;
- switch (D->getAvailability(&Message)) {
- case AR_Available:
- case AR_NotYetIntroduced:
- break;
-
- case AR_Deprecated:
- EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
- break;
-
- case AR_Unavailable:
- if (cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) {
- if (Message.empty()) {
- if (!UnknownObjCClass)
- Diag(Loc, diag::err_unavailable) << D->getDeclName();
- else
- Diag(Loc, diag::warn_unavailable_fwdclass_message)
- << D->getDeclName();
- }
- else
- Diag(Loc, diag::err_unavailable_message)
- << D->getDeclName() << Message;
- Diag(D->getLocation(), diag::note_unavailable_here)
- << isa<FunctionDecl>(D) << false;
- }
- break;
- }
+ AvailabilityResult Result =
+ DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
// Warn if this is used but marked unused.
if (D->hasAttr<UnusedAttr>())
Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
-
+ // For available enumerator, it will become unavailable/deprecated
+ // if its enum declaration is as such.
+ if (Result == AR_Available)
+ if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
+ const DeclContext *DC = ECD->getDeclContext();
+ if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
+ DiagnoseAvailabilityOfDecl(*this,
+ const_cast< EnumDecl *>(TheEnumDecl),
+ Loc, UnknownObjCClass);
+ }
return false;
}
@@ -145,94 +174,74 @@ std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
return std::string();
}
-/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
-/// (and other functions in future), which have been declared with sentinel
-/// attribute. It warns if call does not have the sentinel argument.
-///
+/// DiagnoseSentinelCalls - This routine checks whether a call or
+/// message-send is to a declaration with the sentinel attribute, and
+/// if so, it checks that the requirements of the sentinel are
+/// satisfied.
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
- Expr **Args, unsigned NumArgs) {
+ Expr **args, unsigned numArgs) {
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
- // FIXME: In C++0x, if any of the arguments are parameter pack
- // expansions, we can't check for the sentinel now.
- int sentinelPos = attr->getSentinel();
- int nullPos = attr->getNullPos();
+ // The number of formal parameters of the declaration.
+ unsigned numFormalParams;
+
+ // The kind of declaration. This is also an index into a %select in
+ // the diagnostic.
+ enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
- // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
- // base class. Then we won't be needing two versions of the same code.
- unsigned int i = 0;
- bool warnNotEnoughArgs = false;
- int isMethod = 0;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
- // skip over named parameters.
- ObjCMethodDecl::param_iterator P, E = MD->param_end();
- for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (P != E || i >= NumArgs);
- isMethod = 1;
+ numFormalParams = MD->param_size();
+ calleeType = CT_Method;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- // skip over named parameters.
- ObjCMethodDecl::param_iterator P, E = FD->param_end();
- for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (P != E || i >= NumArgs);
- } else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
- // block or function pointer call.
- QualType Ty = V->getType();
- if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
- const FunctionType *FT = Ty->isFunctionPointerType()
- ? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
- : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
- if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
- unsigned NumArgsInProto = Proto->getNumArgs();
- unsigned k;
- for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
- if (nullPos)
- --nullPos;
- else
- ++i;
- }
- warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
- }
- if (Ty->isBlockPointerType())
- isMethod = 2;
- } else
+ numFormalParams = FD->param_size();
+ calleeType = CT_Function;
+ } else if (isa<VarDecl>(D)) {
+ QualType type = cast<ValueDecl>(D)->getType();
+ const FunctionType *fn = 0;
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ fn = ptr->getPointeeType()->getAs<FunctionType>();
+ if (!fn) return;
+ calleeType = CT_Function;
+ } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
+ fn = ptr->getPointeeType()->castAs<FunctionType>();
+ calleeType = CT_Block;
+ } else {
return;
- } else
- return;
+ }
- if (warnNotEnoughArgs) {
- Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
+ numFormalParams = proto->getNumArgs();
+ } else {
+ numFormalParams = 0;
+ }
+ } else {
return;
}
- int sentinel = i;
- while (sentinelPos > 0 && i < NumArgs-1) {
- --sentinelPos;
- ++i;
- }
- if (sentinelPos > 0) {
+
+ // "nullPos" is the number of formal parameters at the end which
+ // effectively count as part of the variadic arguments. This is
+ // useful if you would prefer to not have *any* formal parameters,
+ // but the language forces you to have at least one.
+ unsigned nullPos = attr->getNullPos();
+ assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
+ numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
+
+ // The number of arguments which should follow the sentinel.
+ unsigned numArgsAfterSentinel = attr->getSentinel();
+
+ // If there aren't enough arguments for all the formal parameters,
+ // the sentinel, and the args after the sentinel, complain.
+ if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
return;
}
- while (i < NumArgs-1) {
- ++i;
- ++sentinel;
- }
- Expr *sentinelExpr = Args[sentinel];
+
+ // Otherwise, find the sentinel expression.
+ Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
if (!sentinelExpr) return;
- if (sentinelExpr->isTypeDependent()) return;
if (sentinelExpr->isValueDependent()) return;
// nullptr_t is always treated as null.
@@ -246,13 +255,32 @@ void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
// Unfortunately, __null has type 'int'.
if (isa<GNUNullExpr>(sentinelExpr)) return;
- Diag(Loc, diag::warn_missing_sentinel) << isMethod;
- Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
+ // Pick a reasonable string to insert. Optimistically use 'nil' or
+ // 'NULL' if those are actually defined in the context. Only use
+ // 'nil' for ObjC methods, where it's much more likely that the
+ // variadic arguments form a list of object pointers.
+ SourceLocation MissingNilLoc
+ = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
+ std::string NullValue;
+ if (calleeType == CT_Method &&
+ PP.getIdentifierInfo("nil")->hasMacroDefinition())
+ NullValue = "nil";
+ else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
+ NullValue = "NULL";
+ else
+ NullValue = "(void*) 0";
+
+ if (MissingNilLoc.isInvalid())
+ Diag(Loc, diag::warn_missing_sentinel) << calleeType;
+ else
+ Diag(MissingNilLoc, diag::warn_missing_sentinel)
+ << calleeType
+ << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
+ Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
}
-SourceRange Sema::getExprRange(ExprTy *E) const {
- Expr *Ex = (Expr *)E;
- return Ex? Ex->getSourceRange() : SourceRange();
+SourceRange Sema::getExprRange(Expr *E) const {
+ return E ? E->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
@@ -261,6 +289,13 @@ SourceRange Sema::getExprRange(ExprTy *E) const {
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+ }
+
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
@@ -306,6 +341,13 @@ static void CheckForNullPointerDereference(Sema &S, Expr *E) {
}
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->getType()->isPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.take();
+ }
+
// C++ [conv.lval]p1:
// A glvalue of a non-function, non-array type T can be
// converted to a prvalue.
@@ -314,6 +356,10 @@ ExprResult Sema::DefaultLvalueConversion(Expr *E) {
QualType T = E->getType();
assert(!T.isNull() && "r-value conversion on typeless expression?");
+ // We can't do lvalue-to-rvalue on atomics yet.
+ if (T->getAs<AtomicType>())
+ return Owned(E);
+
// Create a load out of an ObjCProperty l-value, if necessary.
if (E->getObjectKind() == OK_ObjCProperty) {
ExprResult Res = ConvertPropertyForRValue(E);
@@ -350,14 +396,14 @@ ExprResult Sema::DefaultLvalueConversion(Expr *E) {
// C99 6.3.2.1p2:
// If the lvalue has qualified type, the value has the unqualified
// version of the type of the lvalue; otherwise, the value has the
- // type of the lvalue.
+ // type of the lvalue.
if (T.hasQualifiers())
T = T.getUnqualifiedType();
- CheckArrayAccess(E);
-
- return Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
- E, 0, VK_RValue));
+ ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
+ E, 0, VK_RValue));
+
+ return Res;
}
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
@@ -382,10 +428,15 @@ ExprResult Sema::UsualUnaryConversions(Expr *E) {
if (Res.isInvalid())
return Owned(E);
E = Res.take();
-
+
QualType Ty = E->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
-
+
+ // Half FP is a bit different: it's a storage-only type, meaning that any
+ // "use" of it should be promoted to float.
+ if (Ty->isHalfType())
+ return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
+
// Try to perform integral promotions if the object has a theoretically
// promotable type.
if (Ty->isIntegralOrUnscopedEnumerationType()) {
@@ -402,7 +453,7 @@ ExprResult Sema::UsualUnaryConversions(Expr *E) {
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
-
+
QualType PTy = Context.isPromotableBitField(E);
if (!PTy.isNull()) {
E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
@@ -433,6 +484,28 @@ ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
+ // C++ performs lvalue-to-rvalue conversion as a default argument
+ // promotion, even on class types, but note:
+ // C++11 [conv.lval]p2:
+ // When an lvalue-to-rvalue conversion occurs in an unevaluated
+ // operand or a subexpression thereof the value contained in the
+ // referenced object is not accessed. Otherwise, if the glvalue
+ // has a class type, the conversion copy-initializes a temporary
+ // of type T from the glvalue and the result of the conversion
+ // is a prvalue for the temporary.
+ // FIXME: add some way to gate this entire thing for correctness in
+ // potentially potentially evaluated contexts.
+ if (getLangOptions().CPlusPlus && E->isGLValue() &&
+ ExprEvalContexts.back().Context != Unevaluated) {
+ ExprResult Temp = PerformCopyInitialization(
+ InitializedEntity::InitializeTemporary(E->getType()),
+ E->getExprLoc(),
+ Owned(E));
+ if (Temp.isInvalid())
+ return ExprError();
+ E = Temp.get();
+ }
+
return Owned(E);
}
@@ -450,20 +523,17 @@ ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
return ExprError();
E = ExprRes.take();
- // __builtin_va_start takes the second argument as a "varargs" argument, but
- // it doesn't actually do anything with it. It doesn't need to be non-pod
- // etc.
- if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
- return Owned(E);
-
// Don't allow one to pass an Objective-C interface to a vararg.
if (E->getType()->isObjCObjectType() &&
DiagRuntimeBehavior(E->getLocStart(), 0,
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
<< E->getType() << CT))
return ExprError();
-
- if (!E->getType().isPODType(Context)) {
+
+ // Complain about passing non-POD types through varargs. However, don't
+ // perform this check for incomplete types, which we can get here when we're
+ // in an unevaluated context.
+ if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
// C++0x [expr.call]p7:
// Passing a potentially-evaluated argument of class type (Clause 9)
// having a non-trivial copy constructor, a non-trivial move constructor,
@@ -507,8 +577,7 @@ ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
Call.get(), E);
if (Comma.isInvalid())
- return ExprError();
-
+ return ExprError();
E = Comma.get();
}
}
@@ -516,307 +585,363 @@ ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
return Owned(E);
}
-/// UsualArithmeticConversions - Performs various conversions that are common to
-/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
-/// routine returns the first non-arithmetic type found. The client is
-/// responsible for emitting appropriate error diagnostics.
-/// FIXME: verify the conversion rules for "complex int" are consistent with
-/// GCC.
-QualType Sema::UsualArithmeticConversions(ExprResult &lhsExpr, ExprResult &rhsExpr,
- bool isCompAssign) {
- if (!isCompAssign) {
- lhsExpr = UsualUnaryConversions(lhsExpr.take());
- if (lhsExpr.isInvalid())
- return QualType();
+/// \brief Converts an integer to complex float type. Helper function of
+/// UsualArithmeticConversions()
+///
+/// \return false if the integer expression is an integer type and is
+/// successfully converted to the complex type.
+static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
+ ExprResult &ComplexExpr,
+ QualType IntTy,
+ QualType ComplexTy,
+ bool SkipCast) {
+ if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
+ if (SkipCast) return false;
+ if (IntTy->isIntegerType()) {
+ QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
+ CK_FloatingRealToComplex);
+ } else {
+ assert(IntTy->isComplexIntegerType());
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
+ CK_IntegralComplexToFloatingComplex);
}
+ return false;
+}
- rhsExpr = UsualUnaryConversions(rhsExpr.take());
- if (rhsExpr.isInvalid())
- return QualType();
-
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType lhs =
- Context.getCanonicalType(lhsExpr.get()->getType()).getUnqualifiedType();
- QualType rhs =
- Context.getCanonicalType(rhsExpr.get()->getType()).getUnqualifiedType();
-
- // If both types are identical, no conversion is needed.
- if (lhs == rhs)
- return lhs;
-
- // If either side is a non-arithmetic type (e.g. a pointer), we are done.
- // The caller can deal with this (e.g. pointer + int).
- if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
- return lhs;
-
- // Apply unary and bitfield promotions to the LHS's type.
- QualType lhs_unpromoted = lhs;
- if (lhs->isPromotableIntegerType())
- lhs = Context.getPromotedIntegerType(lhs);
- QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr.get());
- if (!LHSBitfieldPromoteTy.isNull())
- lhs = LHSBitfieldPromoteTy;
- if (lhs != lhs_unpromoted && !isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), lhs, CK_IntegralCast);
-
- // If both types are identical, no conversion is needed.
- if (lhs == rhs)
- return lhs;
-
- // At this point, we have two different arithmetic types.
-
- // Handle complex types first (C99 6.3.1.8p1).
- bool LHSComplexFloat = lhs->isComplexType();
- bool RHSComplexFloat = rhs->isComplexType();
- if (LHSComplexFloat || RHSComplexFloat) {
- // if we have an integer operand, the result is the complex type.
-
- if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
- if (rhs->isIntegerType()) {
- QualType fp = cast<ComplexType>(lhs)->getElementType();
- rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_IntegralToFloating);
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
- } else {
- assert(rhs->isComplexIntegerType());
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexToFloatingComplex);
- }
- return lhs;
- }
-
- if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
- if (!isCompAssign) {
- // int -> float -> _Complex float
- if (lhs->isIntegerType()) {
- QualType fp = cast<ComplexType>(rhs)->getElementType();
- lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_IntegralToFloating);
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
- } else {
- assert(lhs->isComplexIntegerType());
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexToFloatingComplex);
- }
- }
- return rhs;
- }
-
- // This handles complex/complex, complex/float, or float/complex.
- // When both operands are complex, the shorter operand is converted to the
- // type of the longer, and that is the type of the result. This corresponds
- // to what is done when combining two real floating-point operands.
- // The fun begins when size promotion occur across type domains.
- // From H&S 6.3.4: When one operand is complex and the other is a real
- // floating-point type, the less precise type is converted, within it's
- // real or complex domain, to the precision of the other type. For example,
- // when combining a "long double" with a "double _Complex", the
- // "double _Complex" is promoted to "long double _Complex".
- int order = Context.getFloatingTypeOrder(lhs, rhs);
-
- // If both are complex, just cast to the more precise type.
- if (LHSComplexFloat && RHSComplexFloat) {
- if (order > 0) {
- // _Complex float -> _Complex double
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingComplexCast);
- return lhs;
-
- } else if (order < 0) {
- // _Complex float -> _Complex double
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingComplexCast);
- return rhs;
- }
- return lhs;
- }
-
- // If just the LHS is complex, the RHS needs to be converted,
- // and the LHS might need to be promoted.
- if (LHSComplexFloat) {
- if (order > 0) { // LHS is wider
- // float -> _Complex double
- QualType fp = cast<ComplexType>(lhs)->getElementType();
- rhsExpr = ImpCastExprToType(rhsExpr.take(), fp, CK_FloatingCast);
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingRealToComplex);
- return lhs;
- }
-
- // RHS is at least as wide. Find its corresponding complex type.
- QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
-
- // double -> _Complex double
- rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
-
- // _Complex float -> _Complex double
- if (!isCompAssign && order < 0)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingComplexCast);
-
- return result;
- }
-
- // Just the RHS is complex, so the LHS needs to be converted
- // and the RHS might need to be promoted.
- assert(RHSComplexFloat);
-
- if (order < 0) { // RHS is wider
- // float -> _Complex double
- if (!isCompAssign) {
- QualType fp = cast<ComplexType>(rhs)->getElementType();
- lhsExpr = ImpCastExprToType(lhsExpr.take(), fp, CK_FloatingCast);
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingRealToComplex);
- }
- return rhs;
- }
-
- // LHS is at least as wide. Find its corresponding complex type.
- QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
-
- // double -> _Complex double
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
+/// \brief Takes two complex float types and converts them to the same type.
+/// Helper function of UsualArithmeticConversions()
+static QualType
+handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+ if (order < 0) {
// _Complex float -> _Complex double
- if (order > 0)
- rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingComplexCast);
-
- return result;
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
+ return RHSType;
}
+ if (order > 0)
+ // _Complex float -> _Complex double
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
+ return LHSType;
+}
+
+/// \brief Converts otherExpr to complex float and promotes complexExpr if
+/// necessary. Helper function of UsualArithmeticConversions()
+static QualType handleOtherComplexFloatConversion(Sema &S,
+ ExprResult &ComplexExpr,
+ ExprResult &OtherExpr,
+ QualType ComplexTy,
+ QualType OtherTy,
+ bool ConvertComplexExpr,
+ bool ConvertOtherExpr) {
+ int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
+
+ // If just the complexExpr is complex, the otherExpr needs to be converted,
+ // and the complexExpr might need to be promoted.
+ if (order > 0) { // complexExpr is wider
+ // float -> _Complex double
+ if (ConvertOtherExpr) {
+ QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
+ CK_FloatingRealToComplex);
+ }
+ return ComplexTy;
+ }
+
+ // otherTy is at least as wide. Find its corresponding complex type.
+ QualType result = (order == 0 ? ComplexTy :
+ S.Context.getComplexType(OtherTy));
+
+ // double -> _Complex double
+ if (ConvertOtherExpr)
+ OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
+ CK_FloatingRealToComplex);
+
+ // _Complex float -> _Complex double
+ if (ConvertComplexExpr && order < 0)
+ ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
+ CK_FloatingComplexCast);
- // Now handle "real" floating types (i.e. float, double, long double).
- bool LHSFloat = lhs->isRealFloatingType();
- bool RHSFloat = rhs->isRealFloatingType();
- if (LHSFloat || RHSFloat) {
- // If we have two real floating types, convert the smaller operand
- // to the bigger result.
- if (LHSFloat && RHSFloat) {
- int order = Context.getFloatingTypeOrder(lhs, rhs);
- if (order > 0) {
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_FloatingCast);
- return lhs;
- }
-
- assert(order < 0 && "illegal float comparison");
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_FloatingCast);
- return rhs;
- }
-
- // If we have an integer operand, the result is the real floating type.
- if (LHSFloat) {
- if (rhs->isIntegerType()) {
- // Convert rhs to the lhs floating point type.
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralToFloating);
- return lhs;
- }
-
- // Convert both sides to the appropriate complex float.
- assert(rhs->isComplexIntegerType());
- QualType result = Context.getComplexType(lhs);
-
- // _Complex int -> _Complex float
- rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
-
- // float -> _Complex float
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_FloatingRealToComplex);
-
- return result;
- }
-
- assert(RHSFloat);
- if (lhs->isIntegerType()) {
- // Convert lhs to the rhs floating point type.
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralToFloating);
- return rhs;
- }
-
- // Convert both sides to the appropriate complex float.
- assert(lhs->isComplexIntegerType());
- QualType result = Context.getComplexType(rhs);
+ return result;
+}
- // _Complex int -> _Complex float
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralComplexToFloatingComplex);
+/// \brief Handle arithmetic conversion with complex types. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ // if we have an integer operand, the result is the complex type.
+ if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*skipCast*/false))
+ return LHSType;
+ if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*skipCast*/IsCompAssign))
+ return RHSType;
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+
+ bool LHSComplexFloat = LHSType->isComplexType();
+ bool RHSComplexFloat = RHSType->isComplexType();
+
+ // If both are complex, just cast to the more precise type.
+ if (LHSComplexFloat && RHSComplexFloat)
+ return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
+ LHSType, RHSType,
+ IsCompAssign);
+
+ // If only one operand is complex, promote it if necessary and convert the
+ // other operand to complex.
+ if (LHSComplexFloat)
+ return handleOtherComplexFloatConversion(
+ S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
+ /*convertOtherExpr*/ true);
+
+ assert(RHSComplexFloat);
+ return handleOtherComplexFloatConversion(
+ S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
+ /*convertOtherExpr*/ !IsCompAssign);
+}
+
+/// \brief Hande arithmetic conversion from integer to float. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
+ ExprResult &IntExpr,
+ QualType FloatTy, QualType IntTy,
+ bool ConvertFloat, bool ConvertInt) {
+ if (IntTy->isIntegerType()) {
+ if (ConvertInt)
+ // Convert intExpr to the lhs floating point type.
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
+ CK_IntegralToFloating);
+ return FloatTy;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(IntTy->isComplexIntegerType());
+ QualType result = S.Context.getComplexType(FloatTy);
+
+ // _Complex int -> _Complex float
+ if (ConvertInt)
+ IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
+ CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (ConvertFloat)
+ FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
+ CK_FloatingRealToComplex);
- // float -> _Complex float
- rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_FloatingRealToComplex);
+ return result;
+}
- return result;
- }
+/// \brief Handle arithmethic conversion with floating point types. Helper
+/// function of UsualArithmeticConversions()
+static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ bool LHSFloat = LHSType->isRealFloatingType();
+ bool RHSFloat = RHSType->isRealFloatingType();
- // Handle GCC complex int extension.
- // FIXME: if the operands are (int, _Complex long), we currently
- // don't promote the complex. Also, signedness?
- const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
- const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
- if (lhsComplexInt && rhsComplexInt) {
- int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
- rhsComplexInt->getElementType());
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+ if (order > 0) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
+ return LHSType;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
+ return RHSType;
+ }
+
+ if (LHSFloat)
+ return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*convertFloat=*/!IsCompAssign,
+ /*convertInt=*/ true);
+ assert(RHSFloat);
+ return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*convertInt=*/ true,
+ /*convertFloat=*/!IsCompAssign);
+}
+
+/// \brief Handle conversions with GCC complex int extension. Helper function
+/// of UsualArithmeticConversions()
+// FIXME: if the operands are (int, _Complex long), we currently
+// don't promote the complex. Also, signedness?
+static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
+ const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
+
+ if (LHSComplexInt && RHSComplexInt) {
+ int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
+ RHSComplexInt->getElementType());
assert(order && "inequal types with equal element ordering");
if (order > 0) {
// _Complex int -> _Complex long
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralComplexCast);
- return lhs;
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
+ return LHSType;
}
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralComplexCast);
- return rhs;
- } else if (lhsComplexInt) {
- // int -> _Complex int
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralRealToComplex);
- return lhs;
- } else if (rhsComplexInt) {
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
+ return RHSType;
+ }
+
+ if (LHSComplexInt) {
// int -> _Complex int
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralRealToComplex);
- return rhs;
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
+ return LHSType;
}
- // Finally, we have two differing integer types.
+ assert(RHSComplexInt);
+ // int -> _Complex int
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
+ return RHSType;
+}
+
+/// \brief Handle integer arithmetic conversions. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
// The rules for this case are in C99 6.3.1.8
- int compare = Context.getIntegerTypeOrder(lhs, rhs);
- bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
- rhsSigned = rhs->hasSignedIntegerRepresentation();
- if (lhsSigned == rhsSigned) {
+ int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
+ bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
+ bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
+ if (LHSSigned == RHSSigned) {
// Same signedness; use the higher-ranked type
- if (compare >= 0) {
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
- return lhs;
- } else if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
- return rhs;
- } else if (compare != (lhsSigned ? 1 : -1)) {
+ if (order >= 0) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
+ } else if (order != (LHSSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
- if (rhsSigned) {
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
- return lhs;
- } else if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
- return rhs;
- } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
+ if (RHSSigned) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
+ } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
- if (lhsSigned) {
- rhsExpr = ImpCastExprToType(rhsExpr.take(), lhs, CK_IntegralCast);
- return lhs;
- } else if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), rhs, CK_IntegralCast);
- return rhs;
+ if (LHSSigned) {
+ RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
+ return RHSType;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
QualType result =
- Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
- rhsExpr = ImpCastExprToType(rhsExpr.take(), result, CK_IntegralCast);
- if (!isCompAssign)
- lhsExpr = ImpCastExprToType(lhsExpr.take(), result, CK_IntegralCast);
+ S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
+ RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
return result;
}
}
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+/// FIXME: verify the conversion rules for "complex int" are consistent with
+/// GCC.
+QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
+ bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
+ return LHSType;
+
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType LHSUnpromotedType = LHSType;
+ if (LHSType->isPromotableIntegerType())
+ LHSType = Context.getPromotedIntegerType(LHSType);
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
+ if (!LHSBitfieldPromoteTy.isNull())
+ LHSType = LHSBitfieldPromoteTy;
+ if (LHSType != LHSUnpromotedType && !IsCompAssign)
+ LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // At this point, we have two different arithmetic types.
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (LHSType->isComplexType() || RHSType->isComplexType())
+ return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Handle GCC complex int extension.
+ if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
+ return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
+ IsCompAssign);
+}
+
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
@@ -827,13 +952,13 @@ Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
- MultiTypeArg types,
- MultiExprArg exprs) {
- unsigned NumAssocs = types.size();
- assert(NumAssocs == exprs.size());
+ MultiTypeArg ArgTypes,
+ MultiExprArg ArgExprs) {
+ unsigned NumAssocs = ArgTypes.size();
+ assert(NumAssocs == ArgExprs.size());
- ParsedType *ParsedTypes = types.release();
- Expr **Exprs = exprs.release();
+ ParsedType *ParsedTypes = ArgTypes.release();
+ Expr **Exprs = ArgExprs.release();
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
for (unsigned i = 0; i < NumAssocs; ++i) {
@@ -922,7 +1047,7 @@ Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
Types, Exprs, NumAssocs, DefaultLoc,
RParenLoc, ContainsUnexpandedParameterPack));
- llvm::SmallVector<unsigned, 1> CompatIndices;
+ SmallVector<unsigned, 1> CompatIndices;
unsigned DefaultIndex = -1U;
for (unsigned i = 0; i < NumAssocs; ++i) {
if (!Types[i])
@@ -942,7 +1067,7 @@ Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
<< ControllingExpr->getSourceRange() << ControllingExpr->getType()
<< (unsigned) CompatIndices.size();
- for (llvm::SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
+ for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
E = CompatIndices.end(); I != E; ++I) {
Diag(Types[*I]->getTypeLoc().getBeginLoc(),
diag::note_compat_assoc)
@@ -993,16 +1118,30 @@ Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
if (Literal.hadError)
return ExprError();
- llvm::SmallVector<SourceLocation, 4> StringTokLocs;
+ SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
QualType StrTy = Context.CharTy;
- if (Literal.AnyWide)
+ if (Literal.isWide())
StrTy = Context.getWCharType();
+ else if (Literal.isUTF16())
+ StrTy = Context.Char16Ty;
+ else if (Literal.isUTF32())
+ StrTy = Context.Char32Ty;
else if (Literal.Pascal)
StrTy = Context.UnsignedCharTy;
+ StringLiteral::StringKind Kind = StringLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = StringLiteral::Wide;
+ else if (Literal.isUTF8())
+ Kind = StringLiteral::UTF8;
+ else if (Literal.isUTF16())
+ Kind = StringLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = StringLiteral::UTF32;
+
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
StrTy.addConst();
@@ -1016,7 +1155,7 @@ Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return Owned(StringLiteral::Create(Context, Literal.GetString(),
- Literal.AnyWide, Literal.Pascal, StrTy,
+ Kind, Literal.Pascal, StrTy,
&StringTokLocs[0],
StringTokLocs.size()));
}
@@ -1091,21 +1230,21 @@ diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
/// There is a well-formed capture at a particular scope level;
/// propagate it through all the nested blocks.
-static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
- const BlockDecl::Capture &capture) {
- VarDecl *var = capture.getVariable();
+static CaptureResult propagateCapture(Sema &S, unsigned ValidScopeIndex,
+ const BlockDecl::Capture &Capture) {
+ VarDecl *var = Capture.getVariable();
// Update all the inner blocks with the capture information.
- for (unsigned i = validScopeIndex + 1, e = S.FunctionScopes.size();
+ for (unsigned i = ValidScopeIndex + 1, e = S.FunctionScopes.size();
i != e; ++i) {
BlockScopeInfo *innerBlock = cast<BlockScopeInfo>(S.FunctionScopes[i]);
innerBlock->Captures.push_back(
- BlockDecl::Capture(capture.getVariable(), capture.isByRef(),
- /*nested*/ true, capture.getCopyExpr()));
+ BlockDecl::Capture(Capture.getVariable(), Capture.isByRef(),
+ /*nested*/ true, Capture.getCopyExpr()));
innerBlock->CaptureMap[var] = innerBlock->Captures.size(); // +1
}
- return capture.isByRef() ? CR_CaptureByRef : CR_Capture;
+ return Capture.isByRef() ? CR_CaptureByRef : CR_Capture;
}
/// shouldCaptureValueReference - Determine if a reference to the
@@ -1114,9 +1253,9 @@ static CaptureResult propagateCapture(Sema &S, unsigned validScopeIndex,
/// This also keeps the captures set in the BlockScopeInfo records
/// up-to-date.
static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
- ValueDecl *value) {
+ ValueDecl *Value) {
// Only variables ever require capture.
- VarDecl *var = dyn_cast<VarDecl>(value);
+ VarDecl *var = dyn_cast<VarDecl>(Value);
if (!var) return CR_NoCapture;
// Fast path: variables from the current context never require capture.
@@ -1225,19 +1364,19 @@ static CaptureResult shouldCaptureValueReference(Sema &S, SourceLocation loc,
blockScope->Captures.back());
}
-static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *vd,
+static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *VD,
const DeclarationNameInfo &NameInfo,
- bool byRef) {
- assert(isa<VarDecl>(vd) && "capturing non-variable");
+ bool ByRef) {
+ assert(isa<VarDecl>(VD) && "capturing non-variable");
- VarDecl *var = cast<VarDecl>(vd);
+ VarDecl *var = cast<VarDecl>(VD);
assert(var->hasLocalStorage() && "capturing non-local");
- assert(byRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
+ assert(ByRef == var->hasAttr<BlocksAttr>() && "byref set wrong");
QualType exprType = var->getType().getNonReferenceType();
BlockDeclRefExpr *BDRE;
- if (!byRef) {
+ if (!ByRef) {
// The variable will be bound by copy; make it const within the
// closure, but record that this was done in the expression.
bool constAdded = !exprType.isConstQualified();
@@ -1268,6 +1407,20 @@ ExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS) {
+ if (getLangOptions().CUDA)
+ if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
+ if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
+ CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
+ CalleeTarget = IdentifyCUDATarget(Callee);
+ if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
+ Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
+ << CalleeTarget << D->getIdentifier() << CallerTarget;
+ Diag(D->getLocation(), diag::note_previous_decl)
+ << D->getIdentifier();
+ return ExprError();
+ }
+ }
+
MarkDeclarationReferenced(NameInfo.getLoc(), D);
Expr *E = DeclRefExpr::Create(Context,
@@ -1276,7 +1429,8 @@ Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
D, NameInfo, Ty, VK);
// Just in case we're building an illegal pointer-to-member.
- if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
+ FieldDecl *FD = dyn_cast<FieldDecl>(D);
+ if (FD && FD->isBitField())
E->setObjectKind(OK_BitField);
return Owned(E);
@@ -1291,10 +1445,11 @@ Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
-void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
- TemplateArgumentListInfo &Buffer,
- DeclarationNameInfo &NameInfo,
- const TemplateArgumentListInfo *&TemplateArgs) {
+void
+Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *&TemplateArgs) {
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
@@ -1319,7 +1474,9 @@ void Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
- CorrectTypoContext CTC) {
+ CorrectTypoContext CTC,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ Expr **Args, unsigned NumArgs) {
DeclarationName Name = R.getLookupName();
unsigned diagnostic = diag::err_undeclared_var_use;
@@ -1358,6 +1515,8 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
CurMethod->getInstantiatedFromMemberFunction());
if (DepMethod) {
+ if (getLangOptions().MicrosoftExt)
+ diagnostic = diag::warn_found_via_dependent_bases_lookup;
Diag(R.getNameLoc(), diagnostic) << Name
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
QualType DepThisType = DepMethod->getThisType(Context);
@@ -1373,7 +1532,8 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CXXDependentScopeMemberExpr::Create(
Context, DepThis, DepThisType, true, SourceLocation(),
SS.getWithLocInContext(Context), NULL,
- R.getLookupNameInfo(), &TList);
+ R.getLookupNameInfo(),
+ ULE->hasExplicitTemplateArgs() ? &TList : 0);
CallsUndergoingInstantiation.back()->setCallee(DepExpr);
} else {
// FIXME: we should be able to handle this case too. It is correct
@@ -1405,6 +1565,30 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
R.setLookupName(Corrected.getCorrection());
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(R.getNameLoc());
+ OverloadCandidateSet::iterator Best;
+ for (TypoCorrection::decl_iterator CD = Corrected.begin(),
+ CDEnd = Corrected.end();
+ CD != CDEnd; ++CD) {
+ if (FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(*CD))
+ AddTemplateOverloadCandidate(
+ FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
+ Args, NumArgs, OCS);
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
+ if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
+ Args, NumArgs, OCS);
+ }
+ switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
+ case OR_Success:
+ ND = Best->Function;
+ break;
+ default:
+ break;
+ }
+ }
R.addDecl(ND);
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
if (SS.isEmpty())
@@ -1430,7 +1614,8 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
// correction, but don't make it a fix-it since we're not going
// to recover well anyway.
if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
+ Diag(R.getNameLoc(), diagnostic_suggest)
+ << Name << CorrectedQuotedStr;
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
@@ -1467,96 +1652,12 @@ bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
return true;
}
-ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
- ObjCMethodDecl *CurMeth = getCurMethodDecl();
- ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
- if (!IDecl)
- return 0;
- ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
- if (!ClassImpDecl)
- return 0;
- ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
- if (!property)
- return 0;
- if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
- if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
- PIDecl->getPropertyIvarDecl())
- return 0;
- return property;
-}
-
-bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
- ObjCMethodDecl *CurMeth = getCurMethodDecl();
- ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
- if (!IDecl)
- return false;
- ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
- if (!ClassImpDecl)
- return false;
- if (ObjCPropertyImplDecl *PIDecl
- = ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
- if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
- PIDecl->getPropertyIvarDecl())
- return false;
-
- return true;
-}
-
-ObjCIvarDecl *Sema::SynthesizeProvisionalIvar(LookupResult &Lookup,
- IdentifierInfo *II,
- SourceLocation NameLoc) {
- ObjCMethodDecl *CurMeth = getCurMethodDecl();
- bool LookForIvars;
- if (Lookup.empty())
- LookForIvars = true;
- else if (CurMeth->isClassMethod())
- LookForIvars = false;
- else
- LookForIvars = (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
- (Lookup.getAsSingle<VarDecl>() != 0));
- if (!LookForIvars)
- return 0;
-
- ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
- if (!IDecl)
- return 0;
- ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
- if (!ClassImpDecl)
- return 0;
- bool DynamicImplSeen = false;
- ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
- if (!property)
- return 0;
- if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
- DynamicImplSeen =
- (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
- // property implementation has a designated ivar. No need to assume a new
- // one.
- if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
- return 0;
- }
- if (!DynamicImplSeen) {
- QualType PropType = Context.getCanonicalType(property->getType());
- ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
- NameLoc, NameLoc,
- II, PropType, /*Dinfo=*/0,
- ObjCIvarDecl::Private,
- (Expr *)0, true);
- ClassImpDecl->addDecl(Ivar);
- IDecl->makeDeclVisibleInContext(Ivar, false);
- property->setPropertyIvarDecl(Ivar);
- return Ivar;
- }
- return 0;
-}
-
ExprResult Sema::ActOnIdExpression(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Id,
bool HasTrailingLParen,
- bool isAddressOfOperand) {
- assert(!(isAddressOfOperand && HasTrailingLParen) &&
+ bool IsAddressOfOperand) {
+ assert(!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen");
if (SS.isInvalid())
@@ -1598,7 +1699,7 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
}
if (DependentID)
- return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
TemplateArgs);
bool IvarLookupFollowUp = false;
@@ -1618,7 +1719,7 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
if (MemberOfUnknownSpecialization ||
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
- return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
TemplateArgs);
} else {
IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
@@ -1627,7 +1728,7 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
// If the result might be in a dependent base class, this is a dependent
// id-expression.
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
- return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
+ return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
TemplateArgs);
// If this reference is in an Objective-C method, then we need to do
@@ -1640,19 +1741,6 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
if (Expr *Ex = E.takeAs<Expr>())
return Owned(Ex);
- // Synthesize ivars lazily.
- if (getLangOptions().ObjCDefaultSynthProperties &&
- getLangOptions().ObjCNonFragileABI2) {
- if (SynthesizeProvisionalIvar(R, II, NameLoc)) {
- if (const ObjCPropertyDecl *Property =
- canSynthesizeProvisionalIvar(II)) {
- Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
- Diag(Property->getLocation(), diag::note_property_declare);
- }
- return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
- isAddressOfOperand);
- }
- }
// for further use, this must be set to false if in class method.
IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
}
@@ -1676,6 +1764,16 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
// If this name wasn't predeclared and if this is not a function
// call, diagnose the problem.
if (R.empty()) {
+
+ // In Microsoft mode, if we are inside a template class member function
+ // and we can't resolve an identifier then assume the identifier is type
+ // dependent. The goal is to postpone name lookup to instantiation time
+ // to be able to search into type dependent base classes.
+ if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() &&
+ isa<CXXMethodDecl>(CurContext))
+ return ActOnDependentIdExpression(SS, NameInfo, IsAddressOfOperand,
+ TemplateArgs);
+
if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
return ExprError();
@@ -1688,7 +1786,10 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
R.clear();
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
- assert(E.isInvalid() || E.get());
+ // In a hopelessly buggy code, Objective-C instance variable
+ // lookup fails and no expression will be built to reference it.
+ if (!E.isInvalid() && !E.get())
+ return ExprError();
return move(E);
}
}
@@ -1723,7 +1824,7 @@ ExprResult Sema::ActOnIdExpression(Scope *S,
// instance method.
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
bool MightBeImplicitMember;
- if (!isAddressOfOperand)
+ if (!IsAddressOfOperand)
MightBeImplicitMember = true;
else if (!SS.isEmpty())
MightBeImplicitMember = false;
@@ -1950,7 +2051,7 @@ Sema::PerformObjectMemberConversion(Expr *From,
SourceRange FromRange = From->getSourceRange();
SourceLocation FromLoc = FromRange.getBegin();
- ExprValueKind VK = CastCategory(From);
+ ExprValueKind VK = From->getValueKind();
// C++ [class.member.lookup]p8:
// [...] Ambiguities can often be resolved by qualifying a name with its
@@ -2341,7 +2442,8 @@ Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
// If we're referring to a method with an __unknown_anytype
// result type, make the entire expression __unknown_anytype.
// This should only be possible with a type written directly.
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(VD->getType()))
+ if (const FunctionProtoType *proto
+ = dyn_cast<FunctionProtoType>(VD->getType()))
if (proto->getResultType() == Context.UnknownAnyTy) {
type = Context.UnknownAnyTy;
valueKind = VK_RValue;
@@ -2375,7 +2477,7 @@ ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
- default: assert(0 && "Unknown simple primary expr!");
+ default: llvm_unreachable("Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
@@ -2408,12 +2510,12 @@ ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
bool Invalid = false;
- llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
if (Invalid)
return ExprError();
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
- PP);
+ PP, Tok.getKind());
if (Literal.hadError())
return ExprError();
@@ -2422,14 +2524,25 @@ ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
Ty = Context.IntTy; // 'x' and L'x' -> int in C.
else if (Literal.isWide())
Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
+ else if (Literal.isUTF16())
+ Ty = Context.Char16Ty; // u'x' -> char16_t in C++0x.
+ else if (Literal.isUTF32())
+ Ty = Context.Char32Ty; // U'x' -> char32_t in C++0x.
else if (Literal.isMultiChar())
Ty = Context.IntTy; // 'wxyz' -> int in C++.
else
Ty = Context.CharTy; // 'x' -> char in C++
- return Owned(new (Context) CharacterLiteral(Literal.getValue(),
- Literal.isWide(),
- Ty, Tok.getLocation()));
+ CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = CharacterLiteral::Wide;
+ else if (Literal.isUTF16())
+ Kind = CharacterLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = CharacterLiteral::UTF32;
+
+ return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
+ Tok.getLocation()));
}
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
@@ -2437,7 +2550,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
- unsigned IntSize = Context.Target.getIntWidth();
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
Context.IntTy, Tok.getLocation()));
}
@@ -2492,7 +2605,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
Diag(Tok.getLocation(), diagnostic)
<< Ty
- << llvm::StringRef(buffer.data(), buffer.size());
+ << StringRef(buffer.data(), buffer.size());
}
bool isExact = (result == APFloat::opOK);
@@ -2517,7 +2630,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
- llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
+ llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
@@ -2537,7 +2650,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
- unsigned IntSize = Context.Target.getIntWidth();
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
@@ -2552,7 +2665,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
- unsigned LongSize = Context.Target.getLongWidth();
+ unsigned LongSize = Context.getTargetInfo().getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
@@ -2567,7 +2680,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Finally, check long long if needed.
if (Ty.isNull()) {
- unsigned LongLongSize = Context.Target.getLongLongWidth();
+ unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
@@ -2575,7 +2688,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// To be compatible with MSVC, hex integer literals ending with the
// LL or i64 suffix are always signed in Microsoft mode.
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
- (getLangOptions().Microsoft && Literal.isLongLong)))
+ (getLangOptions().MicrosoftExt && Literal.isLongLong)))
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
@@ -2588,7 +2701,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
- Width = Context.Target.getLongLongWidth();
+ Width = Context.getTargetInfo().getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
@@ -2605,8 +2718,7 @@ ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
return Owned(Res);
}
-ExprResult Sema::ActOnParenExpr(SourceLocation L,
- SourceLocation R, Expr *E) {
+ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
assert((E != 0) && "ActOnParenExpr() missing expr");
return Owned(new (Context) ParenExpr(L, R, E));
}
@@ -2672,9 +2784,9 @@ static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
/// expression. The logic mostly mirrors the type-based overload, but may modify
/// the expression as it completes the type for that expression through template
/// instantiation, etc.
-bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
+bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
UnaryExprOrTypeTrait ExprKind) {
- QualType ExprTy = Op->getType();
+ QualType ExprTy = E->getType();
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
@@ -2684,36 +2796,36 @@ bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
ExprTy = Ref->getPointeeType();
if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, ExprTy, Op->getExprLoc(),
- Op->getSourceRange());
+ return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange());
// Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, ExprTy, Op->getExprLoc(),
- Op->getSourceRange(), ExprKind))
+ if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
return false;
- if (RequireCompleteExprType(Op,
+ if (RequireCompleteExprType(E,
PDiag(diag::err_sizeof_alignof_incomplete_type)
- << ExprKind << Op->getSourceRange(),
+ << ExprKind << E->getSourceRange(),
std::make_pair(SourceLocation(), PDiag(0))))
return true;
// Completeing the expression's type may have changed it.
- ExprTy = Op->getType();
+ ExprTy = E->getType();
if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
ExprTy = Ref->getPointeeType();
- if (CheckObjCTraitOperandConstraints(*this, ExprTy, Op->getExprLoc(),
- Op->getSourceRange(), ExprKind))
+ if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
return true;
if (ExprKind == UETT_SizeOf) {
- if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Op->IgnoreParens())) {
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
QualType OType = PVD->getOriginalType();
QualType Type = PVD->getType();
if (Type->isPointerType() && OType->isArrayType()) {
- Diag(Op->getExprLoc(), diag::warn_sizeof_array_param)
+ Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
<< Type << OType;
Diag(PVD->getLocation(), diag::note_declared_at);
}
@@ -2739,34 +2851,34 @@ bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *Op,
/// standard conversions are not applied to the operand of sizeof.
///
/// This policy is followed for all of the unary trait expressions.
-bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType exprType,
+bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind) {
- if (exprType->isDependentType())
+ if (ExprType->isDependentType())
return false;
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
- if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
- exprType = Ref->getPointeeType();
+ if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
+ ExprType = Ref->getPointeeType();
if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, exprType, OpLoc, ExprRange);
+ return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
// Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, exprType, OpLoc, ExprRange,
+ if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
ExprKind))
return false;
- if (RequireCompleteType(OpLoc, exprType,
+ if (RequireCompleteType(OpLoc, ExprType,
PDiag(diag::err_sizeof_alignof_incomplete_type)
<< ExprKind << ExprRange))
return true;
- if (CheckObjCTraitOperandConstraints(*this, exprType, OpLoc, ExprRange,
+ if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
ExprKind))
return true;
@@ -2870,12 +2982,12 @@ Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
/// Note that the ArgRange is invalid if isType is false.
ExprResult
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind, bool isType,
+ UnaryExprOrTypeTrait ExprKind, bool IsType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return ExprError();
- if (isType) {
+ if (IsType) {
TypeSourceInfo *TInfo;
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
@@ -2887,7 +2999,7 @@ Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
}
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
- bool isReal) {
+ bool IsReal) {
if (V.get()->isTypeDependent())
return S.Context.DependentTy;
@@ -2911,12 +3023,12 @@ static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
if (PR.isInvalid()) return QualType();
if (PR.get() != V.get()) {
V = move(PR);
- return CheckRealImagOperand(S, V, Loc, isReal);
+ return CheckRealImagOperand(S, V, Loc, IsReal);
}
// Reject anything else.
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
- << (isReal ? "__real" : "__imag");
+ << (IsReal ? "__real" : "__imag");
return QualType();
}
@@ -2927,7 +3039,7 @@ Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input) {
UnaryOperatorKind Opc;
switch (Kind) {
- default: assert(0 && "Unknown unary op!");
+ default: llvm_unreachable("Unknown unary op!");
case tok::plusplus: Opc = UO_PostInc; break;
case tok::minusminus: Opc = UO_PostDec; break;
}
@@ -2967,7 +3079,7 @@ Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
ExprResult
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
- Expr *Idx, SourceLocation RLoc) {
+ Expr *Idx, SourceLocation RLoc) {
Expr *LHSExp = Base;
Expr *RHSExp = Idx;
@@ -3190,7 +3302,8 @@ Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc) {
+ SourceLocation RParenLoc,
+ bool IsExecConfig) {
// Bail out early if calling a builtin with custom typechecking.
// We don't need to do this in the
if (FDecl)
@@ -3202,14 +3315,29 @@ Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
bool Invalid = false;
+ unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
+ unsigned FnKind = Fn->getType()->isBlockPointerType()
+ ? 1 /* block */
+ : (IsExecConfig ? 3 /* kernel function (exec config) */
+ : 0 /* function */);
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
- if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
- return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
- << Fn->getType()->isBlockPointerType()
- << NumArgsInProto << NumArgs << Fn->getSourceRange();
+ if (NumArgs < MinArgs) {
+ Diag(RParenLoc, MinArgs == NumArgsInProto
+ ? diag::err_typecheck_call_too_few_args
+ : diag::err_typecheck_call_too_few_args_at_least)
+ << FnKind
+ << MinArgs << NumArgs << Fn->getSourceRange();
+
+ // Emit the location of the prototype.
+ if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
+
+ return true;
+ }
Call->setNumArgs(Context, NumArgsInProto);
}
@@ -3218,24 +3346,25 @@ Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << Fn->getType()->isBlockPointerType()
+ MinArgs == NumArgsInProto
+ ? diag::err_typecheck_call_too_many_args
+ : diag::err_typecheck_call_too_many_args_at_most)
+ << FnKind
<< NumArgsInProto << NumArgs << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// Emit the location of the prototype.
- if (FDecl && !FDecl->getBuiltinID())
- Diag(FDecl->getLocStart(),
- diag::note_typecheck_call_too_many_args)
- << FDecl;
+ if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocStart(), diag::note_callee_decl)
+ << FDecl;
// This deletes the extra arguments.
