aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp')
-rw-r--r--lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp299
1 files changed, 136 insertions, 163 deletions
diff --git a/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp b/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
index 2645a17b9bd0..c0956520de73 100644
--- a/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
+++ b/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
@@ -35,38 +35,40 @@ STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII,
MCContext &aMCT)
: MCT(aMCT), MCII(aMII), Addend(new unsigned(0)),
- Extended(new bool(false)), CurrentBundle(new MCInst const *) {}
+ Extended(new bool(false)), CurrentBundle(new MCInst const *),
+ CurrentIndex(new size_t(0)) {}
-uint32_t HexagonMCCodeEmitter::parseBits(size_t Instruction, size_t Last,
+uint32_t HexagonMCCodeEmitter::parseBits(size_t Last,
MCInst const &MCB,
MCInst const &MCI) const {
bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI);
- if (Instruction == 0) {
+ if (*CurrentIndex == 0) {
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
assert(!Duplex);
- assert(Instruction != Last);
+ assert(*CurrentIndex != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
- if (Instruction == 1) {
+ if (*CurrentIndex == 1) {
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
assert(!Duplex);
- assert(Instruction != Last);
+ assert(*CurrentIndex != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (Duplex) {
- assert(Instruction == Last);
+ assert(*CurrentIndex == Last);
return HexagonII::INST_PARSE_DUPLEX;
}
- if(Instruction == Last)
+ if(*CurrentIndex == Last)
return HexagonII::INST_PARSE_PACKET_END;
return HexagonII::INST_PARSE_NOT_END;
}
-void HexagonMCCodeEmitter::encodeInstruction(MCInst const &MI, raw_ostream &OS,
+/// EncodeInstruction - Emit the bundle
+void HexagonMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
- MCSubtargetInfo const &STI) const {
+ const MCSubtargetInfo &STI) const {
MCInst &HMB = const_cast<MCInst &>(MI);
assert(HexagonMCInstrInfo::isBundle(HMB));
@@ -74,7 +76,7 @@ void HexagonMCCodeEmitter::encodeInstruction(MCInst const &MI, raw_ostream &OS,
*Addend = 0;
*Extended = false;
*CurrentBundle = &MI;
- size_t Instruction = 0;
+ *CurrentIndex = 0;
size_t Last = HexagonMCInstrInfo::bundleSize(HMB) - 1;
for (auto &I : HexagonMCInstrInfo::bundleInstructions(HMB)) {
MCInst &HMI = const_cast<MCInst &>(*I.getInst());
@@ -82,11 +84,10 @@ void HexagonMCCodeEmitter::encodeInstruction(MCInst const &MI, raw_ostream &OS,
computeAvailableFeatures(STI.getFeatureBits()));
EncodeSingleInstruction(HMI, OS, Fixups, STI,
- parseBits(Instruction, Last, HMB, HMI),
- Instruction);
+ parseBits(Last, HMB, HMI));
*Extended = HexagonMCInstrInfo::isImmext(HMI);
*Addend += HEXAGON_INSTR_SIZE;
- ++Instruction;
+ ++*CurrentIndex;
}
return;
}
@@ -107,165 +108,44 @@ static bool RegisterMatches(unsigned Consumer, unsigned Producer,
/// EncodeSingleInstruction - Emit a single
void HexagonMCCodeEmitter::EncodeSingleInstruction(
const MCInst &MI, raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
- const MCSubtargetInfo &STI, uint32_t Parse, size_t Index) const {
- MCInst HMB = MI;
- assert(!HexagonMCInstrInfo::isBundle(HMB));
+ const MCSubtargetInfo &STI, uint32_t Parse) const {
+ assert(!HexagonMCInstrInfo::isBundle(MI));
uint64_t Binary;
- // Compound instructions are limited to using registers 0-7 and 16-23
- // and here we make a map 16-23 to 8-15 so they can be correctly encoded.
