aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64TargetTransformInfo.cpp')
-rw-r--r--lib/Target/AArch64/AArch64TargetTransformInfo.cpp190
1 files changed, 153 insertions, 37 deletions
diff --git a/lib/Target/AArch64/AArch64TargetTransformInfo.cpp b/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
index 1820ad959fcb..d75fef7b0171 100644
--- a/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
+++ b/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
@@ -38,7 +38,7 @@ bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
return (CallerBits & CalleeBits) == CalleeBits;
}
-/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
int AArch64TTIImpl::getIntImmCost(int64_t Val) {
@@ -54,7 +54,7 @@ int AArch64TTIImpl::getIntImmCost(int64_t Val) {
return (64 - LZ + 15) / 16;
}
-/// \brief Calculate the cost of materializing the given constant.
+/// Calculate the cost of materializing the given constant.
int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
assert(Ty->isIntegerTy());
@@ -277,7 +277,7 @@ int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
// same as the second operand. In this case, we will generate a "long"
// version of the widening instruction.
if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
- if (I->getOpcode() == Cast->getOpcode() &&
+ if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
return 0;
}
@@ -493,32 +493,70 @@ int AArch64TTIImpl::getArithmeticInstrCost(
int ISD = TLI->InstructionOpcodeToISD(Opcode);
- if (ISD == ISD::SDIV &&
- Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
- Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
- // On AArch64, scalar signed division by constants power-of-two are
- // normally expanded to the sequence ADD + CMP + SELECT + SRA.
- // The OperandValue properties many not be same as that of previous
- // operation; conservatively assume OP_None.
- Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
- TargetTransformInfo::OP_None,
- TargetTransformInfo::OP_None);
- Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
- TargetTransformInfo::OP_None,
- TargetTransformInfo::OP_None);
- Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
- TargetTransformInfo::OP_None,
- TargetTransformInfo::OP_None);
- Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
- TargetTransformInfo::OP_None,
- TargetTransformInfo::OP_None);
- return Cost;
- }
-
switch (ISD) {
default:
return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
+ case ISD::SDIV:
+ if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On AArch64, scalar signed division by constants power-of-two are
+ // normally expanded to the sequence ADD + CMP + SELECT + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation; conservatively assume OP_None.
+ Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return Cost;
+ }
+ LLVM_FALLTHROUGH;
+ case ISD::UDIV:
+ if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
+ auto VT = TLI->getValueType(DL, Ty);
+ if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
+ // Vector signed division by constant are expanded to the
+ // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
+ // to MULHS + SUB + SRL + ADD + SRL.
+ int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
+ Opd2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
+ }
+ }
+
+ Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo);
+ if (Ty->isVectorTy()) {
+ // On AArch64, vector divisions are not supported natively and are
+ // expanded into scalar divisions of each pair of elements.
+ Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
+ Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
+ Opd2Info, Opd1PropInfo, Opd2PropInfo);
+ // TODO: if one of the arguments is scalar, then it's not necessary to
+ // double the cost of handling the vector elements.
+ Cost += Cost;
+ }
+ return Cost;
+
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
@@ -596,14 +634,22 @@ int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
return LT.first * 2 * AmortizationCost;
}
- if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8) &&
- Ty->getVectorNumElements() < 8) {
- // We scalarize the loads/stores because there is not v.4b register and we
- // have to promote the elements to v.4h.
- unsigned NumVecElts = Ty->getVectorNumElements();
- unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
- // We generate 2 instructions per vector element.
- return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
+ unsigned ProfitableNumElements;
+ if (Opcode == Instruction::Store)
+ // We use a custom trunc store lowering so v.4b should be profitable.
+ ProfitableNumElements = 4;
+ else
+ // We scalarize the loads because there is not v.4b register and we
+ // have to promote the elements to v.2.
+ ProfitableNumElements = 8;
+
+ if (Ty->getVectorNumElements() < ProfitableNumElements) {
+ unsigned NumVecElts = Ty->getVectorNumElements();
+ unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
+ // We generate 2 instructions per vector element.
+ return NumVectorizableInstsToAmortize * NumVecElts * 2;
+ }
}
return LT.first;
@@ -690,14 +736,14 @@ getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
};
int StridedLoads = countStridedLoads(L, SE);
- DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
- << " strided loads\n");
+ LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
+ << " strided loads\n");
// Pick the largest power of 2 unroll count that won't result in too many
// strided loads.
if (StridedLoads) {
UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
- DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " << UP.MaxCount
- << '\n');
+ LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
+ << UP.MaxCount << '\n');
}
}
@@ -868,3 +914,73 @@ bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
}
return false;
}
+
+int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwiseForm) {
+
+ if (IsPairwiseForm)
+ return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+ MVT MTy = LT.second;
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Horizontal adds can use the 'addv' instruction. We model the cost of these
+ // instructions as normal vector adds. This is the only arithmetic vector
+ // reduction operation for which we have an instruction.
+ static const CostTblEntry CostTblNoPairwise[]{
+ {ISD::ADD, MVT::v8i8, 1},
+ {ISD::ADD, MVT::v16i8, 1},
+ {ISD::ADD, MVT::v4i16, 1},
+ {ISD::ADD, MVT::v8i16, 1},
+ {ISD::ADD, MVT::v4i32, 1},
+ };
+
+ if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
+ return LT.first * Entry->Cost;
+
+ return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
+}
+
+int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ if (Kind == TTI::SK_Transpose || Kind == TTI::SK_Select ||
+ Kind == TTI::SK_PermuteSingleSrc) {
+ static const CostTblEntry ShuffleTbl[] = {
+ // Transpose shuffle kinds can be performed with 'trn1/trn2' and
+ // 'zip1/zip2' instructions.
+ { TTI::SK_Transpose, MVT::v8i8, 1 },
+ { TTI::SK_Transpose, MVT::v16i8, 1 },
+ { TTI::SK_Transpose, MVT::v4i16, 1 },
+ { TTI::SK_Transpose, MVT::v8i16, 1 },
+ { TTI::SK_Transpose, MVT::v2i32, 1 },
+ { TTI::SK_Transpose, MVT::v4i32, 1 },
+ { TTI::SK_Transpose, MVT::v2i64, 1 },
+ { TTI::SK_Transpose, MVT::v2f32, 1 },
+ { TTI::SK_Transpose, MVT::v4f32, 1 },
+ { TTI::SK_Transpose, MVT::v2f64, 1 },
+ // Select shuffle kinds.
+ // TODO: handle vXi8/vXi16.
+ { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
+ { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
+ { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
+ { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
+ { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
+ { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
+ // PermuteSingleSrc shuffle kinds.
+ // TODO: handle vXi8/vXi16.
+ { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
+ { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
+ { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
+ { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
+ };
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}