Call->setNumArgs(Context, NumArgsInProto);
return true;
}
}
- llvm::SmallVector<Expr *, 8> AllArgs;
+ SmallVector<Expr *, 8> AllArgs;
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (Fn->getType()->isBlockPointerType())
@@ -3258,7 +3387,7 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
const FunctionProtoType *Proto,
unsigned FirstProtoArg,
Expr **Args, unsigned NumArgs,
- llvm::SmallVector<Expr *, 8> &AllArgs,
+ SmallVector<Expr *, 8> &AllArgs,
VariadicCallType CallType) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
@@ -3307,6 +3436,12 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
Arg = ArgExpr.takeAs<Expr>();
}
+
+ // Check for array bounds violations for each argument to the call. This
+ // check only triggers warnings when the argument isn't a more complex Expr
+ // with its own checking, such as a BinaryOperator.
+ CheckArrayAccess(Arg);
+
AllArgs.push_back(Arg);
}
@@ -3330,11 +3465,16 @@ bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
// Otherwise do argument promotion, (C99 6.5.2.2p7).
} else {
for (unsigned i = ArgIx; i != NumArgs; ++i) {
- ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
+ ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
+ FDecl);
Invalid |= Arg.isInvalid();
AllArgs.push_back(Arg.take());
}
}
+
+ // Check for array bounds violations.
+ for (unsigned i = ArgIx; i != NumArgs; ++i)
+ CheckArrayAccess(Args[i]);
}
return Invalid;
}
@@ -3348,16 +3488,16 @@ static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
/// locations.
ExprResult
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
- MultiExprArg args, SourceLocation RParenLoc,
- Expr *ExecConfig) {
- unsigned NumArgs = args.size();
+ MultiExprArg ArgExprs, SourceLocation RParenLoc,
+ Expr *ExecConfig, bool IsExecConfig) {
+ unsigned NumArgs = ArgExprs.size();
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
if (Result.isInvalid()) return ExprError();
Fn = Result.take();
- Expr **Args = args.release();
+ Expr **Args = ArgExprs.release();
if (getLangOptions().CPlusPlus) {
// If this is a pseudo-destructor expression, build the call immediately.
@@ -3419,8 +3559,8 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
if (Fn->getType() == Context.OverloadTy) {
OverloadExpr::FindResult find = OverloadExpr::find(Fn);
- // We aren't supposed to apply this logic if there's an '&' involved.
- if (!find.IsAddressOfOperand) {
+ // We aren't supposed to apply this logic for if there's an '&' involved.
+ if (!find.HasFormOfMemberPointer) {
OverloadExpr *ovl = find.Expression;
if (isa<UnresolvedLookupExpr>(ovl)) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
@@ -3448,12 +3588,12 @@ Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
- ExecConfig);
+ ExecConfig, IsExecConfig);
}
ExprResult
Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
- MultiExprArg execConfig, SourceLocation GGGLoc) {
+ MultiExprArg ExecConfig, SourceLocation GGGLoc) {
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
if (!ConfigDecl)
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
@@ -3463,27 +3603,29 @@ Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
- return ActOnCallExpr(S, ConfigDR, LLLLoc, execConfig, GGGLoc, 0);
+ return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
+ /*IsExecConfig=*/true);
}
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
///
/// __builtin_astype( value, dst type )
///
-ExprResult Sema::ActOnAsTypeExpr(Expr *expr, ParsedType destty,
+ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
- QualType DstTy = GetTypeFromParser(destty);
- QualType SrcTy = expr->getType();
+ QualType DstTy = GetTypeFromParser(ParsedDestTy);
+ QualType SrcTy = E->getType();
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
return ExprError(Diag(BuiltinLoc,
diag::err_invalid_astype_of_different_size)
<< DstTy
<< SrcTy
- << expr->getSourceRange());
- return Owned(new (Context) AsTypeExpr(expr, DstTy, VK, OK, BuiltinLoc, RParenLoc));
+ << E->getSourceRange());
+ return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
+ RParenLoc));
}
/// BuildResolvedCallExpr - Build a call to a resolved expression,
@@ -3497,7 +3639,7 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
- Expr *Config) {
+ Expr *Config, bool IsExecConfig) {
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
// Promote the function operand.
@@ -3567,6 +3709,11 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
if (!FuncT->getResultType()->isVoidType())
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
<< Fn->getType() << Fn->getSourceRange());
+ } else {
+ // CUDA: Calls to global functions must be configured
+ if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
+ << FDecl->getName() << Fn->getSourceRange());
}
}
@@ -3582,7 +3729,7 @@ Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
- RParenLoc))
+ RParenLoc, IsExecConfig))
return ExprError();
} else {
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
@@ -3682,23 +3829,23 @@ Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
ExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
- SourceLocation RParenLoc, Expr *literalExpr) {
+ SourceLocation RParenLoc, Expr *LiteralExpr) {
QualType literalType = TInfo->getType();
if (literalType->isArrayType()) {
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
PDiag(diag::err_illegal_decl_array_incomplete_type)
<< SourceRange(LParenLoc,
- literalExpr->getSourceRange().getEnd())))
+ LiteralExpr->getSourceRange().getEnd())))
return ExprError();
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
- << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
+ << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
} else if (!literalType->isDependentType() &&
RequireCompleteType(LParenLoc, literalType,
PDiag(diag::err_typecheck_decl_incomplete_type)
<< SourceRange(LParenLoc,
- literalExpr->getSourceRange().getEnd())))
+ LiteralExpr->getSourceRange().getEnd())))
return ExprError();
InitializedEntity Entity
@@ -3706,17 +3853,17 @@ Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
InitializationKind Kind
= InitializationKind::CreateCStyleCast(LParenLoc,
SourceRange(LParenLoc, RParenLoc));
- InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
+ InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, &literalExpr, 1),
+ MultiExprArg(*this, &LiteralExpr, 1),
&literalType);
if (Result.isInvalid())
return ExprError();
- literalExpr = Result.get();
+ LiteralExpr = Result.get();
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope) { // 6.5.2.5p3
- if (CheckForConstantInitializer(literalExpr, literalType))
+ if (CheckForConstantInitializer(LiteralExpr, literalType))
return ExprError();
}
@@ -3725,14 +3872,14 @@ Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
return MaybeBindToTemporary(
new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
- VK, literalExpr, isFileScope));
+ VK, LiteralExpr, isFileScope));
}
ExprResult
-Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
SourceLocation RBraceLoc) {
- unsigned NumInit = initlist.size();
- Expr **InitList = initlist.release();
+ unsigned NumInit = InitArgList.size();
+ Expr **InitList = InitArgList.release();
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
@@ -3743,27 +3890,68 @@ Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
return Owned(E);
}
+/// Do an explicit extend of the given block pointer if we're in ARC.
+static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
+ assert(E.get()->getType()->isBlockPointerType());
+ assert(E.get()->isRValue());
+
+ // Only do this in an r-value context.
+ if (!S.getLangOptions().ObjCAutoRefCount) return;
+
+ E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
+ CK_ARCExtendBlockObject, E.get(),
+ /*base path*/ 0, VK_RValue);
+ S.ExprNeedsCleanups = true;
+}
+
+/// Prepare a conversion of the given expression to an ObjC object
+/// pointer type.
+CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
+ QualType type = E.get()->getType();
+ if (type->isObjCObjectPointerType()) {
+ return CK_BitCast;
+ } else if (type->isBlockPointerType()) {
+ maybeExtendBlockObject(*this, E);
+ return CK_BlockPointerToObjCPointerCast;
+ } else {
+ assert(type->isPointerType());
+ return CK_CPointerToObjCPointerCast;
+ }
+}
+
/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
-static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
+CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
// Also, callers should have filtered out the invalid cases with
// pointers. Everything else should be possible.
QualType SrcTy = Src.get()->getType();
- if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
return CK_NoOp;
- switch (SrcTy->getScalarTypeKind()) {
+ switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
- case Type::STK_Pointer:
+ case Type::STK_CPointer:
+ case Type::STK_BlockPointer:
+ case Type::STK_ObjCObjectPointer:
switch (DestTy->getScalarTypeKind()) {
- case Type::STK_Pointer:
- return DestTy->isObjCObjectPointerType() ?
- CK_AnyPointerToObjCPointerCast :
- CK_BitCast;
+ case Type::STK_CPointer:
+ return CK_BitCast;
+ case Type::STK_BlockPointer:
+ return (SrcKind == Type::STK_BlockPointer
+ ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
+ case Type::STK_ObjCObjectPointer:
+ if (SrcKind == Type::STK_ObjCObjectPointer)
+ return CK_BitCast;
+ else if (SrcKind == Type::STK_CPointer)
+ return CK_CPointerToObjCPointerCast;
+ else {
+ maybeExtendBlockObject(*this, Src);
+ return CK_BlockPointerToObjCPointerCast;
+ }
case Type::STK_Bool:
return CK_PointerToBoolean;
case Type::STK_Integral:
@@ -3779,8 +3967,11 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
case Type::STK_Bool: // casting from bool is like casting from an integer
case Type::STK_Integral:
switch (DestTy->getScalarTypeKind()) {
- case Type::STK_Pointer:
- if (Src.get()->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ if (Src.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
return CK_NullToPointer;
return CK_IntegralToPointer;
case Type::STK_Bool:
@@ -3790,12 +3981,14 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
case Type::STK_Floating:
return CK_IntegralToFloating;
case Type::STK_IntegralComplex:
- Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
- CK_IntegralCast);
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
return CK_IntegralRealToComplex;
case Type::STK_FloatingComplex:
- Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
- CK_IntegralToFloating);
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
return CK_FloatingRealToComplex;
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
@@ -3811,14 +4004,18 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
case Type::STK_Integral:
return CK_FloatingToIntegral;
case Type::STK_FloatingComplex:
- Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
- CK_FloatingCast);
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
return CK_FloatingRealToComplex;
case Type::STK_IntegralComplex:
- Src = S.ImpCastExprToType(Src.take(), DestTy->getAs<ComplexType>()->getElementType(),
- CK_FloatingToIntegral);
+ Src = ImpCastExprToType(Src.take(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
return CK_IntegralRealToComplex;
- case Type::STK_Pointer:
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
llvm_unreachable("valid float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
@@ -3832,19 +4029,22 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
case Type::STK_IntegralComplex:
return CK_FloatingComplexToIntegralComplex;
case Type::STK_Floating: {
- QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
- if (S.Context.hasSameType(ET, DestTy))
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
return CK_FloatingComplexToReal;
- Src = S.ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
+ Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
return CK_FloatingCast;
}
case Type::STK_Bool:
return CK_FloatingComplexToBoolean;
case Type::STK_Integral:
- Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
- CK_FloatingComplexToReal);
+ Src = ImpCastExprToType(Src.take(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
return CK_FloatingToIntegral;
- case Type::STK_Pointer:
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
llvm_unreachable("valid complex float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
@@ -3858,19 +4058,22 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
case Type::STK_IntegralComplex:
return CK_IntegralComplexCast;
case Type::STK_Integral: {
- QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
- if (S.Context.hasSameType(ET, DestTy))
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
return CK_IntegralComplexToReal;
- Src = S.ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
+ Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
return CK_IntegralCast;
}
case Type::STK_Bool:
return CK_IntegralComplexToBoolean;
case Type::STK_Floating:
- Src = S.ImpCastExprToType(Src.take(), SrcTy->getAs<ComplexType>()->getElementType(),
- CK_IntegralComplexToReal);
+ Src = ImpCastExprToType(Src.take(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
return CK_IntegralToFloating;
- case Type::STK_Pointer:
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
llvm_unreachable("valid complex int->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
@@ -3879,193 +4082,6 @@ static CastKind PrepareScalarCast(Sema &S, ExprResult &Src, QualType DestTy) {
}
llvm_unreachable("Unhandled scalar cast");
- return CK_BitCast;
-}
-
-/// CheckCastTypes - Check type constraints for casting between types.
-ExprResult Sema::CheckCastTypes(SourceLocation CastStartLoc, SourceRange TyR,
- QualType castType, Expr *castExpr,
- CastKind& Kind, ExprValueKind &VK,
- CXXCastPath &BasePath, bool FunctionalStyle) {
- if (castExpr->getType() == Context.UnknownAnyTy)
- return checkUnknownAnyCast(TyR, castType, castExpr, Kind, VK, BasePath);
-
- if (getLangOptions().CPlusPlus)
- return CXXCheckCStyleCast(SourceRange(CastStartLoc,
- castExpr->getLocEnd()),
- castType, VK, castExpr, Kind, BasePath,
- FunctionalStyle);
-
- assert(!castExpr->getType()->isPlaceholderType());
-
- // We only support r-value casts in C.
- VK = VK_RValue;
-
- // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
- // type needs to be scalar.
- if (castType->isVoidType()) {
- // We don't necessarily do lvalue-to-rvalue conversions on this.
- ExprResult castExprRes = IgnoredValueConversions(castExpr);
- if (castExprRes.isInvalid())
- return ExprError();
- castExpr = castExprRes.take();
-
- // Cast to void allows any expr type.
- Kind = CK_ToVoid;
- return Owned(castExpr);
- }
-
- ExprResult castExprRes = DefaultFunctionArrayLvalueConversion(castExpr);
- if (castExprRes.isInvalid())
- return ExprError();
- castExpr = castExprRes.take();
-
- if (RequireCompleteType(TyR.getBegin(), castType,
- diag::err_typecheck_cast_to_incomplete))
- return ExprError();
-
- if (!castType->isScalarType() && !castType->isVectorType()) {
- if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
- (castType->isStructureType() || castType->isUnionType())) {
- // GCC struct/union extension: allow cast to self.
- // FIXME: Check that the cast destination type is complete.
- Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
- << castType << castExpr->getSourceRange();
- Kind = CK_NoOp;
- return Owned(castExpr);
- }
-
- if (castType->isUnionType()) {
- // GCC cast to union extension
- RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
- RecordDecl::field_iterator Field, FieldEnd;
- for (Field = RD->field_begin(), FieldEnd = RD->field_end();
- Field != FieldEnd; ++Field) {
- if (Context.hasSameUnqualifiedType(Field->getType(),
- castExpr->getType()) &&
- !Field->isUnnamedBitfield()) {
- Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
- << castExpr->getSourceRange();
- break;
- }
- }
- if (Field == FieldEnd) {
- Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
- << castExpr->getType() << castExpr->getSourceRange();
- return ExprError();
- }
- Kind = CK_ToUnion;
- return Owned(castExpr);
- }
-
- // Reject any other conversions to non-scalar types.
- Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
- << castType << castExpr->getSourceRange();
- return ExprError();
- }
-
- // The type we're casting to is known to be a scalar or vector.
-
- // Require the operand to be a scalar or vector.
- if (!castExpr->getType()->isScalarType() &&
- !castExpr->getType()->isVectorType()) {
- Diag(castExpr->getLocStart(),
- diag::err_typecheck_expect_scalar_operand)
- << castExpr->getType() << castExpr->getSourceRange();
- return ExprError();
- }
-
- if (castType->isExtVectorType())
- return CheckExtVectorCast(TyR, castType, castExpr, Kind);
-
- if (castType->isVectorType()) {
- if (castType->getAs<VectorType>()->getVectorKind() ==
- VectorType::AltiVecVector &&
- (castExpr->getType()->isIntegerType() ||
- castExpr->getType()->isFloatingType())) {
- Kind = CK_VectorSplat;
- return Owned(castExpr);
- } else if (CheckVectorCast(TyR, castType, castExpr->getType(), Kind)) {
- return ExprError();
- } else
- return Owned(castExpr);
- }
- if (castExpr->getType()->isVectorType()) {
- if (CheckVectorCast(TyR, castExpr->getType(), castType, Kind))
- return ExprError();
- else
- return Owned(castExpr);
- }
-
- // The source and target types are both scalars, i.e.
- // - arithmetic types (fundamental, enum, and complex)
- // - all kinds of pointers
- // Note that member pointers were filtered out with C++, above.
-
- if (isa<ObjCSelectorExpr>(castExpr)) {
- Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
- return ExprError();
- }
-
- // If either type is a pointer, the other type has to be either an
- // integer or a pointer.
- QualType castExprType = castExpr->getType();
- if (!castType->isArithmeticType()) {
- if (!castExprType->isIntegralType(Context) &&
- castExprType->isArithmeticType()) {
- Diag(castExpr->getLocStart(),
- diag::err_cast_pointer_from_non_pointer_int)
- << castExprType << castExpr->getSourceRange();
- return ExprError();
- }
- } else if (!castExpr->getType()->isArithmeticType()) {
- if (!castType->isIntegralType(Context) && castType->isArithmeticType()) {
- Diag(castExpr->getLocStart(), diag::err_cast_pointer_to_non_pointer_int)
- << castType << castExpr->getSourceRange();
- return ExprError();
- }
- }
-
- if (getLangOptions().ObjCAutoRefCount) {
- // Diagnose problems with Objective-C casts involving lifetime qualifiers.
- CheckObjCARCConversion(SourceRange(CastStartLoc, castExpr->getLocEnd()),
- castType, castExpr, CCK_CStyleCast);
-
- if (const PointerType *CastPtr = castType->getAs<PointerType>()) {
- if (const PointerType *ExprPtr = castExprType->getAs<PointerType>()) {
- Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
- Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
- if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
- ExprPtr->getPointeeType()->isObjCLifetimeType() &&
- !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
- Diag(castExpr->getLocStart(),
- diag::err_typecheck_incompatible_ownership)
- << castExprType << castType << AA_Casting
- << castExpr->getSourceRange();
-
- return ExprError();
- }
- }
- }
- else if (!CheckObjCARCUnavailableWeakConversion(castType, castExprType)) {
- Diag(castExpr->getLocStart(),
- diag::err_arc_convesion_of_weak_unavailable) << 1
- << castExprType << castType
- << castExpr->getSourceRange();
- return ExprError();
- }
- }
-
- castExprRes = Owned(castExpr);
- Kind = PrepareScalarCast(*this, castExprRes, castType);
- if (castExprRes.isInvalid())
- return ExprError();
- castExpr = castExprRes.take();
-
- if (Kind == CK_BitCast)
- CheckCastAlign(castExpr, castType, TyR);
-
- return Owned(castExpr);
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
@@ -4096,8 +4112,12 @@ ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
// If SrcTy is a VectorType, the total size must match to explicitly cast to
// an ExtVectorType.
+ // In OpenCL, casts between vectors of different types are not allowed.
+ // (See OpenCL 6.2).
if (SrcTy->isVectorType()) {
- if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) {
+ if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
+ || (getLangOptions().OpenCL &&
+ (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
<< DestTy << SrcTy << R;
return ExprError();
@@ -4116,7 +4136,7 @@ ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
ExprResult CastExprRes = Owned(CastExpr);
- CastKind CK = PrepareScalarCast(*this, CastExprRes, DestElemTy);
+ CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
if (CastExprRes.isInvalid())
return ExprError();
CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
@@ -4128,11 +4148,11 @@ ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
ExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
- SourceLocation RParenLoc, Expr *castExpr) {
- assert(!D.isInvalidType() && (castExpr != 0) &&
+ SourceLocation RParenLoc, Expr *CastExpr) {
+ assert(!D.isInvalidType() && (CastExpr != 0) &&
"ActOnCastExpr(): missing type or expr");
- TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, castExpr->getType());
+ TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
if (D.isInvalidType())
return ExprError();
@@ -4141,6 +4161,8 @@ Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
CheckExtraCXXDefaultArguments(D);
}
+ checkUnusedDeclAttributes(D);
+
QualType castType = castTInfo->getType();
Ty = CreateParsedType(castType, castTInfo);
@@ -4148,9 +4170,10 @@ Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
// Check for an altivec or OpenCL literal,
// i.e. all the elements are integer constants.
- ParenExpr *PE = dyn_cast<ParenExpr>(castExpr);
- ParenListExpr *PLE = dyn_cast<ParenListExpr>(castExpr);
- if (getLangOptions().AltiVec && castType->isVectorType() && (PE || PLE)) {
+ ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
+ ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
+ if ((getLangOptions().AltiVec || getLangOptions().OpenCL)
+ && castType->isVectorType() && (PE || PLE)) {
if (PLE && PLE->getNumExprs() == 0) {
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
return ExprError();
@@ -4167,37 +4190,18 @@ Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
// then handle it as such.
if (isVectorLiteral)
- return BuildVectorLiteral(LParenLoc, RParenLoc, castExpr, castTInfo);
+ return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
// If the Expr being casted is a ParenListExpr, handle it specially.
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
// sequence of BinOp comma operators.
- if (isa<ParenListExpr>(castExpr)) {
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, castExpr);
+ if (isa<ParenListExpr>(CastExpr)) {
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
if (Result.isInvalid()) return ExprError();
- castExpr = Result.take();
+ CastExpr = Result.take();
}
- return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
-}
-
-ExprResult
-Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
- SourceLocation RParenLoc, Expr *castExpr) {
- CastKind Kind = CK_Invalid;
- ExprValueKind VK = VK_RValue;
- CXXCastPath BasePath;
- ExprResult CastResult =
- CheckCastTypes(LParenLoc, SourceRange(LParenLoc, RParenLoc), Ty->getType(),
- castExpr, Kind, VK, BasePath);
- if (CastResult.isInvalid())
- return ExprError();
- castExpr = CastResult.take();
-
- return Owned(CStyleCastExpr::Create(Context,
- Ty->getType().getNonLValueExprType(Context),
- VK, Kind, castExpr, &BasePath, Ty,
- LParenLoc, RParenLoc));
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
}
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
@@ -4221,7 +4225,7 @@ ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
QualType Ty = TInfo->getType();
assert(Ty->isVectorType() && "Expected vector type");
- llvm::SmallVector<Expr *, 8> initExprs;
+ SmallVector<Expr *, 8> initExprs;
const VectorType *VTy = Ty->getAs<VectorType>();
unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
@@ -4237,7 +4241,7 @@ ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
ExprResult Literal = Owned(exprs[0]);
Literal = ImpCastExprToType(Literal.take(), ElemTy,
- PrepareScalarCast(*this, Literal, ElemTy));
+ PrepareScalarCast(Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
}
else if (numExprs < numElems) {
@@ -4258,7 +4262,7 @@ ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
ExprResult Literal = Owned(exprs[0]);
Literal = ImpCastExprToType(Literal.take(), ElemTy,
- PrepareScalarCast(*this, Literal, ElemTy));
+ PrepareScalarCast(Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
}
@@ -4277,10 +4281,10 @@ ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
/// of comma binary operators.
ExprResult
-Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
- ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
+ ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
if (!E)
- return Owned(expr);
+ return Owned(OrigExpr);
ExprResult Result(E->getExpr(0));
@@ -4294,8 +4298,8 @@ Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
}
ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
- SourceLocation R,
- MultiExprArg Val) {
+ SourceLocation R,
+ MultiExprArg Val) {
unsigned nexprs = Val.size();
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
@@ -4309,18 +4313,19 @@ ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
}
/// \brief Emit a specialized diagnostic when one expression is a null pointer
-/// constant and the other is not a pointer.
-bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
+/// constant and the other is not a pointer. Returns true if a diagnostic is
+/// emitted.
+bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation QuestionLoc) {
- Expr *NullExpr = LHS;
- Expr *NonPointerExpr = RHS;
+ Expr *NullExpr = LHSExpr;
+ Expr *NonPointerExpr = RHSExpr;
Expr::NullPointerConstantKind NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
if (NullKind == Expr::NPCK_NotNull) {
- NullExpr = RHS;
- NonPointerExpr = LHS;
+ NullExpr = RHSExpr;
+ NonPointerExpr = LHSExpr;
NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
@@ -4345,20 +4350,228 @@ bool Sema::DiagnoseConditionalForNull(Expr *LHS, Expr *RHS,
return true;
}
-/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
-/// In that case, lhs = cond.
+/// \brief Return false if the condition expression is valid, true otherwise.
+static bool checkCondition(Sema &S, Expr *Cond) {
+ QualType CondTy = Cond->getType();
+
+ // C99 6.5.15p2
+ if (CondTy->isScalarType()) return false;
+
+ // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
+ if (S.getLangOptions().OpenCL && CondTy->isVectorType())
+ return false;
+
+ // Emit the proper error message.
+ S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ?