- static unsigned RegMap[8] = {Hexagon::R8, Hexagon::R9, Hexagon::R10,
- Hexagon::R11, Hexagon::R12, Hexagon::R13,
- Hexagon::R14, Hexagon::R15};
-
// Pseudo instructions don't get encoded and shouldn't be here
// in the first place!
- assert(!HexagonMCInstrInfo::getDesc(MCII, HMB).isPseudo() &&
+ assert(!HexagonMCInstrInfo::getDesc(MCII, MI).isPseudo() &&
"pseudo-instruction found");
DEBUG(dbgs() << "Encoding insn"
- " `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'"
+ " `" << HexagonMCInstrInfo::getName(MCII, MI) << "'"
"\n");
- if (llvm::HexagonMCInstrInfo::getType(MCII, HMB) == HexagonII::TypeCOMPOUND) {
- for (unsigned i = 0; i < HMB.getNumOperands(); ++i)
- if (HMB.getOperand(i).isReg()) {
- unsigned Reg =
- MCT.getRegisterInfo()->getEncodingValue(HMB.getOperand(i).getReg());
- if ((Reg <= 23) && (Reg >= 16))
- HMB.getOperand(i).setReg(RegMap[Reg - 16]);
- }
- }
-
- if (HexagonMCInstrInfo::isNewValue(MCII, HMB)) {
- // Calculate the new value distance to the associated producer
- MCOperand &MCO =
- HMB.getOperand(HexagonMCInstrInfo::getNewValueOp(MCII, HMB));
- unsigned SOffset = 0;
- unsigned VOffset = 0;
- unsigned Register = MCO.getReg();
- unsigned Register1;
- unsigned Register2;
- auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
- auto i = Instructions.begin() + Index - 1;
- for (;; --i) {
- assert(i != Instructions.begin() - 1 && "Couldn't find producer");
- MCInst const &Inst = *i->getInst();
- if (HexagonMCInstrInfo::isImmext(Inst))
- continue;
- ++SOffset;
- if (HexagonMCInstrInfo::isVector(MCII, Inst))
- // Vector instructions don't count scalars
- ++VOffset;
- Register1 =
- HexagonMCInstrInfo::hasNewValue(MCII, Inst)
- ? HexagonMCInstrInfo::getNewValueOperand(MCII, Inst).getReg()
- : static_cast<unsigned>(Hexagon::NoRegister);
- Register2 =
- HexagonMCInstrInfo::hasNewValue2(MCII, Inst)
- ? HexagonMCInstrInfo::getNewValueOperand2(MCII, Inst).getReg()
- : static_cast<unsigned>(Hexagon::NoRegister);
- if (!RegisterMatches(Register, Register1, Register2))
- // This isn't the register we're looking for
- continue;
- if (!HexagonMCInstrInfo::isPredicated(MCII, Inst))
- // Producer is unpredicated
- break;
- assert(HexagonMCInstrInfo::isPredicated(MCII, HMB) &&
- "Unpredicated consumer depending on predicated producer");
- if (HexagonMCInstrInfo::isPredicatedTrue(MCII, Inst) ==
- HexagonMCInstrInfo::isPredicatedTrue(MCII, HMB))
- // Producer predicate sense matched ours
- break;
- }
- // Hexagon PRM 10.11 Construct Nt from distance
- unsigned Offset =
- HexagonMCInstrInfo::isVector(MCII, HMB) ? VOffset : SOffset;
- Offset <<= 1;
- Offset |=
- HexagonMCInstrInfo::SubregisterBit(Register, Register1, Register2);
- MCO.setReg(Offset + Hexagon::R0);
- }
-
- Binary = getBinaryCodeForInstr(HMB, Fixups, STI);
+ Binary = getBinaryCodeForInstr(MI, Fixups, STI);
// Check for unimplemented instructions. Immediate extenders
// are encoded as zero, so they need to be accounted for.