+ diag::err_typecheck_cond_expect_scalar :
+ diag::err_typecheck_cond_expect_scalar_or_vector)
+ << CondTy;
+ return true;
+}
+
+/// \brief Return false if the two expressions can be converted to a vector,
+/// true otherwise
+static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ QualType CondTy) {
+ // Both operands should be of scalar type.
+ if (!LHS.get()->getType()->isScalarType()) {
+ S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return true;
+ }
+ if (!RHS.get()->getType()->isScalarType()) {
+ S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
+ << CondTy;
+ return true;
+ }
+
+ // Implicity convert these scalars to the type of the condition.
+ LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
+ RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
+ return false;
+}
+
+/// \brief Handle when one or both operands are void type.
+static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
+ ExprResult &RHS) {
+ Expr *LHSExpr = LHS.get();
+ Expr *RHSExpr = RHS.get();
+
+ if (!LHSExpr->getType()->isVoidType())
+ S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << RHSExpr->getSourceRange();
+ if (!RHSExpr->getType()->isVoidType())
+ S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
+ << LHSExpr->getSourceRange();
+ LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
+ RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
+ return S.Context.VoidTy;
+}
+
+/// \brief Return false if the NullExpr can be promoted to PointerTy,
+/// true otherwise.
+static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
+ QualType PointerTy) {
+ if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
+ !NullExpr.get()->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
+ return false;
+}
+
+/// \brief Checks compatibility between two pointers and return the resulting
+/// type.
+static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (S.Context.hasSameType(LHSTy, RHSTy)) {
+ // Two identical pointers types are always compatible.
+ return LHSTy;
+ }
+
+ QualType lhptee, rhptee;
+
+ // Get the pointee types.
+ if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
+ lhptee = LHSBTy->getPointeeType();
+ rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
+ } else {
+ lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+ }
+
+ if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
+ rhptee.getUnqualifiedType())) {
+ S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+
+ // The pointer types are compatible.
+ // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the *composite*
+ // type.
+ // FIXME: Need to calculate the composite type.
+ // FIXME: Need to add qualifiers
+
+ LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ return LHSTy;
+}
+
+/// \brief Return the resulting type when the operands are both block pointers.
+static QualType checkConditionalBlockPointerCompatibility(Sema &S,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // We have 2 block pointer types.
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return the resulting type when the operands are both pointers.
+static QualType
+checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ // get the pointer types
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
+ return destType;
+ }
+
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// \brief Return false if the first expression is not an integer and the second
+/// expression is not a pointer, true otherwise.
+static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
+ Expr* PointerExpr, SourceLocation Loc,
+ bool IsIntFirstExpr) {
+ if (!PointerExpr->getType()->isPointerType() ||
+ !Int.get()->getType()->isIntegerType())
+ return false;
+
+ Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
+ Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
+
+ S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
+ << Expr1->getType() << Expr2->getType()
+ << Expr1->getSourceRange() << Expr2->getSourceRange();
+ Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
+ CK_IntegralToPointer);
+ return true;
+}
+
+/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, LHS = cond.
/// C99 6.5.15
-QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
- ExprValueKind &VK, ExprObjectKind &OK,
+QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
+ ExprResult &RHS, ExprValueKind &VK,
+ ExprObjectKind &OK,
SourceLocation QuestionLoc) {
- ExprResult lhsResult = CheckPlaceholderExpr(LHS.get());
- if (!lhsResult.isUsable()) return QualType();
- LHS = move(lhsResult);
+ ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
+ if (!LHSResult.isUsable()) return QualType();
+ LHS = move(LHSResult);
- ExprResult rhsResult = CheckPlaceholderExpr(RHS.get());
- if (!rhsResult.isUsable()) return QualType();
- RHS = move(rhsResult);
+ ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
+ if (!RHSResult.isUsable()) return QualType();
+ RHS = move(RHSResult);
// C++ is sufficiently different to merit its own checker.
if (getLangOptions().CPlusPlus)
@@ -4382,23 +4595,8 @@ QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprR
QualType RHSTy = RHS.get()->getType();
// first, check the condition.
- if (!CondTy->isScalarType()) { // C99 6.5.15p2
- // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
- // Throw an error if its not either.
- if (getLangOptions().OpenCL) {
- if (!CondTy->isVectorType()) {
- Diag(Cond.get()->getLocStart(),
- diag::err_typecheck_cond_expect_scalar_or_vector)
- << CondTy;
- return QualType();
- }
- }
- else {
- Diag(Cond.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return QualType();
- }
- }
+ if (checkCondition(*this, Cond.get()))
+ return QualType();
// Now check the two expressions.
if (LHSTy->isVectorType() || RHSTy->isVectorType())
@@ -4407,22 +4605,9 @@ QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprR
// OpenCL: If the condition is a vector, and both operands are scalar,
// attempt to implicity convert them to the vector type to act like the
// built in select.
- if (getLangOptions().OpenCL && CondTy->isVectorType()) {
- // Both operands should be of scalar type.
- if (!LHSTy->isScalarType()) {
- Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return QualType();
- }
- if (!RHSTy->isScalarType()) {
- Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
+ if (getLangOptions().OpenCL && CondTy->isVectorType())
+ if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
return QualType();
- }
- // Implicity convert these scalars to the type of the condition.
- LHS = ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
- RHS = ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
- }
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
@@ -4447,29 +4632,13 @@ QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprR
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
- if (!LHSTy->isVoidType())
- Diag(RHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
- << RHS.get()->getSourceRange();
- if (!RHSTy->isVoidType())
- Diag(LHS.get()->getLocStart(), diag::ext_typecheck_cond_one_void)
- << LHS.get()->getSourceRange();
- LHS = ImpCastExprToType(LHS.take(), Context.VoidTy, CK_ToVoid);
- RHS = ImpCastExprToType(RHS.take(), Context.VoidTy, CK_ToVoid);
- return Context.VoidTy;
+ return checkConditionalVoidType(*this, LHS, RHS);
}
+
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
- if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
- RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- // promote the null to a pointer.
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_NullToPointer);
- return LHSTy;
- }
- if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
- LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_NullToPointer);
- return RHSTy;
- }
+ if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
+ if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
// All objective-c pointer type analysis is done here.
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
@@ -4481,116 +4650,23 @@ QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprR
// Handle block pointer types.
- if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
- if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
- if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
- QualType destType = Context.getPointerType(Context.VoidTy);
- LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
- return destType;
- }
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // We have 2 block pointer types.
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical block pointer types are always compatible.
- return LHSTy;
- }
- // The block pointer types aren't identical, continue checking.
- QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
-
- if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType())) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy = Context.getPointerType(Context.VoidTy);
- LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
- return incompatTy;
- }
- // The block pointer types are compatible.
- LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
- return LHSTy;
- }
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
+ return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
+ QuestionLoc);
// Check constraints for C object pointers types (C99 6.5.15p3,6).
- if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
- // get the "pointed to" types
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
-
- // ignore qualifiers on void (C99 6.5.15p3, clause 6)
- if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
- // Figure out necessary qualifiers (C99 6.5.15p6)
- QualType destPointee
- = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
- // Promote to void*.
- RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
- return destType;
- }
- if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
- QualType destPointee
- = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
- // Promote to void*.
- LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
- return destType;
- }
-
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical pointer types are always compatible.
- return LHSTy;
- }
- if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
- rhptee.getUnqualifiedType())) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy = Context.getPointerType(Context.VoidTy);
- LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
- return incompatTy;
- }
- // The pointer types are compatible.
- // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
- // differently qualified versions of compatible types, the result type is
- // a pointer to an appropriately qualified version of the *composite*
- // type.
- // FIXME: Need to calculate the composite type.
- // FIXME: Need to add qualifiers
- LHS = ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
- return LHSTy;
- }
+ if (LHSTy->isPointerType() && RHSTy->isPointerType())
+ return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
+ QuestionLoc);
// GCC compatibility: soften pointer/integer mismatch. Note that
// null pointers have been filtered out by this point.
- if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_IntegralToPointer);
+ if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/true))
return RHSTy;
- }
- if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
- Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_IntegralToPointer);
+ if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
+ /*isIntFirstExpr=*/false))
return LHSTy;
- }
// Emit a better diagnostic if one of the expressions is a null pointer
// constant and the other is not a pointer type. In this case, the user most
@@ -4600,14 +4676,15 @@ QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprR
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
return QualType();
}
/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
- SourceLocation QuestionLoc) {
+ SourceLocation QuestionLoc) {
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
@@ -4615,34 +4692,34 @@ QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
// to the pseudo-builtin, because that will be implicitly cast back to the
// redefinition type if an attempt is made to access its fields.
if (LHSTy->isObjCClassType() &&
- (Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
return LHSTy;
}
if (RHSTy->isObjCClassType() &&
- (Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
return RHSTy;
}
// And the same for struct objc_object* / id
if (LHSTy->isObjCIdType() &&
- (Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
+ (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
return LHSTy;
}
if (RHSTy->isObjCIdType() &&
- (Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
+ (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
return RHSTy;
}
// And the same for struct objc_selector* / SEL
if (Context.isObjCSelType(LHSTy) &&
- (Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
+ (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
return LHSTy;
}
if (Context.isObjCSelType(RHSTy) &&
- (Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
+ (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
return RHSTy;
}
@@ -4653,8 +4730,8 @@ QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
// Two identical object pointer types are always compatible.
return LHSTy;
}
- const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
@@ -4752,18 +4829,20 @@ static bool IsArithmeticOp(BinaryOperatorKind Opc) {
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
/// expression, either using a built-in or overloaded operator,
-/// and sets *OpCode to the opcode and *RHS to the right-hand side expression.
+/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
+/// expression.
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
- Expr **RHS) {
- E = E->IgnoreParenImpCasts();
+ Expr **RHSExprs) {
+ // Don't strip parenthesis: we should not warn if E is in parenthesis.
+ E = E->IgnoreImpCasts();
E = E->IgnoreConversionOperator();
- E = E->IgnoreParenImpCasts();
+ E = E->IgnoreImpCasts();
// Built-in binary operator.
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
if (IsArithmeticOp(OP->getOpcode())) {
*Opcode = OP->getOpcode();
- *RHS = OP->getRHS();
+ *RHSExprs = OP->getRHS();
return true;
}
}
@@ -4782,7 +4861,7 @@ static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
if (IsArithmeticOp(OpKind)) {
*Opcode = OpKind;
- *RHS = Call->getArg(1);
+ *RHSExprs = Call->getArg(1);
return true;
}
}
@@ -4817,8 +4896,8 @@ static bool ExprLooksBoolean(Expr *E) {
static void DiagnoseConditionalPrecedence(Sema &Self,
SourceLocation OpLoc,
Expr *Condition,
- Expr *LHS,
- Expr *RHS) {
+ Expr *LHSExpr,
+ Expr *RHSExpr) {
BinaryOperatorKind CondOpcode;
Expr *CondRHS;
@@ -4841,7 +4920,7 @@ static void DiagnoseConditionalPrecedence(Sema &Self,
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_conditional_first),
- SourceRange(CondRHS->getLocStart(), RHS->getLocEnd()));
+ SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
@@ -4898,7 +4977,8 @@ ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
return Owned(new (Context)
BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
- RHS.take(), QuestionLoc, ColonLoc, result, VK, OK));
+ RHS.take(), QuestionLoc, ColonLoc, result, VK,
+ OK));
}
// checkPointerTypesForAssignment - This is a very tricky routine (despite
@@ -4907,15 +4987,15 @@ ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
static Sema::AssignConvertType
-checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
- assert(lhsType.isCanonical() && "LHS not canonicalized!");
- assert(rhsType.isCanonical() && "RHS not canonicalized!");
+checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
// get the "pointed to" type (ignoring qualifiers at the top level)
const Type *lhptee, *rhptee;
Qualifiers lhq, rhq;
- llvm::tie(lhptee, lhq) = cast<PointerType>(lhsType)->getPointeeType().split();
- llvm::tie(rhptee, rhq) = cast<PointerType>(rhsType)->getPointeeType().split();
+ llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
+ llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
Sema::AssignConvertType ConvTy = Sema::Compatible;
@@ -5019,6 +5099,9 @@ checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
// General pointer incompatibility takes priority over qualifiers.
return Sema::IncompatiblePointer;
}
+ if (!S.getLangOptions().CPlusPlus &&
+ S.IsNoReturnConversion(ltrans, rtrans, ltrans))
+ return Sema::IncompatiblePointer;
return ConvTy;
}
@@ -5027,16 +5110,16 @@ checkPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
/// are compatible. It is more restrict than comparing two function pointer
// types.
static Sema::AssignConvertType
-checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
- QualType rhsType) {
- assert(lhsType.isCanonical() && "LHS not canonicalized!");
- assert(rhsType.isCanonical() && "RHS not canonicalized!");
+checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = cast<BlockPointerType>(lhsType)->getPointeeType();
- rhptee = cast<BlockPointerType>(rhsType)->getPointeeType();
+ lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
// In C++, the types have to match exactly.
if (S.getLangOptions().CPlusPlus)
@@ -5048,7 +5131,7 @@ checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
- if (!S.Context.typesAreBlockPointerCompatible(lhsType, rhsType))
+ if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
return Sema::IncompatibleBlockPointer;
return ConvTy;
@@ -5057,51 +5140,49 @@ checkBlockPointerTypesForAssignment(Sema &S, QualType lhsType,
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
static Sema::AssignConvertType
-checkObjCPointerTypesForAssignment(Sema &S, QualType lhsType, QualType rhsType) {
- assert(lhsType.isCanonical() && "LHS was not canonicalized!");
- assert(rhsType.isCanonical() && "RHS was not canonicalized!");
+checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS was not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS was not canonicalized!");
- if (lhsType->isObjCBuiltinType()) {
+ if (LHSType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
- if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
- !rhsType->isObjCQualifiedClassType())
+ if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
+ !RHSType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
- if (rhsType->isObjCBuiltinType()) {
- // Class is not compatible with ObjC object pointers.
- if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
- !lhsType->isObjCQualifiedClassType())
+ if (RHSType->isObjCBuiltinType()) {
+ if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
+ !LHSType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
- QualType lhptee =
- lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee =
- rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
return Sema::CompatiblePointerDiscardsQualifiers;
- if (S.Context.typesAreCompatible(lhsType, rhsType))
+ if (S.Context.typesAreCompatible(LHSType, RHSType))
return Sema::Compatible;
- if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
+ if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
return Sema::IncompatibleObjCQualifiedId;
return Sema::IncompatiblePointer;
}
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
- QualType lhsType, QualType rhsType) {
+ QualType LHSType, QualType RHSType) {
// Fake up an opaque expression. We don't actually care about what
// cast operations are required, so if CheckAssignmentConstraints
// adds casts to this they'll be wasted, but fortunately that doesn't
// usually happen on valid code.
- OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
- ExprResult rhsPtr = &rhs;
+ OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
+ ExprResult RHSPtr = &RHSExpr;
CastKind K = CK_Invalid;
- return CheckAssignmentConstraints(lhsType, rhsPtr, K);
+ return CheckAssignmentConstraints(LHSType, RHSPtr, K);
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
@@ -5122,18 +5203,22 @@ Sema::CheckAssignmentConstraints(SourceLocation Loc,
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
-Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
+Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
CastKind &Kind) {
- QualType rhsType = rhs.get()->getType();
- QualType origLhsType = lhsType;
+ QualType RHSType = RHS.get()->getType();
+ QualType OrigLHSType = LHSType;
// Get canonical types. We're not formatting these types, just comparing
// them.
- lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
- rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
+ LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
+ RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
+
+ // We can't do assignment from/to atomics yet.
+ if (LHSType->isAtomicType())
+ return Incompatible;
// Common case: no conversion required.
- if (lhsType == rhsType) {
+ if (LHSType == RHSType) {
Kind = CK_NoOp;
return Compatible;
}
@@ -5143,10 +5228,10 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
- // lhsType so that the resulting expression does not have reference
+ // LHSType so that the resulting expression does not have reference
// type.
- if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
- if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
+ if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
Kind = CK_LValueBitCast;
return Compatible;
}
@@ -5155,16 +5240,16 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
- if (lhsType->isExtVectorType()) {
- if (rhsType->isExtVectorType())
+ if (LHSType->isExtVectorType()) {
+ if (RHSType->isExtVectorType())
return Incompatible;
- if (rhsType->isArithmeticType()) {
+ if (RHSType->isArithmeticType()) {
// CK_VectorSplat does T -> vector T, so first cast to the
// element type.
- QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
- if (elType != rhsType) {
- Kind = PrepareScalarCast(*this, rhs, elType);
- rhs = ImpCastExprToType(rhs.take(), elType, Kind);
+ QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
+ if (elType != RHSType) {
+ Kind = PrepareScalarCast(RHS, elType);
+ RHS = ImpCastExprToType(RHS.take(), elType, Kind);
}
Kind = CK_VectorSplat;
return Compatible;
@@ -5172,11 +5257,11 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Conversions to or from vector type.
- if (lhsType->isVectorType() || rhsType->isVectorType()) {
- if (lhsType->isVectorType() && rhsType->isVectorType()) {
+ if (LHSType->isVectorType() || RHSType->isVectorType()) {
+ if (LHSType->isVectorType() && RHSType->isVectorType()) {
// Allow assignments of an AltiVec vector type to an equivalent GCC
// vector type and vice versa
- if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
+ if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
Kind = CK_BitCast;
return Compatible;
}
@@ -5185,7 +5270,7 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
- (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
+ (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
Kind = CK_BitCast;
return IncompatibleVectors;
}
@@ -5194,38 +5279,39 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Arithmetic conversions.
- if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
- !(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
- Kind = PrepareScalarCast(*this, rhs, lhsType);
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
+ !(getLangOptions().CPlusPlus && LHSType->isEnumeralType())) {
+ Kind = PrepareScalarCast(RHS, LHSType);
return Compatible;
}
// Conversions to normal pointers.
- if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
+ if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
// U* -> T*
- if (isa<PointerType>(rhsType)) {
+ if (isa<PointerType>(RHSType)) {
Kind = CK_BitCast;
- return checkPointerTypesForAssignment(*this, lhsType, rhsType);
+ return checkPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int -> T*
- if (rhsType->isIntegerType()) {
+ if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null?
return IntToPointer;
}
// C pointers are not compatible with ObjC object pointers,
// with two exceptions:
- if (isa<ObjCObjectPointerType>(rhsType)) {
+ if (isa<ObjCObjectPointerType>(RHSType)) {
// - conversions to void*
- if (lhsPointer->getPointeeType()->isVoidType()) {
- Kind = CK_AnyPointerToObjCPointerCast;
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
return Compatible;
}
// - conversions from 'Class' to the redefinition type
- if (rhsType->isObjCClassType() &&
- Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
+ if (RHSType->isObjCClassType() &&
+ Context.hasSameType(LHSType,
+ Context.getObjCClassRedefinitionType())) {
Kind = CK_BitCast;
return Compatible;
}
@@ -5235,8 +5321,8 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// U^ -> void*
- if (rhsType->getAs<BlockPointerType>()) {
- if (lhsPointer->getPointeeType()->isVoidType()) {
+ if (RHSType->getAs<BlockPointerType>()) {
+ if (LHSPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
@@ -5246,27 +5332,27 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Conversions to block pointers.
- if (isa<BlockPointerType>(lhsType)) {
+ if (isa<BlockPointerType>(LHSType)) {
// U^ -> T^
- if (rhsType->isBlockPointerType()) {
- Kind = CK_AnyPointerToBlockPointerCast;
- return checkBlockPointerTypesForAssignment(*this, lhsType, rhsType);
+ if (RHSType->isBlockPointerType()) {
+ Kind = CK_BitCast;
+ return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int or null -> T^
- if (rhsType->isIntegerType()) {
+ if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
}
// id -> T^
- if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
+ if (getLangOptions().ObjC1 && RHSType->isObjCIdType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
// void* -> T^
- if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
+ if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
if (RHSPT->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
@@ -5276,48 +5362,49 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Conversions to Objective-C pointers.
- if (isa<ObjCObjectPointerType>(lhsType)) {
+ if (isa<ObjCObjectPointerType>(LHSType)) {
// A* -> B*
- if (rhsType->isObjCObjectPointerType()) {
+ if (RHSType->isObjCObjectPointerType()) {
Kind = CK_BitCast;
Sema::AssignConvertType result =
- checkObjCPointerTypesForAssignment(*this, lhsType, rhsType);
+ checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
if (getLangOptions().ObjCAutoRefCount &&
result == Compatible &&
- !CheckObjCARCUnavailableWeakConversion(origLhsType, rhsType))
+ !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
result = IncompatibleObjCWeakRef;
return result;
}
// int or null -> A*
- if (rhsType->isIntegerType()) {
+ if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToPointer;
}
// In general, C pointers are not compatible with ObjC object pointers,
// with two exceptions:
- if (isa<PointerType>(rhsType)) {
+ if (isa<PointerType>(RHSType)) {
+ Kind = CK_CPointerToObjCPointerCast;
+
// - conversions from 'void*'
- if (rhsType->isVoidPointerType()) {
- Kind = CK_AnyPointerToObjCPointerCast;
+ if (RHSType->isVoidPointerType()) {
return Compatible;
}
// - conversions to 'Class' from its redefinition type
- if (lhsType->isObjCClassType() &&
- Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
- Kind = CK_BitCast;
+ if (LHSType->isObjCClassType() &&
+ Context.hasSameType(RHSType,
+ Context.getObjCClassRedefinitionType())) {
return Compatible;
}
- Kind = CK_AnyPointerToObjCPointerCast;
return IncompatiblePointer;
}
// T^ -> A*
- if (rhsType->isBlockPointerType()) {
- Kind = CK_AnyPointerToObjCPointerCast;
+ if (RHSType->isBlockPointerType()) {
+ maybeExtendBlockObject(*this, RHS);
+ Kind = CK_BlockPointerToObjCPointerCast;
return Compatible;
}
@@ -5325,15 +5412,15 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Conversions from pointers that are not covered by the above.
- if (isa<PointerType>(rhsType)) {
+ if (isa<PointerType>(RHSType)) {
// T* -> _Bool
- if (lhsType == Context.BoolTy) {
+ if (LHSType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
- if (lhsType->isIntegerType()) {
+ if (LHSType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
@@ -5342,15 +5429,15 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// Conversions from Objective-C pointers that are not covered by the above.
- if (isa<ObjCObjectPointerType>(rhsType)) {
+ if (isa<ObjCObjectPointerType>(RHSType)) {
// T* -> _Bool
- if (lhsType == Context.BoolTy) {
+ if (LHSType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
- if (lhsType->isIntegerType()) {
+ if (LHSType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
@@ -5359,8 +5446,8 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
}
// struct A -> struct B
- if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
- if (Context.typesAreCompatible(lhsType, rhsType)) {
+ if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
+ if (Context.typesAreCompatible(LHSType, RHSType)) {
Kind = CK_NoOp;
return Compatible;
}
@@ -5371,8 +5458,9 @@ Sema::CheckAssignmentConstraints(QualType lhsType, ExprResult &rhs,
/// \brief Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
-static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResult,
- QualType UnionType, FieldDecl *Field) {
+static void ConstructTransparentUnion(Sema &S, ASTContext &C,
+ ExprResult &EResult, QualType UnionType,
+ FieldDecl *Field) {
// Build an initializer list that designates the appropriate member
// of the transparent union.
Expr *E = EResult.take();
@@ -5391,8 +5479,9 @@ static void ConstructTransparentUnion(Sema &S, ASTContext &C, ExprResult &EResul
}
Sema::AssignConvertType
-Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rExpr) {
- QualType FromType = rExpr.get()->getType();
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
+ ExprResult &RHS) {
+ QualType RHSType = RHS.get()->getType();
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
@@ -5411,25 +5500,26 @@ Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rEx
// If the transparent union contains a pointer type, we allow:
// 1) void pointer
// 2) null pointer constant
- if (FromType->isPointerType())
- if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
- rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_BitCast);
+ if (RHSType->isPointerType())
+ if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
+ RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
InitField = *it;
break;
}
- if (rExpr.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- rExpr = ImpCastExprToType(rExpr.take(), it->getType(), CK_NullToPointer);
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.take(), it->getType(),
+ CK_NullToPointer);
InitField = *it;
break;
}
}
CastKind Kind = CK_Invalid;
- if (CheckAssignmentConstraints(it->getType(), rExpr, Kind)
+ if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
== Compatible) {
- rExpr = ImpCastExprToType(rExpr.take(), it->getType(), Kind);
+ RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
InitField = *it;
break;
}
@@ -5438,42 +5528,46 @@ Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &rEx
if (!InitField)
return Incompatible;
- ConstructTransparentUnion(*this, Context, rExpr, ArgType, InitField);
+ ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
return Compatible;
}
Sema::AssignConvertType
-Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
+Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ bool Diagnose) {
if (getLangOptions().CPlusPlus) {
- if (!lhsType->isRecordType()) {
+ if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
- ExprResult Res = PerformImplicitConversion(rExpr.get(),
- lhsType.getUnqualifiedType(),
- AA_Assigning);
+ ExprResult Res = PerformImplicitConversion(RHS.get(),
+ LHSType.getUnqualifiedType(),
+ AA_Assigning, Diagnose);
if (Res.isInvalid())
return Incompatible;
Sema::AssignConvertType result = Compatible;
if (getLangOptions().ObjCAutoRefCount &&
- !CheckObjCARCUnavailableWeakConversion(lhsType, rExpr.get()->getType()))
+ !CheckObjCARCUnavailableWeakConversion(LHSType,
+ RHS.get()->getType()))
result = IncompatibleObjCWeakRef;
- rExpr = move(Res);
+ RHS = move(Res);
return result;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
- }
+ // FIXME: We also fall through for atomics; not sure what should
+ // happen there, though.
+ }
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
- if ((lhsType->isPointerType() ||
- lhsType->isObjCObjectPointerType() ||
- lhsType->isBlockPointerType())
- && rExpr.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- rExpr = ImpCastExprToType(rExpr.take(), lhsType, CK_NullToPointer);
+ if ((LHSType->isPointerType() ||
+ LHSType->isObjCObjectPointerType() ||
+ LHSType->isBlockPointerType())
+ && RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
return Compatible;
}
@@ -5483,15 +5577,15 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
// expressions that suppress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
- if (!lhsType->isReferenceType()) {
- rExpr = DefaultFunctionArrayLvalueConversion(rExpr.take());
- if (rExpr.isInvalid())
+ if (!LHSType->isReferenceType()) {
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
+ if (RHS.isInvalid())
return Incompatible;
}
CastKind Kind = CK_Invalid;
Sema::AssignConvertType result =
- CheckAssignmentConstraints(lhsType, rExpr, Kind);
+ CheckAssignmentConstraints(LHSType, RHS, Kind);
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
@@ -5499,150 +5593,202 @@ Sema::CheckSingleAssignmentConstraints(QualType lhsType, ExprResult &rExpr) {
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
- if (result != Incompatible && rExpr.get()->getType() != lhsType)
- rExpr = ImpCastExprToType(rExpr.take(), lhsType.getNonLValueExprType(Context), Kind);
+ if (result != Incompatible && RHS.get()->getType() != LHSType)
+ RHS = ImpCastExprToType(RHS.take(),
+ LHSType.getNonLValueExprType(Context), Kind);
return result;
}
-QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &lex, ExprResult &rex) {
+QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
Diag(Loc, diag::err_typecheck_invalid_operands)
- << lex.get()->getType() << rex.get()->getType()
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
-QualType Sema::CheckVectorOperands(ExprResult &lex, ExprResult &rex,
- SourceLocation Loc, bool isCompAssign) {
+QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign) {
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
- QualType lhsType =
- Context.getCanonicalType(lex.get()->getType()).getUnqualifiedType();
- QualType rhsType =
- Context.getCanonicalType(rex.get()->getType()).getUnqualifiedType();
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
// If the vector types are identical, return.
- if (lhsType == rhsType)
- return lhsType;
+ if (LHSType == RHSType)
+ return LHSType;
// Handle the case of equivalent AltiVec and GCC vector types
- if (lhsType->isVectorType() && rhsType->isVectorType() &&
- Context.areCompatibleVectorTypes(lhsType, rhsType)) {
- if (lhsType->isExtVectorType()) {
- rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
- return lhsType;
+ if (LHSType->isVectorType() && RHSType->isVectorType() &&
+ Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ if (LHSType->isExtVectorType()) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return LHSType;
}
- if (!isCompAssign)
- lex = ImpCastExprToType(lex.take(), rhsType, CK_BitCast);
- return rhsType;
+ if (!IsCompAssign)
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
+ return RHSType;
}
if (getLangOptions().LaxVectorConversions &&
- Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) {
+ Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a
// bitcast; no bits are changed but the result type is different.
// FIXME: Should we really be allowing this?
- rex = ImpCastExprToType(rex.take(), lhsType, CK_BitCast);
- return lhsType;
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
+ return LHSType;
}
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
// swap back (so that we don't reverse the inputs to a subtract, for instance.
bool swapped = false;
- if (rhsType->isExtVectorType() && !isCompAssign) {
+ if (RHSType->isExtVectorType() && !IsCompAssign) {
swapped = true;
- std::swap(rex, lex);
- std::swap(rhsType, lhsType);
+ std::swap(RHS, LHS);
+ std::swap(RHSType, LHSType);
}
// Handle the case of an ext vector and scalar.
- if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
+ if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
QualType EltTy = LV->getElementType();
- if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
- int order = Context.getIntegerTypeOrder(EltTy, rhsType);
+ if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
+ int order = Context.getIntegerTypeOrder(EltTy, RHSType);
if (order > 0)
- rex = ImpCastExprToType(rex.take(), EltTy, CK_IntegralCast);
+ RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
if (order >= 0) {
- rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
- if (swapped) std::swap(rex, lex);
- return lhsType;
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
+ if (swapped) std::swap(RHS, LHS);
+ return LHSType;
}
}
- if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
- rhsType->isRealFloatingType()) {
- int order = Context.getFloatingTypeOrder(EltTy, rhsType);
+ if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
+ RHSType->isRealFloatingType()) {
+ int order = Context.getFloatingTypeOrder(EltTy, RHSType);
if (order > 0)
- rex = ImpCastExprToType(rex.take(), EltTy, CK_FloatingCast);
+ RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
if (order >= 0) {
- rex = ImpCastExprToType(rex.take(), lhsType, CK_VectorSplat);
- if (swapped) std::swap(rex, lex);
- return lhsType;
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
+ if (swapped) std::swap(RHS, LHS);
+ return LHSType;
}
}
}
// Vectors of different size or scalar and non-ext-vector are errors.
- if (swapped) std::swap(rex, lex);
+ if (swapped) std::swap(RHS, LHS);
Diag(Loc, diag::err_typecheck_vector_not_convertable)
- << lex.get()->getType() << rex.get()->getType()
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
-QualType Sema::CheckMultiplyDivideOperands(
- ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
- return CheckVectorOperands(lex, rex, Loc, isCompAssign);
+// checkArithmeticNull - Detect when a NULL constant is used improperly in an
+// expression. These are mainly cases where the null pointer is used as an
+// integer instead of a pointer.
+static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompare) {
+ // The canonical way to check for a GNU null is with isNullPointerConstant,
+ // but we use a bit of a hack here for speed; this is a relatively
+ // hot path, and isNullPointerConstant is slow.
+ bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
+ bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
+
+ QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
+
+ // Avoid analyzing cases where the result will either be invalid (and
+ // diagnosed as such) or entirely valid and not something to warn about.
+ if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
+ NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
+ return;
+
+ // Comparison operations would not make sense with a null pointer no matter
+ // what the other expression is.
+ if (!IsCompare) {
+ S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
+ << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
+ << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
+ return;
+ }
+
+ // The rest of the operations only make sense with a null pointer
+ // if the other expression is a pointer.
+ if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
+ NonNullType->canDecayToPointerType())
+ return;
+
+ S.Diag(Loc, diag::warn_null_in_comparison_operation)
+ << LHSNull /* LHS is NULL */ << NonNullType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign, bool IsDiv) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
- QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
- if (lex.isInvalid() || rex.isInvalid())
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
- if (!lex.get()->getType()->isArithmeticType() ||
- !rex.get()->getType()->isArithmeticType())
- return InvalidOperands(Loc, lex, rex);
+ if (!LHS.get()->getType()->isArithmeticType() ||
+ !RHS.get()->getType()->isArithmeticType())
+ return InvalidOperands(Loc, LHS, RHS);
// Check for division by zero.
- if (isDiv &&
- rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_division_by_zero)
- << rex.get()->getSourceRange());
+ if (IsDiv &&
+ RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
+ << RHS.get()->getSourceRange());
return compType;
}
QualType Sema::CheckRemainderOperands(
- ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
- if (lex.get()->getType()->hasIntegerRepresentation() &&
- rex.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(lex, rex, Loc, isCompAssign);
- return InvalidOperands(Loc, lex, rex);
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
+ return InvalidOperands(Loc, LHS, RHS);
}
- QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
- if (lex.isInvalid() || rex.isInvalid())
+ QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
+ if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
- if (!lex.get()->getType()->isIntegerType() || !rex.get()->getType()->isIntegerType())
- return InvalidOperands(Loc, lex, rex);
+ if (!LHS.get()->getType()->isIntegerType() ||
+ !RHS.get()->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
// Check for remainder by zero.
- if (rex.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, rex.get(), PDiag(diag::warn_remainder_by_zero)
- << rex.get()->getSourceRange());
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull))
+ DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
+ << RHS.get()->getSourceRange());
return compType;
}
/// \brief Diagnose invalid arithmetic on two void pointers.
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
- Expr *LHS, Expr *RHS) {
+ Expr *LHSExpr, Expr *RHSExpr) {
S.Diag(Loc, S.getLangOptions().CPlusPlus
? diag::err_typecheck_pointer_arith_void_type
: diag::ext_gnu_void_ptr)
- << 1 /* two pointers */ << LHS->getSourceRange() << RHS->getSourceRange();
+ << 1 /* two pointers */ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
}
/// \brief Diagnose invalid arithmetic on a void pointer.
@@ -5682,6 +5828,24 @@ static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
<< Pointer->getSourceRange();
}
+/// \brief Emit error if Operand is incomplete pointer type
+///
+/// \returns True if pointer has incomplete type
+static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ if ((Operand->getType()->isPointerType() &&
+ !Operand->getType()->isDependentType()) ||
+ Operand->getType()->isObjCObjectPointerType()) {
+ QualType PointeeTy = Operand->getType()->getPointeeType();
+ if (S.RequireCompleteType(
+ Loc, PointeeTy,
+ S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
+ << PointeeTy << Operand->getSourceRange()))
+ return true;
+ }
+ return false;
+}
+
/// \brief Check the validity of an arithmetic pointer operand.
///
/// If the operand has pointer type, this code will check for pointer types
@@ -5704,16 +5868,7 @@ static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
return !S.getLangOptions().CPlusPlus;
}
- if ((Operand->getType()->isPointerType() &&
- !Operand->getType()->isDependentType()) ||
- Operand->getType()->isObjCObjectPointerType()) {
- QualType PointeeTy = Operand->getType()->getPointeeType();
- if (S.RequireCompleteType(
- Loc, PointeeTy,
- S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
- << PointeeTy << Operand->getSourceRange()))
- return false;
- }
+ if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
return true;
}
@@ -5728,22 +5883,22 @@ static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
- Expr *LHS, Expr *RHS) {
- bool isLHSPointer = LHS->getType()->isAnyPointerType();
- bool isRHSPointer = RHS->getType()->isAnyPointerType();
+ Expr *LHSExpr, Expr *RHSExpr) {
+ bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
+ bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
if (!isLHSPointer && !isRHSPointer) return true;
QualType LHSPointeeTy, RHSPointeeTy;
- if (isLHSPointer) LHSPointeeTy = LHS->getType()->getPointeeType();
- if (isRHSPointer) RHSPointeeTy = RHS->getType()->getPointeeType();
+ if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
+ if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
// Check for arithmetic on pointers to incomplete types.
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
if (isLHSVoidPtr || isRHSVoidPtr) {
- if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHS);
- else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHS);
- else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHS, RHS);
+ if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
+ else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
+ else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
return !S.getLangOptions().CPlusPlus;
}
@@ -5751,160 +5906,179 @@ static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
if (isLHSFuncPtr || isRHSFuncPtr) {
- if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHS);
- else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, RHS);
- else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS, RHS);
+ if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
+ else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
+ RHSExpr);
+ else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
return !S.getLangOptions().CPlusPlus;
}
- Expr *Operands[] = { LHS, RHS };
- for (unsigned i = 0; i < 2; ++i) {
- Expr *Operand = Operands[i];
- if ((Operand->getType()->isPointerType() &&
- !Operand->getType()->isDependentType()) ||
- Operand->getType()->isObjCObjectPointerType()) {
- QualType PointeeTy = Operand->getType()->getPointeeType();
- if (S.RequireCompleteType(
- Loc, PointeeTy,
- S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
- << PointeeTy << Operand->getSourceRange()))
- return false;
- }
- }
+ if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
+ if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
+
return true;
}
+/// \brief Check bad cases where we step over interface counts.
+static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
+ SourceLocation OpLoc,
+ Expr *Op) {
+ assert(Op->getType()->isAnyPointerType());
+ QualType PointeeTy = Op->getType()->getPointeeType();
+ if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
+ return true;
+
+ S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
+ << PointeeTy << Op->getSourceRange();
+ return false;
+}
+
+/// \brief Emit error when two pointers are incompatible.
+static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ assert(LHSExpr->getType()->isAnyPointerType());
+ assert(RHSExpr->getType()->isAnyPointerType());
+ S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
QualType Sema::CheckAdditionOperands( // C99 6.5.6
- ExprResult &lex, ExprResult &rex, SourceLocation Loc, QualType* CompLHSTy) {
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
- QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
- if (lex.isInvalid() || rex.isInvalid())
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// handle the common case first (both operands are arithmetic).
- if (lex.get()->getType()->isArithmeticType() &&
- rex.get()->getType()->isArithmeticType()) {
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Put any potential pointer into PExp
- Expr* PExp = lex.get(), *IExp = rex.get();
+ Expr* PExp = LHS.get(), *IExp = RHS.get();
if (IExp->getType()->isAnyPointerType())
std::swap(PExp, IExp);
- if (PExp->getType()->isAnyPointerType()) {
- if (IExp->getType()->isIntegerType()) {
- if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
- return QualType();
+ if (!PExp->getType()->isAnyPointerType())
+ return InvalidOperands(Loc, LHS, RHS);
- QualType PointeeTy = PExp->getType()->getPointeeType();
+ if (!IExp->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
- // Diagnose bad cases where we step over interface counts.
- if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(Loc, diag::err_arithmetic_nonfragile_interface)
- << PointeeTy << PExp->getSourceRange();
- return QualType();
- }
+ if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
+ return QualType();
- if (CompLHSTy) {
- QualType LHSTy = Context.isPromotableBitField(lex.get());
- if (LHSTy.isNull()) {
- LHSTy = lex.get()->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- *CompLHSTy = LHSTy;
- }
- return PExp->getType();
+ // Diagnose bad cases where we step over interface counts.
+ if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(PExp, IExp);
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(LHS.get());
+ if (LHSTy.isNull()) {
+ LHSTy = LHS.get()->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
}
+ *CompLHSTy = LHSTy;
}
- return InvalidOperands(Loc, lex, rex);
+ return PExp->getType();
}
// C99 6.5.6
-QualType Sema::CheckSubtractionOperands(ExprResult &lex, ExprResult &rex,
- SourceLocation Loc, QualType* CompLHSTy) {
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(lex, rex, Loc, CompLHSTy);
+QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
- QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
- if (lex.isInvalid() || rex.isInvalid())
+ QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
+ if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
- if (lex.get()->getType()->isArithmeticType() &&
- rex.get()->getType()->isArithmeticType()) {
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Either ptr - int or ptr - ptr.
- if (lex.get()->getType()->isAnyPointerType()) {
- QualType lpointee = lex.get()->getType()->getPointeeType();
+ if (LHS.get()->getType()->isAnyPointerType()) {
+ QualType lpointee = LHS.get()->getType()->getPointeeType();
// Diagnose bad cases where we step over interface counts.
- if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
- Diag(Loc, diag::err_arithmetic_nonfragile_interface)
- << lpointee << lex.get()->getSourceRange();
+ if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
return QualType();
- }
// The result type of a pointer-int computation is the pointer type.
- if (rex.get()->getType()->isIntegerType()) {
- if (!checkArithmeticOpPointerOperand(*this, Loc, lex.get()))
+ if (RHS.get()->getType()->isIntegerType()) {
+ if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
return QualType();
- if (CompLHSTy) *CompLHSTy = lex.get()->getType();
- return lex.get()->getType();
+ Expr *IExpr = RHS.get()->IgnoreParenCasts();
+ UnaryOperator negRex(IExpr, UO_Minus, IExpr->getType(), VK_RValue,
+ OK_Ordinary, IExpr->getExprLoc());
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(LHS.get()->IgnoreParenCasts(), &negRex);
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return LHS.get()->getType();
}
// Handle pointer-pointer subtractions.
- if (const PointerType *RHSPTy = rex.get()->getType()->getAs<PointerType>()) {
+ if (const PointerType *RHSPTy
+ = RHS.get()->getType()->getAs<PointerType>()) {
QualType rpointee = RHSPTy->getPointeeType();
if (getLangOptions().CPlusPlus) {
// Pointee types must be the same: C++ [expr.add]
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
- Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << lex.get()->getType() << rex.get()->getType()
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
- return QualType();
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
}
} else {
// Pointee types must be compatible C99 6.5.6p3
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
- Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << lex.get()->getType() << rex.get()->getType()
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
return QualType();
}
}
if (!checkArithmeticBinOpPointerOperands(*this, Loc,
- lex.get(), rex.get()))
+ LHS.get(), RHS.get()))
return QualType();
- if (CompLHSTy) *CompLHSTy = lex.get()->getType();
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
return Context.getPointerDiffType();
}
}
- return InvalidOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, LHS, RHS);
}
static bool isScopedEnumerationType(QualType T) {
@@ -5913,26 +6087,27 @@ static bool isScopedEnumerationType(QualType T) {
return false;
}
-static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
+static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, unsigned Opc,
- QualType LHSTy) {
+ QualType LHSType) {
llvm::APSInt Right;
// Check right/shifter operand
- if (rex.get()->isValueDependent() || !rex.get()->isIntegerConstantExpr(Right, S.Context))
+ if (RHS.get()->isValueDependent() ||
+ !RHS.get()->isIntegerConstantExpr(Right, S.Context))
return;
if (Right.isNegative()) {
- S.DiagRuntimeBehavior(Loc, rex.get(),
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
S.PDiag(diag::warn_shift_negative)
- << rex.get()->getSourceRange());
+ << RHS.get()->getSourceRange());
return;
}
llvm::APInt LeftBits(Right.getBitWidth(),
- S.Context.getTypeSize(lex.get()->getType()));
+ S.Context.getTypeSize(LHS.get()->getType()));
if (Right.uge(LeftBits)) {
- S.DiagRuntimeBehavior(Loc, rex.get(),
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
S.PDiag(diag::warn_shift_gt_typewidth)
- << rex.get()->getSourceRange());
+ << RHS.get()->getSourceRange());
return;
}
if (Opc != BO_Shl)
@@ -5943,8 +6118,9 @@ static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
// integers have defined behavior modulo one more than the maximum value
// representable in the result type, so never warn for those.
llvm::APSInt Left;
- if (lex.get()->isValueDependent() || !lex.get()->isIntegerConstantExpr(Left, S.Context) ||
- LHSTy->hasUnsignedIntegerRepresentation())
+ if (LHS.get()->isValueDependent() ||
+ !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
+ LHSType->hasUnsignedIntegerRepresentation())
return;
llvm::APInt ResultBits =
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
@@ -5964,57 +6140,62 @@ static void DiagnoseBadShiftValues(Sema& S, ExprResult &lex, ExprResult &rex,
// turned off separately if needed.
if (LeftBits == ResultBits - 1) {
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
- << HexResult.str() << LHSTy
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << HexResult.str() << LHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return;
}
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
- << HexResult.str() << Result.getMinSignedBits() << LHSTy
- << Left.getBitWidth() << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << HexResult.str() << Result.getMinSignedBits() << LHSType
+ << Left.getBitWidth() << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
}
// C99 6.5.7
-QualType Sema::CheckShiftOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
- unsigned Opc, bool isCompAssign) {
+QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned Opc,
+ bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
// C99 6.5.7p2: Each of the operands shall have integer type.
- if (!lex.get()->getType()->hasIntegerRepresentation() ||
- !rex.get()->getType()->hasIntegerRepresentation())
- return InvalidOperands(Loc, lex, rex);
+ if (!LHS.get()->getType()->hasIntegerRepresentation() ||
+ !RHS.get()->getType()->hasIntegerRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
// C++0x: Don't allow scoped enums. FIXME: Use something better than
// hasIntegerRepresentation() above instead of this.
- if (isScopedEnumerationType(lex.get()->getType()) ||
- isScopedEnumerationType(rex.get()->getType())) {
- return InvalidOperands(Loc, lex, rex);
+ if (isScopedEnumerationType(LHS.get()->getType()) ||
+ isScopedEnumerationType(RHS.get()->getType())) {
+ return InvalidOperands(Loc, LHS, RHS);
}
// Vector shifts promote their scalar inputs to vector type.
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
- return CheckVectorOperands(lex, rex, Loc, isCompAssign);
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
// For the LHS, do usual unary conversions, but then reset them away
// if this is a compound assignment.
- ExprResult old_lex = lex;
- lex = UsualUnaryConversions(lex.take());
- if (lex.isInvalid())
+ ExprResult OldLHS = LHS;
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
return QualType();
- QualType LHSTy = lex.get()->getType();
- if (isCompAssign) lex = old_lex;
+ QualType LHSType = LHS.get()->getType();
+ if (IsCompAssign) LHS = OldLHS;
// The RHS is simpler.
- rex = UsualUnaryConversions(rex.take());
- if (rex.isInvalid())
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
return QualType();
// Sanity-check shift operands
- DiagnoseBadShiftValues(*this, lex, rex, Loc, Opc, LHSTy);
+ DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
// "The type of the result is that of the promoted left operand."
- return LHSTy;
+ return LHSType;
}
static bool IsWithinTemplateSpecialization(Decl *D) {
@@ -6027,42 +6208,125 @@ static bool IsWithinTemplateSpecialization(Decl *D) {
return false;
}
+/// If two different enums are compared, raise a warning.
+static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
+ QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
+
+ const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
+ if (!LHSEnumType)
+ return;
+ const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
+ if (!RHSEnumType)
+ return;
+
+ // Ignore anonymous enums.
+ if (!LHSEnumType->getDecl()->getIdentifier())
+ return;
+ if (!RHSEnumType->getDecl()->getIdentifier())
+ return;
+
+ if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
+ return;
+
+ S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
+ << LHSStrippedType << RHSStrippedType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// \brief Diagnose bad pointer comparisons.
+static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
+ : diag::ext_typecheck_comparison_of_distinct_pointers)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// \brief Returns false if the pointers are converted to a composite type,
+/// true otherwise.
+static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS) {
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+
+ // C++ [expr.eq]p2:
+ // In addition, pointers to members can be compared, or a pointer to
+ // member and a null pointer constant. Pointer to member conversions
+ // (4.11) and qualification conversions (4.4) are performed to bring
+ // them to a common type. If one operand is a null pointer constant,
+ // the common type is the type of the other operand. Otherwise, the
+ // common type is a pointer to member type similar (4.4) to the type
+ // of one of the operands, with a cv-qualification signature (4.4)
+ // that is the union of the cv-qualification signatures of the operand
+ // types.
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
+ (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
+
+ bool NonStandardCompositeType = false;
+ bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
+ QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
+ if (T.isNull()) {
+ diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
+ return true;
+ }
+
+ if (NonStandardCompositeType)
+ S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
+ << LHSType << RHSType << T << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+
+ LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
+ return false;
+}
+
+static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
+ : diag::ext_typecheck_comparison_of_fptr_to_void)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
// C99 6.5.8, C++ [expr.rel]
-QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLocation Loc,
- unsigned OpaqueOpc, bool isRelational) {
+QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, unsigned OpaqueOpc,
+ bool IsRelational) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
+
BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
// Handle vector comparisons separately.