- if ((!Binary) &&
- ((HMB.getOpcode() != DuplexIClass0) && (HMB.getOpcode() != A4_ext) &&
- (HMB.getOpcode() != A4_ext_b) && (HMB.getOpcode() != A4_ext_c) &&
- (HMB.getOpcode() != A4_ext_g))) {
+ if (!Binary &&
+ MI.getOpcode() != DuplexIClass0 &&
+ MI.getOpcode() != A4_ext) {
DEBUG(dbgs() << "Unimplemented inst: "
- " `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'"
+ " `" << HexagonMCInstrInfo::getName(MCII, MI) << "'"
"\n");
llvm_unreachable("Unimplemented Instruction");
}
Binary |= Parse;
// if we need to emit a duplexed instruction
- if (HMB.getOpcode() >= Hexagon::DuplexIClass0 &&
- HMB.getOpcode() <= Hexagon::DuplexIClassF) {
+ if (MI.getOpcode() >= Hexagon::DuplexIClass0 &&
+ MI.getOpcode() <= Hexagon::DuplexIClassF) {
assert(Parse == HexagonII::INST_PARSE_DUPLEX &&
"Emitting duplex without duplex parse bits");
- unsigned dupIClass;
- switch (HMB.getOpcode()) {
- case Hexagon::DuplexIClass0:
- dupIClass = 0;
- break;
- case Hexagon::DuplexIClass1:
- dupIClass = 1;
- break;
- case Hexagon::DuplexIClass2:
- dupIClass = 2;
- break;
- case Hexagon::DuplexIClass3:
- dupIClass = 3;
- break;
- case Hexagon::DuplexIClass4:
- dupIClass = 4;
- break;
- case Hexagon::DuplexIClass5:
- dupIClass = 5;
- break;
- case Hexagon::DuplexIClass6:
- dupIClass = 6;
- break;
- case Hexagon::DuplexIClass7:
- dupIClass = 7;
- break;
- case Hexagon::DuplexIClass8:
- dupIClass = 8;
- break;
- case Hexagon::DuplexIClass9:
- dupIClass = 9;
- break;
- case Hexagon::DuplexIClassA:
- dupIClass = 10;
- break;
- case Hexagon::DuplexIClassB:
- dupIClass = 11;
- break;
- case Hexagon::DuplexIClassC:
- dupIClass = 12;
- break;
- case Hexagon::DuplexIClassD:
- dupIClass = 13;
- break;
- case Hexagon::DuplexIClassE:
- dupIClass = 14;
- break;
- case Hexagon::DuplexIClassF:
- dupIClass = 15;
- break;
- default:
- llvm_unreachable("Unimplemented DuplexIClass");
- break;
- }
+ unsigned dupIClass = MI.getOpcode() - Hexagon::DuplexIClass0;
// 29 is the bit position.
// 0b1110 =0xE bits are masked off and down shifted by 1 bit.
// Last bit is moved to bit position 13
Binary = ((dupIClass & 0xE) << (29 - 1)) | ((dupIClass & 0x1) << 13);
- const MCInst *subInst0 = HMB.getOperand(0).getInst();
- const MCInst *subInst1 = HMB.getOperand(1).getInst();
+ const MCInst *subInst0 = MI.getOperand(0).getInst();
+ const MCInst *subInst1 = MI.getOperand(1).getInst();
// get subinstruction slot 0
unsigned subInstSlot0Bits = getBinaryCodeForInstr(*subInst0, Fixups, STI);
@@ -293,14 +173,13 @@ void raise_relocation_error(unsigned bits, unsigned kind) {
/// getFixupNoBits - Some insns are not extended and thus have no
/// bits. These cases require a more brute force method for determining
/// the correct relocation.