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType())
- return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
- QualType lType = lex.get()->getType();
- QualType rType = rex.get()->getType();
-
- Expr *LHSStripped = lex.get()->IgnoreParenImpCasts();
- Expr *RHSStripped = rex.get()->IgnoreParenImpCasts();
- QualType LHSStrippedType = LHSStripped->getType();
- QualType RHSStrippedType = RHSStripped->getType();
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
-
+ Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
+ Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
- // Two different enums will raise a warning when compared.
- if (const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>()) {
- if (const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>()) {
- if (LHSEnumType->getDecl()->getIdentifier() &&
- RHSEnumType->getDecl()->getIdentifier() &&
- !Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
- Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
- << LHSStrippedType << RHSStrippedType
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
- }
- }
- }
+ checkEnumComparison(*this, Loc, LHS, RHS);
- if (!lType->hasFloatingRepresentation() &&
- !(lType->isBlockPointerType() && isRelational) &&
- !lex.get()->getLocStart().isMacroID() &&
- !rex.get()->getLocStart().isMacroID()) {
+ if (!LHSType->hasFloatingRepresentation() &&
+ !(LHSType->isBlockPointerType() && IsRelational) &&
+ !LHS.get()->getLocStart().isMacroID() &&
+ !RHS.get()->getLocStart().isMacroID()) {
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
@@ -6082,7 +6346,7 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
<< (Opc == BO_EQ
|| Opc == BO_LE
|| Opc == BO_GE));
- } else if (lType->isArrayType() && rType->isArrayType() &&
+ } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
!DRL->getDecl()->getType()->isReferenceType() &&
!DRR->getDecl()->getType()->isReferenceType()) {
// what is it always going to eval to?
@@ -6118,13 +6382,13 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
!RHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
- literalString = lex.get();
+ literalString = LHS.get();
literalStringStripped = LHSStripped;
} else if ((isa<StringLiteral>(RHSStripped) ||
isa<ObjCEncodeExpr>(RHSStripped)) &&
!LHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
- literalString = rex.get();
+ literalString = RHS.get();
literalStringStripped = RHSStripped;
}
@@ -6137,7 +6401,7 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
case BO_GE: resultComparison = ") >= 0"; break;
case BO_EQ: resultComparison = ") == 0"; break;
case BO_NE: resultComparison = ") != 0"; break;
- default: assert(false && "Invalid comparison operator");
+ default: llvm_unreachable("Invalid comparison operator");
}
DiagRuntimeBehavior(Loc, 0,
@@ -6148,56 +6412,57 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
}
// C99 6.5.8p3 / C99 6.5.9p4
- if (lex.get()->getType()->isArithmeticType() && rex.get()->getType()->isArithmeticType()) {
- UsualArithmeticConversions(lex, rex);
- if (lex.isInvalid() || rex.isInvalid())
+ if (LHS.get()->getType()->isArithmeticType() &&
+ RHS.get()->getType()->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
}
else {
- lex = UsualUnaryConversions(lex.take());
- if (lex.isInvalid())
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
return QualType();
- rex = UsualUnaryConversions(rex.take());
- if (rex.isInvalid())
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
return QualType();
}
- lType = lex.get()->getType();
- rType = rex.get()->getType();
+ LHSType = LHS.get()->getType();
+ RHSType = RHS.get()->getType();
// The result of comparisons is 'bool' in C++, 'int' in C.
QualType ResultTy = Context.getLogicalOperationType();
- if (isRelational) {
- if (lType->isRealType() && rType->isRealType())
+ if (IsRelational) {
+ if (LHSType->isRealType() && RHSType->isRealType())
return ResultTy;
} else {
// Check for comparisons of floating point operands using != and ==.
- if (lType->hasFloatingRepresentation())
- CheckFloatComparison(Loc, lex.get(), rex.get());
+ if (LHSType->hasFloatingRepresentation())
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
- if (lType->isArithmeticType() && rType->isArithmeticType())
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
return ResultTy;
}
- bool LHSIsNull = lex.get()->isNullPointerConstant(Context,
+ bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
- bool RHSIsNull = rex.get()->isNullPointerConstant(Context,
+ bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
// All of the following pointer-related warnings are GCC extensions, except
// when handling null pointer constants.
- if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
+ if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
QualType LCanPointeeTy =
- Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
+ LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
QualType RCanPointeeTy =
- Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
+ RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
if (getLangOptions().CPlusPlus) {
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
- if (!isRelational &&
+ if (!IsRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
// This is a gcc extension compatibility comparison.
@@ -6205,214 +6470,178 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
// conformance with the C++ standard.
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull) {
- Diag(Loc,
- isSFINAEContext()?
- diag::err_typecheck_comparison_of_fptr_to_void
- : diag::ext_typecheck_comparison_of_fptr_to_void)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ diagnoseFunctionPointerToVoidComparison(
+ *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
if (isSFINAEContext())
return QualType();
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
return ResultTy;
}
}
- // C++ [expr.rel]p2:
- // [...] Pointer conversions (4.10) and qualification
- // conversions (4.4) are performed on pointer operands (or on
- // a pointer operand and a null pointer constant) to bring
- // them to their composite pointer type. [...]
- //
- // C++ [expr.eq]p1 uses the same notion for (in)equality
- // comparisons of pointers.
- bool NonStandardCompositeType = false;
- QualType T = FindCompositePointerType(Loc, lex, rex,
- isSFINAEContext()? 0 : &NonStandardCompositeType);
- if (T.isNull()) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
return QualType();
- } else if (NonStandardCompositeType) {
- Diag(Loc,
- diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
- << lType << rType << T
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
- }
-
- lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
- rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
- return ResultTy;
+ else
+ return ResultTy;
}
// C99 6.5.9p2 and C99 6.5.8p2
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType())) {
// Valid unless a relational comparison of function pointers
- if (isRelational && LCanPointeeTy->isFunctionType()) {
+ if (IsRelational && LCanPointeeTy->isFunctionType()) {
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
}
- } else if (!isRelational &&
+ } else if (!IsRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull) {
- Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
- }
+ && !LHSIsNull && !RHSIsNull)
+ diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
} else {
// Invalid
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
}
if (LCanPointeeTy != RCanPointeeTy) {
if (LHSIsNull && !RHSIsNull)
- lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
else
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
}
return ResultTy;
}
if (getLangOptions().CPlusPlus) {
// Comparison of nullptr_t with itself.
- if (lType->isNullPtrType() && rType->isNullPtrType())
+ if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
return ResultTy;
// Comparison of pointers with null pointer constants and equality
// comparisons of member pointers to null pointer constants.
if (RHSIsNull &&
- ((lType->isAnyPointerType() || lType->isNullPtrType()) ||
- (!isRelational &&
- (lType->isMemberPointerType() || lType->isBlockPointerType())))) {
- rex = ImpCastExprToType(rex.take(), lType,
- lType->isMemberPointerType()
+ ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LHSType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
if (LHSIsNull &&
- ((rType->isAnyPointerType() || rType->isNullPtrType()) ||
- (!isRelational &&
- (rType->isMemberPointerType() || rType->isBlockPointerType())))) {
- lex = ImpCastExprToType(lex.take(), rType,
- rType->isMemberPointerType()
+ ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
+ (!IsRelational &&
+ (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RHSType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
// Comparison of member pointers.
- if (!isRelational &&
- lType->isMemberPointerType() && rType->isMemberPointerType()) {
- // C++ [expr.eq]p2:
- // In addition, pointers to members can be compared, or a pointer to
- // member and a null pointer constant. Pointer to member conversions
- // (4.11) and qualification conversions (4.4) are performed to bring
- // them to a common type. If one operand is a null pointer constant,
- // the common type is the type of the other operand. Otherwise, the
- // common type is a pointer to member type similar (4.4) to the type
- // of one of the operands, with a cv-qualification signature (4.4)
- // that is the union of the cv-qualification signatures of the operand
- // types.
- bool NonStandardCompositeType = false;
- QualType T = FindCompositePointerType(Loc, lex, rex,
- isSFINAEContext()? 0 : &NonStandardCompositeType);
- if (T.isNull()) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (!IsRelational &&
+ LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
return QualType();
- } else if (NonStandardCompositeType) {
- Diag(Loc,
- diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
- << lType << rType << T
- << lex.get()->getSourceRange() << rex.get()->getSourceRange();
- }
-
- lex = ImpCastExprToType(lex.take(), T, CK_BitCast);
- rex = ImpCastExprToType(rex.take(), T, CK_BitCast);
- return ResultTy;
+ else
+ return ResultTy;
}
// Handle scoped enumeration types specifically, since they don't promote
// to integers.
- if (lex.get()->getType()->isEnumeralType() &&
- Context.hasSameUnqualifiedType(lex.get()->getType(), rex.get()->getType()))
+ if (LHS.get()->getType()->isEnumeralType() &&
+ Context.hasSameUnqualifiedType(LHS.get()->getType(),
+ RHS.get()->getType()))
return ResultTy;
}
// Handle block pointer types.
- if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
- QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
- QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
+ if (!IsRelational && LHSType->isBlockPointerType() &&
+ RHSType->isBlockPointerType()) {
+ QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
}
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
return ResultTy;
}
// Allow block pointers to be compared with null pointer constants.
- if (!isRelational
- && ((lType->isBlockPointerType() && rType->isPointerType())
- || (lType->isPointerType() && rType->isBlockPointerType()))) {
+ if (!IsRelational
+ && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
+ || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
if (!LHSIsNull && !RHSIsNull) {
- if (!((rType->isPointerType() && rType->castAs<PointerType>()
+ if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
->getPointeeType()->isVoidType())
- || (lType->isPointerType() && lType->castAs<PointerType>()
+ || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
->getPointeeType()->isVoidType())))
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
}
if (LHSIsNull && !RHSIsNull)
- lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
else
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
return ResultTy;
}
- if (lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType()) {
- const PointerType *LPT = lType->getAs<PointerType>();
- const PointerType *RPT = rType->getAs<PointerType>();
+ if (LHSType->isObjCObjectPointerType() ||
+ RHSType->isObjCObjectPointerType()) {
+ const PointerType *LPT = LHSType->getAs<PointerType>();
+ const PointerType *RPT = RHSType->getAs<PointerType>();
if (LPT || RPT) {
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
- !Context.typesAreCompatible(lType, rType)) {
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ !Context.typesAreCompatible(LHSType, RHSType)) {
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
}
if (LHSIsNull && !RHSIsNull)
- lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
+ RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
else
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
+ LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
return ResultTy;
}
- if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
- if (!Context.areComparableObjCPointerTypes(lType, rType))
- Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ if (LHSType->isObjCObjectPointerType() &&
+ RHSType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
if (LHSIsNull && !RHSIsNull)
- lex = ImpCastExprToType(lex.take(), rType, CK_BitCast);
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
else
- rex = ImpCastExprToType(rex.take(), lType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
return ResultTy;
}
}
- if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
- (lType->isIntegerType() && rType->isAnyPointerType())) {
+ if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
+ (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
unsigned DiagID = 0;
bool isError = false;
- if ((LHSIsNull && lType->isIntegerType()) ||
- (RHSIsNull && rType->isIntegerType())) {
- if (isRelational && !getLangOptions().CPlusPlus)
+ if ((LHSIsNull && LHSType->isIntegerType()) ||
+ (RHSIsNull && RHSType->isIntegerType())) {
+ if (IsRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
- } else if (isRelational && !getLangOptions().CPlusPlus)
+ } else if (IsRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
else if (getLangOptions().CPlusPlus) {
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
@@ -6422,50 +6651,51 @@ QualType Sema::CheckCompareOperands(ExprResult &lex, ExprResult &rex, SourceLoca
if (DiagID) {
Diag(Loc, DiagID)
- << lType << rType << lex.get()->getSourceRange() << rex.get()->getSourceRange();
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
if (isError)
return QualType();
}
- if (lType->isIntegerType())
- lex = ImpCastExprToType(lex.take(), rType,
+ if (LHSType->isIntegerType())
+ LHS = ImpCastExprToType(LHS.take(), RHSType,
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
else
- rex = ImpCastExprToType(rex.take(), lType,
+ RHS = ImpCastExprToType(RHS.take(), LHSType,
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
return ResultTy;
}
// Handle block pointers.
- if (!isRelational && RHSIsNull
- && lType->isBlockPointerType() && rType->isIntegerType()) {
- rex = ImpCastExprToType(rex.take(), lType, CK_NullToPointer);
+ if (!IsRelational && RHSIsNull
+ && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
+ RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
return ResultTy;
}
- if (!isRelational && LHSIsNull
- && lType->isIntegerType() && rType->isBlockPointerType()) {
- lex = ImpCastExprToType(lex.take(), rType, CK_NullToPointer);
+ if (!IsRelational && LHSIsNull
+ && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
+ LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
return ResultTy;
}
- return InvalidOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, LHS, RHS);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
-QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
+QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
- bool isRelational) {
+ bool IsRelational) {
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
- QualType vType = CheckVectorOperands(lex, rex, Loc, /*isCompAssign*/false);
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
if (vType.isNull())
return vType;
- QualType lType = lex.get()->getType();
- QualType rType = rex.get()->getType();
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
// If AltiVec, the comparison results in a numeric type, i.e.
// bool for C++, int for C
@@ -6475,9 +6705,9 @@ QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
- if (!lType->hasFloatingRepresentation()) {
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex.get()->IgnoreParens()))
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex.get()->IgnoreParens()))
+ if (!LHSType->hasFloatingRepresentation()) {
+ if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
+ if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
DiagRuntimeBehavior(Loc, 0,
PDiag(diag::warn_comparison_always)
@@ -6487,18 +6717,18 @@ QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
}
// Check for comparisons of floating point operands using != and ==.
- if (!isRelational && lType->hasFloatingRepresentation()) {
- assert (rType->hasFloatingRepresentation());
- CheckFloatComparison(Loc, lex.get(), rex.get());
+ if (!IsRelational && LHSType->hasFloatingRepresentation()) {
+ assert (RHSType->hasFloatingRepresentation());
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
}
// Return the type for the comparison, which is the same as vector type for
// integer vectors, or an integer type of identical size and number of
// elements for floating point vectors.
- if (lType->hasIntegerRepresentation())
- return lType;
+ if (LHSType->hasIntegerRepresentation())
+ return LHSType;
- const VectorType *VTy = lType->getAs<VectorType>();
+ const VectorType *VTy = LHSType->getAs<VectorType>();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
@@ -6511,36 +6741,41 @@ QualType Sema::CheckVectorCompareOperands(ExprResult &lex, ExprResult &rex,
}
inline QualType Sema::CheckBitwiseOperands(
- ExprResult &lex, ExprResult &rex, SourceLocation Loc, bool isCompAssign) {
- if (lex.get()->getType()->isVectorType() || rex.get()->getType()->isVectorType()) {
- if (lex.get()->getType()->hasIntegerRepresentation() &&
- rex.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(lex, rex, Loc, isCompAssign);
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
- return InvalidOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, LHS, RHS);
}
- ExprResult lexResult = Owned(lex), rexResult = Owned(rex);
- QualType compType = UsualArithmeticConversions(lexResult, rexResult, isCompAssign);
- if (lexResult.isInvalid() || rexResult.isInvalid())
+ ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
+ QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
+ IsCompAssign);
+ if (LHSResult.isInvalid() || RHSResult.isInvalid())
return QualType();
- lex = lexResult.take();
- rex = rexResult.take();
+ LHS = LHSResult.take();
+ RHS = RHSResult.take();
- if (lex.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
- rex.get()->getType()->isIntegralOrUnscopedEnumerationType())
+ if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
+ RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
return compType;
- return InvalidOperands(Loc, lex, rex);
+ return InvalidOperands(Loc, LHS, RHS);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
- ExprResult &lex, ExprResult &rex, SourceLocation Loc, unsigned Opc) {
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
// Diagnose cases where the user write a logical and/or but probably meant a
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
// is a constant.
- if (lex.get()->getType()->isIntegerType() && !lex.get()->getType()->isBooleanType() &&
- rex.get()->getType()->isIntegerType() && !rex.get()->isValueDependent() &&
+ if (LHS.get()->getType()->isIntegerType() &&
+ !LHS.get()->getType()->isBooleanType() &&
+ RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
// Don't warn in macros or template instantiations.
!Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
// If the RHS can be constant folded, and if it constant folds to something
@@ -6548,27 +6783,43 @@ inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
// happened to fold to true/false) then warn.
// Parens on the RHS are ignored.
Expr::EvalResult Result;
- if (rex.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
- if ((getLangOptions().Bool && !rex.get()->getType()->isBooleanType()) ||
+ if (RHS.get()->Evaluate(Result, Context) && !Result.HasSideEffects)
+ if ((getLangOptions().Bool && !RHS.get()->getType()->isBooleanType()) ||
(Result.Val.getInt() != 0 && Result.Val.getInt() != 1)) {
Diag(Loc, diag::warn_logical_instead_of_bitwise)
- << rex.get()->getSourceRange()
- << (Opc == BO_LAnd ? "&&" : "||")
- << (Opc == BO_LAnd ? "&" : "|");
- }
+ << RHS.get()->getSourceRange()
+ << (Opc == BO_LAnd ? "&&" : "||");
+ // Suggest replacing the logical operator with the bitwise version
+ Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
+ << (Opc == BO_LAnd ? "&" : "|")
+ << FixItHint::CreateReplacement(SourceRange(
+ Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
+ getLangOptions())),
+ Opc == BO_LAnd ? "&" : "|");
+ if (Opc == BO_LAnd)
+ // Suggest replacing "Foo() && kNonZero" with "Foo()"
+ Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
+ << FixItHint::CreateRemoval(
+ SourceRange(
+ Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
+ 0, getSourceManager(),
+ getLangOptions()),
+ RHS.get()->getLocEnd()));
+ }
}
if (!Context.getLangOptions().CPlusPlus) {
- lex = UsualUnaryConversions(lex.take());
- if (lex.isInvalid())
+ LHS = UsualUnaryConversions(LHS.take());
+ if (LHS.isInvalid())
return QualType();
- rex = UsualUnaryConversions(rex.take());
- if (rex.isInvalid())
+ RHS = UsualUnaryConversions(RHS.take());
+ if (RHS.isInvalid())
return QualType();
- if (!lex.get()->getType()->isScalarType() || !rex.get()->getType()->isScalarType())
- return InvalidOperands(Loc, lex, rex);
+ if (!LHS.get()->getType()->isScalarType() ||
+ !RHS.get()->getType()->isScalarType())
+ return InvalidOperands(Loc, LHS, RHS);
return Context.IntTy;
}
@@ -6579,15 +6830,15 @@ inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
// C++ [expr.log.and]p1
// C++ [expr.log.or]p1
// The operands are both contextually converted to type bool.
- ExprResult lexRes = PerformContextuallyConvertToBool(lex.get());
- if (lexRes.isInvalid())
- return InvalidOperands(Loc, lex, rex);
- lex = move(lexRes);
+ ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
+ if (LHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ LHS = move(LHSRes);
- ExprResult rexRes = PerformContextuallyConvertToBool(rex.get());
- if (rexRes.isInvalid())
- return InvalidOperands(Loc, lex, rex);
- rex = move(rexRes);
+ ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
+ if (RHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ RHS = move(RHSRes);
// C++ [expr.log.and]p2
// C++ [expr.log.or]p2
@@ -6758,25 +7009,26 @@ static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
// C99 6.5.16.1
-QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
+QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
SourceLocation Loc,
QualType CompoundType) {
// Verify that LHS is a modifiable lvalue, and emit error if not.
- if (CheckForModifiableLvalue(LHS, Loc, *this))
+ if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
return QualType();
- QualType LHSType = LHS->getType();
- QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : CompoundType;
+ QualType LHSType = LHSExpr->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
+ CompoundType;
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
QualType LHSTy(LHSType);
// Simple assignment "x = y".
- if (LHS->getObjectKind() == OK_ObjCProperty) {
- ExprResult LHSResult = Owned(LHS);
+ if (LHSExpr->getObjectKind() == OK_ObjCProperty) {
+ ExprResult LHSResult = Owned(LHSExpr);
ConvertPropertyForLValue(LHSResult, RHS, LHSTy);
if (LHSResult.isInvalid())
return QualType();
- LHS = LHSResult.take();
+ LHSExpr = LHSResult.take();
}
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
if (RHS.isInvalid())
@@ -6806,10 +7058,10 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
UO->getOpcode() == UO_Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
- Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
+ Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
// And there is a space or other character before the subexpr of the
// unary +/-. We don't want to warn on "x=-1".
- Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
+ Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
UO->getSubExpr()->getLocStart().isFileID()) {
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
@@ -6819,9 +7071,9 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
if (ConvTy == Compatible) {
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
- checkRetainCycles(LHS, RHS.get());
+ checkRetainCycles(LHSExpr, RHS.get());
else if (getLangOptions().ObjCAutoRefCount)
- checkUnsafeExprAssigns(Loc, LHS, RHS.get());
+ checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
}
} else {
// Compound assignment "x += y"
@@ -6832,10 +7084,8 @@ QualType Sema::CheckAssignmentOperands(Expr *LHS, ExprResult &RHS,
RHS.get(), AA_Assigning))
return QualType();
- CheckForNullPointerDereference(*this, LHS);
- // Check for trivial buffer overflows.
- CheckArrayAccess(LHS->IgnoreParenCasts());
-
+ CheckForNullPointerDereference(*this, LHSExpr);
+
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
@@ -6872,7 +7122,8 @@ static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
if (RHS.isInvalid())
return QualType();
if (!RHS.get()->getType()->isVoidType())
- S.RequireCompleteType(Loc, RHS.get()->getType(), diag::err_incomplete_type);
+ S.RequireCompleteType(Loc, RHS.get()->getType(),
+ diag::err_incomplete_type);
}
return RHS.get()->getType();
@@ -6883,7 +7134,7 @@ static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
ExprValueKind &VK,
SourceLocation OpLoc,
- bool isInc, bool isPrefix) {
+ bool IsInc, bool IsPrefix) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
@@ -6892,7 +7143,7 @@ static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
- if (!isInc) {
+ if (!IsInc) {
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
@@ -6901,18 +7152,13 @@ static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->isAnyPointerType()) {
- QualType PointeeTy = ResType->getPointeeType();
-
// C99 6.5.2.4p2, 6.5.6p2
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
return QualType();
// Diagnose bad cases where we step over interface counts.
- else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
- S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
- << PointeeTy << Op->getSourceRange();
+ else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
return QualType();
- }
} else if (ResType->isAnyComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
S.Diag(OpLoc, diag::ext_integer_increment_complex)
@@ -6921,12 +7167,12 @@ static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
ExprResult PR = S.CheckPlaceholderExpr(Op);
if (PR.isInvalid()) return QualType();
return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
- isInc, isPrefix);
+ IsInc, IsPrefix);
} else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
} else {
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
- << ResType << int(isInc) << Op->getSourceRange();
+ << ResType << int(IsInc) << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
@@ -6936,7 +7182,7 @@ static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
// In C++, a prefix increment is the same type as the operand. Otherwise
// (in C or with postfix), the increment is the unqualified type of the
// operand.
- if (isPrefix && S.getLangOptions().CPlusPlus) {
+ if (IsPrefix && S.getLangOptions().CPlusPlus) {
VK = VK_LValue;
return ResType;
} else {
@@ -6973,7 +7219,13 @@ ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
<< PRE->getBase()->getType();
}
}
-
+ else {
+ // lvalue-ness of an explicit property is determined by
+ // getter type.
+ QualType ResT = PRE->getGetterResultType();
+ VK = Expr::getValueKindForType(ResT);
+ }
+
E = ImplicitCastExpr::Create(Context, T, CK_GetObjCProperty,
E, 0, VK);
@@ -6984,7 +7236,8 @@ ExprResult Sema::ConvertPropertyForRValue(Expr *E) {
return Owned(E);
}
-void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &LHSTy) {
+void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS,
+ QualType &LHSTy) {
assert(LHS.get()->getValueKind() == VK_LValue &&
LHS.get()->getObjectKind() == OK_ObjCProperty);
const ObjCPropertyRefExpr *PropRef = LHS.get()->getObjCProperty();
@@ -6996,7 +7249,7 @@ void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &
// setter, RHS expression is being passed to the setter argument. So,
// type conversion (and comparison) is RHS to setter's argument type.
if (const ObjCMethodDecl *SetterMD = PropRef->getImplicitPropertySetter()) {
- ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
+ ObjCMethodDecl::param_const_iterator P = SetterMD->param_begin();
LHSTy = (*P)->getType();
Consumed = (getLangOptions().ObjCAutoRefCount &&
(*P)->hasAttr<NSConsumedAttr>());
@@ -7015,7 +7268,7 @@ void Sema::ConvertPropertyForLValue(ExprResult &LHS, ExprResult &RHS, QualType &
const ObjCMethodDecl *setter
= PropRef->getExplicitProperty()->getSetterMethodDecl();
if (setter) {
- ObjCMethodDecl::param_iterator P = setter->param_begin();
+ ObjCMethodDecl::param_const_iterator P = setter->param_begin();
LHSTy = (*P)->getType();
Consumed = (*P)->hasAttr<NSConsumedAttr>();
}
@@ -7092,6 +7345,23 @@ static ValueDecl *getPrimaryDecl(Expr *E) {
}
}
+namespace {
+ enum {
+ AO_Bit_Field = 0,
+ AO_Vector_Element = 1,
+ AO_Property_Expansion = 2,
+ AO_Register_Variable = 3,
+ AO_No_Error = 4
+ };
+}
+/// \brief Diagnose invalid operand for address of operations.
+///
+/// \param Type The type of operand which cannot have its address taken.
+static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
+ Expr *E, unsigned Type) {
+ S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
+}
+
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
@@ -7103,8 +7373,15 @@ static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
SourceLocation OpLoc) {
if (OrigOp->isTypeDependent())
return S.Context.DependentTy;
- if (OrigOp->getType() == S.Context.OverloadTy)
+ if (OrigOp->getType() == S.Context.OverloadTy) {
+ if (!isa<OverloadExpr>(OrigOp->IgnoreParens())) {
+ S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << OrigOp->getSourceRange();
+ return QualType();
+ }
+
return S.Context.OverloadTy;
+ }
if (OrigOp->getType() == S.Context.UnknownAnyTy)
return S.Context.UnknownAnyTy;
if (OrigOp->getType() == S.Context.BoundMemberTy) {
@@ -7131,6 +7408,7 @@ static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
}
ValueDecl *dcl = getPrimaryDecl(op);
Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
+ unsigned AddressOfError = AO_No_Error;
if (lval == Expr::LV_ClassTemporary) {
bool sfinae = S.isSFINAEContext();
@@ -7178,19 +7456,13 @@ static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
}
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
- S.Diag(OpLoc, diag::err_typecheck_address_of)
- << "bit-field" << op->getSourceRange();
- return QualType();
+ AddressOfError = AO_Bit_Field;
} else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
- S.Diag(OpLoc, diag::err_typecheck_address_of)
- << "vector element" << op->getSourceRange();
- return QualType();
+ AddressOfError = AO_Vector_Element;
} else if (op->getObjectKind() == OK_ObjCProperty) {
// cannot take address of a property expression.
- S.Diag(OpLoc, diag::err_typecheck_address_of)
- << "property expression" << op->getSourceRange();
- return QualType();
+ AddressOfError = AO_Property_Expansion;
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
@@ -7199,9 +7471,7 @@ static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
// variable (c++03 7.1.1P3)
if (vd->getStorageClass() == SC_Register &&
!S.getLangOptions().CPlusPlus) {
- S.Diag(OpLoc, diag::err_typecheck_address_of)
- << "register variable" << op->getSourceRange();
- return QualType();
+ AddressOfError = AO_Register_Variable;
}
} else if (isa<FunctionTemplateDecl>(dcl)) {
return S.Context.OverloadTy;
@@ -7225,8 +7495,13 @@ static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
}
}
- } else if (!isa<FunctionDecl>(dcl))
- assert(0 && "Unknown/unexpected decl type");
+ } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
+ llvm_unreachable("Unknown/unexpected decl type");
+ }
+
+ if (AddressOfError != AO_No_Error) {
+ diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
+ return QualType();
}
if (lval == Expr::LV_IncompleteVoidType) {
@@ -7297,7 +7572,7 @@ static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperatorKind Opc;
switch (Kind) {
- default: assert(0 && "Unknown binop!");
+ default: llvm_unreachable("Unknown binop!");
case tok::periodstar: Opc = BO_PtrMemD; break;
case tok::arrowstar: Opc = BO_PtrMemI; break;
case tok::star: Opc = BO_Mul; break;
@@ -7338,7 +7613,7 @@ static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperatorKind Opc;
switch (Kind) {
- default: assert(0 && "Unknown unary op!");
+ default: llvm_unreachable("Unknown unary op!");
case tok::plusplus: Opc = UO_PreInc; break;
case tok::minusminus: Opc = UO_PreDec; break;
case tok::amp: Opc = UO_AddrOf; break;
@@ -7357,35 +7632,35 @@ static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
/// This warning is only emitted for builtin assignment operations. It is also
/// suppressed in the event of macro expansions.
-static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
+static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
SourceLocation OpLoc) {
if (!S.ActiveTemplateInstantiations.empty())
return;
if (OpLoc.isInvalid() || OpLoc.isMacroID())
return;
- lhs = lhs->IgnoreParenImpCasts();
- rhs = rhs->IgnoreParenImpCasts();
- const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
- const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
- if (!LeftDeclRef || !RightDeclRef ||
- LeftDeclRef->getLocation().isMacroID() ||
- RightDeclRef->getLocation().isMacroID())
+ LHSExpr = LHSExpr->IgnoreParenImpCasts();
+ RHSExpr = RHSExpr->IgnoreParenImpCasts();
+ const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
+ const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
+ if (!LHSDeclRef || !RHSDeclRef ||
+ LHSDeclRef->getLocation().isMacroID() ||
+ RHSDeclRef->getLocation().isMacroID())
return;
- const ValueDecl *LeftDecl =
- cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
- const ValueDecl *RightDecl =
- cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
- if (LeftDecl != RightDecl)
+ const ValueDecl *LHSDecl =
+ cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RHSDecl =
+ cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
+ if (LHSDecl != RHSDecl)
return;
- if (LeftDecl->getType().isVolatileQualified())
+ if (LHSDecl->getType().isVolatileQualified())
return;
- if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
+ if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
if (RefTy->getPointeeType().isVolatileQualified())
return;
S.Diag(OpLoc, diag::warn_self_assignment)
- << LeftDeclRef->getType()
- << lhs->getSourceRange() << rhs->getSourceRange();
+ << LHSDeclRef->getType()
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
@@ -7393,8 +7668,8 @@ static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
- Expr *lhsExpr, Expr *rhsExpr) {
- ExprResult lhs = Owned(lhsExpr), rhs = Owned(rhsExpr);
+ Expr *LHSExpr, Expr *RHSExpr) {
+ ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
QualType ResultTy; // Result type of the binary operator.
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
@@ -7410,172 +7685,131 @@ ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
// f<int> == 0; // resolve f<int> blindly
// void (*p)(int); p = f<int>; // resolve f<int> using target
if (Opc != BO_Assign) {
- ExprResult resolvedLHS = CheckPlaceholderExpr(lhs.get());
+ ExprResult resolvedLHS = CheckPlaceholderExpr(LHS.get());
if (!resolvedLHS.isUsable()) return ExprError();
- lhs = move(resolvedLHS);
+ LHS = move(resolvedLHS);
- ExprResult resolvedRHS = CheckPlaceholderExpr(rhs.get());
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHS.get());
if (!resolvedRHS.isUsable()) return ExprError();
- rhs = move(resolvedRHS);
- }
-
- // The canonical way to check for a GNU null is with isNullPointerConstant,
- // but we use a bit of a hack here for speed; this is a relatively
- // hot path, and isNullPointerConstant is slow.
- bool LeftNull = isa<GNUNullExpr>(lhs.get()->IgnoreParenImpCasts());
- bool RightNull = isa<GNUNullExpr>(rhs.get()->IgnoreParenImpCasts());
-
- // Detect when a NULL constant is used improperly in an expression. These
- // are mainly cases where the null pointer is used as an integer instead
- // of a pointer.
- if (LeftNull || RightNull) {
- // Avoid analyzing cases where the result will either be invalid (and
- // diagnosed as such) or entirely valid and not something to warn about.
- QualType LeftType = lhs.get()->getType();
- QualType RightType = rhs.get()->getType();
- if (!LeftType->isBlockPointerType() && !LeftType->isMemberPointerType() &&
- !LeftType->isFunctionType() &&
- !RightType->isBlockPointerType() &&
- !RightType->isMemberPointerType() &&
- !RightType->isFunctionType()) {
- if (Opc == BO_Mul || Opc == BO_Div || Opc == BO_Rem || Opc == BO_Add ||
- Opc == BO_Sub || Opc == BO_Shl || Opc == BO_Shr || Opc == BO_And ||
- Opc == BO_Xor || Opc == BO_Or || Opc == BO_MulAssign ||
- Opc == BO_DivAssign || Opc == BO_AddAssign || Opc == BO_SubAssign ||
- Opc == BO_RemAssign || Opc == BO_ShlAssign || Opc == BO_ShrAssign ||
- Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign) {
- // These are the operations that would not make sense with a null pointer
- // no matter what the other expression is.
- Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
- << (LeftNull ? lhs.get()->getSourceRange() : SourceRange())
- << (RightNull ? rhs.get()->getSourceRange() : SourceRange());
- } else if (Opc == BO_LE || Opc == BO_LT || Opc == BO_GE || Opc == BO_GT ||
- Opc == BO_EQ || Opc == BO_NE) {
- // These are the operations that would not make sense with a null pointer
- // if the other expression the other expression is not a pointer.
- if (LeftNull != RightNull &&
- !LeftType->isAnyPointerType() &&
- !LeftType->canDecayToPointerType() &&
- !RightType->isAnyPointerType() &&
- !RightType->canDecayToPointerType()) {
- Diag(OpLoc, diag::warn_null_in_arithmetic_operation)
- << (LeftNull ? lhs.get()->getSourceRange()
- : rhs.get()->getSourceRange());
- }
- }
- }
+ RHS = move(resolvedRHS);
}
switch (Opc) {
case BO_Assign:
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, QualType());
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
if (getLangOptions().CPlusPlus &&
- lhs.get()->getObjectKind() != OK_ObjCProperty) {
- VK = lhs.get()->getValueKind();
- OK = lhs.get()->getObjectKind();
+ LHS.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = LHS.get()->getValueKind();
+ OK = LHS.get()->getObjectKind();
}
if (!ResultTy.isNull())
- DiagnoseSelfAssignment(*this, lhs.get(), rhs.get(), OpLoc);
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
break;
case BO_PtrMemD:
case BO_PtrMemI:
- ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
+ ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
Opc == BO_PtrMemI);
break;
case BO_Mul:
case BO_Div:
- ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
+ ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
Opc == BO_Div);
break;
case BO_Rem:
- ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
+ ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
break;
case BO_Add:
- ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
+ ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc);
break;
case BO_Sub:
- ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
+ ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
break;
case BO_Shl:
case BO_Shr:
- ResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc);
+ ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_LE:
case BO_LT:
case BO_GE:
case BO_GT:
- ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
break;
case BO_EQ:
case BO_NE:
- ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
break;
case BO_And:
case BO_Xor:
case BO_Or:
- ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
+ ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
break;
case BO_LAnd:
case BO_LOr:
- ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
+ ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_MulAssign:
case BO_DivAssign:
- CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
+ CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
Opc == BO_DivAssign);
CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_RemAssign:
- CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
+ CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_AddAssign:
- CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_SubAssign:
- CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_ShlAssign:
case BO_ShrAssign:
- CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, Opc, true);
+ CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
- CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
+ CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !lhs.isInvalid() && !rhs.isInvalid())
- ResultTy = CheckAssignmentOperands(lhs.get(), rhs, OpLoc, CompResultTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_Comma:
- ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
- if (getLangOptions().CPlusPlus && !rhs.isInvalid()) {
- VK = rhs.get()->getValueKind();
- OK = rhs.get()->getObjectKind();
+ ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
+ if (getLangOptions().CPlusPlus && !RHS.isInvalid()) {
+ VK = RHS.get()->getValueKind();
+ OK = RHS.get()->getObjectKind();
}
break;
}
- if (ResultTy.isNull() || lhs.isInvalid() || rhs.isInvalid())
+ if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
return ExprError();
+
+ // Check for array bounds violations for both sides of the BinaryOperator
+ CheckArrayAccess(LHS.get());
+ CheckArrayAccess(RHS.get());
+
if (CompResultTy.isNull())
- return Owned(new (Context) BinaryOperator(lhs.take(), rhs.take(), Opc,
+ return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
ResultTy, VK, OK, OpLoc));
- if (getLangOptions().CPlusPlus && lhs.get()->getObjectKind() != OK_ObjCProperty) {
+ if (getLangOptions().CPlusPlus && LHS.get()->getObjectKind() !=
+ OK_ObjCProperty) {
VK = VK_LValue;
- OK = lhs.get()->getObjectKind();
+ OK = LHS.get()->getObjectKind();
}
- return Owned(new (Context) CompoundAssignOperator(lhs.take(), rhs.take(), Opc,
+ return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
ResultTy, VK, OK, CompLHSTy,
CompResultTy, OpLoc));
}
@@ -7585,51 +7819,49 @@ ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc,Expr *lhs,Expr *rhs){
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr) {
typedef BinaryOperator BinOp;
- BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
- rhsopc = static_cast<BinOp::Opcode>(-1);
- if (BinOp *BO = dyn_cast<BinOp>(lhs))
- lhsopc = BO->getOpcode();
- if (BinOp *BO = dyn_cast<BinOp>(rhs))
- rhsopc = BO->getOpcode();
+ BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
+ RHSopc = static_cast<BinOp::Opcode>(-1);
+ if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
+ LHSopc = BO->getOpcode();
+ if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
+ RHSopc = BO->getOpcode();
// Subs are not binary operators.
- if (lhsopc == -1 && rhsopc == -1)
+ if (LHSopc == -1 && RHSopc == -1)
return;
// Bitwise operations are sometimes used as eager logical ops.
// Don't diagnose this.
- if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
- (BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
+ if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
+ (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
return;
- if (BinOp::isComparisonOp(lhsopc)) {
- Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
- << SourceRange(lhs->getLocStart(), OpLoc)
- << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc);
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_silence)
- << BinOp::getOpcodeStr(lhsopc),
- lhs->getSourceRange());
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_first)
- << BinOp::getOpcodeStr(Opc),
- SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()));
- } else if (BinOp::isComparisonOp(rhsopc)) {
- Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
- << SourceRange(OpLoc, rhs->getLocEnd())
- << BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc);
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_silence)
- << BinOp::getOpcodeStr(rhsopc),
- rhs->getSourceRange());
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_first)
- << BinOp::getOpcodeStr(Opc),
- SourceRange(lhs->getLocStart(),
- cast<BinOp>(rhs)->getLHS()->getLocStart()));
- }
+ bool isLeftComp = BinOp::isComparisonOp(LHSopc);
+ bool isRightComp = BinOp::isComparisonOp(RHSopc);
+ if (!isLeftComp && !isRightComp) return;
+
+ SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
+ OpLoc)
+ : SourceRange(OpLoc, RHSExpr->getLocEnd());
+ std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
+ : BinOp::getOpcodeStr(RHSopc);
+ SourceRange ParensRange = isLeftComp ?
+ SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
+ RHSExpr->getLocEnd())
+ : SourceRange(LHSExpr->getLocStart(),
+ cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
+
+ Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
+ << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
+ RHSExpr->getSourceRange());
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
+ ParensRange);
}
/// \brief It accepts a '&' expr that is inside a '|' one.
@@ -7676,11 +7908,11 @@ static bool EvaluatesAsFalse(Sema &S, Expr *E) {
/// \brief Look for '&&' in the left hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
- Expr *OrLHS, Expr *OrRHS) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, OrRHS))
+ if (EvaluatesAsFalse(S, RHSExpr))
return;
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getLHS()))
@@ -7698,11 +7930,11 @@ static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
/// \brief Look for '&&' in the right hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
- Expr *OrLHS, Expr *OrRHS) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, OrLHS))
+ if (EvaluatesAsFalse(S, LHSExpr))
return;
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getRHS()))
@@ -7723,52 +7955,54 @@ static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *lhs, Expr *rhs){
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr){
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
if (BinaryOperator::isBitwiseOp(Opc))
- DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
+ DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
// Diagnose "arg1 & arg2 | arg3"
if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, lhs);
- DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, rhs);
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
+ DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
}
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
// We don't warn for 'assert(a || b && "bad")' since this is safe.
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
- DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
}
}
// Binary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
- Expr *lhs, Expr *rhs) {
+ Expr *LHSExpr, Expr *RHSExpr) {
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
- assert((lhs != 0) && "ActOnBinOp(): missing left expression");
- assert((rhs != 0) && "ActOnBinOp(): missing right expression");
+ assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
+ assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
- DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
- return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
+ return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
}
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc,
- Expr *lhs, Expr *rhs) {
+ Expr *LHSExpr, Expr *RHSExpr) {
if (getLangOptions().CPlusPlus) {
bool UseBuiltinOperator;
- if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent()) {
UseBuiltinOperator = false;
- } else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
+ } else if (Opc == BO_Assign &&
+ LHSExpr->getObjectKind() == OK_ObjCProperty) {
UseBuiltinOperator = true;
} else {
- UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
- !rhs->getType()->isOverloadableType();
+ UseBuiltinOperator = !LHSExpr->getType()->isOverloadableType() &&
+ !RHSExpr->getType()->isOverloadableType();
}
if (!UseBuiltinOperator) {
@@ -7780,17 +8014,17 @@ ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
OverloadedOperatorKind OverOp
= BinaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
- Functions);
+ LookupOverloadedOperatorName(OverOp, S, LHSExpr->getType(),
+ RHSExpr->getType(), Functions);
// Build the (potentially-overloaded, potentially-dependent)
// binary operation.
- return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
+ return CreateOverloadedBinOp(OpLoc, Opc, Functions, LHSExpr, RHSExpr);
}
}
// Build a built-in binary operation.
- return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
}
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
@@ -7876,6 +8110,13 @@ ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
Input = DefaultFunctionArrayLvalueConversion(Input.take());
if (Input.isInvalid()) return ExprError();
resultType = Input.get()->getType();
+
+ // Though we still have to promote half FP to float...
+ if (resultType->isHalfType()) {
+ Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
+ resultType = Context.FloatTy;
+ }
+
if (resultType->isDependentType())
break;
if (resultType->isScalarType()) {
@@ -7917,13 +8158,19 @@ ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
if (resultType.isNull() || Input.isInvalid())
return ExprError();
+ // Check for array bounds violations in the operand of the UnaryOperator,
+ // except for the '*' and '&' operators that have to be handled specially
+ // by CheckArrayAccess (as there are special cases like &array[arraysize]
+ // that are explicitly defined as valid by the standard).
+ if (Opc != UO_AddrOf && Opc != UO_Deref)
+ CheckArrayAccess(Input.get());
+
return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
VK, OK, OpLoc));
}
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
- UnaryOperatorKind Opc,
- Expr *Input) {
+ UnaryOperatorKind Opc, Expr *Input) {
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
// Find all of the overloaded operators visible from this
@@ -7962,13 +8209,13 @@ ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
/// ns_returns_retained function) and, if so, rebuild it to hoist the
/// release out of the full-expression. Otherwise, return null.
/// Cannot fail.
-static Expr *maybeRebuildARCConsumingStmt(Stmt *s) {
+static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
// Should always be wrapped with one of these.
- ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(s);
+ ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
if (!cleanups) return 0;
ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
- if (!cast || cast->getCastKind() != CK_ObjCConsumeObject)
+ if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
return 0;
// Splice out the cast. This shouldn't modify any interesting
@@ -8091,8 +8338,8 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
bool DidWarnAboutNonPOD = false;
QualType CurrentType = ArgTy;
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
- llvm::SmallVector<OffsetOfNode, 4> Comps;
- llvm::SmallVector<Expr*, 4> Exprs;
+ SmallVector<OffsetOfNode, 4> Comps;
+ SmallVector<Expr*, 4> Exprs;
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
@@ -8174,7 +8421,7 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
// (If the specified member is a bit-field, the behavior is undefined.)
//
// We diagnose this as an error.
- if (MemberDecl->getBitWidth()) {
+ if (MemberDecl->isBitField()) {
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
<< MemberDecl->getDeclName()
<< SourceRange(BuiltinLoc, RParenLoc);
@@ -8219,13 +8466,13 @@ ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
- ParsedType argty,
+ ParsedType ParsedArgTy,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
- SourceLocation RPLoc) {
+ SourceLocation RParenLoc) {
TypeSourceInfo *ArgTInfo;
- QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
+ QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
if (ArgTy.isNull())
return ExprError();
@@ -8233,7 +8480,7 @@ ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
- RPLoc);
+ RParenLoc);
}
@@ -8279,12 +8526,12 @@ ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
-void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
- PushBlockScope(BlockScope, Block);
+ PushBlockScope(CurScope, Block);
CurContext->addDecl(Block);
- if (BlockScope)
- PushDeclContext(BlockScope, Block);
+ if (CurScope)
+ PushDeclContext(CurScope, Block);
else
CurContext = Block;
}
@@ -8351,7 +8598,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
CurBlock->ReturnType = RetTy;
// Push block parameters from the declarator if we had them.
- llvm::SmallVector<ParmVarDecl*, 8> Params;
+ SmallVector<ParmVarDecl*, 8> Params;
if (ExplicitSignature) {
for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
ParmVarDecl *Param = ExplicitSignature.getArg(I);
@@ -8378,7 +8625,7 @@ void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
// Set the parameters on the block decl.
if (!Params.empty()) {
- CurBlock->TheDecl->setParams(Params.data(), Params.size());
+ CurBlock->TheDecl->setParams(Params);
CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
CurBlock->TheDecl->param_end(),
/*CheckParameterNames=*/false);
@@ -8500,6 +8747,8 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
getCurFunction()->setHasBranchProtectedScope();
}
+ computeNRVO(Body, getCurBlock());
+
BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
PopFunctionOrBlockScope(&WP, Result->getBlockDecl(), Result);
@@ -8508,11 +8757,11 @@ ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
}
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
- Expr *expr, ParsedType type,
+ Expr *E, ParsedType Ty,
SourceLocation RPLoc) {
TypeSourceInfo *TInfo;
- GetTypeFromParser(type, &TInfo);
- return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
+ GetTypeFromParser(Ty, &TInfo);
+ return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
}
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
@@ -8559,11 +8808,14 @@ ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
<< TInfo->getTypeLoc().getSourceRange()))
return ExprError();
- if (!TInfo->getType().isPODType(Context))
+ if (!TInfo->getType().isPODType(Context)) {
Diag(TInfo->getTypeLoc().getBeginLoc(),
- diag::warn_second_parameter_to_va_arg_not_pod)
+ TInfo->getType()->isObjCLifetimeType()
+ ? diag::warn_second_parameter_to_va_arg_ownership_qualified
+ : diag::warn_second_parameter_to_va_arg_not_pod)
<< TInfo->getType()
<< TInfo->getTypeLoc().getSourceRange();
+ }
// Check for va_arg where arguments of the given type will be promoted
// (i.e. this va_arg is guaranteed to have undefined behavior).
@@ -8591,16 +8843,15 @@ ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
- unsigned pw = Context.Target.getPointerWidth(0);
- if (pw == Context.Target.getIntWidth())
+ unsigned pw = Context.getTargetInfo().getPointerWidth(0);
+ if (pw == Context.getTargetInfo().getIntWidth())
Ty = Context.IntTy;
- else if (pw == Context.Target.getLongWidth())
+ else if (pw == Context.getTargetInfo().getLongWidth())
Ty = Context.LongTy;
- else if (pw == Context.Target.getLongLongWidth())
+ else if (pw == Context.getTargetInfo().getLongLongWidth())
Ty = Context.LongLongTy;
else {
- assert(!"I don't know size of pointer!");
- Ty = Context.IntTy;
+ llvm_unreachable("I don't know size of pointer!");
}
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
@@ -8625,7 +8876,7 @@ static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
// Strip off any parens and casts.
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
- if (!SL || SL->isWide())
+ if (!SL || !SL->isAscii())
return;
Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
@@ -8644,21 +8895,31 @@ bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
bool isInvalid = false;
unsigned DiagKind;
FixItHint Hint;
+ ConversionFixItGenerator ConvHints;
+ bool MayHaveConvFixit = false;
switch (ConvTy) {
- default: assert(0 && "Unknown conversion type");
+ default: llvm_unreachable("Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
break;
case IncompatiblePointer:
MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
CheckInferredResultType = DstType->isObjCObjectPointerType() &&
SrcType->isObjCObjectPointerType();
+ if (Hint.isNull() && !CheckInferredResultType) {
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ }
+ MayHaveConvFixit = true;
break;
case IncompatiblePointerSign:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
@@ -8722,6 +8983,8 @@ bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
isInvalid = true;
break;
}
@@ -8746,8 +9009,23 @@ bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
break;
}
- Diag(Loc, DiagKind) << FirstType << SecondType << Action
- << SrcExpr->getSourceRange() << Hint;
+ PartialDiagnostic FDiag = PDiag(DiagKind);
+ FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
+
+ // If we can fix the conversion, suggest the FixIts.
+ assert(ConvHints.isNull() || Hint.isNull());
+ if (!ConvHints.isNull()) {
+ for (llvm::SmallVector<FixItHint, 1>::iterator
+ HI = ConvHints.Hints.begin(), HE = ConvHints.Hints.end();
+ HI != HE; ++HI)
+ FDiag << *HI;
+ } else {
+ FDiag << Hint;
+ }
+ if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
+
+ Diag(Loc, FDiag);
+
if (CheckInferredResultType)
EmitRelatedResultTypeNote(SrcExpr);
@@ -8786,7 +9064,7 @@ bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
if (EvalResult.Diag &&
Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
- != Diagnostic::Ignored)
+ != DiagnosticsEngine::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
if (Result)
@@ -8803,8 +9081,7 @@ Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
ExprNeedsCleanups = false;
}
-void
-Sema::PopExpressionEvaluationContext() {
+void Sema::PopExpressionEvaluationContext() {
// Pop the current expression evaluation context off the stack.
ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
ExprEvalContexts.pop_back();
@@ -8874,10 +9151,10 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
if (D->isUsed(false))
return;
- // Mark a parameter or variable declaration "used", regardless of whether we're in a
- // template or not. The reason for this is that unevaluated expressions
- // (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
- // -Wunused-parameters)
+ // Mark a parameter or variable declaration "used", regardless of whether
+ // we're in a template or not. The reason for this is that unevaluated
+ // expressions (e.g. (void)sizeof()) constitute a use for warning purposes
+ // (-Wunused-variables and -Wunused-parameters)
if (isa<ParmVarDecl>(D) ||
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
D->setUsed();
@@ -8917,15 +9194,19 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
// Note that this declaration has been used.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
- if (Constructor->isDefaulted() && Constructor->isDefaultConstructor()) {
- if (Constructor->isTrivial())
- return;
- if (!Constructor->isUsed(false))
- DefineImplicitDefaultConstructor(Loc, Constructor);
- } else if (Constructor->isDefaulted() &&
- Constructor->isCopyConstructor()) {
- if (!Constructor->isUsed(false))
- DefineImplicitCopyConstructor(Loc, Constructor);
+ if (Constructor->isDefaulted()) {
+ if (Constructor->isDefaultConstructor()) {
+ if (Constructor->isTrivial())
+ return;
+ if (!Constructor->isUsed(false))
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isCopyConstructor()) {
+ if (!Constructor->isUsed(false))
+ DefineImplicitCopyConstructor(Loc, Constructor);
+ } else if (Constructor->isMoveConstructor()) {
+ if (!Constructor->isUsed(false))
+ DefineImplicitMoveConstructor(Loc, Constructor);
+ }
}
MarkVTableUsed(Loc, Constructor->getParent());
@@ -8937,8 +9218,12 @@ void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
if (MethodDecl->isDefaulted() && MethodDecl->isOverloadedOperator() &&
MethodDecl->getOverloadedOperator() == OO_Equal) {
- if (!MethodDecl->isUsed(false))
- DefineImplicitCopyAssignment(Loc, MethodDecl);
+ if (!MethodDecl->isUsed(false)) {
+ if (MethodDecl->isCopyAssignmentOperator())
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ else
+ DefineImplicitMoveAssignment(Loc, MethodDecl);
+ }
} else if (MethodDecl->isVirtual())
MarkVTableUsed(Loc, MethodDecl->getParent());
}
@@ -9147,7 +9432,7 @@ void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
-bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD) {
switch (ExprEvalContexts.back().Context) {
case Unevaluated:
@@ -9156,9 +9441,9 @@ bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *stmt,
case PotentiallyEvaluated:
case PotentiallyEvaluatedIfUsed:
- if (stmt && getCurFunctionOrMethodDecl()) {
+ if (Statement && getCurFunctionOrMethodDecl()) {
FunctionScopes.back()->PossiblyUnreachableDiags.
- push_back(sema::PossiblyUnreachableDiag(PD, Loc, stmt));
+ push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
}
else
Diag(Loc, PD);
@@ -9203,8 +9488,7 @@ void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
unsigned diagnostic = diag::warn_condition_is_assignment;
bool IsOrAssign = false;
- if (isa<BinaryOperator>(E)) {
- BinaryOperator *Op = cast<BinaryOperator>(E);
+ if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
return;
@@ -9225,8 +9509,7 @@ void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
}
Loc = Op->getOperatorLoc();
- } else if (isa<CXXOperatorCallExpr>(E)) {
- CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
+ } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
return;
@@ -9255,16 +9538,16 @@ void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
/// \brief Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
-void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
// Don't warn if the parens came from a macro.
- SourceLocation parenLoc = parenE->getLocStart();
+ SourceLocation parenLoc = ParenE->getLocStart();
if (parenLoc.isInvalid() || parenLoc.isMacroID())
return;
// Don't warn for dependent expressions.
- if (parenE->isTypeDependent())
+ if (ParenE->isTypeDependent())
return;
- Expr *E = parenE->IgnoreParens();
+ Expr *E = ParenE->IgnoreParens();
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
if (opE->getOpcode() == BO_EQ &&
@@ -9274,8 +9557,8 @@ void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *parenE) {
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
Diag(Loc, diag::note_equality_comparison_silence)
- << FixItHint::CreateRemoval(parenE->getSourceRange().getBegin())
- << FixItHint::CreateRemoval(parenE->getSourceRange().getEnd());
+ << FixItHint::CreateRemoval(ParenE->getSourceRange().getBegin())
+ << FixItHint::CreateRemoval(ParenE->getSourceRange().getEnd());
Diag(Loc, diag::note_equality_comparison_to_assign)
<< FixItHint::CreateReplacement(Loc, "=");
}
@@ -9311,11 +9594,11 @@ ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
}
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
- Expr *Sub) {
- if (!Sub)
+ Expr *SubExpr) {
+ if (!SubExpr)
return ExprError();
- return CheckBooleanCondition(Sub, Loc);
+ return CheckBooleanCondition(SubExpr, Loc);
}
namespace {
@@ -9333,76 +9616,76 @@ namespace {
return ExprError();
}
- ExprResult VisitExpr(Expr *expr) {
- S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_call)
- << expr->getSourceRange();
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
+ << E->getSourceRange();
return ExprError();
}
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *expr) {
- ExprResult subResult = Visit(expr->getSubExpr());
- if (subResult.isInvalid()) return ExprError();
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
- Expr *subExpr = subResult.take();
- expr->setSubExpr(subExpr);
- expr->setType(subExpr->getType());
- expr->setValueKind(subExpr->getValueKind());
- assert(expr->getObjectKind() == OK_Ordinary);
- return expr;
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
}
- ExprResult VisitParenExpr(ParenExpr *paren) {
- return rebuildSugarExpr(paren);
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
}
- ExprResult VisitUnaryExtension(UnaryOperator *op) {
- return rebuildSugarExpr(op);
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
}
- ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
- ExprResult subResult = Visit(op->getSubExpr());
- if (subResult.isInvalid()) return ExprError();
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
- Expr *subExpr = subResult.take();
- op->setSubExpr(subExpr);
- op->setType(S.Context.getPointerType(subExpr->getType()));
- assert(op->getValueKind() == VK_RValue);
- assert(op->getObjectKind() == OK_Ordinary);
- return op;
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(S.Context.getPointerType(SubExpr->getType()));
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
}
- ExprResult resolveDecl(Expr *expr, ValueDecl *decl) {
- if (!isa<FunctionDecl>(decl)) return VisitExpr(expr);
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
+ if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
- expr->setType(decl->getType());
+ E->setType(VD->getType());
- assert(expr->getValueKind() == VK_RValue);
+ assert(E->getValueKind() == VK_RValue);
if (S.getLangOptions().CPlusPlus &&
- !(isa<CXXMethodDecl>(decl) &&
- cast<CXXMethodDecl>(decl)->isInstance()))
- expr->setValueKind(VK_LValue);
+ !(isa<CXXMethodDecl>(VD) &&
+ cast<CXXMethodDecl>(VD)->isInstance()))
+ E->setValueKind(VK_LValue);
- return expr;
+ return E;
}
- ExprResult VisitMemberExpr(MemberExpr *mem) {
- return resolveDecl(mem, mem->getMemberDecl());
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
}
- ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
- return resolveDecl(ref, ref->getDecl());
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
}
};
}
/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
-static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn) {
- ExprResult result = RebuildUnknownAnyFunction(S).Visit(fn);
- if (result.isInvalid()) return ExprError();
- return S.DefaultFunctionArrayConversion(result.take());
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
+ ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
+ if (Result.isInvalid()) return ExprError();
+ return S.DefaultFunctionArrayConversion(Result.take());
}
namespace {
@@ -9418,80 +9701,80 @@ namespace {
/// The current destination type.
QualType DestType;
- RebuildUnknownAnyExpr(Sema &S, QualType castType)
- : S(S), DestType(castType) {}
+ RebuildUnknownAnyExpr(Sema &S, QualType CastType)
+ : S(S), DestType(CastType) {}
ExprResult VisitStmt(Stmt *S) {
llvm_unreachable("unexpected statement!");
return ExprError();
}
- ExprResult VisitExpr(Expr *expr) {
- S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << expr->getSourceRange();
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
return ExprError();
}
- ExprResult VisitCallExpr(CallExpr *call);
- ExprResult VisitObjCMessageExpr(ObjCMessageExpr *message);
+ ExprResult VisitCallExpr(CallExpr *E);
+ ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *expr) {
- ExprResult subResult = Visit(expr->getSubExpr());
- if (subResult.isInvalid()) return ExprError();
- Expr *subExpr = subResult.take();
- expr->setSubExpr(subExpr);
- expr->setType(subExpr->getType());
- expr->setValueKind(subExpr->getValueKind());
- assert(expr->getObjectKind() == OK_Ordinary);
- return expr;
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ Expr *SubExpr = SubResult.take();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
}
- ExprResult VisitParenExpr(ParenExpr *paren) {
- return rebuildSugarExpr(paren);
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
}
- ExprResult VisitUnaryExtension(UnaryOperator *op) {
- return rebuildSugarExpr(op);
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
}
- ExprResult VisitUnaryAddrOf(UnaryOperator *op) {
- const PointerType *ptr = DestType->getAs<PointerType>();
- if (!ptr) {
- S.Diag(op->getOperatorLoc(), diag::err_unknown_any_addrof)
- << op->getSourceRange();
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ const PointerType *Ptr = DestType->getAs<PointerType>();
+ if (!Ptr) {
+ S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
+ << E->getSourceRange();
return ExprError();
}
- assert(op->getValueKind() == VK_RValue);
- assert(op->getObjectKind() == OK_Ordinary);
- op->setType(DestType);
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
+ E->setType(DestType);
// Build the sub-expression as if it were an object of the pointee type.
- DestType = ptr->getPointeeType();
- ExprResult subResult = Visit(op->getSubExpr());
- if (subResult.isInvalid()) return ExprError();
- op->setSubExpr(subResult.take());
- return op;
+ DestType = Ptr->getPointeeType();
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ E->setSubExpr(SubResult.take());
+ return E;
}
- ExprResult VisitImplicitCastExpr(ImplicitCastExpr *ice);
+ ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
- ExprResult resolveDecl(Expr *expr, ValueDecl *decl);
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD);
- ExprResult VisitMemberExpr(MemberExpr *mem) {
- return resolveDecl(mem, mem->getMemberDecl());
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
}
- ExprResult VisitDeclRefExpr(DeclRefExpr *ref) {
- return resolveDecl(ref, ref->getDecl());
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
}
};
}
/// Rebuilds a call expression which yielded __unknown_anytype.
-ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
- Expr *callee = call->getCallee();
+ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
+ Expr *CalleeExpr = E->getCallee();
enum FnKind {
FK_MemberFunction,
@@ -9499,49 +9782,49 @@ ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
FK_BlockPointer
};
- FnKind kind;
- QualType type = callee->getType();
- if (type == S.Context.BoundMemberTy) {
- assert(isa<CXXMemberCallExpr>(call) || isa<CXXOperatorCallExpr>(call));
- kind = FK_MemberFunction;
- type = Expr::findBoundMemberType(callee);
- } else if (const PointerType *ptr = type->getAs<PointerType>()) {
- type = ptr->getPointeeType();
- kind = FK_FunctionPointer;
+ FnKind Kind;
+ QualType CalleeType = CalleeExpr->getType();
+ if (CalleeType == S.Context.BoundMemberTy) {
+ assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
+ Kind = FK_MemberFunction;
+ CalleeType = Expr::findBoundMemberType(CalleeExpr);
+ } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
+ CalleeType = Ptr->getPointeeType();
+ Kind = FK_FunctionPointer;
} else {
- type = type->castAs<BlockPointerType>()->getPointeeType();
- kind = FK_BlockPointer;
+ CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
+ Kind = FK_BlockPointer;
}
- const FunctionType *fnType = type->castAs<FunctionType>();
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
// Verify that this is a legal result type of a function.
if (DestType->isArrayType() || DestType->isFunctionType()) {
unsigned diagID = diag::err_func_returning_array_function;
- if (kind == FK_BlockPointer)
+ if (Kind == FK_BlockPointer)
diagID = diag::err_block_returning_array_function;
- S.Diag(call->getExprLoc(), diagID)
+ S.Diag(E->getExprLoc(), diagID)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Otherwise, go ahead and set DestType as the call's result.
- call->setType(DestType.getNonLValueExprType(S.Context));
- call->setValueKind(Expr::getValueKindForType(DestType));
- assert(call->getObjectKind() == OK_Ordinary);
+ E->setType(DestType.getNonLValueExprType(S.Context));
+ E->setValueKind(Expr::getValueKindForType(DestType));
+ assert(E->getObjectKind() == OK_Ordinary);
// Rebuild the function type, replacing the result type with DestType.
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType))
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
DestType = S.Context.getFunctionType(DestType,
- proto->arg_type_begin(),
- proto->getNumArgs(),
- proto->getExtProtoInfo());
+ Proto->arg_type_begin(),
+ Proto->getNumArgs(),
+ Proto->getExtProtoInfo());
else
DestType = S.Context.getFunctionNoProtoType(DestType,
- fnType->getExtInfo());
+ FnType->getExtInfo());
// Rebuild the appropriate pointer-to-function type.
- switch (kind) {
+ switch (Kind) {
case FK_MemberFunction:
// Nothing to do.
break;
@@ -9556,121 +9839,131 @@ ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *call) {
}
// Finally, we can recurse.
- ExprResult calleeResult = Visit(callee);
- if (!calleeResult.isUsable()) return ExprError();
- call->setCallee(calleeResult.take());
+ ExprResult CalleeResult = Visit(CalleeExpr);
+ if (!CalleeResult.isUsable()) return ExprError();
+ E->setCallee(CalleeResult.take());
// Bind a temporary if necessary.
- return S.MaybeBindToTemporary(call);
+ return S.MaybeBindToTemporary(E);
}
-ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *msg) {
+ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
// Verify that this is a legal result type of a call.
if (DestType->isArrayType() || DestType->isFunctionType()) {
- S.Diag(msg->getExprLoc(), diag::err_func_returning_array_function)
+ S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Rewrite the method result type if available.
- if (ObjCMethodDecl *method = msg->getMethodDecl()) {
- assert(method->getResultType() == S.Context.UnknownAnyTy);
- method->setResultType(DestType);
+ if (ObjCMethodDecl *Method = E->getMethodDecl()) {
+ assert(Method->getResultType() == S.Context.UnknownAnyTy);
+ Method->setResultType(DestType);
}
// Change the type of the message.
- msg->setType(DestType.getNonReferenceType());
- msg->setValueKind(Expr::getValueKindForType(DestType));
+ E->setType(DestType.getNonReferenceType());
+ E->setValueKind(Expr::getValueKindForType(DestType));
- return S.MaybeBindToTemporary(msg);
+ return S.MaybeBindToTemporary(E);
}
-ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *ice) {
+ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
// The only case we should ever see here is a function-to-pointer decay.
- assert(ice->getCastKind() == CK_FunctionToPointerDecay);
- assert(ice->getValueKind() == VK_RValue);
- assert(ice->getObjectKind() == OK_Ordinary);
+ assert(E->getCastKind() == CK_FunctionToPointerDecay);
+ assert(E->getValueKind() == VK_RValue);
+ assert(E->getObjectKind() == OK_Ordinary);
- ice->setType(DestType);
+ E->setType(DestType);
// Rebuild the sub-expression as the pointee (function) type.
DestType = DestType->castAs<PointerType>()->getPointeeType();
- ExprResult result = Visit(ice->getSubExpr());
- if (!result.isUsable()) return ExprError();
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
- ice->setSubExpr(result.take());
- return S.Owned(ice);
+ E->setSubExpr(Result.take());
+ return S.Owned(E);
}
-ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *expr, ValueDecl *decl) {
- ExprValueKind valueKind = VK_LValue;
- QualType type = DestType;
+ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
+ ExprValueKind ValueKind = VK_LValue;
+ QualType Type = DestType;
// We know how to make this work for certain kinds of decls:
// - functions
- if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
- // This is true because FunctionDecls must always have function
- // type, so we can't be resolving the entire thing at once.
- assert(type->isFunctionType());
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
+ if (const PointerType *Ptr = Type->getAs<PointerType>()) {
+ DestType = Ptr->getPointeeType();
+ ExprResult Result = resolveDecl(E, VD);
+ if (Result.isInvalid()) return ExprError();
+ return S.ImpCastExprToType(Result.take(), Type,
+ CK_FunctionToPointerDecay, VK_RValue);
+ }
+
+ if (!Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
- if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(fn))
- if (method->isInstance()) {
- valueKind = VK_RValue;
- type = S.Context.BoundMemberTy;
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance()) {
+ ValueKind = VK_RValue;
+ Type = S.Context.BoundMemberTy;
}
// Function references aren't l-values in C.
if (!S.getLangOptions().CPlusPlus)
- valueKind = VK_RValue;
+ ValueKind = VK_RValue;
// - variables
- } else if (isa<VarDecl>(decl)) {
- if (const ReferenceType *refTy = type->getAs<ReferenceType>()) {
- type = refTy->getPointeeType();
- } else if (type->isFunctionType()) {
- S.Diag(expr->getExprLoc(), diag::err_unknown_any_var_function_type)
- << decl << expr->getSourceRange();
+ } else if (isa<VarDecl>(VD)) {
+ if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
+ Type = RefTy->getPointeeType();
+ } else if (Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
+ << VD << E->getSourceRange();
return ExprError();
}
// - nothing else
} else {
- S.Diag(expr->getExprLoc(), diag::err_unsupported_unknown_any_decl)
- << decl << expr->getSourceRange();
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
+ << VD << E->getSourceRange();
return ExprError();
}
- decl->setType(DestType);
- expr->setType(type);
- expr->setValueKind(valueKind);
- return S.Owned(expr);
+ VD->setType(DestType);
+ E->setType(Type);
+ E->setValueKind(ValueKind);
+ return S.Owned(E);
}
/// Check a cast of an unknown-any type. We intentionally only
/// trigger this for C-style casts.
-ExprResult Sema::checkUnknownAnyCast(SourceRange typeRange, QualType castType,
- Expr *castExpr, CastKind &castKind,
- ExprValueKind &VK, CXXCastPath &path) {
+ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
+ Expr *CastExpr, CastKind &CastKind,
+ ExprValueKind &VK, CXXCastPath &Path) {
// Rewrite the casted expression from scratch.
- ExprResult result = RebuildUnknownAnyExpr(*this, castType).Visit(castExpr);
+ ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
if (!result.isUsable()) return ExprError();
- castExpr = result.take();
- VK = castExpr->getValueKind();
- castKind = CK_NoOp;
+ CastExpr = result.take();
+ VK = CastExpr->getValueKind();
+ CastKind = CK_NoOp;
- return castExpr;
+ return CastExpr;
}
-static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
- Expr *orig = e;
+static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
+ Expr *orig = E;
unsigned diagID = diag::err_uncasted_use_of_unknown_any;
while (true) {
- e = e->IgnoreParenImpCasts();
- if (CallExpr *call = dyn_cast<CallExpr>(e)) {
- e = call->getCallee();
+ E = E->IgnoreParenImpCasts();
+ if (CallExpr *call = dyn_cast<CallExpr>(E)) {
+ E = call->getCallee();
diagID = diag::err_uncasted_call_of_unknown_any;
} else {
break;
@@ -9679,20 +9972,25 @@ static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *e) {
SourceLocation loc;
NamedDecl *d;
- if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
loc = ref->getLocation();
d = ref->getDecl();
- } else if (MemberExpr *mem = dyn_cast<MemberExpr>(e)) {
+ } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
loc = mem->getMemberLoc();
d = mem->getMemberDecl();
- } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(e)) {
+ } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
diagID = diag::err_uncasted_call_of_unknown_any;
- loc = msg->getSelectorLoc();
+ loc = msg->getSelectorStartLoc();
d = msg->getMethodDecl();
- assert(d && "unknown method returning __unknown_any?");
+ if (!d) {
+ S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
+ << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
+ << orig->getSourceRange();
+ return ExprError();
+ }
} else {
- S.Diag(e->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << e->getSourceRange();
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
return ExprError();
}
@@ -9709,17 +10007,27 @@ ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
QualType type = E->getType();
// Overloaded expressions.
- if (type == Context.OverloadTy)
- return ResolveAndFixSingleFunctionTemplateSpecialization(E, false, true,
- E->getSourceRange(),
- QualType(),
- diag::err_ovl_unresolvable);
+ if (type == Context.OverloadTy) {
+ // Try to resolve a single function template specialization.
+ // This is obligatory.
+ ExprResult result = Owned(E);
+ if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
+ return result;
+
+ // If that failed, try to recover with a call.
+ } else {
+ tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
+ /*complain*/ true);
+ return result;
+ }
+ }
// Bound member functions.
if (type == Context.BoundMemberTy) {
- Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
- << E->getSourceRange();
- return ExprError();
+ ExprResult result = Owned(E);
+ tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
+ /*complain*/ true);
+ return result;
}
// Expressions of unknown type.
@@ -9730,10 +10038,10 @@ ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
return Owned(E);
}
-bool Sema::CheckCaseExpression(Expr *expr) {
- if (expr->isTypeDependent())
+bool Sema::CheckCaseExpression(Expr *E) {
+ if (E->isTypeDependent())
return true;
- if (expr->isValueDependent() || expr->isIntegerConstantExpr(Context))
- return expr->getType()->isIntegralOrEnumerationType();
+ if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
+ return E->getType()->isIntegralOrEnumerationType();
return false;
}