-namespace {
-Hexagon::Fixups getFixupNoBits(MCInstrInfo const &MCII, const MCInst &MI,
- const MCOperand &MO,
- const MCSymbolRefExpr::VariantKind kind) {
+Hexagon::Fixups HexagonMCCodeEmitter::getFixupNoBits(
+ MCInstrInfo const &MCII, const MCInst &MI, const MCOperand &MO,
+ const MCSymbolRefExpr::VariantKind kind) const {
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI);
unsigned insnType = llvm::HexagonMCInstrInfo::getType(MCII, MI);
- if (insnType == HexagonII::TypePREFIX) {
+ if (insnType == HexagonII::TypeEXTENDER) {
switch (kind) {
case MCSymbolRefExpr::VK_GOTREL:
return Hexagon::fixup_Hexagon_GOTREL_32_6_X;
@@ -319,11 +198,21 @@ Hexagon::Fixups getFixupNoBits(MCInstrInfo const &MCII, const MCInst &MI,
case MCSymbolRefExpr::VK_Hexagon_IE_GOT:
return Hexagon::fixup_Hexagon_IE_GOT_32_6_X;
case MCSymbolRefExpr::VK_Hexagon_PCREL:
- case MCSymbolRefExpr::VK_None:
- if (MCID.isBranch())
- return Hexagon::fixup_Hexagon_B32_PCREL_X;
- else
- return Hexagon::fixup_Hexagon_32_6_X;
+ return Hexagon::fixup_Hexagon_B32_PCREL_X;
+ case MCSymbolRefExpr::VK_None: {
+ auto Insts = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
+ for (auto I = Insts.begin(), N = Insts.end(); I != N; ++I) {
+ if (I->getInst() == &MI) {
+ const MCInst &NextI = *(I+1)->getInst();
+ const MCInstrDesc &D = HexagonMCInstrInfo::getDesc(MCII, NextI);
+ if (D.isBranch() || D.isCall() ||
+ HexagonMCInstrInfo::getType(MCII, NextI) == HexagonII::TypeCR)
+ return Hexagon::fixup_Hexagon_B32_PCREL_X;
+ return Hexagon::fixup_Hexagon_32_6_X;
+ }
+ }
+ raise_relocation_error(0, kind);
+ }
default:
raise_relocation_error(0, kind);
}
@@ -406,7 +295,6 @@ Hexagon::Fixups getFixupNoBits(MCInstrInfo const &MCII, const MCInst &MI,
}
llvm_unreachable("Relocation exit not taken");
}
-}
namespace llvm {
extern const MCInstrDesc HexagonInsts[];
@@ -450,7 +338,8 @@ unsigned HexagonMCCodeEmitter::getExprOpValue(const MCInst &MI,
int64_t Value;
if (ME->evaluateAsAbsolute(Value))
return Value;
- assert(ME->getKind() == MCExpr::SymbolRef || ME->getKind() == MCExpr::Binary);
+ assert(ME->getKind() == MCExpr::SymbolRef ||
+ ME->getKind() == MCExpr::Binary);
if (ME->getKind() == MCExpr::Binary) {
MCBinaryExpr const *Binary = cast<MCBinaryExpr>(ME);
getExprOpValue(MI, MO, Binary->getLHS(), Fixups, STI);
@@ -581,7 +470,30 @@ unsigned HexagonMCCodeEmitter::getExprOpValue(const MCInst &MI,
if (HexagonMCInstrInfo::s23_2_reloc(*MO.getExpr()))
FixupKind = Hexagon::fixup_Hexagon_23_REG;
else
- raise_relocation_error(bits, kind);
+ if (MCID.mayStore() || MCID.mayLoad()) {
+ for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses;
+ ++ImpUses) {
+ if (*ImpUses != Hexagon::GP)
+ continue;
+ switch (HexagonMCInstrInfo::getAccessSize(MCII, MI)) {
+ case HexagonII::MemAccessSize::ByteAccess:
+ FixupKind = fixup_Hexagon_GPREL16_0;
+ break;
+ case HexagonII::MemAccessSize::HalfWordAccess:
+ FixupKind = fixup_Hexagon_GPREL16_1;
+ break;
+ case HexagonII::MemAccessSize::WordAccess:
+ FixupKind = fixup_Hexagon_GPREL16_2;
+ break;
+ case HexagonII::MemAccessSize::DoubleWordAccess:
+ FixupKind = fixup_Hexagon_GPREL16_3;
+ break;
+ default:
+ raise_relocation_error(bits, kind);
+ }
+ }
+ } else
+ raise_relocation_error(bits, kind);
break;
}
case MCSymbolRefExpr::VK_DTPREL:
@@ -795,10 +707,71 @@ unsigned
HexagonMCCodeEmitter::getMachineOpValue(MCInst const &MI, MCOperand const &MO,
SmallVectorImpl<MCFixup> &Fixups,
MCSubtargetInfo const &STI) const {
+#ifndef NDEBUG
+ size_t OperandNumber = ~0U;
+ for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i)
+ if (&MI.getOperand(i) == &MO) {
+ OperandNumber = i;
+ break;
+ }
+ assert((OperandNumber != ~0U) && "Operand not found");
+#endif
+
+ if (HexagonMCInstrInfo::isNewValue(MCII, MI) &&
+ &MO == &MI.getOperand(HexagonMCInstrInfo::getNewValueOp(MCII, MI))) {
+ // Calculate the new value distance to the associated producer
+ MCOperand const &MCO =
+ MI.getOperand(HexagonMCInstrInfo::getNewValueOp(MCII, MI));
+ unsigned SOffset = 0;
+ unsigned VOffset = 0;
+ unsigned Register = MCO.getReg();
+ unsigned Register1;
+ unsigned Register2;
+ auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
+ auto i = Instructions.begin() + *CurrentIndex - 1;
+ for (;; --i) {
+ assert(i != Instructions.begin() - 1 && "Couldn't find producer");
+ MCInst const &Inst = *i->getInst();
+ if (HexagonMCInstrInfo::isImmext(Inst))
+ continue;
+ ++SOffset;
+ if (HexagonMCInstrInfo::isVector(MCII, Inst))
+ // Vector instructions don't count scalars
+ ++VOffset;
+ Register1 =
+ HexagonMCInstrInfo::hasNewValue(MCII, Inst)
+ ? HexagonMCInstrInfo::getNewValueOperand(MCII, Inst).getReg()
+ : static_cast<unsigned>(Hexagon::NoRegister);
+ Register2 =
+ HexagonMCInstrInfo::hasNewValue2(MCII, Inst)
+ ? HexagonMCInstrInfo::getNewValueOperand2(MCII, Inst).getReg()
+ : static_cast<unsigned>(Hexagon::NoRegister);
+ if (!RegisterMatches(Register, Register1, Register2))
+ // This isn't the register we're looking for
+ continue;
+ if (!HexagonMCInstrInfo::isPredicated(MCII, Inst))
+ // Producer is unpredicated
+ break;
+ assert(HexagonMCInstrInfo::isPredicated(MCII, MI) &&
+ "Unpredicated consumer depending on predicated producer");
+ if (HexagonMCInstrInfo::isPredicatedTrue(MCII, Inst) ==
+ HexagonMCInstrInfo::isPredicatedTrue(MCII, MI))
+ // Producer predicate sense matched ours
+ break;
+ }
+ // Hexagon PRM 10.11 Construct Nt from distance
+ unsigned Offset =
+ HexagonMCInstrInfo::isVector(MCII, MI) ? VOffset : SOffset;
+ Offset <<= 1;
+ Offset |=
+ HexagonMCInstrInfo::SubregisterBit(Register, Register1, Register2);
+ return Offset;
+ }
assert(!MO.isImm());
if (MO.isReg()) {
unsigned Reg = MO.getReg();
- if (HexagonMCInstrInfo::isSubInstruction(MI))
+ if (HexagonMCInstrInfo::isSubInstruction(MI) ||
+ llvm::HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCJ)
return HexagonMCInstrInfo::getDuplexRegisterNumbering(Reg);
switch(MI.getOpcode()){
case Hexagon::A2_tfrrcr: